1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Functions to sequence PREFLUSH and FUA writes.
4   *
5   * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6   * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7   *
8   * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9   * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10   * properties and hardware capability.
11   *
12   * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13   * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14   * that the device cache should be flushed before the data is executed, and
15   * REQ_FUA means that the data must be on non-volatile media on request
16   * completion.
17   *
18   * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19   * difference.  The requests are either completed immediately if there's no data
20   * or executed as normal requests otherwise.
21   *
22   * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23   * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24   *
25   * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26   * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27   *
28   * The actual execution of flush is double buffered.  Whenever a request
29   * needs to execute PRE or POSTFLUSH, it queues at
30   * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31   * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32   * completes, all the requests which were pending are proceeded to the next
33   * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34   * requests.
35   *
36   * Currently, the following conditions are used to determine when to issue
37   * flush.
38   *
39   * C1. At any given time, only one flush shall be in progress.  This makes
40   *     double buffering sufficient.
41   *
42   * C2. Flush is deferred if any request is executing DATA of its sequence.
43   *     This avoids issuing separate POSTFLUSHes for requests which shared
44   *     PREFLUSH.
45   *
46   * C3. The second condition is ignored if there is a request which has
47   *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48   *     starvation in the unlikely case where there are continuous stream of
49   *     FUA (without PREFLUSH) requests.
50   *
51   * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52   * is beneficial.
53   *
54   * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55   * Once while executing DATA and again after the whole sequence is
56   * complete.  The first completion updates the contained bio but doesn't
57   * finish it so that the bio submitter is notified only after the whole
58   * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59   * req_bio_endio().
60   *
61   * The above peculiarity requires that each PREFLUSH/FUA request has only one
62   * bio attached to it, which is guaranteed as they aren't allowed to be
63   * merged in the usual way.
64   */
65  
66  #include <linux/kernel.h>
67  #include <linux/module.h>
68  #include <linux/bio.h>
69  #include <linux/blkdev.h>
70  #include <linux/gfp.h>
71  #include <linux/part_stat.h>
72  
73  #include "blk.h"
74  #include "blk-mq.h"
75  #include "blk-mq-sched.h"
76  
77  /* PREFLUSH/FUA sequences */
78  enum {
79  	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80  	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81  	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82  	REQ_FSEQ_DONE		= (1 << 3),
83  
84  	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85  				  REQ_FSEQ_POSTFLUSH,
86  
87  	/*
88  	 * If flush has been pending longer than the following timeout,
89  	 * it's issued even if flush_data requests are still in flight.
90  	 */
91  	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92  };
93  
94  static void blk_kick_flush(struct request_queue *q,
95  			   struct blk_flush_queue *fq, blk_opf_t flags);
96  
97  static inline struct blk_flush_queue *
blk_get_flush_queue(struct request_queue * q,struct blk_mq_ctx * ctx)98  blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
99  {
100  	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
101  }
102  
blk_flush_cur_seq(struct request * rq)103  static unsigned int blk_flush_cur_seq(struct request *rq)
104  {
105  	return 1 << ffz(rq->flush.seq);
106  }
107  
blk_flush_restore_request(struct request * rq)108  static void blk_flush_restore_request(struct request *rq)
109  {
110  	/*
111  	 * After flush data completion, @rq->bio is %NULL but we need to
112  	 * complete the bio again.  @rq->biotail is guaranteed to equal the
113  	 * original @rq->bio.  Restore it.
114  	 */
115  	rq->bio = rq->biotail;
116  	if (rq->bio)
117  		rq->__sector = rq->bio->bi_iter.bi_sector;
118  
119  	/* make @rq a normal request */
120  	rq->rq_flags &= ~RQF_FLUSH_SEQ;
121  	rq->end_io = rq->flush.saved_end_io;
122  }
123  
blk_account_io_flush(struct request * rq)124  static void blk_account_io_flush(struct request *rq)
125  {
126  	struct block_device *part = rq->q->disk->part0;
127  
128  	part_stat_lock();
129  	part_stat_inc(part, ios[STAT_FLUSH]);
130  	part_stat_add(part, nsecs[STAT_FLUSH],
131  		      blk_time_get_ns() - rq->start_time_ns);
132  	part_stat_unlock();
133  }
134  
135  /**
136   * blk_flush_complete_seq - complete flush sequence
137   * @rq: PREFLUSH/FUA request being sequenced
138   * @fq: flush queue
139   * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
140   * @error: whether an error occurred
141   *
142   * @rq just completed @seq part of its flush sequence, record the
143   * completion and trigger the next step.
144   *
145   * CONTEXT:
146   * spin_lock_irq(fq->mq_flush_lock)
147   */
blk_flush_complete_seq(struct request * rq,struct blk_flush_queue * fq,unsigned int seq,blk_status_t error)148  static void blk_flush_complete_seq(struct request *rq,
149  				   struct blk_flush_queue *fq,
150  				   unsigned int seq, blk_status_t error)
151  {
152  	struct request_queue *q = rq->q;
153  	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
154  	blk_opf_t cmd_flags;
155  
156  	BUG_ON(rq->flush.seq & seq);
157  	rq->flush.seq |= seq;
158  	cmd_flags = rq->cmd_flags;
159  
160  	if (likely(!error))
161  		seq = blk_flush_cur_seq(rq);
162  	else
163  		seq = REQ_FSEQ_DONE;
164  
165  	switch (seq) {
166  	case REQ_FSEQ_PREFLUSH:
167  	case REQ_FSEQ_POSTFLUSH:
168  		/* queue for flush */
169  		if (list_empty(pending))
170  			fq->flush_pending_since = jiffies;
171  		list_add_tail(&rq->queuelist, pending);
172  		break;
173  
174  	case REQ_FSEQ_DATA:
175  		fq->flush_data_in_flight++;
176  		spin_lock(&q->requeue_lock);
177  		list_move(&rq->queuelist, &q->requeue_list);
178  		spin_unlock(&q->requeue_lock);
179  		blk_mq_kick_requeue_list(q);
180  		break;
181  
182  	case REQ_FSEQ_DONE:
183  		/*
184  		 * @rq was previously adjusted by blk_insert_flush() for
185  		 * flush sequencing and may already have gone through the
186  		 * flush data request completion path.  Restore @rq for
187  		 * normal completion and end it.
188  		 */
189  		list_del_init(&rq->queuelist);
190  		blk_flush_restore_request(rq);
191  		blk_mq_end_request(rq, error);
192  		break;
193  
194  	default:
195  		BUG();
196  	}
197  
198  	blk_kick_flush(q, fq, cmd_flags);
199  }
200  
flush_end_io(struct request * flush_rq,blk_status_t error)201  static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
202  				       blk_status_t error)
203  {
204  	struct request_queue *q = flush_rq->q;
205  	struct list_head *running;
206  	struct request *rq, *n;
207  	unsigned long flags = 0;
208  	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
209  
210  	/* release the tag's ownership to the req cloned from */
211  	spin_lock_irqsave(&fq->mq_flush_lock, flags);
212  
213  	if (!req_ref_put_and_test(flush_rq)) {
214  		fq->rq_status = error;
215  		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
216  		return RQ_END_IO_NONE;
217  	}
218  
219  	blk_account_io_flush(flush_rq);
220  	/*
221  	 * Flush request has to be marked as IDLE when it is really ended
222  	 * because its .end_io() is called from timeout code path too for
223  	 * avoiding use-after-free.
224  	 */
225  	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
226  	if (fq->rq_status != BLK_STS_OK) {
227  		error = fq->rq_status;
228  		fq->rq_status = BLK_STS_OK;
229  	}
230  
231  	if (!q->elevator) {
232  		flush_rq->tag = BLK_MQ_NO_TAG;
233  	} else {
234  		blk_mq_put_driver_tag(flush_rq);
235  		flush_rq->internal_tag = BLK_MQ_NO_TAG;
236  	}
237  
238  	running = &fq->flush_queue[fq->flush_running_idx];
239  	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
240  
241  	/* account completion of the flush request */
242  	fq->flush_running_idx ^= 1;
243  
244  	/* and push the waiting requests to the next stage */
245  	list_for_each_entry_safe(rq, n, running, queuelist) {
246  		unsigned int seq = blk_flush_cur_seq(rq);
247  
248  		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
249  		list_del_init(&rq->queuelist);
250  		blk_flush_complete_seq(rq, fq, seq, error);
251  	}
252  
253  	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
254  	return RQ_END_IO_NONE;
255  }
256  
is_flush_rq(struct request * rq)257  bool is_flush_rq(struct request *rq)
258  {
259  	return rq->end_io == flush_end_io;
260  }
261  
262  /**
263   * blk_kick_flush - consider issuing flush request
264   * @q: request_queue being kicked
265   * @fq: flush queue
266   * @flags: cmd_flags of the original request
267   *
268   * Flush related states of @q have changed, consider issuing flush request.
269   * Please read the comment at the top of this file for more info.
270   *
271   * CONTEXT:
272   * spin_lock_irq(fq->mq_flush_lock)
273   *
274   */
blk_kick_flush(struct request_queue * q,struct blk_flush_queue * fq,blk_opf_t flags)275  static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
276  			   blk_opf_t flags)
277  {
278  	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
279  	struct request *first_rq =
280  		list_first_entry(pending, struct request, queuelist);
281  	struct request *flush_rq = fq->flush_rq;
282  
283  	/* C1 described at the top of this file */
284  	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
285  		return;
286  
287  	/* C2 and C3 */
288  	if (fq->flush_data_in_flight &&
289  	    time_before(jiffies,
290  			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
291  		return;
292  
293  	/*
294  	 * Issue flush and toggle pending_idx.  This makes pending_idx
295  	 * different from running_idx, which means flush is in flight.
296  	 */
297  	fq->flush_pending_idx ^= 1;
298  
299  	blk_rq_init(q, flush_rq);
300  
301  	/*
302  	 * In case of none scheduler, borrow tag from the first request
303  	 * since they can't be in flight at the same time. And acquire
304  	 * the tag's ownership for flush req.
305  	 *
306  	 * In case of IO scheduler, flush rq need to borrow scheduler tag
307  	 * just for cheating put/get driver tag.
308  	 */
309  	flush_rq->mq_ctx = first_rq->mq_ctx;
310  	flush_rq->mq_hctx = first_rq->mq_hctx;
311  
312  	if (!q->elevator)
313  		flush_rq->tag = first_rq->tag;
314  	else
315  		flush_rq->internal_tag = first_rq->internal_tag;
316  
317  	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
318  	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
319  	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
320  	flush_rq->end_io = flush_end_io;
321  	/*
322  	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
323  	 * implied in refcount_inc_not_zero() called from
324  	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
325  	 * and READ flush_rq->end_io
326  	 */
327  	smp_wmb();
328  	req_ref_set(flush_rq, 1);
329  
330  	spin_lock(&q->requeue_lock);
331  	list_add_tail(&flush_rq->queuelist, &q->flush_list);
332  	spin_unlock(&q->requeue_lock);
333  
334  	blk_mq_kick_requeue_list(q);
335  }
336  
mq_flush_data_end_io(struct request * rq,blk_status_t error)337  static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
338  					       blk_status_t error)
339  {
340  	struct request_queue *q = rq->q;
341  	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
342  	struct blk_mq_ctx *ctx = rq->mq_ctx;
343  	unsigned long flags;
344  	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
345  
346  	if (q->elevator) {
347  		WARN_ON(rq->tag < 0);
348  		blk_mq_put_driver_tag(rq);
349  	}
350  
351  	/*
352  	 * After populating an empty queue, kick it to avoid stall.  Read
353  	 * the comment in flush_end_io().
354  	 */
355  	spin_lock_irqsave(&fq->mq_flush_lock, flags);
356  	fq->flush_data_in_flight--;
357  	/*
358  	 * May have been corrupted by rq->rq_next reuse, we need to
359  	 * re-initialize rq->queuelist before reusing it here.
360  	 */
361  	INIT_LIST_HEAD(&rq->queuelist);
362  	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
363  	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
364  
365  	blk_mq_sched_restart(hctx);
366  	return RQ_END_IO_NONE;
367  }
368  
blk_rq_init_flush(struct request * rq)369  static void blk_rq_init_flush(struct request *rq)
370  {
371  	rq->flush.seq = 0;
372  	rq->rq_flags |= RQF_FLUSH_SEQ;
373  	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
374  	rq->end_io = mq_flush_data_end_io;
375  }
376  
377  /*
378   * Insert a PREFLUSH/FUA request into the flush state machine.
379   * Returns true if the request has been consumed by the flush state machine,
380   * or false if the caller should continue to process it.
381   */
blk_insert_flush(struct request * rq)382  bool blk_insert_flush(struct request *rq)
383  {
384  	struct request_queue *q = rq->q;
385  	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
386  	bool supports_fua = q->limits.features & BLK_FEAT_FUA;
387  	unsigned int policy = 0;
388  
389  	/* FLUSH/FUA request must never be merged */
390  	WARN_ON_ONCE(rq->bio != rq->biotail);
391  
392  	if (blk_rq_sectors(rq))
393  		policy |= REQ_FSEQ_DATA;
394  
395  	/*
396  	 * Check which flushes we need to sequence for this operation.
397  	 */
398  	if (blk_queue_write_cache(q)) {
399  		if (rq->cmd_flags & REQ_PREFLUSH)
400  			policy |= REQ_FSEQ_PREFLUSH;
401  		if ((rq->cmd_flags & REQ_FUA) && !supports_fua)
402  			policy |= REQ_FSEQ_POSTFLUSH;
403  	}
404  
405  	/*
406  	 * @policy now records what operations need to be done.  Adjust
407  	 * REQ_PREFLUSH and FUA for the driver.
408  	 */
409  	rq->cmd_flags &= ~REQ_PREFLUSH;
410  	if (!supports_fua)
411  		rq->cmd_flags &= ~REQ_FUA;
412  
413  	/*
414  	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
415  	 * of those flags, we have to set REQ_SYNC to avoid skewing
416  	 * the request accounting.
417  	 */
418  	rq->cmd_flags |= REQ_SYNC;
419  
420  	switch (policy) {
421  	case 0:
422  		/*
423  		 * An empty flush handed down from a stacking driver may
424  		 * translate into nothing if the underlying device does not
425  		 * advertise a write-back cache.  In this case, simply
426  		 * complete the request.
427  		 */
428  		blk_mq_end_request(rq, 0);
429  		return true;
430  	case REQ_FSEQ_DATA:
431  		/*
432  		 * If there's data, but no flush is necessary, the request can
433  		 * be processed directly without going through flush machinery.
434  		 * Queue for normal execution.
435  		 */
436  		return false;
437  	case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH:
438  		/*
439  		 * Initialize the flush fields and completion handler to trigger
440  		 * the post flush, and then just pass the command on.
441  		 */
442  		blk_rq_init_flush(rq);
443  		rq->flush.seq |= REQ_FSEQ_PREFLUSH;
444  		spin_lock_irq(&fq->mq_flush_lock);
445  		fq->flush_data_in_flight++;
446  		spin_unlock_irq(&fq->mq_flush_lock);
447  		return false;
448  	default:
449  		/*
450  		 * Mark the request as part of a flush sequence and submit it
451  		 * for further processing to the flush state machine.
452  		 */
453  		blk_rq_init_flush(rq);
454  		spin_lock_irq(&fq->mq_flush_lock);
455  		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
456  		spin_unlock_irq(&fq->mq_flush_lock);
457  		return true;
458  	}
459  }
460  
461  /**
462   * blkdev_issue_flush - queue a flush
463   * @bdev:	blockdev to issue flush for
464   *
465   * Description:
466   *    Issue a flush for the block device in question.
467   */
blkdev_issue_flush(struct block_device * bdev)468  int blkdev_issue_flush(struct block_device *bdev)
469  {
470  	struct bio bio;
471  
472  	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
473  	return submit_bio_wait(&bio);
474  }
475  EXPORT_SYMBOL(blkdev_issue_flush);
476  
blk_alloc_flush_queue(int node,int cmd_size,gfp_t flags)477  struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
478  					      gfp_t flags)
479  {
480  	struct blk_flush_queue *fq;
481  	int rq_sz = sizeof(struct request);
482  
483  	fq = kzalloc_node(sizeof(*fq), flags, node);
484  	if (!fq)
485  		goto fail;
486  
487  	spin_lock_init(&fq->mq_flush_lock);
488  
489  	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
490  	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
491  	if (!fq->flush_rq)
492  		goto fail_rq;
493  
494  	INIT_LIST_HEAD(&fq->flush_queue[0]);
495  	INIT_LIST_HEAD(&fq->flush_queue[1]);
496  
497  	return fq;
498  
499   fail_rq:
500  	kfree(fq);
501   fail:
502  	return NULL;
503  }
504  
blk_free_flush_queue(struct blk_flush_queue * fq)505  void blk_free_flush_queue(struct blk_flush_queue *fq)
506  {
507  	/* bio based request queue hasn't flush queue */
508  	if (!fq)
509  		return;
510  
511  	kfree(fq->flush_rq);
512  	kfree(fq);
513  }
514  
515  /*
516   * Allow driver to set its own lock class to fq->mq_flush_lock for
517   * avoiding lockdep complaint.
518   *
519   * flush_end_io() may be called recursively from some driver, such as
520   * nvme-loop, so lockdep may complain 'possible recursive locking' because
521   * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
522   * key. We need to assign different lock class for these driver's
523   * fq->mq_flush_lock for avoiding the lockdep warning.
524   *
525   * Use dynamically allocated lock class key for each 'blk_flush_queue'
526   * instance is over-kill, and more worse it introduces horrible boot delay
527   * issue because synchronize_rcu() is implied in lockdep_unregister_key which
528   * is called for each hctx release. SCSI probing may synchronously create and
529   * destroy lots of MQ request_queues for non-existent devices, and some robot
530   * test kernel always enable lockdep option. It is observed that more than half
531   * an hour is taken during SCSI MQ probe with per-fq lock class.
532   */
blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx * hctx,struct lock_class_key * key)533  void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
534  		struct lock_class_key *key)
535  {
536  	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
537  }
538  EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
539