1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  Copyright (C) 1995  Linus Torvalds
4   *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5   *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6   */
7  #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8  #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9  #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10  #include <linux/extable.h>		/* search_exception_tables	*/
11  #include <linux/memblock.h>		/* max_low_pfn			*/
12  #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13  #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14  #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15  #include <linux/perf_event.h>		/* perf_sw_event		*/
16  #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17  #include <linux/prefetch.h>		/* prefetchw			*/
18  #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19  #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20  #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21  #include <linux/mm_types.h>
22  #include <linux/mm.h>			/* find_and_lock_vma() */
23  #include <linux/vmalloc.h>
24  
25  #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
26  #include <asm/traps.h>			/* dotraplinkage, ...		*/
27  #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
28  #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
29  #include <asm/vm86.h>			/* struct vm86			*/
30  #include <asm/mmu_context.h>		/* vma_pkey()			*/
31  #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
32  #include <asm/desc.h>			/* store_idt(), ...		*/
33  #include <asm/cpu_entry_area.h>		/* exception stack		*/
34  #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
35  #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
36  #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
37  #include <asm/irq_stack.h>
38  #include <asm/fred.h>
39  #include <asm/sev.h>			/* snp_dump_hva_rmpentry()	*/
40  
41  #define CREATE_TRACE_POINTS
42  #include <asm/trace/exceptions.h>
43  
44  /*
45   * Returns 0 if mmiotrace is disabled, or if the fault is not
46   * handled by mmiotrace:
47   */
48  static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)49  kmmio_fault(struct pt_regs *regs, unsigned long addr)
50  {
51  	if (unlikely(is_kmmio_active()))
52  		if (kmmio_handler(regs, addr) == 1)
53  			return -1;
54  	return 0;
55  }
56  
57  /*
58   * Prefetch quirks:
59   *
60   * 32-bit mode:
61   *
62   *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
63   *   Check that here and ignore it.  This is AMD erratum #91.
64   *
65   * 64-bit mode:
66   *
67   *   Sometimes the CPU reports invalid exceptions on prefetch.
68   *   Check that here and ignore it.
69   *
70   * Opcode checker based on code by Richard Brunner.
71   */
72  static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)73  check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
74  		      unsigned char opcode, int *prefetch)
75  {
76  	unsigned char instr_hi = opcode & 0xf0;
77  	unsigned char instr_lo = opcode & 0x0f;
78  
79  	switch (instr_hi) {
80  	case 0x20:
81  	case 0x30:
82  		/*
83  		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
84  		 * In X86_64 long mode, the CPU will signal invalid
85  		 * opcode if some of these prefixes are present so
86  		 * X86_64 will never get here anyway
87  		 */
88  		return ((instr_lo & 7) == 0x6);
89  #ifdef CONFIG_X86_64
90  	case 0x40:
91  		/*
92  		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
93  		 */
94  		return (!user_mode(regs) || user_64bit_mode(regs));
95  #endif
96  	case 0x60:
97  		/* 0x64 thru 0x67 are valid prefixes in all modes. */
98  		return (instr_lo & 0xC) == 0x4;
99  	case 0xF0:
100  		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
101  		return !instr_lo || (instr_lo>>1) == 1;
102  	case 0x00:
103  		/* Prefetch instruction is 0x0F0D or 0x0F18 */
104  		if (get_kernel_nofault(opcode, instr))
105  			return 0;
106  
107  		*prefetch = (instr_lo == 0xF) &&
108  			(opcode == 0x0D || opcode == 0x18);
109  		return 0;
110  	default:
111  		return 0;
112  	}
113  }
114  
is_amd_k8_pre_npt(void)115  static bool is_amd_k8_pre_npt(void)
116  {
117  	struct cpuinfo_x86 *c = &boot_cpu_data;
118  
119  	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
120  			c->x86_vendor == X86_VENDOR_AMD &&
121  			c->x86 == 0xf && c->x86_model < 0x40);
122  }
123  
124  static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)125  is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
126  {
127  	unsigned char *max_instr;
128  	unsigned char *instr;
129  	int prefetch = 0;
130  
131  	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
132  	if (!is_amd_k8_pre_npt())
133  		return 0;
134  
135  	/*
136  	 * If it was a exec (instruction fetch) fault on NX page, then
137  	 * do not ignore the fault:
138  	 */
139  	if (error_code & X86_PF_INSTR)
140  		return 0;
141  
142  	instr = (void *)convert_ip_to_linear(current, regs);
143  	max_instr = instr + 15;
144  
145  	/*
146  	 * This code has historically always bailed out if IP points to a
147  	 * not-present page (e.g. due to a race).  No one has ever
148  	 * complained about this.
149  	 */
150  	pagefault_disable();
151  
152  	while (instr < max_instr) {
153  		unsigned char opcode;
154  
155  		if (user_mode(regs)) {
156  			if (get_user(opcode, (unsigned char __user *) instr))
157  				break;
158  		} else {
159  			if (get_kernel_nofault(opcode, instr))
160  				break;
161  		}
162  
163  		instr++;
164  
165  		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
166  			break;
167  	}
168  
169  	pagefault_enable();
170  	return prefetch;
171  }
172  
173  DEFINE_SPINLOCK(pgd_lock);
174  LIST_HEAD(pgd_list);
175  
176  #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)177  static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
178  {
179  	unsigned index = pgd_index(address);
180  	pgd_t *pgd_k;
181  	p4d_t *p4d, *p4d_k;
182  	pud_t *pud, *pud_k;
183  	pmd_t *pmd, *pmd_k;
184  
185  	pgd += index;
186  	pgd_k = init_mm.pgd + index;
187  
188  	if (!pgd_present(*pgd_k))
189  		return NULL;
190  
191  	/*
192  	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193  	 * and redundant with the set_pmd() on non-PAE. As would
194  	 * set_p4d/set_pud.
195  	 */
196  	p4d = p4d_offset(pgd, address);
197  	p4d_k = p4d_offset(pgd_k, address);
198  	if (!p4d_present(*p4d_k))
199  		return NULL;
200  
201  	pud = pud_offset(p4d, address);
202  	pud_k = pud_offset(p4d_k, address);
203  	if (!pud_present(*pud_k))
204  		return NULL;
205  
206  	pmd = pmd_offset(pud, address);
207  	pmd_k = pmd_offset(pud_k, address);
208  
209  	if (pmd_present(*pmd) != pmd_present(*pmd_k))
210  		set_pmd(pmd, *pmd_k);
211  
212  	if (!pmd_present(*pmd_k))
213  		return NULL;
214  	else
215  		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
216  
217  	return pmd_k;
218  }
219  
220  /*
221   *   Handle a fault on the vmalloc or module mapping area
222   *
223   *   This is needed because there is a race condition between the time
224   *   when the vmalloc mapping code updates the PMD to the point in time
225   *   where it synchronizes this update with the other page-tables in the
226   *   system.
227   *
228   *   In this race window another thread/CPU can map an area on the same
229   *   PMD, finds it already present and does not synchronize it with the
230   *   rest of the system yet. As a result v[mz]alloc might return areas
231   *   which are not mapped in every page-table in the system, causing an
232   *   unhandled page-fault when they are accessed.
233   */
vmalloc_fault(unsigned long address)234  static noinline int vmalloc_fault(unsigned long address)
235  {
236  	unsigned long pgd_paddr;
237  	pmd_t *pmd_k;
238  	pte_t *pte_k;
239  
240  	/* Make sure we are in vmalloc area: */
241  	if (!(address >= VMALLOC_START && address < VMALLOC_END))
242  		return -1;
243  
244  	/*
245  	 * Synchronize this task's top level page-table
246  	 * with the 'reference' page table.
247  	 *
248  	 * Do _not_ use "current" here. We might be inside
249  	 * an interrupt in the middle of a task switch..
250  	 */
251  	pgd_paddr = read_cr3_pa();
252  	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
253  	if (!pmd_k)
254  		return -1;
255  
256  	if (pmd_leaf(*pmd_k))
257  		return 0;
258  
259  	pte_k = pte_offset_kernel(pmd_k, address);
260  	if (!pte_present(*pte_k))
261  		return -1;
262  
263  	return 0;
264  }
265  NOKPROBE_SYMBOL(vmalloc_fault);
266  
arch_sync_kernel_mappings(unsigned long start,unsigned long end)267  void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
268  {
269  	unsigned long addr;
270  
271  	for (addr = start & PMD_MASK;
272  	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
273  	     addr += PMD_SIZE) {
274  		struct page *page;
275  
276  		spin_lock(&pgd_lock);
277  		list_for_each_entry(page, &pgd_list, lru) {
278  			spinlock_t *pgt_lock;
279  
280  			/* the pgt_lock only for Xen */
281  			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
282  
283  			spin_lock(pgt_lock);
284  			vmalloc_sync_one(page_address(page), addr);
285  			spin_unlock(pgt_lock);
286  		}
287  		spin_unlock(&pgd_lock);
288  	}
289  }
290  
low_pfn(unsigned long pfn)291  static bool low_pfn(unsigned long pfn)
292  {
293  	return pfn < max_low_pfn;
294  }
295  
dump_pagetable(unsigned long address)296  static void dump_pagetable(unsigned long address)
297  {
298  	pgd_t *base = __va(read_cr3_pa());
299  	pgd_t *pgd = &base[pgd_index(address)];
300  	p4d_t *p4d;
301  	pud_t *pud;
302  	pmd_t *pmd;
303  	pte_t *pte;
304  
305  #ifdef CONFIG_X86_PAE
306  	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
307  	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
308  		goto out;
309  #define pr_pde pr_cont
310  #else
311  #define pr_pde pr_info
312  #endif
313  	p4d = p4d_offset(pgd, address);
314  	pud = pud_offset(p4d, address);
315  	pmd = pmd_offset(pud, address);
316  	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
317  #undef pr_pde
318  
319  	/*
320  	 * We must not directly access the pte in the highpte
321  	 * case if the page table is located in highmem.
322  	 * And let's rather not kmap-atomic the pte, just in case
323  	 * it's allocated already:
324  	 */
325  	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
326  		goto out;
327  
328  	pte = pte_offset_kernel(pmd, address);
329  	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
330  out:
331  	pr_cont("\n");
332  }
333  
334  #else /* CONFIG_X86_64: */
335  
336  #ifdef CONFIG_CPU_SUP_AMD
337  static const char errata93_warning[] =
338  KERN_ERR
339  "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
340  "******* Working around it, but it may cause SEGVs or burn power.\n"
341  "******* Please consider a BIOS update.\n"
342  "******* Disabling USB legacy in the BIOS may also help.\n";
343  #endif
344  
bad_address(void * p)345  static int bad_address(void *p)
346  {
347  	unsigned long dummy;
348  
349  	return get_kernel_nofault(dummy, (unsigned long *)p);
350  }
351  
dump_pagetable(unsigned long address)352  static void dump_pagetable(unsigned long address)
353  {
354  	pgd_t *base = __va(read_cr3_pa());
355  	pgd_t *pgd = base + pgd_index(address);
356  	p4d_t *p4d;
357  	pud_t *pud;
358  	pmd_t *pmd;
359  	pte_t *pte;
360  
361  	if (bad_address(pgd))
362  		goto bad;
363  
364  	pr_info("PGD %lx ", pgd_val(*pgd));
365  
366  	if (!pgd_present(*pgd))
367  		goto out;
368  
369  	p4d = p4d_offset(pgd, address);
370  	if (bad_address(p4d))
371  		goto bad;
372  
373  	pr_cont("P4D %lx ", p4d_val(*p4d));
374  	if (!p4d_present(*p4d) || p4d_leaf(*p4d))
375  		goto out;
376  
377  	pud = pud_offset(p4d, address);
378  	if (bad_address(pud))
379  		goto bad;
380  
381  	pr_cont("PUD %lx ", pud_val(*pud));
382  	if (!pud_present(*pud) || pud_leaf(*pud))
383  		goto out;
384  
385  	pmd = pmd_offset(pud, address);
386  	if (bad_address(pmd))
387  		goto bad;
388  
389  	pr_cont("PMD %lx ", pmd_val(*pmd));
390  	if (!pmd_present(*pmd) || pmd_leaf(*pmd))
391  		goto out;
392  
393  	pte = pte_offset_kernel(pmd, address);
394  	if (bad_address(pte))
395  		goto bad;
396  
397  	pr_cont("PTE %lx", pte_val(*pte));
398  out:
399  	pr_cont("\n");
400  	return;
401  bad:
402  	pr_info("BAD\n");
403  }
404  
405  #endif /* CONFIG_X86_64 */
406  
407  /*
408   * Workaround for K8 erratum #93 & buggy BIOS.
409   *
410   * BIOS SMM functions are required to use a specific workaround
411   * to avoid corruption of the 64bit RIP register on C stepping K8.
412   *
413   * A lot of BIOS that didn't get tested properly miss this.
414   *
415   * The OS sees this as a page fault with the upper 32bits of RIP cleared.
416   * Try to work around it here.
417   *
418   * Note we only handle faults in kernel here.
419   * Does nothing on 32-bit.
420   */
is_errata93(struct pt_regs * regs,unsigned long address)421  static int is_errata93(struct pt_regs *regs, unsigned long address)
422  {
423  #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
424  	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
425  	    || boot_cpu_data.x86 != 0xf)
426  		return 0;
427  
428  	if (user_mode(regs))
429  		return 0;
430  
431  	if (address != regs->ip)
432  		return 0;
433  
434  	if ((address >> 32) != 0)
435  		return 0;
436  
437  	address |= 0xffffffffUL << 32;
438  	if ((address >= (u64)_stext && address <= (u64)_etext) ||
439  	    (address >= MODULES_VADDR && address <= MODULES_END)) {
440  		printk_once(errata93_warning);
441  		regs->ip = address;
442  		return 1;
443  	}
444  #endif
445  	return 0;
446  }
447  
448  /*
449   * Work around K8 erratum #100 K8 in compat mode occasionally jumps
450   * to illegal addresses >4GB.
451   *
452   * We catch this in the page fault handler because these addresses
453   * are not reachable. Just detect this case and return.  Any code
454   * segment in LDT is compatibility mode.
455   */
is_errata100(struct pt_regs * regs,unsigned long address)456  static int is_errata100(struct pt_regs *regs, unsigned long address)
457  {
458  #ifdef CONFIG_X86_64
459  	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
460  		return 1;
461  #endif
462  	return 0;
463  }
464  
465  /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)466  static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
467  		       unsigned long address)
468  {
469  #ifdef CONFIG_X86_F00F_BUG
470  	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
471  	    idt_is_f00f_address(address)) {
472  		handle_invalid_op(regs);
473  		return 1;
474  	}
475  #endif
476  	return 0;
477  }
478  
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)479  static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
480  {
481  	u32 offset = (index >> 3) * sizeof(struct desc_struct);
482  	unsigned long addr;
483  	struct ldttss_desc desc;
484  
485  	if (index == 0) {
486  		pr_alert("%s: NULL\n", name);
487  		return;
488  	}
489  
490  	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
491  		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
492  		return;
493  	}
494  
495  	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
496  			      sizeof(struct ldttss_desc))) {
497  		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
498  			 name, index);
499  		return;
500  	}
501  
502  	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
503  #ifdef CONFIG_X86_64
504  	addr |= ((u64)desc.base3 << 32);
505  #endif
506  	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
507  		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
508  }
509  
510  static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)511  show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
512  {
513  	if (!oops_may_print())
514  		return;
515  
516  	if (error_code & X86_PF_INSTR) {
517  		unsigned int level;
518  		bool nx, rw;
519  		pgd_t *pgd;
520  		pte_t *pte;
521  
522  		pgd = __va(read_cr3_pa());
523  		pgd += pgd_index(address);
524  
525  		pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
526  
527  		if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
528  			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
529  				from_kuid(&init_user_ns, current_uid()));
530  		if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
531  				(pgd_flags(*pgd) & _PAGE_USER) &&
532  				(__read_cr4() & X86_CR4_SMEP))
533  			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
534  				from_kuid(&init_user_ns, current_uid()));
535  	}
536  
537  	if (address < PAGE_SIZE && !user_mode(regs))
538  		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
539  			(void *)address);
540  	else
541  		pr_alert("BUG: unable to handle page fault for address: %px\n",
542  			(void *)address);
543  
544  	pr_alert("#PF: %s %s in %s mode\n",
545  		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
546  		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
547  		 (error_code & X86_PF_WRITE) ? "write access" :
548  					       "read access",
549  			     user_mode(regs) ? "user" : "kernel");
550  	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
551  		 !(error_code & X86_PF_PROT) ? "not-present page" :
552  		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
553  		 (error_code & X86_PF_PK)    ? "protection keys violation" :
554  		 (error_code & X86_PF_RMP)   ? "RMP violation" :
555  					       "permissions violation");
556  
557  	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
558  		struct desc_ptr idt, gdt;
559  		u16 ldtr, tr;
560  
561  		/*
562  		 * This can happen for quite a few reasons.  The more obvious
563  		 * ones are faults accessing the GDT, or LDT.  Perhaps
564  		 * surprisingly, if the CPU tries to deliver a benign or
565  		 * contributory exception from user code and gets a page fault
566  		 * during delivery, the page fault can be delivered as though
567  		 * it originated directly from user code.  This could happen
568  		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
569  		 * kernel or IST stack.
570  		 */
571  		store_idt(&idt);
572  
573  		/* Usable even on Xen PV -- it's just slow. */
574  		native_store_gdt(&gdt);
575  
576  		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
577  			 idt.address, idt.size, gdt.address, gdt.size);
578  
579  		store_ldt(ldtr);
580  		show_ldttss(&gdt, "LDTR", ldtr);
581  
582  		store_tr(tr);
583  		show_ldttss(&gdt, "TR", tr);
584  	}
585  
586  	dump_pagetable(address);
587  
588  	if (error_code & X86_PF_RMP)
589  		snp_dump_hva_rmpentry(address);
590  }
591  
592  static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)593  pgtable_bad(struct pt_regs *regs, unsigned long error_code,
594  	    unsigned long address)
595  {
596  	struct task_struct *tsk;
597  	unsigned long flags;
598  	int sig;
599  
600  	flags = oops_begin();
601  	tsk = current;
602  	sig = SIGKILL;
603  
604  	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
605  	       tsk->comm, address);
606  	dump_pagetable(address);
607  
608  	if (__die("Bad pagetable", regs, error_code))
609  		sig = 0;
610  
611  	oops_end(flags, regs, sig);
612  }
613  
sanitize_error_code(unsigned long address,unsigned long * error_code)614  static void sanitize_error_code(unsigned long address,
615  				unsigned long *error_code)
616  {
617  	/*
618  	 * To avoid leaking information about the kernel page
619  	 * table layout, pretend that user-mode accesses to
620  	 * kernel addresses are always protection faults.
621  	 *
622  	 * NB: This means that failed vsyscalls with vsyscall=none
623  	 * will have the PROT bit.  This doesn't leak any
624  	 * information and does not appear to cause any problems.
625  	 */
626  	if (address >= TASK_SIZE_MAX)
627  		*error_code |= X86_PF_PROT;
628  }
629  
set_signal_archinfo(unsigned long address,unsigned long error_code)630  static void set_signal_archinfo(unsigned long address,
631  				unsigned long error_code)
632  {
633  	struct task_struct *tsk = current;
634  
635  	tsk->thread.trap_nr = X86_TRAP_PF;
636  	tsk->thread.error_code = error_code | X86_PF_USER;
637  	tsk->thread.cr2 = address;
638  }
639  
640  static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)641  page_fault_oops(struct pt_regs *regs, unsigned long error_code,
642  		unsigned long address)
643  {
644  #ifdef CONFIG_VMAP_STACK
645  	struct stack_info info;
646  #endif
647  	unsigned long flags;
648  	int sig;
649  
650  	if (user_mode(regs)) {
651  		/*
652  		 * Implicit kernel access from user mode?  Skip the stack
653  		 * overflow and EFI special cases.
654  		 */
655  		goto oops;
656  	}
657  
658  #ifdef CONFIG_VMAP_STACK
659  	/*
660  	 * Stack overflow?  During boot, we can fault near the initial
661  	 * stack in the direct map, but that's not an overflow -- check
662  	 * that we're in vmalloc space to avoid this.
663  	 */
664  	if (is_vmalloc_addr((void *)address) &&
665  	    get_stack_guard_info((void *)address, &info)) {
666  		/*
667  		 * We're likely to be running with very little stack space
668  		 * left.  It's plausible that we'd hit this condition but
669  		 * double-fault even before we get this far, in which case
670  		 * we're fine: the double-fault handler will deal with it.
671  		 *
672  		 * We don't want to make it all the way into the oops code
673  		 * and then double-fault, though, because we're likely to
674  		 * break the console driver and lose most of the stack dump.
675  		 */
676  		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
677  			      handle_stack_overflow,
678  			      ASM_CALL_ARG3,
679  			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
680  
681  		unreachable();
682  	}
683  #endif
684  
685  	/*
686  	 * Buggy firmware could access regions which might page fault.  If
687  	 * this happens, EFI has a special OOPS path that will try to
688  	 * avoid hanging the system.
689  	 */
690  	if (IS_ENABLED(CONFIG_EFI))
691  		efi_crash_gracefully_on_page_fault(address);
692  
693  	/* Only not-present faults should be handled by KFENCE. */
694  	if (!(error_code & X86_PF_PROT) &&
695  	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
696  		return;
697  
698  oops:
699  	/*
700  	 * Oops. The kernel tried to access some bad page. We'll have to
701  	 * terminate things with extreme prejudice:
702  	 */
703  	flags = oops_begin();
704  
705  	show_fault_oops(regs, error_code, address);
706  
707  	if (task_stack_end_corrupted(current))
708  		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
709  
710  	sig = SIGKILL;
711  	if (__die("Oops", regs, error_code))
712  		sig = 0;
713  
714  	/* Executive summary in case the body of the oops scrolled away */
715  	printk(KERN_DEFAULT "CR2: %016lx\n", address);
716  
717  	oops_end(flags, regs, sig);
718  }
719  
720  static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code,u32 pkey)721  kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
722  			 unsigned long address, int signal, int si_code,
723  			 u32 pkey)
724  {
725  	WARN_ON_ONCE(user_mode(regs));
726  
727  	/* Are we prepared to handle this kernel fault? */
728  	if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
729  		return;
730  
731  	/*
732  	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
733  	 * instruction.
734  	 */
735  	if (is_prefetch(regs, error_code, address))
736  		return;
737  
738  	page_fault_oops(regs, error_code, address);
739  }
740  
741  /*
742   * Print out info about fatal segfaults, if the show_unhandled_signals
743   * sysctl is set:
744   */
745  static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)746  show_signal_msg(struct pt_regs *regs, unsigned long error_code,
747  		unsigned long address, struct task_struct *tsk)
748  {
749  	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
750  	/* This is a racy snapshot, but it's better than nothing. */
751  	int cpu = raw_smp_processor_id();
752  
753  	if (!unhandled_signal(tsk, SIGSEGV))
754  		return;
755  
756  	if (!printk_ratelimit())
757  		return;
758  
759  	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
760  		loglvl, tsk->comm, task_pid_nr(tsk), address,
761  		(void *)regs->ip, (void *)regs->sp, error_code);
762  
763  	print_vma_addr(KERN_CONT " in ", regs->ip);
764  
765  	/*
766  	 * Dump the likely CPU where the fatal segfault happened.
767  	 * This can help identify faulty hardware.
768  	 */
769  	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
770  	       topology_core_id(cpu), topology_physical_package_id(cpu));
771  
772  
773  	printk(KERN_CONT "\n");
774  
775  	show_opcodes(regs, loglvl);
776  }
777  
778  static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)779  __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
780  		       unsigned long address, u32 pkey, int si_code)
781  {
782  	struct task_struct *tsk = current;
783  
784  	if (!user_mode(regs)) {
785  		kernelmode_fixup_or_oops(regs, error_code, address,
786  					 SIGSEGV, si_code, pkey);
787  		return;
788  	}
789  
790  	if (!(error_code & X86_PF_USER)) {
791  		/* Implicit user access to kernel memory -- just oops */
792  		page_fault_oops(regs, error_code, address);
793  		return;
794  	}
795  
796  	/*
797  	 * User mode accesses just cause a SIGSEGV.
798  	 * It's possible to have interrupts off here:
799  	 */
800  	local_irq_enable();
801  
802  	/*
803  	 * Valid to do another page fault here because this one came
804  	 * from user space:
805  	 */
806  	if (is_prefetch(regs, error_code, address))
807  		return;
808  
809  	if (is_errata100(regs, address))
810  		return;
811  
812  	sanitize_error_code(address, &error_code);
813  
814  	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
815  		return;
816  
817  	if (likely(show_unhandled_signals))
818  		show_signal_msg(regs, error_code, address, tsk);
819  
820  	set_signal_archinfo(address, error_code);
821  
822  	if (si_code == SEGV_PKUERR)
823  		force_sig_pkuerr((void __user *)address, pkey);
824  	else
825  		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
826  
827  	local_irq_disable();
828  }
829  
830  static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)831  bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
832  		     unsigned long address)
833  {
834  	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
835  }
836  
837  static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma,u32 pkey,int si_code)838  __bad_area(struct pt_regs *regs, unsigned long error_code,
839  	   unsigned long address, struct mm_struct *mm,
840  	   struct vm_area_struct *vma, u32 pkey, int si_code)
841  {
842  	/*
843  	 * Something tried to access memory that isn't in our memory map..
844  	 * Fix it, but check if it's kernel or user first..
845  	 */
846  	if (mm)
847  		mmap_read_unlock(mm);
848  	else
849  		vma_end_read(vma);
850  
851  	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
852  }
853  
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)854  static inline bool bad_area_access_from_pkeys(unsigned long error_code,
855  		struct vm_area_struct *vma)
856  {
857  	/* This code is always called on the current mm */
858  	bool foreign = false;
859  
860  	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
861  		return false;
862  	if (error_code & X86_PF_PK)
863  		return true;
864  	/* this checks permission keys on the VMA: */
865  	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
866  				       (error_code & X86_PF_INSTR), foreign))
867  		return true;
868  	return false;
869  }
870  
871  static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma)872  bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
873  		      unsigned long address, struct mm_struct *mm,
874  		      struct vm_area_struct *vma)
875  {
876  	/*
877  	 * This OSPKE check is not strictly necessary at runtime.
878  	 * But, doing it this way allows compiler optimizations
879  	 * if pkeys are compiled out.
880  	 */
881  	if (bad_area_access_from_pkeys(error_code, vma)) {
882  		/*
883  		 * A protection key fault means that the PKRU value did not allow
884  		 * access to some PTE.  Userspace can figure out what PKRU was
885  		 * from the XSAVE state.  This function captures the pkey from
886  		 * the vma and passes it to userspace so userspace can discover
887  		 * which protection key was set on the PTE.
888  		 *
889  		 * If we get here, we know that the hardware signaled a X86_PF_PK
890  		 * fault and that there was a VMA once we got in the fault
891  		 * handler.  It does *not* guarantee that the VMA we find here
892  		 * was the one that we faulted on.
893  		 *
894  		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
895  		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
896  		 * 3. T1   : faults...
897  		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
898  		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
899  		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
900  		 *	     faulted on a pte with its pkey=4.
901  		 */
902  		u32 pkey = vma_pkey(vma);
903  
904  		__bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
905  	} else {
906  		__bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
907  	}
908  }
909  
910  static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)911  do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
912  	  vm_fault_t fault)
913  {
914  	/* Kernel mode? Handle exceptions or die: */
915  	if (!user_mode(regs)) {
916  		kernelmode_fixup_or_oops(regs, error_code, address,
917  					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
918  		return;
919  	}
920  
921  	/* User-space => ok to do another page fault: */
922  	if (is_prefetch(regs, error_code, address))
923  		return;
924  
925  	sanitize_error_code(address, &error_code);
926  
927  	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
928  		return;
929  
930  	set_signal_archinfo(address, error_code);
931  
932  #ifdef CONFIG_MEMORY_FAILURE
933  	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
934  		struct task_struct *tsk = current;
935  		unsigned lsb = 0;
936  
937  		pr_err(
938  	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
939  			tsk->comm, tsk->pid, address);
940  		if (fault & VM_FAULT_HWPOISON_LARGE)
941  			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
942  		if (fault & VM_FAULT_HWPOISON)
943  			lsb = PAGE_SHIFT;
944  		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
945  		return;
946  	}
947  #endif
948  	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
949  }
950  
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)951  static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
952  {
953  	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
954  		return 0;
955  
956  	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
957  		return 0;
958  
959  	return 1;
960  }
961  
962  /*
963   * Handle a spurious fault caused by a stale TLB entry.
964   *
965   * This allows us to lazily refresh the TLB when increasing the
966   * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
967   * eagerly is very expensive since that implies doing a full
968   * cross-processor TLB flush, even if no stale TLB entries exist
969   * on other processors.
970   *
971   * Spurious faults may only occur if the TLB contains an entry with
972   * fewer permission than the page table entry.  Non-present (P = 0)
973   * and reserved bit (R = 1) faults are never spurious.
974   *
975   * There are no security implications to leaving a stale TLB when
976   * increasing the permissions on a page.
977   *
978   * Returns non-zero if a spurious fault was handled, zero otherwise.
979   *
980   * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
981   * (Optional Invalidation).
982   */
983  static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)984  spurious_kernel_fault(unsigned long error_code, unsigned long address)
985  {
986  	pgd_t *pgd;
987  	p4d_t *p4d;
988  	pud_t *pud;
989  	pmd_t *pmd;
990  	pte_t *pte;
991  	int ret;
992  
993  	/*
994  	 * Only writes to RO or instruction fetches from NX may cause
995  	 * spurious faults.
996  	 *
997  	 * These could be from user or supervisor accesses but the TLB
998  	 * is only lazily flushed after a kernel mapping protection
999  	 * change, so user accesses are not expected to cause spurious
1000  	 * faults.
1001  	 */
1002  	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1003  	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1004  		return 0;
1005  
1006  	pgd = init_mm.pgd + pgd_index(address);
1007  	if (!pgd_present(*pgd))
1008  		return 0;
1009  
1010  	p4d = p4d_offset(pgd, address);
1011  	if (!p4d_present(*p4d))
1012  		return 0;
1013  
1014  	if (p4d_leaf(*p4d))
1015  		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1016  
1017  	pud = pud_offset(p4d, address);
1018  	if (!pud_present(*pud))
1019  		return 0;
1020  
1021  	if (pud_leaf(*pud))
1022  		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1023  
1024  	pmd = pmd_offset(pud, address);
1025  	if (!pmd_present(*pmd))
1026  		return 0;
1027  
1028  	if (pmd_leaf(*pmd))
1029  		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1030  
1031  	pte = pte_offset_kernel(pmd, address);
1032  	if (!pte_present(*pte))
1033  		return 0;
1034  
1035  	ret = spurious_kernel_fault_check(error_code, pte);
1036  	if (!ret)
1037  		return 0;
1038  
1039  	/*
1040  	 * Make sure we have permissions in PMD.
1041  	 * If not, then there's a bug in the page tables:
1042  	 */
1043  	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1044  	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1045  
1046  	return ret;
1047  }
1048  NOKPROBE_SYMBOL(spurious_kernel_fault);
1049  
1050  int show_unhandled_signals = 1;
1051  
1052  static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1053  access_error(unsigned long error_code, struct vm_area_struct *vma)
1054  {
1055  	/* This is only called for the current mm, so: */
1056  	bool foreign = false;
1057  
1058  	/*
1059  	 * Read or write was blocked by protection keys.  This is
1060  	 * always an unconditional error and can never result in
1061  	 * a follow-up action to resolve the fault, like a COW.
1062  	 */
1063  	if (error_code & X86_PF_PK)
1064  		return 1;
1065  
1066  	/*
1067  	 * SGX hardware blocked the access.  This usually happens
1068  	 * when the enclave memory contents have been destroyed, like
1069  	 * after a suspend/resume cycle. In any case, the kernel can't
1070  	 * fix the cause of the fault.  Handle the fault as an access
1071  	 * error even in cases where no actual access violation
1072  	 * occurred.  This allows userspace to rebuild the enclave in
1073  	 * response to the signal.
1074  	 */
1075  	if (unlikely(error_code & X86_PF_SGX))
1076  		return 1;
1077  
1078  	/*
1079  	 * Make sure to check the VMA so that we do not perform
1080  	 * faults just to hit a X86_PF_PK as soon as we fill in a
1081  	 * page.
1082  	 */
1083  	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1084  				       (error_code & X86_PF_INSTR), foreign))
1085  		return 1;
1086  
1087  	/*
1088  	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1089  	 * shadow stack VMAs. All other accesses result in an error.
1090  	 */
1091  	if (error_code & X86_PF_SHSTK) {
1092  		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1093  			return 1;
1094  		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1095  			return 1;
1096  		return 0;
1097  	}
1098  
1099  	if (error_code & X86_PF_WRITE) {
1100  		/* write, present and write, not present: */
1101  		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1102  			return 1;
1103  		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1104  			return 1;
1105  		return 0;
1106  	}
1107  
1108  	/* read, present: */
1109  	if (unlikely(error_code & X86_PF_PROT))
1110  		return 1;
1111  
1112  	/* read, not present: */
1113  	if (unlikely(!vma_is_accessible(vma)))
1114  		return 1;
1115  
1116  	return 0;
1117  }
1118  
fault_in_kernel_space(unsigned long address)1119  bool fault_in_kernel_space(unsigned long address)
1120  {
1121  	/*
1122  	 * On 64-bit systems, the vsyscall page is at an address above
1123  	 * TASK_SIZE_MAX, but is not considered part of the kernel
1124  	 * address space.
1125  	 */
1126  	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1127  		return false;
1128  
1129  	return address >= TASK_SIZE_MAX;
1130  }
1131  
1132  /*
1133   * Called for all faults where 'address' is part of the kernel address
1134   * space.  Might get called for faults that originate from *code* that
1135   * ran in userspace or the kernel.
1136   */
1137  static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1138  do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1139  		   unsigned long address)
1140  {
1141  	/*
1142  	 * Protection keys exceptions only happen on user pages.  We
1143  	 * have no user pages in the kernel portion of the address
1144  	 * space, so do not expect them here.
1145  	 */
1146  	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1147  
1148  #ifdef CONFIG_X86_32
1149  	/*
1150  	 * We can fault-in kernel-space virtual memory on-demand. The
1151  	 * 'reference' page table is init_mm.pgd.
1152  	 *
1153  	 * NOTE! We MUST NOT take any locks for this case. We may
1154  	 * be in an interrupt or a critical region, and should
1155  	 * only copy the information from the master page table,
1156  	 * nothing more.
1157  	 *
1158  	 * Before doing this on-demand faulting, ensure that the
1159  	 * fault is not any of the following:
1160  	 * 1. A fault on a PTE with a reserved bit set.
1161  	 * 2. A fault caused by a user-mode access.  (Do not demand-
1162  	 *    fault kernel memory due to user-mode accesses).
1163  	 * 3. A fault caused by a page-level protection violation.
1164  	 *    (A demand fault would be on a non-present page which
1165  	 *     would have X86_PF_PROT==0).
1166  	 *
1167  	 * This is only needed to close a race condition on x86-32 in
1168  	 * the vmalloc mapping/unmapping code. See the comment above
1169  	 * vmalloc_fault() for details. On x86-64 the race does not
1170  	 * exist as the vmalloc mappings don't need to be synchronized
1171  	 * there.
1172  	 */
1173  	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1174  		if (vmalloc_fault(address) >= 0)
1175  			return;
1176  	}
1177  #endif
1178  
1179  	if (is_f00f_bug(regs, hw_error_code, address))
1180  		return;
1181  
1182  	/* Was the fault spurious, caused by lazy TLB invalidation? */
1183  	if (spurious_kernel_fault(hw_error_code, address))
1184  		return;
1185  
1186  	/* kprobes don't want to hook the spurious faults: */
1187  	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1188  		return;
1189  
1190  	/*
1191  	 * Note, despite being a "bad area", there are quite a few
1192  	 * acceptable reasons to get here, such as erratum fixups
1193  	 * and handling kernel code that can fault, like get_user().
1194  	 *
1195  	 * Don't take the mm semaphore here. If we fixup a prefetch
1196  	 * fault we could otherwise deadlock:
1197  	 */
1198  	bad_area_nosemaphore(regs, hw_error_code, address);
1199  }
1200  NOKPROBE_SYMBOL(do_kern_addr_fault);
1201  
1202  /*
1203   * Handle faults in the user portion of the address space.  Nothing in here
1204   * should check X86_PF_USER without a specific justification: for almost
1205   * all purposes, we should treat a normal kernel access to user memory
1206   * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1207   * The one exception is AC flag handling, which is, per the x86
1208   * architecture, special for WRUSS.
1209   */
1210  static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1211  void do_user_addr_fault(struct pt_regs *regs,
1212  			unsigned long error_code,
1213  			unsigned long address)
1214  {
1215  	struct vm_area_struct *vma;
1216  	struct task_struct *tsk;
1217  	struct mm_struct *mm;
1218  	vm_fault_t fault;
1219  	unsigned int flags = FAULT_FLAG_DEFAULT;
1220  
1221  	tsk = current;
1222  	mm = tsk->mm;
1223  
1224  	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1225  		/*
1226  		 * Whoops, this is kernel mode code trying to execute from
1227  		 * user memory.  Unless this is AMD erratum #93, which
1228  		 * corrupts RIP such that it looks like a user address,
1229  		 * this is unrecoverable.  Don't even try to look up the
1230  		 * VMA or look for extable entries.
1231  		 */
1232  		if (is_errata93(regs, address))
1233  			return;
1234  
1235  		page_fault_oops(regs, error_code, address);
1236  		return;
1237  	}
1238  
1239  	/* kprobes don't want to hook the spurious faults: */
1240  	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1241  		return;
1242  
1243  	/*
1244  	 * Reserved bits are never expected to be set on
1245  	 * entries in the user portion of the page tables.
1246  	 */
1247  	if (unlikely(error_code & X86_PF_RSVD))
1248  		pgtable_bad(regs, error_code, address);
1249  
1250  	/*
1251  	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1252  	 * pages in the user address space.  The odd case here is WRUSS,
1253  	 * which, according to the preliminary documentation, does not respect
1254  	 * SMAP and will have the USER bit set so, in all cases, SMAP
1255  	 * enforcement appears to be consistent with the USER bit.
1256  	 */
1257  	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1258  		     !(error_code & X86_PF_USER) &&
1259  		     !(regs->flags & X86_EFLAGS_AC))) {
1260  		/*
1261  		 * No extable entry here.  This was a kernel access to an
1262  		 * invalid pointer.  get_kernel_nofault() will not get here.
1263  		 */
1264  		page_fault_oops(regs, error_code, address);
1265  		return;
1266  	}
1267  
1268  	/*
1269  	 * If we're in an interrupt, have no user context or are running
1270  	 * in a region with pagefaults disabled then we must not take the fault
1271  	 */
1272  	if (unlikely(faulthandler_disabled() || !mm)) {
1273  		bad_area_nosemaphore(regs, error_code, address);
1274  		return;
1275  	}
1276  
1277  	/* Legacy check - remove this after verifying that it doesn't trigger */
1278  	if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1279  		bad_area_nosemaphore(regs, error_code, address);
1280  		return;
1281  	}
1282  
1283  	local_irq_enable();
1284  
1285  	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1286  
1287  	/*
1288  	 * Read-only permissions can not be expressed in shadow stack PTEs.
1289  	 * Treat all shadow stack accesses as WRITE faults. This ensures
1290  	 * that the MM will prepare everything (e.g., break COW) such that
1291  	 * maybe_mkwrite() can create a proper shadow stack PTE.
1292  	 */
1293  	if (error_code & X86_PF_SHSTK)
1294  		flags |= FAULT_FLAG_WRITE;
1295  	if (error_code & X86_PF_WRITE)
1296  		flags |= FAULT_FLAG_WRITE;
1297  	if (error_code & X86_PF_INSTR)
1298  		flags |= FAULT_FLAG_INSTRUCTION;
1299  
1300  	/*
1301  	 * We set FAULT_FLAG_USER based on the register state, not
1302  	 * based on X86_PF_USER. User space accesses that cause
1303  	 * system page faults are still user accesses.
1304  	 */
1305  	if (user_mode(regs))
1306  		flags |= FAULT_FLAG_USER;
1307  
1308  #ifdef CONFIG_X86_64
1309  	/*
1310  	 * Faults in the vsyscall page might need emulation.  The
1311  	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1312  	 * considered to be part of the user address space.
1313  	 *
1314  	 * The vsyscall page does not have a "real" VMA, so do this
1315  	 * emulation before we go searching for VMAs.
1316  	 *
1317  	 * PKRU never rejects instruction fetches, so we don't need
1318  	 * to consider the PF_PK bit.
1319  	 */
1320  	if (is_vsyscall_vaddr(address)) {
1321  		if (emulate_vsyscall(error_code, regs, address))
1322  			return;
1323  	}
1324  #endif
1325  
1326  	if (!(flags & FAULT_FLAG_USER))
1327  		goto lock_mmap;
1328  
1329  	vma = lock_vma_under_rcu(mm, address);
1330  	if (!vma)
1331  		goto lock_mmap;
1332  
1333  	if (unlikely(access_error(error_code, vma))) {
1334  		bad_area_access_error(regs, error_code, address, NULL, vma);
1335  		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1336  		return;
1337  	}
1338  	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1339  	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1340  		vma_end_read(vma);
1341  
1342  	if (!(fault & VM_FAULT_RETRY)) {
1343  		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1344  		goto done;
1345  	}
1346  	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1347  	if (fault & VM_FAULT_MAJOR)
1348  		flags |= FAULT_FLAG_TRIED;
1349  
1350  	/* Quick path to respond to signals */
1351  	if (fault_signal_pending(fault, regs)) {
1352  		if (!user_mode(regs))
1353  			kernelmode_fixup_or_oops(regs, error_code, address,
1354  						 SIGBUS, BUS_ADRERR,
1355  						 ARCH_DEFAULT_PKEY);
1356  		return;
1357  	}
1358  lock_mmap:
1359  
1360  retry:
1361  	vma = lock_mm_and_find_vma(mm, address, regs);
1362  	if (unlikely(!vma)) {
1363  		bad_area_nosemaphore(regs, error_code, address);
1364  		return;
1365  	}
1366  
1367  	/*
1368  	 * Ok, we have a good vm_area for this memory access, so
1369  	 * we can handle it..
1370  	 */
1371  	if (unlikely(access_error(error_code, vma))) {
1372  		bad_area_access_error(regs, error_code, address, mm, vma);
1373  		return;
1374  	}
1375  
1376  	/*
1377  	 * If for any reason at all we couldn't handle the fault,
1378  	 * make sure we exit gracefully rather than endlessly redo
1379  	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1380  	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1381  	 *
1382  	 * Note that handle_userfault() may also release and reacquire mmap_lock
1383  	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1384  	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1385  	 * (potentially after handling any pending signal during the return to
1386  	 * userland). The return to userland is identified whenever
1387  	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1388  	 */
1389  	fault = handle_mm_fault(vma, address, flags, regs);
1390  
1391  	if (fault_signal_pending(fault, regs)) {
1392  		/*
1393  		 * Quick path to respond to signals.  The core mm code
1394  		 * has unlocked the mm for us if we get here.
1395  		 */
1396  		if (!user_mode(regs))
1397  			kernelmode_fixup_or_oops(regs, error_code, address,
1398  						 SIGBUS, BUS_ADRERR,
1399  						 ARCH_DEFAULT_PKEY);
1400  		return;
1401  	}
1402  
1403  	/* The fault is fully completed (including releasing mmap lock) */
1404  	if (fault & VM_FAULT_COMPLETED)
1405  		return;
1406  
1407  	/*
1408  	 * If we need to retry the mmap_lock has already been released,
1409  	 * and if there is a fatal signal pending there is no guarantee
1410  	 * that we made any progress. Handle this case first.
1411  	 */
1412  	if (unlikely(fault & VM_FAULT_RETRY)) {
1413  		flags |= FAULT_FLAG_TRIED;
1414  		goto retry;
1415  	}
1416  
1417  	mmap_read_unlock(mm);
1418  done:
1419  	if (likely(!(fault & VM_FAULT_ERROR)))
1420  		return;
1421  
1422  	if (fatal_signal_pending(current) && !user_mode(regs)) {
1423  		kernelmode_fixup_or_oops(regs, error_code, address,
1424  					 0, 0, ARCH_DEFAULT_PKEY);
1425  		return;
1426  	}
1427  
1428  	if (fault & VM_FAULT_OOM) {
1429  		/* Kernel mode? Handle exceptions or die: */
1430  		if (!user_mode(regs)) {
1431  			kernelmode_fixup_or_oops(regs, error_code, address,
1432  						 SIGSEGV, SEGV_MAPERR,
1433  						 ARCH_DEFAULT_PKEY);
1434  			return;
1435  		}
1436  
1437  		/*
1438  		 * We ran out of memory, call the OOM killer, and return the
1439  		 * userspace (which will retry the fault, or kill us if we got
1440  		 * oom-killed):
1441  		 */
1442  		pagefault_out_of_memory();
1443  	} else {
1444  		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1445  			     VM_FAULT_HWPOISON_LARGE))
1446  			do_sigbus(regs, error_code, address, fault);
1447  		else if (fault & VM_FAULT_SIGSEGV)
1448  			bad_area_nosemaphore(regs, error_code, address);
1449  		else
1450  			BUG();
1451  	}
1452  }
1453  NOKPROBE_SYMBOL(do_user_addr_fault);
1454  
1455  static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1456  trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1457  			 unsigned long address)
1458  {
1459  	if (!trace_pagefault_enabled())
1460  		return;
1461  
1462  	if (user_mode(regs))
1463  		trace_page_fault_user(address, regs, error_code);
1464  	else
1465  		trace_page_fault_kernel(address, regs, error_code);
1466  }
1467  
1468  static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1469  handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1470  			      unsigned long address)
1471  {
1472  	trace_page_fault_entries(regs, error_code, address);
1473  
1474  	if (unlikely(kmmio_fault(regs, address)))
1475  		return;
1476  
1477  	/* Was the fault on kernel-controlled part of the address space? */
1478  	if (unlikely(fault_in_kernel_space(address))) {
1479  		do_kern_addr_fault(regs, error_code, address);
1480  	} else {
1481  		do_user_addr_fault(regs, error_code, address);
1482  		/*
1483  		 * User address page fault handling might have reenabled
1484  		 * interrupts. Fixing up all potential exit points of
1485  		 * do_user_addr_fault() and its leaf functions is just not
1486  		 * doable w/o creating an unholy mess or turning the code
1487  		 * upside down.
1488  		 */
1489  		local_irq_disable();
1490  	}
1491  }
1492  
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1493  DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1494  {
1495  	irqentry_state_t state;
1496  	unsigned long address;
1497  
1498  	address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1499  
1500  	prefetchw(&current->mm->mmap_lock);
1501  
1502  	/*
1503  	 * KVM uses #PF vector to deliver 'page not present' events to guests
1504  	 * (asynchronous page fault mechanism). The event happens when a
1505  	 * userspace task is trying to access some valid (from guest's point of
1506  	 * view) memory which is not currently mapped by the host (e.g. the
1507  	 * memory is swapped out). Note, the corresponding "page ready" event
1508  	 * which is injected when the memory becomes available, is delivered via
1509  	 * an interrupt mechanism and not a #PF exception
1510  	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1511  	 *
1512  	 * We are relying on the interrupted context being sane (valid RSP,
1513  	 * relevant locks not held, etc.), which is fine as long as the
1514  	 * interrupted context had IF=1.  We are also relying on the KVM
1515  	 * async pf type field and CR2 being read consistently instead of
1516  	 * getting values from real and async page faults mixed up.
1517  	 *
1518  	 * Fingers crossed.
1519  	 *
1520  	 * The async #PF handling code takes care of idtentry handling
1521  	 * itself.
1522  	 */
1523  	if (kvm_handle_async_pf(regs, (u32)address))
1524  		return;
1525  
1526  	/*
1527  	 * Entry handling for valid #PF from kernel mode is slightly
1528  	 * different: RCU is already watching and ct_irq_enter() must not
1529  	 * be invoked because a kernel fault on a user space address might
1530  	 * sleep.
1531  	 *
1532  	 * In case the fault hit a RCU idle region the conditional entry
1533  	 * code reenabled RCU to avoid subsequent wreckage which helps
1534  	 * debuggability.
1535  	 */
1536  	state = irqentry_enter(regs);
1537  
1538  	instrumentation_begin();
1539  	handle_page_fault(regs, error_code, address);
1540  	instrumentation_end();
1541  
1542  	irqentry_exit(regs, state);
1543  }
1544