1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Based on arch/arm/mm/context.c
4   *
5   * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
6   * Copyright (C) 2012 ARM Ltd.
7   */
8  
9  #include <linux/bitfield.h>
10  #include <linux/bitops.h>
11  #include <linux/sched.h>
12  #include <linux/slab.h>
13  #include <linux/mm.h>
14  
15  #include <asm/cpufeature.h>
16  #include <asm/mmu_context.h>
17  #include <asm/smp.h>
18  #include <asm/tlbflush.h>
19  
20  static u32 asid_bits;
21  static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
22  
23  static atomic64_t asid_generation;
24  static unsigned long *asid_map;
25  
26  static DEFINE_PER_CPU(atomic64_t, active_asids);
27  static DEFINE_PER_CPU(u64, reserved_asids);
28  static cpumask_t tlb_flush_pending;
29  
30  static unsigned long max_pinned_asids;
31  static unsigned long nr_pinned_asids;
32  static unsigned long *pinned_asid_map;
33  
34  #define ASID_MASK		(~GENMASK(asid_bits - 1, 0))
35  #define ASID_FIRST_VERSION	(1UL << asid_bits)
36  
37  #define NUM_USER_ASIDS		ASID_FIRST_VERSION
38  #define ctxid2asid(asid)	((asid) & ~ASID_MASK)
39  #define asid2ctxid(asid, genid)	((asid) | (genid))
40  
41  /* Get the ASIDBits supported by the current CPU */
get_cpu_asid_bits(void)42  static u32 get_cpu_asid_bits(void)
43  {
44  	u32 asid;
45  	int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
46  						ID_AA64MMFR0_EL1_ASIDBITS_SHIFT);
47  
48  	switch (fld) {
49  	default:
50  		pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
51  					smp_processor_id(),  fld);
52  		fallthrough;
53  	case ID_AA64MMFR0_EL1_ASIDBITS_8:
54  		asid = 8;
55  		break;
56  	case ID_AA64MMFR0_EL1_ASIDBITS_16:
57  		asid = 16;
58  	}
59  
60  	return asid;
61  }
62  
63  /* Check if the current cpu's ASIDBits is compatible with asid_bits */
verify_cpu_asid_bits(void)64  void verify_cpu_asid_bits(void)
65  {
66  	u32 asid = get_cpu_asid_bits();
67  
68  	if (asid < asid_bits) {
69  		/*
70  		 * We cannot decrease the ASID size at runtime, so panic if we support
71  		 * fewer ASID bits than the boot CPU.
72  		 */
73  		pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
74  				smp_processor_id(), asid, asid_bits);
75  		cpu_panic_kernel();
76  	}
77  }
78  
set_kpti_asid_bits(unsigned long * map)79  static void set_kpti_asid_bits(unsigned long *map)
80  {
81  	unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long);
82  	/*
83  	 * In case of KPTI kernel/user ASIDs are allocated in
84  	 * pairs, the bottom bit distinguishes the two: if it
85  	 * is set, then the ASID will map only userspace. Thus
86  	 * mark even as reserved for kernel.
87  	 */
88  	memset(map, 0xaa, len);
89  }
90  
set_reserved_asid_bits(void)91  static void set_reserved_asid_bits(void)
92  {
93  	if (pinned_asid_map)
94  		bitmap_copy(asid_map, pinned_asid_map, NUM_USER_ASIDS);
95  	else if (arm64_kernel_unmapped_at_el0())
96  		set_kpti_asid_bits(asid_map);
97  	else
98  		bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
99  }
100  
101  #define asid_gen_match(asid) \
102  	(!(((asid) ^ atomic64_read(&asid_generation)) >> asid_bits))
103  
flush_context(void)104  static void flush_context(void)
105  {
106  	int i;
107  	u64 asid;
108  
109  	/* Update the list of reserved ASIDs and the ASID bitmap. */
110  	set_reserved_asid_bits();
111  
112  	for_each_possible_cpu(i) {
113  		asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
114  		/*
115  		 * If this CPU has already been through a
116  		 * rollover, but hasn't run another task in
117  		 * the meantime, we must preserve its reserved
118  		 * ASID, as this is the only trace we have of
119  		 * the process it is still running.
120  		 */
121  		if (asid == 0)
122  			asid = per_cpu(reserved_asids, i);
123  		__set_bit(ctxid2asid(asid), asid_map);
124  		per_cpu(reserved_asids, i) = asid;
125  	}
126  
127  	/*
128  	 * Queue a TLB invalidation for each CPU to perform on next
129  	 * context-switch
130  	 */
131  	cpumask_setall(&tlb_flush_pending);
132  }
133  
check_update_reserved_asid(u64 asid,u64 newasid)134  static bool check_update_reserved_asid(u64 asid, u64 newasid)
135  {
136  	int cpu;
137  	bool hit = false;
138  
139  	/*
140  	 * Iterate over the set of reserved ASIDs looking for a match.
141  	 * If we find one, then we can update our mm to use newasid
142  	 * (i.e. the same ASID in the current generation) but we can't
143  	 * exit the loop early, since we need to ensure that all copies
144  	 * of the old ASID are updated to reflect the mm. Failure to do
145  	 * so could result in us missing the reserved ASID in a future
146  	 * generation.
147  	 */
148  	for_each_possible_cpu(cpu) {
149  		if (per_cpu(reserved_asids, cpu) == asid) {
150  			hit = true;
151  			per_cpu(reserved_asids, cpu) = newasid;
152  		}
153  	}
154  
155  	return hit;
156  }
157  
new_context(struct mm_struct * mm)158  static u64 new_context(struct mm_struct *mm)
159  {
160  	static u32 cur_idx = 1;
161  	u64 asid = atomic64_read(&mm->context.id);
162  	u64 generation = atomic64_read(&asid_generation);
163  
164  	if (asid != 0) {
165  		u64 newasid = asid2ctxid(ctxid2asid(asid), generation);
166  
167  		/*
168  		 * If our current ASID was active during a rollover, we
169  		 * can continue to use it and this was just a false alarm.
170  		 */
171  		if (check_update_reserved_asid(asid, newasid))
172  			return newasid;
173  
174  		/*
175  		 * If it is pinned, we can keep using it. Note that reserved
176  		 * takes priority, because even if it is also pinned, we need to
177  		 * update the generation into the reserved_asids.
178  		 */
179  		if (refcount_read(&mm->context.pinned))
180  			return newasid;
181  
182  		/*
183  		 * We had a valid ASID in a previous life, so try to re-use
184  		 * it if possible.
185  		 */
186  		if (!__test_and_set_bit(ctxid2asid(asid), asid_map))
187  			return newasid;
188  	}
189  
190  	/*
191  	 * Allocate a free ASID. If we can't find one, take a note of the
192  	 * currently active ASIDs and mark the TLBs as requiring flushes.  We
193  	 * always count from ASID #2 (index 1), as we use ASID #0 when setting
194  	 * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
195  	 * pairs.
196  	 */
197  	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
198  	if (asid != NUM_USER_ASIDS)
199  		goto set_asid;
200  
201  	/* We're out of ASIDs, so increment the global generation count */
202  	generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
203  						 &asid_generation);
204  	flush_context();
205  
206  	/* We have more ASIDs than CPUs, so this will always succeed */
207  	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
208  
209  set_asid:
210  	__set_bit(asid, asid_map);
211  	cur_idx = asid;
212  	return asid2ctxid(asid, generation);
213  }
214  
check_and_switch_context(struct mm_struct * mm)215  void check_and_switch_context(struct mm_struct *mm)
216  {
217  	unsigned long flags;
218  	unsigned int cpu;
219  	u64 asid, old_active_asid;
220  
221  	if (system_supports_cnp())
222  		cpu_set_reserved_ttbr0();
223  
224  	asid = atomic64_read(&mm->context.id);
225  
226  	/*
227  	 * The memory ordering here is subtle.
228  	 * If our active_asids is non-zero and the ASID matches the current
229  	 * generation, then we update the active_asids entry with a relaxed
230  	 * cmpxchg. Racing with a concurrent rollover means that either:
231  	 *
232  	 * - We get a zero back from the cmpxchg and end up waiting on the
233  	 *   lock. Taking the lock synchronises with the rollover and so
234  	 *   we are forced to see the updated generation.
235  	 *
236  	 * - We get a valid ASID back from the cmpxchg, which means the
237  	 *   relaxed xchg in flush_context will treat us as reserved
238  	 *   because atomic RmWs are totally ordered for a given location.
239  	 */
240  	old_active_asid = atomic64_read(this_cpu_ptr(&active_asids));
241  	if (old_active_asid && asid_gen_match(asid) &&
242  	    atomic64_cmpxchg_relaxed(this_cpu_ptr(&active_asids),
243  				     old_active_asid, asid))
244  		goto switch_mm_fastpath;
245  
246  	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
247  	/* Check that our ASID belongs to the current generation. */
248  	asid = atomic64_read(&mm->context.id);
249  	if (!asid_gen_match(asid)) {
250  		asid = new_context(mm);
251  		atomic64_set(&mm->context.id, asid);
252  	}
253  
254  	cpu = smp_processor_id();
255  	if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
256  		local_flush_tlb_all();
257  
258  	atomic64_set(this_cpu_ptr(&active_asids), asid);
259  	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
260  
261  switch_mm_fastpath:
262  
263  	arm64_apply_bp_hardening();
264  
265  	/*
266  	 * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
267  	 * emulating PAN.
268  	 */
269  	if (!system_uses_ttbr0_pan())
270  		cpu_switch_mm(mm->pgd, mm);
271  }
272  
arm64_mm_context_get(struct mm_struct * mm)273  unsigned long arm64_mm_context_get(struct mm_struct *mm)
274  {
275  	unsigned long flags;
276  	u64 asid;
277  
278  	if (!pinned_asid_map)
279  		return 0;
280  
281  	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
282  
283  	asid = atomic64_read(&mm->context.id);
284  
285  	if (refcount_inc_not_zero(&mm->context.pinned))
286  		goto out_unlock;
287  
288  	if (nr_pinned_asids >= max_pinned_asids) {
289  		asid = 0;
290  		goto out_unlock;
291  	}
292  
293  	if (!asid_gen_match(asid)) {
294  		/*
295  		 * We went through one or more rollover since that ASID was
296  		 * used. Ensure that it is still valid, or generate a new one.
297  		 */
298  		asid = new_context(mm);
299  		atomic64_set(&mm->context.id, asid);
300  	}
301  
302  	nr_pinned_asids++;
303  	__set_bit(ctxid2asid(asid), pinned_asid_map);
304  	refcount_set(&mm->context.pinned, 1);
305  
306  out_unlock:
307  	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
308  
309  	asid = ctxid2asid(asid);
310  
311  	/* Set the equivalent of USER_ASID_BIT */
312  	if (asid && arm64_kernel_unmapped_at_el0())
313  		asid |= 1;
314  
315  	return asid;
316  }
317  EXPORT_SYMBOL_GPL(arm64_mm_context_get);
318  
arm64_mm_context_put(struct mm_struct * mm)319  void arm64_mm_context_put(struct mm_struct *mm)
320  {
321  	unsigned long flags;
322  	u64 asid = atomic64_read(&mm->context.id);
323  
324  	if (!pinned_asid_map)
325  		return;
326  
327  	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
328  
329  	if (refcount_dec_and_test(&mm->context.pinned)) {
330  		__clear_bit(ctxid2asid(asid), pinned_asid_map);
331  		nr_pinned_asids--;
332  	}
333  
334  	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
335  }
336  EXPORT_SYMBOL_GPL(arm64_mm_context_put);
337  
338  /* Errata workaround post TTBRx_EL1 update. */
post_ttbr_update_workaround(void)339  asmlinkage void post_ttbr_update_workaround(void)
340  {
341  	if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456))
342  		return;
343  
344  	asm(ALTERNATIVE("nop; nop; nop",
345  			"ic iallu; dsb nsh; isb",
346  			ARM64_WORKAROUND_CAVIUM_27456));
347  }
348  
cpu_do_switch_mm(phys_addr_t pgd_phys,struct mm_struct * mm)349  void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm)
350  {
351  	unsigned long ttbr1 = read_sysreg(ttbr1_el1);
352  	unsigned long asid = ASID(mm);
353  	unsigned long ttbr0 = phys_to_ttbr(pgd_phys);
354  
355  	/* Skip CNP for the reserved ASID */
356  	if (system_supports_cnp() && asid)
357  		ttbr0 |= TTBR_CNP_BIT;
358  
359  	/* SW PAN needs a copy of the ASID in TTBR0 for entry */
360  	if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN))
361  		ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid);
362  
363  	/* Set ASID in TTBR1 since TCR.A1 is set */
364  	ttbr1 &= ~TTBR_ASID_MASK;
365  	ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid);
366  
367  	cpu_set_reserved_ttbr0_nosync();
368  	write_sysreg(ttbr1, ttbr1_el1);
369  	write_sysreg(ttbr0, ttbr0_el1);
370  	isb();
371  	post_ttbr_update_workaround();
372  }
373  
asids_update_limit(void)374  static int asids_update_limit(void)
375  {
376  	unsigned long num_available_asids = NUM_USER_ASIDS;
377  
378  	if (arm64_kernel_unmapped_at_el0()) {
379  		num_available_asids /= 2;
380  		if (pinned_asid_map)
381  			set_kpti_asid_bits(pinned_asid_map);
382  	}
383  	/*
384  	 * Expect allocation after rollover to fail if we don't have at least
385  	 * one more ASID than CPUs. ASID #0 is reserved for init_mm.
386  	 */
387  	WARN_ON(num_available_asids - 1 <= num_possible_cpus());
388  	pr_info("ASID allocator initialised with %lu entries\n",
389  		num_available_asids);
390  
391  	/*
392  	 * There must always be an ASID available after rollover. Ensure that,
393  	 * even if all CPUs have a reserved ASID and the maximum number of ASIDs
394  	 * are pinned, there still is at least one empty slot in the ASID map.
395  	 */
396  	max_pinned_asids = num_available_asids - num_possible_cpus() - 2;
397  	return 0;
398  }
399  arch_initcall(asids_update_limit);
400  
asids_init(void)401  static int asids_init(void)
402  {
403  	asid_bits = get_cpu_asid_bits();
404  	atomic64_set(&asid_generation, ASID_FIRST_VERSION);
405  	asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
406  	if (!asid_map)
407  		panic("Failed to allocate bitmap for %lu ASIDs\n",
408  		      NUM_USER_ASIDS);
409  
410  	pinned_asid_map = bitmap_zalloc(NUM_USER_ASIDS, GFP_KERNEL);
411  	nr_pinned_asids = 0;
412  
413  	/*
414  	 * We cannot call set_reserved_asid_bits() here because CPU
415  	 * caps are not finalized yet, so it is safer to assume KPTI
416  	 * and reserve kernel ASID's from beginning.
417  	 */
418  	if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0))
419  		set_kpti_asid_bits(asid_map);
420  	return 0;
421  }
422  early_initcall(asids_init);
423