1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * sgp40.c - Support for Sensirion SGP40 Gas Sensor
4  *
5  * Copyright (C) 2021 Andreas Klinger <ak@it-klinger.de>
6  *
7  * I2C slave address: 0x59
8  *
9  * Datasheet can be found here:
10  * https://www.sensirion.com/file/datasheet_sgp40
11  *
12  * There are two functionalities supported:
13  *
14  * 1) read raw logarithmic resistance value from sensor
15  *    --> useful to pass it to the algorithm of the sensor vendor for
16  *    measuring deteriorations and improvements of air quality.
17  *    It can be read from the attribute in_resistance_raw.
18  *
19  * 2) calculate an estimated absolute voc index (in_concentration_input)
20  *    with 0 - 500 index points) for measuring the air quality.
21  *    For this purpose the value of the resistance for which the voc index
22  *    will be 250 can be set up using in_resistance_calibbias (default 30000).
23  *
24  *    The voc index is calculated as:
25  *      x = (in_resistance_raw - in_resistance_calibbias) * 0.65
26  *      in_concentration_input = 500 / (1 + e^x)
27  *
28  * Compensation values of relative humidity and temperature can be set up
29  * by writing to the out values of temp and humidityrelative.
30  */
31 
32 #include <linux/delay.h>
33 #include <linux/crc8.h>
34 #include <linux/module.h>
35 #include <linux/mutex.h>
36 #include <linux/i2c.h>
37 #include <linux/iio/iio.h>
38 
39 /*
40  * floating point calculation of voc is done as integer
41  * where numbers are multiplied by 1 << SGP40_CALC_POWER
42  */
43 #define SGP40_CALC_POWER	14
44 
45 #define SGP40_CRC8_POLYNOMIAL	0x31
46 #define SGP40_CRC8_INIT		0xff
47 
48 DECLARE_CRC8_TABLE(sgp40_crc8_table);
49 
50 struct sgp40_data {
51 	struct device		*dev;
52 	struct i2c_client	*client;
53 	int			rht;
54 	int			temp;
55 	int			res_calibbias;
56 	/* Prevent concurrent access to rht, tmp, calibbias */
57 	struct mutex		lock;
58 };
59 
60 struct sgp40_tg_measure {
61 	u8	command[2];
62 	__be16	rht_ticks;
63 	u8	rht_crc;
64 	__be16	temp_ticks;
65 	u8	temp_crc;
66 } __packed;
67 
68 struct sgp40_tg_result {
69 	__be16	res_ticks;
70 	u8	res_crc;
71 } __packed;
72 
73 static const struct iio_chan_spec sgp40_channels[] = {
74 	{
75 		.type = IIO_CONCENTRATION,
76 		.channel2 = IIO_MOD_VOC,
77 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
78 	},
79 	{
80 		.type = IIO_RESISTANCE,
81 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
82 			BIT(IIO_CHAN_INFO_CALIBBIAS),
83 	},
84 	{
85 		.type = IIO_TEMP,
86 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
87 		.output = 1,
88 	},
89 	{
90 		.type = IIO_HUMIDITYRELATIVE,
91 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
92 		.output = 1,
93 	},
94 };
95 
96 /*
97  * taylor approximation of e^x:
98  * y = 1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24 + ... + x^n / n!
99  *
100  * Because we are calculating x real value multiplied by 2^power we get
101  * an additional 2^power^n to divide for every element. For a reasonable
102  * precision this would overflow after a few iterations. Therefore we
103  * divide the x^n part whenever its about to overflow (xmax).
104  */
105 
sgp40_exp(int exp,u32 power,u32 rounds)106 static u32 sgp40_exp(int exp, u32 power, u32 rounds)
107 {
108         u32 x, y, xp;
109         u32 factorial, divider, xmax;
110         int sign = 1;
111 	int i;
112 
113         if (exp == 0)
114                 return 1 << power;
115         else if (exp < 0) {
116                 sign = -1;
117                 exp *= -1;
118         }
119 
120         xmax = 0x7FFFFFFF / exp;
121         x = exp;
122         xp = 1;
123         factorial = 1;
124         y = 1 << power;
125         divider = 0;
126 
127         for (i = 1; i <= rounds; i++) {
128                 xp *= x;
129                 factorial *= i;
130                 y += (xp >> divider) / factorial;
131                 divider += power;
132                 /* divide when next multiplication would overflow */
133                 if (xp >= xmax) {
134                         xp >>= power;
135                         divider -= power;
136                 }
137         }
138 
139         if (sign == -1)
140                 return (1 << (power * 2)) / y;
141         else
142                 return y;
143 }
144 
sgp40_calc_voc(struct sgp40_data * data,u16 resistance_raw,int * voc)145 static int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc)
146 {
147 	int x;
148 	u32 exp = 0;
149 
150 	/* we calculate as a multiple of 16384 (2^14) */
151 	mutex_lock(&data->lock);
152 	x = ((int)resistance_raw - data->res_calibbias) * 106;
153 	mutex_unlock(&data->lock);
154 
155 	/* voc = 500 / (1 + e^x) */
156 	exp = sgp40_exp(x, SGP40_CALC_POWER, 18);
157 	*voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp));
158 
159 	dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n",
160 				resistance_raw, data->res_calibbias, x, exp, *voc);
161 
162 	return 0;
163 }
164 
sgp40_measure_resistance_raw(struct sgp40_data * data,u16 * resistance_raw)165 static int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw)
166 {
167 	int ret;
168 	struct i2c_client *client = data->client;
169 	u32 ticks;
170 	u16 ticks16;
171 	u8 crc;
172 	struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}};
173 	struct sgp40_tg_result tgres;
174 
175 	mutex_lock(&data->lock);
176 
177 	ticks = (data->rht / 10) * 65535 / 10000;
178 	ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between 0 .. 100 %rH */
179 	tg.rht_ticks = cpu_to_be16(ticks16);
180 	tg.rht_crc = crc8(sgp40_crc8_table, (u8 *)&tg.rht_ticks, 2, SGP40_CRC8_INIT);
181 
182 	ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500;
183 	ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between -45 .. +130 °C */
184 	tg.temp_ticks = cpu_to_be16(ticks16);
185 	tg.temp_crc = crc8(sgp40_crc8_table, (u8 *)&tg.temp_ticks, 2, SGP40_CRC8_INIT);
186 
187 	mutex_unlock(&data->lock);
188 
189 	ret = i2c_master_send(client, (const char *)&tg, sizeof(tg));
190 	if (ret != sizeof(tg)) {
191 		dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n", ret, sizeof(tg));
192 		return -EIO;
193 	}
194 	msleep(30);
195 
196 	ret = i2c_master_recv(client, (u8 *)&tgres, sizeof(tgres));
197 	if (ret < 0)
198 		return ret;
199 	if (ret != sizeof(tgres)) {
200 		dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n", ret, sizeof(tgres));
201 		return -EIO;
202 	}
203 
204 	crc = crc8(sgp40_crc8_table, (u8 *)&tgres.res_ticks, 2, SGP40_CRC8_INIT);
205 	if (crc != tgres.res_crc) {
206 		dev_err(data->dev, "CRC error while measure-raw\n");
207 		return -EIO;
208 	}
209 
210 	*resistance_raw = be16_to_cpu(tgres.res_ticks);
211 
212 	return 0;
213 }
214 
sgp40_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)215 static int sgp40_read_raw(struct iio_dev *indio_dev,
216 			struct iio_chan_spec const *chan, int *val,
217 			int *val2, long mask)
218 {
219 	struct sgp40_data *data = iio_priv(indio_dev);
220 	int ret, voc;
221 	u16 resistance_raw;
222 
223 	switch (mask) {
224 	case IIO_CHAN_INFO_RAW:
225 		switch (chan->type) {
226 		case IIO_RESISTANCE:
227 			ret = sgp40_measure_resistance_raw(data, &resistance_raw);
228 			if (ret)
229 				return ret;
230 
231 			*val = resistance_raw;
232 			return IIO_VAL_INT;
233 		case IIO_TEMP:
234 			mutex_lock(&data->lock);
235 			*val = data->temp;
236 			mutex_unlock(&data->lock);
237 			return IIO_VAL_INT;
238 		case IIO_HUMIDITYRELATIVE:
239 			mutex_lock(&data->lock);
240 			*val = data->rht;
241 			mutex_unlock(&data->lock);
242 			return IIO_VAL_INT;
243 		default:
244 			return -EINVAL;
245 		}
246 	case IIO_CHAN_INFO_PROCESSED:
247 		ret = sgp40_measure_resistance_raw(data, &resistance_raw);
248 		if (ret)
249 			return ret;
250 
251 		ret = sgp40_calc_voc(data, resistance_raw, &voc);
252 		if (ret)
253 			return ret;
254 
255 		*val = voc / (1 << SGP40_CALC_POWER);
256 		/*
257 		 * calculation should fit into integer, where:
258 		 * voc <= (500 * 2^SGP40_CALC_POWER) = 8192000
259 		 * (with SGP40_CALC_POWER = 14)
260 		 */
261 		*val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12));
262 		dev_dbg(data->dev, "voc: %d val: %d.%06d\n", voc, *val, *val2);
263 		return IIO_VAL_INT_PLUS_MICRO;
264 	case IIO_CHAN_INFO_CALIBBIAS:
265 		mutex_lock(&data->lock);
266 		*val = data->res_calibbias;
267 		mutex_unlock(&data->lock);
268 		return IIO_VAL_INT;
269 	default:
270 		return -EINVAL;
271 	}
272 }
273 
sgp40_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)274 static int sgp40_write_raw(struct iio_dev *indio_dev,
275 			struct iio_chan_spec const *chan, int val,
276 			int val2, long mask)
277 {
278 	struct sgp40_data *data = iio_priv(indio_dev);
279 
280 	switch (mask) {
281 	case IIO_CHAN_INFO_RAW:
282 		switch (chan->type) {
283 		case IIO_TEMP:
284 			if ((val < -45000) || (val > 130000))
285 				return -EINVAL;
286 
287 			mutex_lock(&data->lock);
288 			data->temp = val;
289 			mutex_unlock(&data->lock);
290 			return 0;
291 		case IIO_HUMIDITYRELATIVE:
292 			if ((val < 0) || (val > 100000))
293 				return -EINVAL;
294 
295 			mutex_lock(&data->lock);
296 			data->rht = val;
297 			mutex_unlock(&data->lock);
298 			return 0;
299 		default:
300 			return -EINVAL;
301 		}
302 	case IIO_CHAN_INFO_CALIBBIAS:
303 		if ((val < 20000) || (val > 52768))
304 			return -EINVAL;
305 
306 		mutex_lock(&data->lock);
307 		data->res_calibbias = val;
308 		mutex_unlock(&data->lock);
309 		return 0;
310 	}
311 	return -EINVAL;
312 }
313 
314 static const struct iio_info sgp40_info = {
315 	.read_raw	= sgp40_read_raw,
316 	.write_raw	= sgp40_write_raw,
317 };
318 
sgp40_probe(struct i2c_client * client)319 static int sgp40_probe(struct i2c_client *client)
320 {
321 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
322 	struct device *dev = &client->dev;
323 	struct iio_dev *indio_dev;
324 	struct sgp40_data *data;
325 	int ret;
326 
327 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
328 	if (!indio_dev)
329 		return -ENOMEM;
330 
331 	data = iio_priv(indio_dev);
332 	data->client = client;
333 	data->dev = dev;
334 
335 	crc8_populate_msb(sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL);
336 
337 	mutex_init(&data->lock);
338 
339 	/* set default values */
340 	data->rht = 50000;		/* 50 % */
341 	data->temp = 25000;		/* 25 °C */
342 	data->res_calibbias = 30000;	/* resistance raw value for voc index of 250 */
343 
344 	indio_dev->info = &sgp40_info;
345 	indio_dev->name = id->name;
346 	indio_dev->modes = INDIO_DIRECT_MODE;
347 	indio_dev->channels = sgp40_channels;
348 	indio_dev->num_channels = ARRAY_SIZE(sgp40_channels);
349 
350 	ret = devm_iio_device_register(dev, indio_dev);
351 	if (ret)
352 		dev_err(dev, "failed to register iio device\n");
353 
354 	return ret;
355 }
356 
357 static const struct i2c_device_id sgp40_id[] = {
358 	{ "sgp40" },
359 	{ }
360 };
361 
362 MODULE_DEVICE_TABLE(i2c, sgp40_id);
363 
364 static const struct of_device_id sgp40_dt_ids[] = {
365 	{ .compatible = "sensirion,sgp40" },
366 	{ }
367 };
368 
369 MODULE_DEVICE_TABLE(of, sgp40_dt_ids);
370 
371 static struct i2c_driver sgp40_driver = {
372 	.driver = {
373 		.name = "sgp40",
374 		.of_match_table = sgp40_dt_ids,
375 	},
376 	.probe = sgp40_probe,
377 	.id_table = sgp40_id,
378 };
379 module_i2c_driver(sgp40_driver);
380 
381 MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
382 MODULE_DESCRIPTION("Sensirion SGP40 gas sensor");
383 MODULE_LICENSE("GPL v2");
384