1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom ->submit_bio function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/backing-dev.h>
50 #include <linux/compat.h>
51 #include <linux/debugfs.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/file.h>
55 #include <linux/freezer.h>
56 #include <linux/kernel.h>
57 #include <linux/kthread.h>
58 #include <linux/miscdevice.h>
59 #include <linux/module.h>
60 #include <linux/mutex.h>
61 #include <linux/nospec.h>
62 #include <linux/pktcdvd.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/slab.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/uaccess.h>
69 
70 #include <scsi/scsi.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_ioctl.h>
73 
74 #include <linux/unaligned.h>
75 
76 #define DRIVER_NAME	"pktcdvd"
77 
78 #define MAX_SPEED 0xffff
79 
80 static DEFINE_MUTEX(pktcdvd_mutex);
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
83 static int pktdev_major;
84 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
85 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
86 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
87 static mempool_t psd_pool;
88 static struct bio_set pkt_bio_set;
89 
90 /* /sys/class/pktcdvd */
91 static struct class	class_pktcdvd;
92 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
93 
94 /* forward declaration */
95 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
96 static int pkt_remove_dev(dev_t pkt_dev);
97 
get_zone(sector_t sector,struct pktcdvd_device * pd)98 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
99 {
100 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
101 }
102 
103 /**********************************************************
104  * sysfs interface for pktcdvd
105  * by (C) 2006  Thomas Maier <balagi@justmail.de>
106 
107   /sys/class/pktcdvd/pktcdvd[0-7]/
108                      stat/reset
109                      stat/packets_started
110                      stat/packets_finished
111                      stat/kb_written
112                      stat/kb_read
113                      stat/kb_read_gather
114                      write_queue/size
115                      write_queue/congestion_off
116                      write_queue/congestion_on
117  **********************************************************/
118 
packets_started_show(struct device * dev,struct device_attribute * attr,char * buf)119 static ssize_t packets_started_show(struct device *dev,
120 				    struct device_attribute *attr, char *buf)
121 {
122 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
123 
124 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
125 }
126 static DEVICE_ATTR_RO(packets_started);
127 
packets_finished_show(struct device * dev,struct device_attribute * attr,char * buf)128 static ssize_t packets_finished_show(struct device *dev,
129 				     struct device_attribute *attr, char *buf)
130 {
131 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
132 
133 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
134 }
135 static DEVICE_ATTR_RO(packets_finished);
136 
kb_written_show(struct device * dev,struct device_attribute * attr,char * buf)137 static ssize_t kb_written_show(struct device *dev,
138 			       struct device_attribute *attr, char *buf)
139 {
140 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
141 
142 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
143 }
144 static DEVICE_ATTR_RO(kb_written);
145 
kb_read_show(struct device * dev,struct device_attribute * attr,char * buf)146 static ssize_t kb_read_show(struct device *dev,
147 			    struct device_attribute *attr, char *buf)
148 {
149 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
150 
151 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
152 }
153 static DEVICE_ATTR_RO(kb_read);
154 
kb_read_gather_show(struct device * dev,struct device_attribute * attr,char * buf)155 static ssize_t kb_read_gather_show(struct device *dev,
156 				   struct device_attribute *attr, char *buf)
157 {
158 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
159 
160 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
161 }
162 static DEVICE_ATTR_RO(kb_read_gather);
163 
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)164 static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
165 			   const char *buf, size_t len)
166 {
167 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
168 
169 	if (len > 0) {
170 		pd->stats.pkt_started = 0;
171 		pd->stats.pkt_ended = 0;
172 		pd->stats.secs_w = 0;
173 		pd->stats.secs_rg = 0;
174 		pd->stats.secs_r = 0;
175 	}
176 	return len;
177 }
178 static DEVICE_ATTR_WO(reset);
179 
180 static struct attribute *pkt_stat_attrs[] = {
181 	&dev_attr_packets_finished.attr,
182 	&dev_attr_packets_started.attr,
183 	&dev_attr_kb_read.attr,
184 	&dev_attr_kb_written.attr,
185 	&dev_attr_kb_read_gather.attr,
186 	&dev_attr_reset.attr,
187 	NULL,
188 };
189 
190 static const struct attribute_group pkt_stat_group = {
191 	.name = "stat",
192 	.attrs = pkt_stat_attrs,
193 };
194 
size_show(struct device * dev,struct device_attribute * attr,char * buf)195 static ssize_t size_show(struct device *dev,
196 			 struct device_attribute *attr, char *buf)
197 {
198 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
199 	int n;
200 
201 	spin_lock(&pd->lock);
202 	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
203 	spin_unlock(&pd->lock);
204 	return n;
205 }
206 static DEVICE_ATTR_RO(size);
207 
init_write_congestion_marks(int * lo,int * hi)208 static void init_write_congestion_marks(int* lo, int* hi)
209 {
210 	if (*hi > 0) {
211 		*hi = max(*hi, 500);
212 		*hi = min(*hi, 1000000);
213 		if (*lo <= 0)
214 			*lo = *hi - 100;
215 		else {
216 			*lo = min(*lo, *hi - 100);
217 			*lo = max(*lo, 100);
218 		}
219 	} else {
220 		*hi = -1;
221 		*lo = -1;
222 	}
223 }
224 
congestion_off_show(struct device * dev,struct device_attribute * attr,char * buf)225 static ssize_t congestion_off_show(struct device *dev,
226 				   struct device_attribute *attr, char *buf)
227 {
228 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
229 	int n;
230 
231 	spin_lock(&pd->lock);
232 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
233 	spin_unlock(&pd->lock);
234 	return n;
235 }
236 
congestion_off_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)237 static ssize_t congestion_off_store(struct device *dev,
238 				    struct device_attribute *attr,
239 				    const char *buf, size_t len)
240 {
241 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 	int val, ret;
243 
244 	ret = kstrtoint(buf, 10, &val);
245 	if (ret)
246 		return ret;
247 
248 	spin_lock(&pd->lock);
249 	pd->write_congestion_off = val;
250 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
251 	spin_unlock(&pd->lock);
252 	return len;
253 }
254 static DEVICE_ATTR_RW(congestion_off);
255 
congestion_on_show(struct device * dev,struct device_attribute * attr,char * buf)256 static ssize_t congestion_on_show(struct device *dev,
257 				  struct device_attribute *attr, char *buf)
258 {
259 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
260 	int n;
261 
262 	spin_lock(&pd->lock);
263 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
264 	spin_unlock(&pd->lock);
265 	return n;
266 }
267 
congestion_on_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)268 static ssize_t congestion_on_store(struct device *dev,
269 				   struct device_attribute *attr,
270 				   const char *buf, size_t len)
271 {
272 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
273 	int val, ret;
274 
275 	ret = kstrtoint(buf, 10, &val);
276 	if (ret)
277 		return ret;
278 
279 	spin_lock(&pd->lock);
280 	pd->write_congestion_on = val;
281 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
282 	spin_unlock(&pd->lock);
283 	return len;
284 }
285 static DEVICE_ATTR_RW(congestion_on);
286 
287 static struct attribute *pkt_wq_attrs[] = {
288 	&dev_attr_congestion_on.attr,
289 	&dev_attr_congestion_off.attr,
290 	&dev_attr_size.attr,
291 	NULL,
292 };
293 
294 static const struct attribute_group pkt_wq_group = {
295 	.name = "write_queue",
296 	.attrs = pkt_wq_attrs,
297 };
298 
299 static const struct attribute_group *pkt_groups[] = {
300 	&pkt_stat_group,
301 	&pkt_wq_group,
302 	NULL,
303 };
304 
pkt_sysfs_dev_new(struct pktcdvd_device * pd)305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307 	if (class_is_registered(&class_pktcdvd)) {
308 		pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
309 						    MKDEV(0, 0), pd, pkt_groups,
310 						    "%s", pd->disk->disk_name);
311 		if (IS_ERR(pd->dev))
312 			pd->dev = NULL;
313 	}
314 }
315 
pkt_sysfs_dev_remove(struct pktcdvd_device * pd)316 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
317 {
318 	if (class_is_registered(&class_pktcdvd))
319 		device_unregister(pd->dev);
320 }
321 
322 
323 /********************************************************************
324   /sys/class/pktcdvd/
325                      add            map block device
326                      remove         unmap packet dev
327                      device_map     show mappings
328  *******************************************************************/
329 
device_map_show(const struct class * c,const struct class_attribute * attr,char * data)330 static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
331 			       char *data)
332 {
333 	int n = 0;
334 	int idx;
335 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
336 	for (idx = 0; idx < MAX_WRITERS; idx++) {
337 		struct pktcdvd_device *pd = pkt_devs[idx];
338 		if (!pd)
339 			continue;
340 		n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
341 			pd->disk->disk_name,
342 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
343 			MAJOR(file_bdev(pd->bdev_file)->bd_dev),
344 			MINOR(file_bdev(pd->bdev_file)->bd_dev));
345 	}
346 	mutex_unlock(&ctl_mutex);
347 	return n;
348 }
349 static CLASS_ATTR_RO(device_map);
350 
add_store(const struct class * c,const struct class_attribute * attr,const char * buf,size_t count)351 static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
352 			 const char *buf, size_t count)
353 {
354 	unsigned int major, minor;
355 
356 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
357 		/* pkt_setup_dev() expects caller to hold reference to self */
358 		if (!try_module_get(THIS_MODULE))
359 			return -ENODEV;
360 
361 		pkt_setup_dev(MKDEV(major, minor), NULL);
362 
363 		module_put(THIS_MODULE);
364 
365 		return count;
366 	}
367 
368 	return -EINVAL;
369 }
370 static CLASS_ATTR_WO(add);
371 
remove_store(const struct class * c,const struct class_attribute * attr,const char * buf,size_t count)372 static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
373 			    const char *buf, size_t count)
374 {
375 	unsigned int major, minor;
376 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377 		pkt_remove_dev(MKDEV(major, minor));
378 		return count;
379 	}
380 	return -EINVAL;
381 }
382 static CLASS_ATTR_WO(remove);
383 
384 static struct attribute *class_pktcdvd_attrs[] = {
385 	&class_attr_add.attr,
386 	&class_attr_remove.attr,
387 	&class_attr_device_map.attr,
388 	NULL,
389 };
390 ATTRIBUTE_GROUPS(class_pktcdvd);
391 
392 static struct class class_pktcdvd = {
393 	.name		= DRIVER_NAME,
394 	.class_groups	= class_pktcdvd_groups,
395 };
396 
pkt_sysfs_init(void)397 static int pkt_sysfs_init(void)
398 {
399 	/*
400 	 * create control files in sysfs
401 	 * /sys/class/pktcdvd/...
402 	 */
403 	return class_register(&class_pktcdvd);
404 }
405 
pkt_sysfs_cleanup(void)406 static void pkt_sysfs_cleanup(void)
407 {
408 	class_unregister(&class_pktcdvd);
409 }
410 
411 /********************************************************************
412   entries in debugfs
413 
414   /sys/kernel/debug/pktcdvd[0-7]/
415 			info
416 
417  *******************************************************************/
418 
pkt_count_states(struct pktcdvd_device * pd,int * states)419 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
420 {
421 	struct packet_data *pkt;
422 	int i;
423 
424 	for (i = 0; i < PACKET_NUM_STATES; i++)
425 		states[i] = 0;
426 
427 	spin_lock(&pd->cdrw.active_list_lock);
428 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
429 		states[pkt->state]++;
430 	}
431 	spin_unlock(&pd->cdrw.active_list_lock);
432 }
433 
pkt_seq_show(struct seq_file * m,void * p)434 static int pkt_seq_show(struct seq_file *m, void *p)
435 {
436 	struct pktcdvd_device *pd = m->private;
437 	char *msg;
438 	int states[PACKET_NUM_STATES];
439 
440 	seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name,
441 		   file_bdev(pd->bdev_file));
442 
443 	seq_printf(m, "\nSettings:\n");
444 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
445 
446 	if (pd->settings.write_type == 0)
447 		msg = "Packet";
448 	else
449 		msg = "Unknown";
450 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
451 
452 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
453 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
454 
455 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
456 
457 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
458 		msg = "Mode 1";
459 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
460 		msg = "Mode 2";
461 	else
462 		msg = "Unknown";
463 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
464 
465 	seq_printf(m, "\nStatistics:\n");
466 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
467 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
468 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
469 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
470 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
471 
472 	seq_printf(m, "\nMisc:\n");
473 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
474 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
475 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
476 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
477 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
478 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
479 
480 	seq_printf(m, "\nQueue state:\n");
481 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
482 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
483 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
484 
485 	pkt_count_states(pd, states);
486 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
487 		   states[0], states[1], states[2], states[3], states[4], states[5]);
488 
489 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
490 			pd->write_congestion_off,
491 			pd->write_congestion_on);
492 	return 0;
493 }
494 DEFINE_SHOW_ATTRIBUTE(pkt_seq);
495 
pkt_debugfs_dev_new(struct pktcdvd_device * pd)496 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
497 {
498 	if (!pkt_debugfs_root)
499 		return;
500 	pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
501 
502 	pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
503 					     pd, &pkt_seq_fops);
504 }
505 
pkt_debugfs_dev_remove(struct pktcdvd_device * pd)506 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
507 {
508 	if (!pkt_debugfs_root)
509 		return;
510 	debugfs_remove(pd->dfs_f_info);
511 	debugfs_remove(pd->dfs_d_root);
512 	pd->dfs_f_info = NULL;
513 	pd->dfs_d_root = NULL;
514 }
515 
pkt_debugfs_init(void)516 static void pkt_debugfs_init(void)
517 {
518 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
519 }
520 
pkt_debugfs_cleanup(void)521 static void pkt_debugfs_cleanup(void)
522 {
523 	debugfs_remove(pkt_debugfs_root);
524 	pkt_debugfs_root = NULL;
525 }
526 
527 /* ----------------------------------------------------------*/
528 
529 
pkt_bio_finished(struct pktcdvd_device * pd)530 static void pkt_bio_finished(struct pktcdvd_device *pd)
531 {
532 	struct device *ddev = disk_to_dev(pd->disk);
533 
534 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
535 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
536 		dev_dbg(ddev, "queue empty\n");
537 		atomic_set(&pd->iosched.attention, 1);
538 		wake_up(&pd->wqueue);
539 	}
540 }
541 
542 /*
543  * Allocate a packet_data struct
544  */
pkt_alloc_packet_data(int frames)545 static struct packet_data *pkt_alloc_packet_data(int frames)
546 {
547 	int i;
548 	struct packet_data *pkt;
549 
550 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
551 	if (!pkt)
552 		goto no_pkt;
553 
554 	pkt->frames = frames;
555 	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
556 	if (!pkt->w_bio)
557 		goto no_bio;
558 
559 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
560 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
561 		if (!pkt->pages[i])
562 			goto no_page;
563 	}
564 
565 	spin_lock_init(&pkt->lock);
566 	bio_list_init(&pkt->orig_bios);
567 
568 	for (i = 0; i < frames; i++) {
569 		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
570 		if (!pkt->r_bios[i])
571 			goto no_rd_bio;
572 	}
573 
574 	return pkt;
575 
576 no_rd_bio:
577 	for (i = 0; i < frames; i++)
578 		kfree(pkt->r_bios[i]);
579 no_page:
580 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
581 		if (pkt->pages[i])
582 			__free_page(pkt->pages[i]);
583 	kfree(pkt->w_bio);
584 no_bio:
585 	kfree(pkt);
586 no_pkt:
587 	return NULL;
588 }
589 
590 /*
591  * Free a packet_data struct
592  */
pkt_free_packet_data(struct packet_data * pkt)593 static void pkt_free_packet_data(struct packet_data *pkt)
594 {
595 	int i;
596 
597 	for (i = 0; i < pkt->frames; i++)
598 		kfree(pkt->r_bios[i]);
599 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
600 		__free_page(pkt->pages[i]);
601 	kfree(pkt->w_bio);
602 	kfree(pkt);
603 }
604 
pkt_shrink_pktlist(struct pktcdvd_device * pd)605 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
606 {
607 	struct packet_data *pkt, *next;
608 
609 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
610 
611 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
612 		pkt_free_packet_data(pkt);
613 	}
614 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
615 }
616 
pkt_grow_pktlist(struct pktcdvd_device * pd,int nr_packets)617 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
618 {
619 	struct packet_data *pkt;
620 
621 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
622 
623 	while (nr_packets > 0) {
624 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
625 		if (!pkt) {
626 			pkt_shrink_pktlist(pd);
627 			return 0;
628 		}
629 		pkt->id = nr_packets;
630 		pkt->pd = pd;
631 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
632 		nr_packets--;
633 	}
634 	return 1;
635 }
636 
pkt_rbtree_next(struct pkt_rb_node * node)637 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
638 {
639 	struct rb_node *n = rb_next(&node->rb_node);
640 	if (!n)
641 		return NULL;
642 	return rb_entry(n, struct pkt_rb_node, rb_node);
643 }
644 
pkt_rbtree_erase(struct pktcdvd_device * pd,struct pkt_rb_node * node)645 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
646 {
647 	rb_erase(&node->rb_node, &pd->bio_queue);
648 	mempool_free(node, &pd->rb_pool);
649 	pd->bio_queue_size--;
650 	BUG_ON(pd->bio_queue_size < 0);
651 }
652 
653 /*
654  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
655  */
pkt_rbtree_find(struct pktcdvd_device * pd,sector_t s)656 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
657 {
658 	struct rb_node *n = pd->bio_queue.rb_node;
659 	struct rb_node *next;
660 	struct pkt_rb_node *tmp;
661 
662 	if (!n) {
663 		BUG_ON(pd->bio_queue_size > 0);
664 		return NULL;
665 	}
666 
667 	for (;;) {
668 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
669 		if (s <= tmp->bio->bi_iter.bi_sector)
670 			next = n->rb_left;
671 		else
672 			next = n->rb_right;
673 		if (!next)
674 			break;
675 		n = next;
676 	}
677 
678 	if (s > tmp->bio->bi_iter.bi_sector) {
679 		tmp = pkt_rbtree_next(tmp);
680 		if (!tmp)
681 			return NULL;
682 	}
683 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
684 	return tmp;
685 }
686 
687 /*
688  * Insert a node into the pd->bio_queue rb tree.
689  */
pkt_rbtree_insert(struct pktcdvd_device * pd,struct pkt_rb_node * node)690 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
691 {
692 	struct rb_node **p = &pd->bio_queue.rb_node;
693 	struct rb_node *parent = NULL;
694 	sector_t s = node->bio->bi_iter.bi_sector;
695 	struct pkt_rb_node *tmp;
696 
697 	while (*p) {
698 		parent = *p;
699 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
700 		if (s < tmp->bio->bi_iter.bi_sector)
701 			p = &(*p)->rb_left;
702 		else
703 			p = &(*p)->rb_right;
704 	}
705 	rb_link_node(&node->rb_node, parent, p);
706 	rb_insert_color(&node->rb_node, &pd->bio_queue);
707 	pd->bio_queue_size++;
708 }
709 
710 /*
711  * Send a packet_command to the underlying block device and
712  * wait for completion.
713  */
pkt_generic_packet(struct pktcdvd_device * pd,struct packet_command * cgc)714 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
715 {
716 	struct request_queue *q = bdev_get_queue(file_bdev(pd->bdev_file));
717 	struct scsi_cmnd *scmd;
718 	struct request *rq;
719 	int ret = 0;
720 
721 	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
722 			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
723 	if (IS_ERR(rq))
724 		return PTR_ERR(rq);
725 	scmd = blk_mq_rq_to_pdu(rq);
726 
727 	if (cgc->buflen) {
728 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
729 				      GFP_NOIO);
730 		if (ret)
731 			goto out;
732 	}
733 
734 	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
735 	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
736 
737 	rq->timeout = 60*HZ;
738 	if (cgc->quiet)
739 		rq->rq_flags |= RQF_QUIET;
740 
741 	blk_execute_rq(rq, false);
742 	if (scmd->result)
743 		ret = -EIO;
744 out:
745 	blk_mq_free_request(rq);
746 	return ret;
747 }
748 
sense_key_string(__u8 index)749 static const char *sense_key_string(__u8 index)
750 {
751 	static const char * const info[] = {
752 		"No sense", "Recovered error", "Not ready",
753 		"Medium error", "Hardware error", "Illegal request",
754 		"Unit attention", "Data protect", "Blank check",
755 	};
756 
757 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
758 }
759 
760 /*
761  * A generic sense dump / resolve mechanism should be implemented across
762  * all ATAPI + SCSI devices.
763  */
pkt_dump_sense(struct pktcdvd_device * pd,struct packet_command * cgc)764 static void pkt_dump_sense(struct pktcdvd_device *pd,
765 			   struct packet_command *cgc)
766 {
767 	struct device *ddev = disk_to_dev(pd->disk);
768 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
769 
770 	if (sshdr)
771 		dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
772 			CDROM_PACKET_SIZE, cgc->cmd,
773 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
774 			sense_key_string(sshdr->sense_key));
775 	else
776 		dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
777 }
778 
779 /*
780  * flush the drive cache to media
781  */
pkt_flush_cache(struct pktcdvd_device * pd)782 static int pkt_flush_cache(struct pktcdvd_device *pd)
783 {
784 	struct packet_command cgc;
785 
786 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
787 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
788 	cgc.quiet = 1;
789 
790 	/*
791 	 * the IMMED bit -- we default to not setting it, although that
792 	 * would allow a much faster close, this is safer
793 	 */
794 #if 0
795 	cgc.cmd[1] = 1 << 1;
796 #endif
797 	return pkt_generic_packet(pd, &cgc);
798 }
799 
800 /*
801  * speed is given as the normal factor, e.g. 4 for 4x
802  */
pkt_set_speed(struct pktcdvd_device * pd,unsigned write_speed,unsigned read_speed)803 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
804 				unsigned write_speed, unsigned read_speed)
805 {
806 	struct packet_command cgc;
807 	struct scsi_sense_hdr sshdr;
808 	int ret;
809 
810 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
811 	cgc.sshdr = &sshdr;
812 	cgc.cmd[0] = GPCMD_SET_SPEED;
813 	put_unaligned_be16(read_speed, &cgc.cmd[2]);
814 	put_unaligned_be16(write_speed, &cgc.cmd[4]);
815 
816 	ret = pkt_generic_packet(pd, &cgc);
817 	if (ret)
818 		pkt_dump_sense(pd, &cgc);
819 
820 	return ret;
821 }
822 
823 /*
824  * Queue a bio for processing by the low-level CD device. Must be called
825  * from process context.
826  */
pkt_queue_bio(struct pktcdvd_device * pd,struct bio * bio)827 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
828 {
829 	/*
830 	 * Some CDRW drives can not handle writes larger than one packet,
831 	 * even if the size is a multiple of the packet size.
832 	 */
833 	bio->bi_opf |= REQ_NOMERGE;
834 
835 	spin_lock(&pd->iosched.lock);
836 	if (bio_data_dir(bio) == READ)
837 		bio_list_add(&pd->iosched.read_queue, bio);
838 	else
839 		bio_list_add(&pd->iosched.write_queue, bio);
840 	spin_unlock(&pd->iosched.lock);
841 
842 	atomic_set(&pd->iosched.attention, 1);
843 	wake_up(&pd->wqueue);
844 }
845 
846 /*
847  * Process the queued read/write requests. This function handles special
848  * requirements for CDRW drives:
849  * - A cache flush command must be inserted before a read request if the
850  *   previous request was a write.
851  * - Switching between reading and writing is slow, so don't do it more often
852  *   than necessary.
853  * - Optimize for throughput at the expense of latency. This means that streaming
854  *   writes will never be interrupted by a read, but if the drive has to seek
855  *   before the next write, switch to reading instead if there are any pending
856  *   read requests.
857  * - Set the read speed according to current usage pattern. When only reading
858  *   from the device, it's best to use the highest possible read speed, but
859  *   when switching often between reading and writing, it's better to have the
860  *   same read and write speeds.
861  */
pkt_iosched_process_queue(struct pktcdvd_device * pd)862 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
863 {
864 	struct device *ddev = disk_to_dev(pd->disk);
865 
866 	if (atomic_read(&pd->iosched.attention) == 0)
867 		return;
868 	atomic_set(&pd->iosched.attention, 0);
869 
870 	for (;;) {
871 		struct bio *bio;
872 		int reads_queued, writes_queued;
873 
874 		spin_lock(&pd->iosched.lock);
875 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
876 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
877 		spin_unlock(&pd->iosched.lock);
878 
879 		if (!reads_queued && !writes_queued)
880 			break;
881 
882 		if (pd->iosched.writing) {
883 			int need_write_seek = 1;
884 			spin_lock(&pd->iosched.lock);
885 			bio = bio_list_peek(&pd->iosched.write_queue);
886 			spin_unlock(&pd->iosched.lock);
887 			if (bio && (bio->bi_iter.bi_sector ==
888 				    pd->iosched.last_write))
889 				need_write_seek = 0;
890 			if (need_write_seek && reads_queued) {
891 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
892 					dev_dbg(ddev, "write, waiting\n");
893 					break;
894 				}
895 				pkt_flush_cache(pd);
896 				pd->iosched.writing = 0;
897 			}
898 		} else {
899 			if (!reads_queued && writes_queued) {
900 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
901 					dev_dbg(ddev, "read, waiting\n");
902 					break;
903 				}
904 				pd->iosched.writing = 1;
905 			}
906 		}
907 
908 		spin_lock(&pd->iosched.lock);
909 		if (pd->iosched.writing)
910 			bio = bio_list_pop(&pd->iosched.write_queue);
911 		else
912 			bio = bio_list_pop(&pd->iosched.read_queue);
913 		spin_unlock(&pd->iosched.lock);
914 
915 		if (!bio)
916 			continue;
917 
918 		if (bio_data_dir(bio) == READ)
919 			pd->iosched.successive_reads +=
920 				bio->bi_iter.bi_size >> 10;
921 		else {
922 			pd->iosched.successive_reads = 0;
923 			pd->iosched.last_write = bio_end_sector(bio);
924 		}
925 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
926 			if (pd->read_speed == pd->write_speed) {
927 				pd->read_speed = MAX_SPEED;
928 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
929 			}
930 		} else {
931 			if (pd->read_speed != pd->write_speed) {
932 				pd->read_speed = pd->write_speed;
933 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
934 			}
935 		}
936 
937 		atomic_inc(&pd->cdrw.pending_bios);
938 		submit_bio_noacct(bio);
939 	}
940 }
941 
942 /*
943  * Special care is needed if the underlying block device has a small
944  * max_phys_segments value.
945  */
pkt_set_segment_merging(struct pktcdvd_device * pd,struct request_queue * q)946 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
947 {
948 	struct device *ddev = disk_to_dev(pd->disk);
949 
950 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
951 		/*
952 		 * The cdrom device can handle one segment/frame
953 		 */
954 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
955 		return 0;
956 	}
957 
958 	if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
959 		/*
960 		 * We can handle this case at the expense of some extra memory
961 		 * copies during write operations
962 		 */
963 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
964 		return 0;
965 	}
966 
967 	dev_err(ddev, "cdrom max_phys_segments too small\n");
968 	return -EIO;
969 }
970 
pkt_end_io_read(struct bio * bio)971 static void pkt_end_io_read(struct bio *bio)
972 {
973 	struct packet_data *pkt = bio->bi_private;
974 	struct pktcdvd_device *pd = pkt->pd;
975 	BUG_ON(!pd);
976 
977 	dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
978 		bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
979 
980 	if (bio->bi_status)
981 		atomic_inc(&pkt->io_errors);
982 	bio_uninit(bio);
983 	if (atomic_dec_and_test(&pkt->io_wait)) {
984 		atomic_inc(&pkt->run_sm);
985 		wake_up(&pd->wqueue);
986 	}
987 	pkt_bio_finished(pd);
988 }
989 
pkt_end_io_packet_write(struct bio * bio)990 static void pkt_end_io_packet_write(struct bio *bio)
991 {
992 	struct packet_data *pkt = bio->bi_private;
993 	struct pktcdvd_device *pd = pkt->pd;
994 	BUG_ON(!pd);
995 
996 	dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
997 
998 	pd->stats.pkt_ended++;
999 
1000 	bio_uninit(bio);
1001 	pkt_bio_finished(pd);
1002 	atomic_dec(&pkt->io_wait);
1003 	atomic_inc(&pkt->run_sm);
1004 	wake_up(&pd->wqueue);
1005 }
1006 
1007 /*
1008  * Schedule reads for the holes in a packet
1009  */
pkt_gather_data(struct pktcdvd_device * pd,struct packet_data * pkt)1010 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1011 {
1012 	struct device *ddev = disk_to_dev(pd->disk);
1013 	int frames_read = 0;
1014 	struct bio *bio;
1015 	int f;
1016 	char written[PACKET_MAX_SIZE];
1017 
1018 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1019 
1020 	atomic_set(&pkt->io_wait, 0);
1021 	atomic_set(&pkt->io_errors, 0);
1022 
1023 	/*
1024 	 * Figure out which frames we need to read before we can write.
1025 	 */
1026 	memset(written, 0, sizeof(written));
1027 	spin_lock(&pkt->lock);
1028 	bio_list_for_each(bio, &pkt->orig_bios) {
1029 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1030 			(CD_FRAMESIZE >> 9);
1031 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1032 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1033 		BUG_ON(first_frame < 0);
1034 		BUG_ON(first_frame + num_frames > pkt->frames);
1035 		for (f = first_frame; f < first_frame + num_frames; f++)
1036 			written[f] = 1;
1037 	}
1038 	spin_unlock(&pkt->lock);
1039 
1040 	if (pkt->cache_valid) {
1041 		dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
1042 		goto out_account;
1043 	}
1044 
1045 	/*
1046 	 * Schedule reads for missing parts of the packet.
1047 	 */
1048 	for (f = 0; f < pkt->frames; f++) {
1049 		int p, offset;
1050 
1051 		if (written[f])
1052 			continue;
1053 
1054 		bio = pkt->r_bios[f];
1055 		bio_init(bio, file_bdev(pd->bdev_file), bio->bi_inline_vecs, 1,
1056 			 REQ_OP_READ);
1057 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1058 		bio->bi_end_io = pkt_end_io_read;
1059 		bio->bi_private = pkt;
1060 
1061 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1062 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1063 		dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1064 			pkt->pages[p], offset);
1065 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1066 			BUG();
1067 
1068 		atomic_inc(&pkt->io_wait);
1069 		pkt_queue_bio(pd, bio);
1070 		frames_read++;
1071 	}
1072 
1073 out_account:
1074 	dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
1075 	pd->stats.pkt_started++;
1076 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1077 }
1078 
1079 /*
1080  * Find a packet matching zone, or the least recently used packet if
1081  * there is no match.
1082  */
pkt_get_packet_data(struct pktcdvd_device * pd,int zone)1083 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1084 {
1085 	struct packet_data *pkt;
1086 
1087 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1088 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1089 			list_del_init(&pkt->list);
1090 			if (pkt->sector != zone)
1091 				pkt->cache_valid = 0;
1092 			return pkt;
1093 		}
1094 	}
1095 	BUG();
1096 	return NULL;
1097 }
1098 
pkt_put_packet_data(struct pktcdvd_device * pd,struct packet_data * pkt)1099 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1100 {
1101 	if (pkt->cache_valid) {
1102 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1103 	} else {
1104 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1105 	}
1106 }
1107 
pkt_set_state(struct device * ddev,struct packet_data * pkt,enum packet_data_state state)1108 static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1109 				 enum packet_data_state state)
1110 {
1111 	static const char *state_name[] = {
1112 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1113 	};
1114 	enum packet_data_state old_state = pkt->state;
1115 
1116 	dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1117 		pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1118 
1119 	pkt->state = state;
1120 }
1121 
1122 /*
1123  * Scan the work queue to see if we can start a new packet.
1124  * returns non-zero if any work was done.
1125  */
pkt_handle_queue(struct pktcdvd_device * pd)1126 static int pkt_handle_queue(struct pktcdvd_device *pd)
1127 {
1128 	struct device *ddev = disk_to_dev(pd->disk);
1129 	struct packet_data *pkt, *p;
1130 	struct bio *bio = NULL;
1131 	sector_t zone = 0; /* Suppress gcc warning */
1132 	struct pkt_rb_node *node, *first_node;
1133 	struct rb_node *n;
1134 
1135 	atomic_set(&pd->scan_queue, 0);
1136 
1137 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1138 		dev_dbg(ddev, "no pkt\n");
1139 		return 0;
1140 	}
1141 
1142 	/*
1143 	 * Try to find a zone we are not already working on.
1144 	 */
1145 	spin_lock(&pd->lock);
1146 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1147 	if (!first_node) {
1148 		n = rb_first(&pd->bio_queue);
1149 		if (n)
1150 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1151 	}
1152 	node = first_node;
1153 	while (node) {
1154 		bio = node->bio;
1155 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1156 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1157 			if (p->sector == zone) {
1158 				bio = NULL;
1159 				goto try_next_bio;
1160 			}
1161 		}
1162 		break;
1163 try_next_bio:
1164 		node = pkt_rbtree_next(node);
1165 		if (!node) {
1166 			n = rb_first(&pd->bio_queue);
1167 			if (n)
1168 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1169 		}
1170 		if (node == first_node)
1171 			node = NULL;
1172 	}
1173 	spin_unlock(&pd->lock);
1174 	if (!bio) {
1175 		dev_dbg(ddev, "no bio\n");
1176 		return 0;
1177 	}
1178 
1179 	pkt = pkt_get_packet_data(pd, zone);
1180 
1181 	pd->current_sector = zone + pd->settings.size;
1182 	pkt->sector = zone;
1183 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1184 	pkt->write_size = 0;
1185 
1186 	/*
1187 	 * Scan work queue for bios in the same zone and link them
1188 	 * to this packet.
1189 	 */
1190 	spin_lock(&pd->lock);
1191 	dev_dbg(ddev, "looking for zone %llx\n", zone);
1192 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1193 		sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1194 
1195 		bio = node->bio;
1196 		dev_dbg(ddev, "found zone=%llx\n", tmp);
1197 		if (tmp != zone)
1198 			break;
1199 		pkt_rbtree_erase(pd, node);
1200 		spin_lock(&pkt->lock);
1201 		bio_list_add(&pkt->orig_bios, bio);
1202 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1203 		spin_unlock(&pkt->lock);
1204 	}
1205 	/* check write congestion marks, and if bio_queue_size is
1206 	 * below, wake up any waiters
1207 	 */
1208 	if (pd->congested &&
1209 	    pd->bio_queue_size <= pd->write_congestion_off) {
1210 		pd->congested = false;
1211 		wake_up_var(&pd->congested);
1212 	}
1213 	spin_unlock(&pd->lock);
1214 
1215 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1216 	pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1217 	atomic_set(&pkt->run_sm, 1);
1218 
1219 	spin_lock(&pd->cdrw.active_list_lock);
1220 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1221 	spin_unlock(&pd->cdrw.active_list_lock);
1222 
1223 	return 1;
1224 }
1225 
1226 /**
1227  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1228  * another
1229  * @src: source bio list
1230  * @dst: destination bio list
1231  *
1232  * Stops when it reaches the end of either the @src list or @dst list - that is,
1233  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1234  * bios).
1235  */
bio_list_copy_data(struct bio * dst,struct bio * src)1236 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1237 {
1238 	struct bvec_iter src_iter = src->bi_iter;
1239 	struct bvec_iter dst_iter = dst->bi_iter;
1240 
1241 	while (1) {
1242 		if (!src_iter.bi_size) {
1243 			src = src->bi_next;
1244 			if (!src)
1245 				break;
1246 
1247 			src_iter = src->bi_iter;
1248 		}
1249 
1250 		if (!dst_iter.bi_size) {
1251 			dst = dst->bi_next;
1252 			if (!dst)
1253 				break;
1254 
1255 			dst_iter = dst->bi_iter;
1256 		}
1257 
1258 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1259 	}
1260 }
1261 
1262 /*
1263  * Assemble a bio to write one packet and queue the bio for processing
1264  * by the underlying block device.
1265  */
pkt_start_write(struct pktcdvd_device * pd,struct packet_data * pkt)1266 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1267 {
1268 	struct device *ddev = disk_to_dev(pd->disk);
1269 	int f;
1270 
1271 	bio_init(pkt->w_bio, file_bdev(pd->bdev_file), pkt->w_bio->bi_inline_vecs,
1272 		 pkt->frames, REQ_OP_WRITE);
1273 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1274 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1275 	pkt->w_bio->bi_private = pkt;
1276 
1277 	/* XXX: locking? */
1278 	for (f = 0; f < pkt->frames; f++) {
1279 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1280 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1281 
1282 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1283 			BUG();
1284 	}
1285 	dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1286 
1287 	/*
1288 	 * Fill-in bvec with data from orig_bios.
1289 	 */
1290 	spin_lock(&pkt->lock);
1291 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1292 
1293 	pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1294 	spin_unlock(&pkt->lock);
1295 
1296 	dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
1297 
1298 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1299 		pkt->cache_valid = 1;
1300 	else
1301 		pkt->cache_valid = 0;
1302 
1303 	/* Start the write request */
1304 	atomic_set(&pkt->io_wait, 1);
1305 	pkt_queue_bio(pd, pkt->w_bio);
1306 }
1307 
pkt_finish_packet(struct packet_data * pkt,blk_status_t status)1308 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1309 {
1310 	struct bio *bio;
1311 
1312 	if (status)
1313 		pkt->cache_valid = 0;
1314 
1315 	/* Finish all bios corresponding to this packet */
1316 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1317 		bio->bi_status = status;
1318 		bio_endio(bio);
1319 	}
1320 }
1321 
pkt_run_state_machine(struct pktcdvd_device * pd,struct packet_data * pkt)1322 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1323 {
1324 	struct device *ddev = disk_to_dev(pd->disk);
1325 
1326 	dev_dbg(ddev, "pkt %d\n", pkt->id);
1327 
1328 	for (;;) {
1329 		switch (pkt->state) {
1330 		case PACKET_WAITING_STATE:
1331 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1332 				return;
1333 
1334 			pkt->sleep_time = 0;
1335 			pkt_gather_data(pd, pkt);
1336 			pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1337 			break;
1338 
1339 		case PACKET_READ_WAIT_STATE:
1340 			if (atomic_read(&pkt->io_wait) > 0)
1341 				return;
1342 
1343 			if (atomic_read(&pkt->io_errors) > 0) {
1344 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1345 			} else {
1346 				pkt_start_write(pd, pkt);
1347 			}
1348 			break;
1349 
1350 		case PACKET_WRITE_WAIT_STATE:
1351 			if (atomic_read(&pkt->io_wait) > 0)
1352 				return;
1353 
1354 			if (!pkt->w_bio->bi_status) {
1355 				pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1356 			} else {
1357 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1358 			}
1359 			break;
1360 
1361 		case PACKET_RECOVERY_STATE:
1362 			dev_dbg(ddev, "No recovery possible\n");
1363 			pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1364 			break;
1365 
1366 		case PACKET_FINISHED_STATE:
1367 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1368 			return;
1369 
1370 		default:
1371 			BUG();
1372 			break;
1373 		}
1374 	}
1375 }
1376 
pkt_handle_packets(struct pktcdvd_device * pd)1377 static void pkt_handle_packets(struct pktcdvd_device *pd)
1378 {
1379 	struct device *ddev = disk_to_dev(pd->disk);
1380 	struct packet_data *pkt, *next;
1381 
1382 	/*
1383 	 * Run state machine for active packets
1384 	 */
1385 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1386 		if (atomic_read(&pkt->run_sm) > 0) {
1387 			atomic_set(&pkt->run_sm, 0);
1388 			pkt_run_state_machine(pd, pkt);
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * Move no longer active packets to the free list
1394 	 */
1395 	spin_lock(&pd->cdrw.active_list_lock);
1396 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1397 		if (pkt->state == PACKET_FINISHED_STATE) {
1398 			list_del(&pkt->list);
1399 			pkt_put_packet_data(pd, pkt);
1400 			pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1401 			atomic_set(&pd->scan_queue, 1);
1402 		}
1403 	}
1404 	spin_unlock(&pd->cdrw.active_list_lock);
1405 }
1406 
1407 /*
1408  * kcdrwd is woken up when writes have been queued for one of our
1409  * registered devices
1410  */
kcdrwd(void * foobar)1411 static int kcdrwd(void *foobar)
1412 {
1413 	struct pktcdvd_device *pd = foobar;
1414 	struct device *ddev = disk_to_dev(pd->disk);
1415 	struct packet_data *pkt;
1416 	int states[PACKET_NUM_STATES];
1417 	long min_sleep_time, residue;
1418 
1419 	set_user_nice(current, MIN_NICE);
1420 	set_freezable();
1421 
1422 	for (;;) {
1423 		DECLARE_WAITQUEUE(wait, current);
1424 
1425 		/*
1426 		 * Wait until there is something to do
1427 		 */
1428 		add_wait_queue(&pd->wqueue, &wait);
1429 		for (;;) {
1430 			set_current_state(TASK_INTERRUPTIBLE);
1431 
1432 			/* Check if we need to run pkt_handle_queue */
1433 			if (atomic_read(&pd->scan_queue) > 0)
1434 				goto work_to_do;
1435 
1436 			/* Check if we need to run the state machine for some packet */
1437 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1438 				if (atomic_read(&pkt->run_sm) > 0)
1439 					goto work_to_do;
1440 			}
1441 
1442 			/* Check if we need to process the iosched queues */
1443 			if (atomic_read(&pd->iosched.attention) != 0)
1444 				goto work_to_do;
1445 
1446 			/* Otherwise, go to sleep */
1447 			pkt_count_states(pd, states);
1448 			dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1449 				states[0], states[1], states[2], states[3], states[4], states[5]);
1450 
1451 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1452 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1453 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1454 					min_sleep_time = pkt->sleep_time;
1455 			}
1456 
1457 			dev_dbg(ddev, "sleeping\n");
1458 			residue = schedule_timeout(min_sleep_time);
1459 			dev_dbg(ddev, "wake up\n");
1460 
1461 			/* make swsusp happy with our thread */
1462 			try_to_freeze();
1463 
1464 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1465 				if (!pkt->sleep_time)
1466 					continue;
1467 				pkt->sleep_time -= min_sleep_time - residue;
1468 				if (pkt->sleep_time <= 0) {
1469 					pkt->sleep_time = 0;
1470 					atomic_inc(&pkt->run_sm);
1471 				}
1472 			}
1473 
1474 			if (kthread_should_stop())
1475 				break;
1476 		}
1477 work_to_do:
1478 		set_current_state(TASK_RUNNING);
1479 		remove_wait_queue(&pd->wqueue, &wait);
1480 
1481 		if (kthread_should_stop())
1482 			break;
1483 
1484 		/*
1485 		 * if pkt_handle_queue returns true, we can queue
1486 		 * another request.
1487 		 */
1488 		while (pkt_handle_queue(pd))
1489 			;
1490 
1491 		/*
1492 		 * Handle packet state machine
1493 		 */
1494 		pkt_handle_packets(pd);
1495 
1496 		/*
1497 		 * Handle iosched queues
1498 		 */
1499 		pkt_iosched_process_queue(pd);
1500 	}
1501 
1502 	return 0;
1503 }
1504 
pkt_print_settings(struct pktcdvd_device * pd)1505 static void pkt_print_settings(struct pktcdvd_device *pd)
1506 {
1507 	dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1508 		 pd->settings.fp ? "Fixed" : "Variable",
1509 		 pd->settings.size >> 2,
1510 		 pd->settings.block_mode == 8 ? '1' : '2');
1511 }
1512 
pkt_mode_sense(struct pktcdvd_device * pd,struct packet_command * cgc,int page_code,int page_control)1513 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1514 {
1515 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1516 
1517 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1518 	cgc->cmd[2] = page_code | (page_control << 6);
1519 	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1520 	cgc->data_direction = CGC_DATA_READ;
1521 	return pkt_generic_packet(pd, cgc);
1522 }
1523 
pkt_mode_select(struct pktcdvd_device * pd,struct packet_command * cgc)1524 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1525 {
1526 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1527 	memset(cgc->buffer, 0, 2);
1528 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1529 	cgc->cmd[1] = 0x10;		/* PF */
1530 	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1531 	cgc->data_direction = CGC_DATA_WRITE;
1532 	return pkt_generic_packet(pd, cgc);
1533 }
1534 
pkt_get_disc_info(struct pktcdvd_device * pd,disc_information * di)1535 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1536 {
1537 	struct packet_command cgc;
1538 	int ret;
1539 
1540 	/* set up command and get the disc info */
1541 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1542 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1543 	cgc.cmd[8] = cgc.buflen = 2;
1544 	cgc.quiet = 1;
1545 
1546 	ret = pkt_generic_packet(pd, &cgc);
1547 	if (ret)
1548 		return ret;
1549 
1550 	/* not all drives have the same disc_info length, so requeue
1551 	 * packet with the length the drive tells us it can supply
1552 	 */
1553 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1554 		     sizeof(di->disc_information_length);
1555 
1556 	if (cgc.buflen > sizeof(disc_information))
1557 		cgc.buflen = sizeof(disc_information);
1558 
1559 	cgc.cmd[8] = cgc.buflen;
1560 	return pkt_generic_packet(pd, &cgc);
1561 }
1562 
pkt_get_track_info(struct pktcdvd_device * pd,__u16 track,__u8 type,track_information * ti)1563 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1564 {
1565 	struct packet_command cgc;
1566 	int ret;
1567 
1568 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1569 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1570 	cgc.cmd[1] = type & 3;
1571 	put_unaligned_be16(track, &cgc.cmd[4]);
1572 	cgc.cmd[8] = 8;
1573 	cgc.quiet = 1;
1574 
1575 	ret = pkt_generic_packet(pd, &cgc);
1576 	if (ret)
1577 		return ret;
1578 
1579 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1580 		     sizeof(ti->track_information_length);
1581 
1582 	if (cgc.buflen > sizeof(track_information))
1583 		cgc.buflen = sizeof(track_information);
1584 
1585 	cgc.cmd[8] = cgc.buflen;
1586 	return pkt_generic_packet(pd, &cgc);
1587 }
1588 
pkt_get_last_written(struct pktcdvd_device * pd,long * last_written)1589 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1590 						long *last_written)
1591 {
1592 	disc_information di;
1593 	track_information ti;
1594 	__u32 last_track;
1595 	int ret;
1596 
1597 	ret = pkt_get_disc_info(pd, &di);
1598 	if (ret)
1599 		return ret;
1600 
1601 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1602 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1603 	if (ret)
1604 		return ret;
1605 
1606 	/* if this track is blank, try the previous. */
1607 	if (ti.blank) {
1608 		last_track--;
1609 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1610 		if (ret)
1611 			return ret;
1612 	}
1613 
1614 	/* if last recorded field is valid, return it. */
1615 	if (ti.lra_v) {
1616 		*last_written = be32_to_cpu(ti.last_rec_address);
1617 	} else {
1618 		/* make it up instead */
1619 		*last_written = be32_to_cpu(ti.track_start) +
1620 				be32_to_cpu(ti.track_size);
1621 		if (ti.free_blocks)
1622 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1623 	}
1624 	return 0;
1625 }
1626 
1627 /*
1628  * write mode select package based on pd->settings
1629  */
pkt_set_write_settings(struct pktcdvd_device * pd)1630 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1631 {
1632 	struct device *ddev = disk_to_dev(pd->disk);
1633 	struct packet_command cgc;
1634 	struct scsi_sense_hdr sshdr;
1635 	write_param_page *wp;
1636 	char buffer[128];
1637 	int ret, size;
1638 
1639 	/* doesn't apply to DVD+RW or DVD-RAM */
1640 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1641 		return 0;
1642 
1643 	memset(buffer, 0, sizeof(buffer));
1644 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1645 	cgc.sshdr = &sshdr;
1646 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1647 	if (ret) {
1648 		pkt_dump_sense(pd, &cgc);
1649 		return ret;
1650 	}
1651 
1652 	size = 2 + get_unaligned_be16(&buffer[0]);
1653 	pd->mode_offset = get_unaligned_be16(&buffer[6]);
1654 	if (size > sizeof(buffer))
1655 		size = sizeof(buffer);
1656 
1657 	/*
1658 	 * now get it all
1659 	 */
1660 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1661 	cgc.sshdr = &sshdr;
1662 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1663 	if (ret) {
1664 		pkt_dump_sense(pd, &cgc);
1665 		return ret;
1666 	}
1667 
1668 	/*
1669 	 * write page is offset header + block descriptor length
1670 	 */
1671 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1672 
1673 	wp->fp = pd->settings.fp;
1674 	wp->track_mode = pd->settings.track_mode;
1675 	wp->write_type = pd->settings.write_type;
1676 	wp->data_block_type = pd->settings.block_mode;
1677 
1678 	wp->multi_session = 0;
1679 
1680 #ifdef PACKET_USE_LS
1681 	wp->link_size = 7;
1682 	wp->ls_v = 1;
1683 #endif
1684 
1685 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1686 		wp->session_format = 0;
1687 		wp->subhdr2 = 0x20;
1688 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1689 		wp->session_format = 0x20;
1690 		wp->subhdr2 = 8;
1691 #if 0
1692 		wp->mcn[0] = 0x80;
1693 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1694 #endif
1695 	} else {
1696 		/*
1697 		 * paranoia
1698 		 */
1699 		dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1700 		return 1;
1701 	}
1702 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1703 
1704 	cgc.buflen = cgc.cmd[8] = size;
1705 	ret = pkt_mode_select(pd, &cgc);
1706 	if (ret) {
1707 		pkt_dump_sense(pd, &cgc);
1708 		return ret;
1709 	}
1710 
1711 	pkt_print_settings(pd);
1712 	return 0;
1713 }
1714 
1715 /*
1716  * 1 -- we can write to this track, 0 -- we can't
1717  */
pkt_writable_track(struct pktcdvd_device * pd,track_information * ti)1718 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1719 {
1720 	struct device *ddev = disk_to_dev(pd->disk);
1721 
1722 	switch (pd->mmc3_profile) {
1723 		case 0x1a: /* DVD+RW */
1724 		case 0x12: /* DVD-RAM */
1725 			/* The track is always writable on DVD+RW/DVD-RAM */
1726 			return 1;
1727 		default:
1728 			break;
1729 	}
1730 
1731 	if (!ti->packet || !ti->fp)
1732 		return 0;
1733 
1734 	/*
1735 	 * "good" settings as per Mt Fuji.
1736 	 */
1737 	if (ti->rt == 0 && ti->blank == 0)
1738 		return 1;
1739 
1740 	if (ti->rt == 0 && ti->blank == 1)
1741 		return 1;
1742 
1743 	if (ti->rt == 1 && ti->blank == 0)
1744 		return 1;
1745 
1746 	dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1747 	return 0;
1748 }
1749 
1750 /*
1751  * 1 -- we can write to this disc, 0 -- we can't
1752  */
pkt_writable_disc(struct pktcdvd_device * pd,disc_information * di)1753 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1754 {
1755 	struct device *ddev = disk_to_dev(pd->disk);
1756 
1757 	switch (pd->mmc3_profile) {
1758 		case 0x0a: /* CD-RW */
1759 		case 0xffff: /* MMC3 not supported */
1760 			break;
1761 		case 0x1a: /* DVD+RW */
1762 		case 0x13: /* DVD-RW */
1763 		case 0x12: /* DVD-RAM */
1764 			return 1;
1765 		default:
1766 			dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1767 			return 0;
1768 	}
1769 
1770 	/*
1771 	 * for disc type 0xff we should probably reserve a new track.
1772 	 * but i'm not sure, should we leave this to user apps? probably.
1773 	 */
1774 	if (di->disc_type == 0xff) {
1775 		dev_notice(ddev, "unknown disc - no track?\n");
1776 		return 0;
1777 	}
1778 
1779 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1780 		dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1781 		return 0;
1782 	}
1783 
1784 	if (di->erasable == 0) {
1785 		dev_err(ddev, "disc not erasable\n");
1786 		return 0;
1787 	}
1788 
1789 	if (di->border_status == PACKET_SESSION_RESERVED) {
1790 		dev_err(ddev, "can't write to last track (reserved)\n");
1791 		return 0;
1792 	}
1793 
1794 	return 1;
1795 }
1796 
pkt_probe_settings(struct pktcdvd_device * pd)1797 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1798 {
1799 	struct device *ddev = disk_to_dev(pd->disk);
1800 	struct packet_command cgc;
1801 	unsigned char buf[12];
1802 	disc_information di;
1803 	track_information ti;
1804 	int ret, track;
1805 
1806 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1807 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1808 	cgc.cmd[8] = 8;
1809 	ret = pkt_generic_packet(pd, &cgc);
1810 	pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1811 
1812 	memset(&di, 0, sizeof(disc_information));
1813 	memset(&ti, 0, sizeof(track_information));
1814 
1815 	ret = pkt_get_disc_info(pd, &di);
1816 	if (ret) {
1817 		dev_err(ddev, "failed get_disc\n");
1818 		return ret;
1819 	}
1820 
1821 	if (!pkt_writable_disc(pd, &di))
1822 		return -EROFS;
1823 
1824 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1825 
1826 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1827 	ret = pkt_get_track_info(pd, track, 1, &ti);
1828 	if (ret) {
1829 		dev_err(ddev, "failed get_track\n");
1830 		return ret;
1831 	}
1832 
1833 	if (!pkt_writable_track(pd, &ti)) {
1834 		dev_err(ddev, "can't write to this track\n");
1835 		return -EROFS;
1836 	}
1837 
1838 	/*
1839 	 * we keep packet size in 512 byte units, makes it easier to
1840 	 * deal with request calculations.
1841 	 */
1842 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1843 	if (pd->settings.size == 0) {
1844 		dev_notice(ddev, "detected zero packet size!\n");
1845 		return -ENXIO;
1846 	}
1847 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1848 		dev_err(ddev, "packet size is too big\n");
1849 		return -EROFS;
1850 	}
1851 	pd->settings.fp = ti.fp;
1852 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1853 
1854 	if (ti.nwa_v) {
1855 		pd->nwa = be32_to_cpu(ti.next_writable);
1856 		set_bit(PACKET_NWA_VALID, &pd->flags);
1857 	}
1858 
1859 	/*
1860 	 * in theory we could use lra on -RW media as well and just zero
1861 	 * blocks that haven't been written yet, but in practice that
1862 	 * is just a no-go. we'll use that for -R, naturally.
1863 	 */
1864 	if (ti.lra_v) {
1865 		pd->lra = be32_to_cpu(ti.last_rec_address);
1866 		set_bit(PACKET_LRA_VALID, &pd->flags);
1867 	} else {
1868 		pd->lra = 0xffffffff;
1869 		set_bit(PACKET_LRA_VALID, &pd->flags);
1870 	}
1871 
1872 	/*
1873 	 * fine for now
1874 	 */
1875 	pd->settings.link_loss = 7;
1876 	pd->settings.write_type = 0;	/* packet */
1877 	pd->settings.track_mode = ti.track_mode;
1878 
1879 	/*
1880 	 * mode1 or mode2 disc
1881 	 */
1882 	switch (ti.data_mode) {
1883 		case PACKET_MODE1:
1884 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1885 			break;
1886 		case PACKET_MODE2:
1887 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1888 			break;
1889 		default:
1890 			dev_err(ddev, "unknown data mode\n");
1891 			return -EROFS;
1892 	}
1893 	return 0;
1894 }
1895 
1896 /*
1897  * enable/disable write caching on drive
1898  */
pkt_write_caching(struct pktcdvd_device * pd)1899 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1900 {
1901 	struct device *ddev = disk_to_dev(pd->disk);
1902 	struct packet_command cgc;
1903 	struct scsi_sense_hdr sshdr;
1904 	unsigned char buf[64];
1905 	bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1906 	int ret;
1907 
1908 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1909 	cgc.sshdr = &sshdr;
1910 	cgc.buflen = pd->mode_offset + 12;
1911 
1912 	/*
1913 	 * caching mode page might not be there, so quiet this command
1914 	 */
1915 	cgc.quiet = 1;
1916 
1917 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1918 	if (ret)
1919 		return ret;
1920 
1921 	/*
1922 	 * use drive write caching -- we need deferred error handling to be
1923 	 * able to successfully recover with this option (drive will return good
1924 	 * status as soon as the cdb is validated).
1925 	 */
1926 	buf[pd->mode_offset + 10] |= (set << 2);
1927 
1928 	cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1929 	ret = pkt_mode_select(pd, &cgc);
1930 	if (ret) {
1931 		dev_err(ddev, "write caching control failed\n");
1932 		pkt_dump_sense(pd, &cgc);
1933 	} else if (!ret && set)
1934 		dev_notice(ddev, "enabled write caching\n");
1935 	return ret;
1936 }
1937 
pkt_lock_door(struct pktcdvd_device * pd,int lockflag)1938 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1939 {
1940 	struct packet_command cgc;
1941 
1942 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1943 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1944 	cgc.cmd[4] = lockflag ? 1 : 0;
1945 	return pkt_generic_packet(pd, &cgc);
1946 }
1947 
1948 /*
1949  * Returns drive maximum write speed
1950  */
pkt_get_max_speed(struct pktcdvd_device * pd,unsigned * write_speed)1951 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1952 						unsigned *write_speed)
1953 {
1954 	struct packet_command cgc;
1955 	struct scsi_sense_hdr sshdr;
1956 	unsigned char buf[256+18];
1957 	unsigned char *cap_buf;
1958 	int ret, offset;
1959 
1960 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1961 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1962 	cgc.sshdr = &sshdr;
1963 
1964 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1965 	if (ret) {
1966 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1967 			     sizeof(struct mode_page_header);
1968 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1969 		if (ret) {
1970 			pkt_dump_sense(pd, &cgc);
1971 			return ret;
1972 		}
1973 	}
1974 
1975 	offset = 20;			    /* Obsoleted field, used by older drives */
1976 	if (cap_buf[1] >= 28)
1977 		offset = 28;		    /* Current write speed selected */
1978 	if (cap_buf[1] >= 30) {
1979 		/* If the drive reports at least one "Logical Unit Write
1980 		 * Speed Performance Descriptor Block", use the information
1981 		 * in the first block. (contains the highest speed)
1982 		 */
1983 		int num_spdb = get_unaligned_be16(&cap_buf[30]);
1984 		if (num_spdb > 0)
1985 			offset = 34;
1986 	}
1987 
1988 	*write_speed = get_unaligned_be16(&cap_buf[offset]);
1989 	return 0;
1990 }
1991 
1992 /* These tables from cdrecord - I don't have orange book */
1993 /* standard speed CD-RW (1-4x) */
1994 static char clv_to_speed[16] = {
1995 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1996 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1997 };
1998 /* high speed CD-RW (-10x) */
1999 static char hs_clv_to_speed[16] = {
2000 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2001 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2002 };
2003 /* ultra high speed CD-RW */
2004 static char us_clv_to_speed[16] = {
2005 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2006 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2007 };
2008 
2009 /*
2010  * reads the maximum media speed from ATIP
2011  */
pkt_media_speed(struct pktcdvd_device * pd,unsigned * speed)2012 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2013 						unsigned *speed)
2014 {
2015 	struct device *ddev = disk_to_dev(pd->disk);
2016 	struct packet_command cgc;
2017 	struct scsi_sense_hdr sshdr;
2018 	unsigned char buf[64];
2019 	unsigned int size, st, sp;
2020 	int ret;
2021 
2022 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2023 	cgc.sshdr = &sshdr;
2024 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2025 	cgc.cmd[1] = 2;
2026 	cgc.cmd[2] = 4; /* READ ATIP */
2027 	cgc.cmd[8] = 2;
2028 	ret = pkt_generic_packet(pd, &cgc);
2029 	if (ret) {
2030 		pkt_dump_sense(pd, &cgc);
2031 		return ret;
2032 	}
2033 	size = 2 + get_unaligned_be16(&buf[0]);
2034 	if (size > sizeof(buf))
2035 		size = sizeof(buf);
2036 
2037 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2038 	cgc.sshdr = &sshdr;
2039 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2040 	cgc.cmd[1] = 2;
2041 	cgc.cmd[2] = 4;
2042 	cgc.cmd[8] = size;
2043 	ret = pkt_generic_packet(pd, &cgc);
2044 	if (ret) {
2045 		pkt_dump_sense(pd, &cgc);
2046 		return ret;
2047 	}
2048 
2049 	if (!(buf[6] & 0x40)) {
2050 		dev_notice(ddev, "disc type is not CD-RW\n");
2051 		return 1;
2052 	}
2053 	if (!(buf[6] & 0x4)) {
2054 		dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2055 		return 1;
2056 	}
2057 
2058 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2059 
2060 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2061 
2062 	/* Info from cdrecord */
2063 	switch (st) {
2064 		case 0: /* standard speed */
2065 			*speed = clv_to_speed[sp];
2066 			break;
2067 		case 1: /* high speed */
2068 			*speed = hs_clv_to_speed[sp];
2069 			break;
2070 		case 2: /* ultra high speed */
2071 			*speed = us_clv_to_speed[sp];
2072 			break;
2073 		default:
2074 			dev_notice(ddev, "unknown disc sub-type %d\n", st);
2075 			return 1;
2076 	}
2077 	if (*speed) {
2078 		dev_info(ddev, "maximum media speed: %d\n", *speed);
2079 		return 0;
2080 	} else {
2081 		dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2082 		return 1;
2083 	}
2084 }
2085 
pkt_perform_opc(struct pktcdvd_device * pd)2086 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2087 {
2088 	struct device *ddev = disk_to_dev(pd->disk);
2089 	struct packet_command cgc;
2090 	struct scsi_sense_hdr sshdr;
2091 	int ret;
2092 
2093 	dev_dbg(ddev, "Performing OPC\n");
2094 
2095 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2096 	cgc.sshdr = &sshdr;
2097 	cgc.timeout = 60*HZ;
2098 	cgc.cmd[0] = GPCMD_SEND_OPC;
2099 	cgc.cmd[1] = 1;
2100 	ret = pkt_generic_packet(pd, &cgc);
2101 	if (ret)
2102 		pkt_dump_sense(pd, &cgc);
2103 	return ret;
2104 }
2105 
pkt_open_write(struct pktcdvd_device * pd)2106 static int pkt_open_write(struct pktcdvd_device *pd)
2107 {
2108 	struct device *ddev = disk_to_dev(pd->disk);
2109 	int ret;
2110 	unsigned int write_speed, media_write_speed, read_speed;
2111 
2112 	ret = pkt_probe_settings(pd);
2113 	if (ret) {
2114 		dev_dbg(ddev, "failed probe\n");
2115 		return ret;
2116 	}
2117 
2118 	ret = pkt_set_write_settings(pd);
2119 	if (ret) {
2120 		dev_notice(ddev, "failed saving write settings\n");
2121 		return -EIO;
2122 	}
2123 
2124 	pkt_write_caching(pd);
2125 
2126 	ret = pkt_get_max_speed(pd, &write_speed);
2127 	if (ret)
2128 		write_speed = 16 * 177;
2129 	switch (pd->mmc3_profile) {
2130 		case 0x13: /* DVD-RW */
2131 		case 0x1a: /* DVD+RW */
2132 		case 0x12: /* DVD-RAM */
2133 			dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2134 			break;
2135 		default:
2136 			ret = pkt_media_speed(pd, &media_write_speed);
2137 			if (ret)
2138 				media_write_speed = 16;
2139 			write_speed = min(write_speed, media_write_speed * 177);
2140 			dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2141 			break;
2142 	}
2143 	read_speed = write_speed;
2144 
2145 	ret = pkt_set_speed(pd, write_speed, read_speed);
2146 	if (ret) {
2147 		dev_notice(ddev, "couldn't set write speed\n");
2148 		return -EIO;
2149 	}
2150 	pd->write_speed = write_speed;
2151 	pd->read_speed = read_speed;
2152 
2153 	ret = pkt_perform_opc(pd);
2154 	if (ret)
2155 		dev_notice(ddev, "Optimum Power Calibration failed\n");
2156 
2157 	return 0;
2158 }
2159 
2160 /*
2161  * called at open time.
2162  */
pkt_open_dev(struct pktcdvd_device * pd,bool write)2163 static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2164 {
2165 	struct device *ddev = disk_to_dev(pd->disk);
2166 	int ret;
2167 	long lba;
2168 	struct request_queue *q;
2169 	struct file *bdev_file;
2170 
2171 	/*
2172 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2173 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2174 	 * so open should not fail.
2175 	 */
2176 	bdev_file = bdev_file_open_by_dev(file_bdev(pd->bdev_file)->bd_dev,
2177 				       BLK_OPEN_READ, pd, NULL);
2178 	if (IS_ERR(bdev_file)) {
2179 		ret = PTR_ERR(bdev_file);
2180 		goto out;
2181 	}
2182 	pd->f_open_bdev = bdev_file;
2183 
2184 	ret = pkt_get_last_written(pd, &lba);
2185 	if (ret) {
2186 		dev_err(ddev, "pkt_get_last_written failed\n");
2187 		goto out_putdev;
2188 	}
2189 
2190 	set_capacity(pd->disk, lba << 2);
2191 	set_capacity_and_notify(file_bdev(pd->bdev_file)->bd_disk, lba << 2);
2192 
2193 	q = bdev_get_queue(file_bdev(pd->bdev_file));
2194 	if (write) {
2195 		ret = pkt_open_write(pd);
2196 		if (ret)
2197 			goto out_putdev;
2198 		set_bit(PACKET_WRITABLE, &pd->flags);
2199 	} else {
2200 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2201 		clear_bit(PACKET_WRITABLE, &pd->flags);
2202 	}
2203 
2204 	ret = pkt_set_segment_merging(pd, q);
2205 	if (ret)
2206 		goto out_putdev;
2207 
2208 	if (write) {
2209 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2210 			dev_err(ddev, "not enough memory for buffers\n");
2211 			ret = -ENOMEM;
2212 			goto out_putdev;
2213 		}
2214 		dev_info(ddev, "%lukB available on disc\n", lba << 1);
2215 	}
2216 	set_blocksize(bdev_file, CD_FRAMESIZE);
2217 
2218 	return 0;
2219 
2220 out_putdev:
2221 	fput(bdev_file);
2222 out:
2223 	return ret;
2224 }
2225 
2226 /*
2227  * called when the device is closed. makes sure that the device flushes
2228  * the internal cache before we close.
2229  */
pkt_release_dev(struct pktcdvd_device * pd,int flush)2230 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2231 {
2232 	struct device *ddev = disk_to_dev(pd->disk);
2233 
2234 	if (flush && pkt_flush_cache(pd))
2235 		dev_notice(ddev, "not flushing cache\n");
2236 
2237 	pkt_lock_door(pd, 0);
2238 
2239 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2240 	fput(pd->f_open_bdev);
2241 	pd->f_open_bdev = NULL;
2242 
2243 	pkt_shrink_pktlist(pd);
2244 }
2245 
pkt_find_dev_from_minor(unsigned int dev_minor)2246 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2247 {
2248 	if (dev_minor >= MAX_WRITERS)
2249 		return NULL;
2250 
2251 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2252 	return pkt_devs[dev_minor];
2253 }
2254 
pkt_open(struct gendisk * disk,blk_mode_t mode)2255 static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2256 {
2257 	struct pktcdvd_device *pd = NULL;
2258 	int ret;
2259 
2260 	mutex_lock(&pktcdvd_mutex);
2261 	mutex_lock(&ctl_mutex);
2262 	pd = pkt_find_dev_from_minor(disk->first_minor);
2263 	if (!pd) {
2264 		ret = -ENODEV;
2265 		goto out;
2266 	}
2267 	BUG_ON(pd->refcnt < 0);
2268 
2269 	pd->refcnt++;
2270 	if (pd->refcnt > 1) {
2271 		if ((mode & BLK_OPEN_WRITE) &&
2272 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2273 			ret = -EBUSY;
2274 			goto out_dec;
2275 		}
2276 	} else {
2277 		ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2278 		if (ret)
2279 			goto out_dec;
2280 	}
2281 	mutex_unlock(&ctl_mutex);
2282 	mutex_unlock(&pktcdvd_mutex);
2283 	return 0;
2284 
2285 out_dec:
2286 	pd->refcnt--;
2287 out:
2288 	mutex_unlock(&ctl_mutex);
2289 	mutex_unlock(&pktcdvd_mutex);
2290 	return ret;
2291 }
2292 
pkt_release(struct gendisk * disk)2293 static void pkt_release(struct gendisk *disk)
2294 {
2295 	struct pktcdvd_device *pd = disk->private_data;
2296 
2297 	mutex_lock(&pktcdvd_mutex);
2298 	mutex_lock(&ctl_mutex);
2299 	pd->refcnt--;
2300 	BUG_ON(pd->refcnt < 0);
2301 	if (pd->refcnt == 0) {
2302 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2303 		pkt_release_dev(pd, flush);
2304 	}
2305 	mutex_unlock(&ctl_mutex);
2306 	mutex_unlock(&pktcdvd_mutex);
2307 }
2308 
2309 
pkt_end_io_read_cloned(struct bio * bio)2310 static void pkt_end_io_read_cloned(struct bio *bio)
2311 {
2312 	struct packet_stacked_data *psd = bio->bi_private;
2313 	struct pktcdvd_device *pd = psd->pd;
2314 
2315 	psd->bio->bi_status = bio->bi_status;
2316 	bio_put(bio);
2317 	bio_endio(psd->bio);
2318 	mempool_free(psd, &psd_pool);
2319 	pkt_bio_finished(pd);
2320 }
2321 
pkt_make_request_read(struct pktcdvd_device * pd,struct bio * bio)2322 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2323 {
2324 	struct bio *cloned_bio = bio_alloc_clone(file_bdev(pd->bdev_file), bio,
2325 		GFP_NOIO, &pkt_bio_set);
2326 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2327 
2328 	psd->pd = pd;
2329 	psd->bio = bio;
2330 	cloned_bio->bi_private = psd;
2331 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2332 	pd->stats.secs_r += bio_sectors(bio);
2333 	pkt_queue_bio(pd, cloned_bio);
2334 }
2335 
pkt_make_request_write(struct bio * bio)2336 static void pkt_make_request_write(struct bio *bio)
2337 {
2338 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2339 	sector_t zone;
2340 	struct packet_data *pkt;
2341 	int was_empty, blocked_bio;
2342 	struct pkt_rb_node *node;
2343 
2344 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2345 
2346 	/*
2347 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2348 	 * just append this bio to that packet.
2349 	 */
2350 	spin_lock(&pd->cdrw.active_list_lock);
2351 	blocked_bio = 0;
2352 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2353 		if (pkt->sector == zone) {
2354 			spin_lock(&pkt->lock);
2355 			if ((pkt->state == PACKET_WAITING_STATE) ||
2356 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2357 				bio_list_add(&pkt->orig_bios, bio);
2358 				pkt->write_size +=
2359 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2360 				if ((pkt->write_size >= pkt->frames) &&
2361 				    (pkt->state == PACKET_WAITING_STATE)) {
2362 					atomic_inc(&pkt->run_sm);
2363 					wake_up(&pd->wqueue);
2364 				}
2365 				spin_unlock(&pkt->lock);
2366 				spin_unlock(&pd->cdrw.active_list_lock);
2367 				return;
2368 			} else {
2369 				blocked_bio = 1;
2370 			}
2371 			spin_unlock(&pkt->lock);
2372 		}
2373 	}
2374 	spin_unlock(&pd->cdrw.active_list_lock);
2375 
2376 	/*
2377 	 * Test if there is enough room left in the bio work queue
2378 	 * (queue size >= congestion on mark).
2379 	 * If not, wait till the work queue size is below the congestion off mark.
2380 	 */
2381 	spin_lock(&pd->lock);
2382 	if (pd->write_congestion_on > 0
2383 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2384 		struct wait_bit_queue_entry wqe;
2385 
2386 		init_wait_var_entry(&wqe, &pd->congested, 0);
2387 		for (;;) {
2388 			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2389 					      &wqe.wq_entry,
2390 					      TASK_UNINTERRUPTIBLE);
2391 			if (pd->bio_queue_size <= pd->write_congestion_off)
2392 				break;
2393 			pd->congested = true;
2394 			spin_unlock(&pd->lock);
2395 			schedule();
2396 			spin_lock(&pd->lock);
2397 		}
2398 	}
2399 	spin_unlock(&pd->lock);
2400 
2401 	/*
2402 	 * No matching packet found. Store the bio in the work queue.
2403 	 */
2404 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2405 	node->bio = bio;
2406 	spin_lock(&pd->lock);
2407 	BUG_ON(pd->bio_queue_size < 0);
2408 	was_empty = (pd->bio_queue_size == 0);
2409 	pkt_rbtree_insert(pd, node);
2410 	spin_unlock(&pd->lock);
2411 
2412 	/*
2413 	 * Wake up the worker thread.
2414 	 */
2415 	atomic_set(&pd->scan_queue, 1);
2416 	if (was_empty) {
2417 		/* This wake_up is required for correct operation */
2418 		wake_up(&pd->wqueue);
2419 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2420 		/*
2421 		 * This wake up is not required for correct operation,
2422 		 * but improves performance in some cases.
2423 		 */
2424 		wake_up(&pd->wqueue);
2425 	}
2426 }
2427 
pkt_submit_bio(struct bio * bio)2428 static void pkt_submit_bio(struct bio *bio)
2429 {
2430 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2431 	struct device *ddev = disk_to_dev(pd->disk);
2432 	struct bio *split;
2433 
2434 	bio = bio_split_to_limits(bio);
2435 	if (!bio)
2436 		return;
2437 
2438 	dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2439 		bio->bi_iter.bi_sector, bio_end_sector(bio));
2440 
2441 	/*
2442 	 * Clone READ bios so we can have our own bi_end_io callback.
2443 	 */
2444 	if (bio_data_dir(bio) == READ) {
2445 		pkt_make_request_read(pd, bio);
2446 		return;
2447 	}
2448 
2449 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2450 		dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2451 		goto end_io;
2452 	}
2453 
2454 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2455 		dev_err(ddev, "wrong bio size\n");
2456 		goto end_io;
2457 	}
2458 
2459 	do {
2460 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2461 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2462 
2463 		if (last_zone != zone) {
2464 			BUG_ON(last_zone != zone + pd->settings.size);
2465 
2466 			split = bio_split(bio, last_zone -
2467 					  bio->bi_iter.bi_sector,
2468 					  GFP_NOIO, &pkt_bio_set);
2469 			bio_chain(split, bio);
2470 		} else {
2471 			split = bio;
2472 		}
2473 
2474 		pkt_make_request_write(split);
2475 	} while (split != bio);
2476 
2477 	return;
2478 end_io:
2479 	bio_io_error(bio);
2480 }
2481 
pkt_new_dev(struct pktcdvd_device * pd,dev_t dev)2482 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2483 {
2484 	struct device *ddev = disk_to_dev(pd->disk);
2485 	int i;
2486 	struct file *bdev_file;
2487 	struct scsi_device *sdev;
2488 
2489 	if (pd->pkt_dev == dev) {
2490 		dev_err(ddev, "recursive setup not allowed\n");
2491 		return -EBUSY;
2492 	}
2493 	for (i = 0; i < MAX_WRITERS; i++) {
2494 		struct pktcdvd_device *pd2 = pkt_devs[i];
2495 		if (!pd2)
2496 			continue;
2497 		if (file_bdev(pd2->bdev_file)->bd_dev == dev) {
2498 			dev_err(ddev, "%pg already setup\n",
2499 				file_bdev(pd2->bdev_file));
2500 			return -EBUSY;
2501 		}
2502 		if (pd2->pkt_dev == dev) {
2503 			dev_err(ddev, "can't chain pktcdvd devices\n");
2504 			return -EBUSY;
2505 		}
2506 	}
2507 
2508 	bdev_file = bdev_file_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY,
2509 				       NULL, NULL);
2510 	if (IS_ERR(bdev_file))
2511 		return PTR_ERR(bdev_file);
2512 	sdev = scsi_device_from_queue(file_bdev(bdev_file)->bd_disk->queue);
2513 	if (!sdev) {
2514 		fput(bdev_file);
2515 		return -EINVAL;
2516 	}
2517 	put_device(&sdev->sdev_gendev);
2518 
2519 	/* This is safe, since we have a reference from open(). */
2520 	__module_get(THIS_MODULE);
2521 
2522 	pd->bdev_file = bdev_file;
2523 
2524 	atomic_set(&pd->cdrw.pending_bios, 0);
2525 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2526 	if (IS_ERR(pd->cdrw.thread)) {
2527 		dev_err(ddev, "can't start kernel thread\n");
2528 		goto out_mem;
2529 	}
2530 
2531 	proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2532 	dev_notice(ddev, "writer mapped to %pg\n", file_bdev(bdev_file));
2533 	return 0;
2534 
2535 out_mem:
2536 	fput(bdev_file);
2537 	/* This is safe: open() is still holding a reference. */
2538 	module_put(THIS_MODULE);
2539 	return -ENOMEM;
2540 }
2541 
pkt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)2542 static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2543 		unsigned int cmd, unsigned long arg)
2544 {
2545 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2546 	struct device *ddev = disk_to_dev(pd->disk);
2547 	int ret;
2548 
2549 	dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2550 
2551 	mutex_lock(&pktcdvd_mutex);
2552 	switch (cmd) {
2553 	case CDROMEJECT:
2554 		/*
2555 		 * The door gets locked when the device is opened, so we
2556 		 * have to unlock it or else the eject command fails.
2557 		 */
2558 		if (pd->refcnt == 1)
2559 			pkt_lock_door(pd, 0);
2560 		fallthrough;
2561 	/*
2562 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2563 	 */
2564 	case CDROMMULTISESSION:
2565 	case CDROMREADTOCENTRY:
2566 	case CDROM_LAST_WRITTEN:
2567 	case CDROM_SEND_PACKET:
2568 	case SCSI_IOCTL_SEND_COMMAND:
2569 		if (!bdev->bd_disk->fops->ioctl)
2570 			ret = -ENOTTY;
2571 		else
2572 			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2573 		break;
2574 	default:
2575 		dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2576 		ret = -ENOTTY;
2577 	}
2578 	mutex_unlock(&pktcdvd_mutex);
2579 
2580 	return ret;
2581 }
2582 
pkt_check_events(struct gendisk * disk,unsigned int clearing)2583 static unsigned int pkt_check_events(struct gendisk *disk,
2584 				     unsigned int clearing)
2585 {
2586 	struct pktcdvd_device *pd = disk->private_data;
2587 	struct gendisk *attached_disk;
2588 
2589 	if (!pd)
2590 		return 0;
2591 	if (!pd->bdev_file)
2592 		return 0;
2593 	attached_disk = file_bdev(pd->bdev_file)->bd_disk;
2594 	if (!attached_disk || !attached_disk->fops->check_events)
2595 		return 0;
2596 	return attached_disk->fops->check_events(attached_disk, clearing);
2597 }
2598 
pkt_devnode(struct gendisk * disk,umode_t * mode)2599 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2600 {
2601 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2602 }
2603 
2604 static const struct block_device_operations pktcdvd_ops = {
2605 	.owner =		THIS_MODULE,
2606 	.submit_bio =		pkt_submit_bio,
2607 	.open =			pkt_open,
2608 	.release =		pkt_release,
2609 	.ioctl =		pkt_ioctl,
2610 	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2611 	.check_events =		pkt_check_events,
2612 	.devnode =		pkt_devnode,
2613 };
2614 
2615 /*
2616  * Set up mapping from pktcdvd device to CD-ROM device.
2617  */
pkt_setup_dev(dev_t dev,dev_t * pkt_dev)2618 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2619 {
2620 	struct queue_limits lim = {
2621 		.max_hw_sectors		= PACKET_MAX_SECTORS,
2622 		.logical_block_size	= CD_FRAMESIZE,
2623 		.features		= BLK_FEAT_ROTATIONAL,
2624 	};
2625 	int idx;
2626 	int ret = -ENOMEM;
2627 	struct pktcdvd_device *pd;
2628 	struct gendisk *disk;
2629 
2630 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2631 
2632 	for (idx = 0; idx < MAX_WRITERS; idx++)
2633 		if (!pkt_devs[idx])
2634 			break;
2635 	if (idx == MAX_WRITERS) {
2636 		pr_err("max %d writers supported\n", MAX_WRITERS);
2637 		ret = -EBUSY;
2638 		goto out_mutex;
2639 	}
2640 
2641 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2642 	if (!pd)
2643 		goto out_mutex;
2644 
2645 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2646 					sizeof(struct pkt_rb_node));
2647 	if (ret)
2648 		goto out_mem;
2649 
2650 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2651 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2652 	spin_lock_init(&pd->cdrw.active_list_lock);
2653 
2654 	spin_lock_init(&pd->lock);
2655 	spin_lock_init(&pd->iosched.lock);
2656 	bio_list_init(&pd->iosched.read_queue);
2657 	bio_list_init(&pd->iosched.write_queue);
2658 	init_waitqueue_head(&pd->wqueue);
2659 	pd->bio_queue = RB_ROOT;
2660 
2661 	pd->write_congestion_on  = write_congestion_on;
2662 	pd->write_congestion_off = write_congestion_off;
2663 
2664 	disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2665 	if (IS_ERR(disk)) {
2666 		ret = PTR_ERR(disk);
2667 		goto out_mem;
2668 	}
2669 	pd->disk = disk;
2670 	disk->major = pktdev_major;
2671 	disk->first_minor = idx;
2672 	disk->minors = 1;
2673 	disk->fops = &pktcdvd_ops;
2674 	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2675 	snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2676 	disk->private_data = pd;
2677 
2678 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2679 	ret = pkt_new_dev(pd, dev);
2680 	if (ret)
2681 		goto out_mem2;
2682 
2683 	/* inherit events of the host device */
2684 	disk->events = file_bdev(pd->bdev_file)->bd_disk->events;
2685 
2686 	ret = add_disk(disk);
2687 	if (ret)
2688 		goto out_mem2;
2689 
2690 	pkt_sysfs_dev_new(pd);
2691 	pkt_debugfs_dev_new(pd);
2692 
2693 	pkt_devs[idx] = pd;
2694 	if (pkt_dev)
2695 		*pkt_dev = pd->pkt_dev;
2696 
2697 	mutex_unlock(&ctl_mutex);
2698 	return 0;
2699 
2700 out_mem2:
2701 	put_disk(disk);
2702 out_mem:
2703 	mempool_exit(&pd->rb_pool);
2704 	kfree(pd);
2705 out_mutex:
2706 	mutex_unlock(&ctl_mutex);
2707 	pr_err("setup of pktcdvd device failed\n");
2708 	return ret;
2709 }
2710 
2711 /*
2712  * Tear down mapping from pktcdvd device to CD-ROM device.
2713  */
pkt_remove_dev(dev_t pkt_dev)2714 static int pkt_remove_dev(dev_t pkt_dev)
2715 {
2716 	struct pktcdvd_device *pd;
2717 	struct device *ddev;
2718 	int idx;
2719 	int ret = 0;
2720 
2721 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2722 
2723 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2724 		pd = pkt_devs[idx];
2725 		if (pd && (pd->pkt_dev == pkt_dev))
2726 			break;
2727 	}
2728 	if (idx == MAX_WRITERS) {
2729 		pr_debug("dev not setup\n");
2730 		ret = -ENXIO;
2731 		goto out;
2732 	}
2733 
2734 	if (pd->refcnt > 0) {
2735 		ret = -EBUSY;
2736 		goto out;
2737 	}
2738 
2739 	ddev = disk_to_dev(pd->disk);
2740 
2741 	if (!IS_ERR(pd->cdrw.thread))
2742 		kthread_stop(pd->cdrw.thread);
2743 
2744 	pkt_devs[idx] = NULL;
2745 
2746 	pkt_debugfs_dev_remove(pd);
2747 	pkt_sysfs_dev_remove(pd);
2748 
2749 	fput(pd->bdev_file);
2750 
2751 	remove_proc_entry(pd->disk->disk_name, pkt_proc);
2752 	dev_notice(ddev, "writer unmapped\n");
2753 
2754 	del_gendisk(pd->disk);
2755 	put_disk(pd->disk);
2756 
2757 	mempool_exit(&pd->rb_pool);
2758 	kfree(pd);
2759 
2760 	/* This is safe: open() is still holding a reference. */
2761 	module_put(THIS_MODULE);
2762 
2763 out:
2764 	mutex_unlock(&ctl_mutex);
2765 	return ret;
2766 }
2767 
pkt_get_status(struct pkt_ctrl_command * ctrl_cmd)2768 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2769 {
2770 	struct pktcdvd_device *pd;
2771 
2772 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2773 
2774 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2775 	if (pd) {
2776 		ctrl_cmd->dev = new_encode_dev(file_bdev(pd->bdev_file)->bd_dev);
2777 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2778 	} else {
2779 		ctrl_cmd->dev = 0;
2780 		ctrl_cmd->pkt_dev = 0;
2781 	}
2782 	ctrl_cmd->num_devices = MAX_WRITERS;
2783 
2784 	mutex_unlock(&ctl_mutex);
2785 }
2786 
pkt_ctl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2787 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2788 {
2789 	void __user *argp = (void __user *)arg;
2790 	struct pkt_ctrl_command ctrl_cmd;
2791 	int ret = 0;
2792 	dev_t pkt_dev = 0;
2793 
2794 	if (cmd != PACKET_CTRL_CMD)
2795 		return -ENOTTY;
2796 
2797 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2798 		return -EFAULT;
2799 
2800 	switch (ctrl_cmd.command) {
2801 	case PKT_CTRL_CMD_SETUP:
2802 		if (!capable(CAP_SYS_ADMIN))
2803 			return -EPERM;
2804 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2805 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2806 		break;
2807 	case PKT_CTRL_CMD_TEARDOWN:
2808 		if (!capable(CAP_SYS_ADMIN))
2809 			return -EPERM;
2810 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2811 		break;
2812 	case PKT_CTRL_CMD_STATUS:
2813 		pkt_get_status(&ctrl_cmd);
2814 		break;
2815 	default:
2816 		return -ENOTTY;
2817 	}
2818 
2819 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2820 		return -EFAULT;
2821 	return ret;
2822 }
2823 
2824 #ifdef CONFIG_COMPAT
pkt_ctl_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2825 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2826 {
2827 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2828 }
2829 #endif
2830 
2831 static const struct file_operations pkt_ctl_fops = {
2832 	.open		= nonseekable_open,
2833 	.unlocked_ioctl	= pkt_ctl_ioctl,
2834 #ifdef CONFIG_COMPAT
2835 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2836 #endif
2837 	.owner		= THIS_MODULE,
2838 };
2839 
2840 static struct miscdevice pkt_misc = {
2841 	.minor 		= MISC_DYNAMIC_MINOR,
2842 	.name  		= DRIVER_NAME,
2843 	.nodename	= "pktcdvd/control",
2844 	.fops  		= &pkt_ctl_fops
2845 };
2846 
pkt_init(void)2847 static int __init pkt_init(void)
2848 {
2849 	int ret;
2850 
2851 	mutex_init(&ctl_mutex);
2852 
2853 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2854 				    sizeof(struct packet_stacked_data));
2855 	if (ret)
2856 		return ret;
2857 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2858 	if (ret) {
2859 		mempool_exit(&psd_pool);
2860 		return ret;
2861 	}
2862 
2863 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2864 	if (ret < 0) {
2865 		pr_err("unable to register block device\n");
2866 		goto out2;
2867 	}
2868 	if (!pktdev_major)
2869 		pktdev_major = ret;
2870 
2871 	ret = pkt_sysfs_init();
2872 	if (ret)
2873 		goto out;
2874 
2875 	pkt_debugfs_init();
2876 
2877 	ret = misc_register(&pkt_misc);
2878 	if (ret) {
2879 		pr_err("unable to register misc device\n");
2880 		goto out_misc;
2881 	}
2882 
2883 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2884 
2885 	return 0;
2886 
2887 out_misc:
2888 	pkt_debugfs_cleanup();
2889 	pkt_sysfs_cleanup();
2890 out:
2891 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2892 out2:
2893 	mempool_exit(&psd_pool);
2894 	bioset_exit(&pkt_bio_set);
2895 	return ret;
2896 }
2897 
pkt_exit(void)2898 static void __exit pkt_exit(void)
2899 {
2900 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2901 	misc_deregister(&pkt_misc);
2902 
2903 	pkt_debugfs_cleanup();
2904 	pkt_sysfs_cleanup();
2905 
2906 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2907 	mempool_exit(&psd_pool);
2908 	bioset_exit(&pkt_bio_set);
2909 }
2910 
2911 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2912 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2913 MODULE_LICENSE("GPL");
2914 
2915 module_init(pkt_init);
2916 module_exit(pkt_exit);
2917