1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20 
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24 
25 #ifdef CONFIG_ACPI
acpi_cpu_is_threaded(int cpu)26 static bool __init acpi_cpu_is_threaded(int cpu)
27 {
28 	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
29 
30 	/*
31 	 * if the PPTT doesn't have thread information, assume a homogeneous
32 	 * machine and return the current CPU's thread state.
33 	 */
34 	if (is_threaded < 0)
35 		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
36 
37 	return !!is_threaded;
38 }
39 
40 /*
41  * Propagate the topology information of the processor_topology_node tree to the
42  * cpu_topology array.
43  */
parse_acpi_topology(void)44 int __init parse_acpi_topology(void)
45 {
46 	int cpu, topology_id;
47 
48 	if (acpi_disabled)
49 		return 0;
50 
51 	for_each_possible_cpu(cpu) {
52 		topology_id = find_acpi_cpu_topology(cpu, 0);
53 		if (topology_id < 0)
54 			return topology_id;
55 
56 		if (acpi_cpu_is_threaded(cpu)) {
57 			cpu_topology[cpu].thread_id = topology_id;
58 			topology_id = find_acpi_cpu_topology(cpu, 1);
59 			cpu_topology[cpu].core_id   = topology_id;
60 		} else {
61 			cpu_topology[cpu].thread_id  = -1;
62 			cpu_topology[cpu].core_id    = topology_id;
63 		}
64 		topology_id = find_acpi_cpu_topology_cluster(cpu);
65 		cpu_topology[cpu].cluster_id = topology_id;
66 		topology_id = find_acpi_cpu_topology_package(cpu);
67 		cpu_topology[cpu].package_id = topology_id;
68 	}
69 
70 	return 0;
71 }
72 #endif
73 
74 #ifdef CONFIG_ARM64_AMU_EXTN
75 #define read_corecnt()	read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
76 #define read_constcnt()	read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
77 #else
78 #define read_corecnt()	(0UL)
79 #define read_constcnt()	(0UL)
80 #endif
81 
82 #undef pr_fmt
83 #define pr_fmt(fmt) "AMU: " fmt
84 
85 /*
86  * Ensure that amu_scale_freq_tick() will return SCHED_CAPACITY_SCALE until
87  * the CPU capacity and its associated frequency have been correctly
88  * initialized.
89  */
90 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale) =  1UL << (2 * SCHED_CAPACITY_SHIFT);
91 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
92 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
93 static cpumask_var_t amu_fie_cpus;
94 
update_freq_counters_refs(void)95 void update_freq_counters_refs(void)
96 {
97 	this_cpu_write(arch_core_cycles_prev, read_corecnt());
98 	this_cpu_write(arch_const_cycles_prev, read_constcnt());
99 }
100 
freq_counters_valid(int cpu)101 static inline bool freq_counters_valid(int cpu)
102 {
103 	if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
104 		return false;
105 
106 	if (!cpu_has_amu_feat(cpu)) {
107 		pr_debug("CPU%d: counters are not supported.\n", cpu);
108 		return false;
109 	}
110 
111 	if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
112 		     !per_cpu(arch_core_cycles_prev, cpu))) {
113 		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
114 		return false;
115 	}
116 
117 	return true;
118 }
119 
freq_inv_set_max_ratio(int cpu,u64 max_rate)120 void freq_inv_set_max_ratio(int cpu, u64 max_rate)
121 {
122 	u64 ratio, ref_rate = arch_timer_get_rate();
123 
124 	if (unlikely(!max_rate || !ref_rate)) {
125 		WARN_ONCE(1, "CPU%d: invalid maximum or reference frequency.\n",
126 			 cpu);
127 		return;
128 	}
129 
130 	/*
131 	 * Pre-compute the fixed ratio between the frequency of the constant
132 	 * reference counter and the maximum frequency of the CPU.
133 	 *
134 	 *			    ref_rate
135 	 * arch_max_freq_scale =   ---------- * SCHED_CAPACITY_SCALE²
136 	 *			    max_rate
137 	 *
138 	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
139 	 * in order to ensure a good resolution for arch_max_freq_scale for
140 	 * very low reference frequencies (down to the KHz range which should
141 	 * be unlikely).
142 	 */
143 	ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
144 	ratio = div64_u64(ratio, max_rate);
145 	if (!ratio) {
146 		WARN_ONCE(1, "Reference frequency too low.\n");
147 		return;
148 	}
149 
150 	WRITE_ONCE(per_cpu(arch_max_freq_scale, cpu), (unsigned long)ratio);
151 }
152 
amu_scale_freq_tick(void)153 static void amu_scale_freq_tick(void)
154 {
155 	u64 prev_core_cnt, prev_const_cnt;
156 	u64 core_cnt, const_cnt, scale;
157 
158 	prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
159 	prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
160 
161 	update_freq_counters_refs();
162 
163 	const_cnt = this_cpu_read(arch_const_cycles_prev);
164 	core_cnt = this_cpu_read(arch_core_cycles_prev);
165 
166 	if (unlikely(core_cnt <= prev_core_cnt ||
167 		     const_cnt <= prev_const_cnt))
168 		return;
169 
170 	/*
171 	 *	    /\core    arch_max_freq_scale
172 	 * scale =  ------- * --------------------
173 	 *	    /\const   SCHED_CAPACITY_SCALE
174 	 *
175 	 * See validate_cpu_freq_invariance_counters() for details on
176 	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
177 	 */
178 	scale = core_cnt - prev_core_cnt;
179 	scale *= this_cpu_read(arch_max_freq_scale);
180 	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
181 			  const_cnt - prev_const_cnt);
182 
183 	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
184 	this_cpu_write(arch_freq_scale, (unsigned long)scale);
185 }
186 
187 static struct scale_freq_data amu_sfd = {
188 	.source = SCALE_FREQ_SOURCE_ARCH,
189 	.set_freq_scale = amu_scale_freq_tick,
190 };
191 
amu_fie_setup(const struct cpumask * cpus)192 static void amu_fie_setup(const struct cpumask *cpus)
193 {
194 	int cpu;
195 
196 	/* We are already set since the last insmod of cpufreq driver */
197 	if (unlikely(cpumask_subset(cpus, amu_fie_cpus)))
198 		return;
199 
200 	for_each_cpu(cpu, cpus) {
201 		if (!freq_counters_valid(cpu))
202 			return;
203 	}
204 
205 	cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus);
206 
207 	topology_set_scale_freq_source(&amu_sfd, amu_fie_cpus);
208 
209 	pr_debug("CPUs[%*pbl]: counters will be used for FIE.",
210 		 cpumask_pr_args(cpus));
211 }
212 
init_amu_fie_callback(struct notifier_block * nb,unsigned long val,void * data)213 static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val,
214 				 void *data)
215 {
216 	struct cpufreq_policy *policy = data;
217 
218 	if (val == CPUFREQ_CREATE_POLICY)
219 		amu_fie_setup(policy->related_cpus);
220 
221 	/*
222 	 * We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU
223 	 * counters don't have any dependency on cpufreq driver once we have
224 	 * initialized AMU support and enabled invariance. The AMU counters will
225 	 * keep on working just fine in the absence of the cpufreq driver, and
226 	 * for the CPUs for which there are no counters available, the last set
227 	 * value of arch_freq_scale will remain valid as that is the frequency
228 	 * those CPUs are running at.
229 	 */
230 
231 	return 0;
232 }
233 
234 static struct notifier_block init_amu_fie_notifier = {
235 	.notifier_call = init_amu_fie_callback,
236 };
237 
init_amu_fie(void)238 static int __init init_amu_fie(void)
239 {
240 	int ret;
241 
242 	if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL))
243 		return -ENOMEM;
244 
245 	ret = cpufreq_register_notifier(&init_amu_fie_notifier,
246 					CPUFREQ_POLICY_NOTIFIER);
247 	if (ret)
248 		free_cpumask_var(amu_fie_cpus);
249 
250 	return ret;
251 }
252 core_initcall(init_amu_fie);
253 
254 #ifdef CONFIG_ACPI_CPPC_LIB
255 #include <acpi/cppc_acpi.h>
256 
cpu_read_corecnt(void * val)257 static void cpu_read_corecnt(void *val)
258 {
259 	/*
260 	 * A value of 0 can be returned if the current CPU does not support AMUs
261 	 * or if the counter is disabled for this CPU. A return value of 0 at
262 	 * counter read is properly handled as an error case by the users of the
263 	 * counter.
264 	 */
265 	*(u64 *)val = read_corecnt();
266 }
267 
cpu_read_constcnt(void * val)268 static void cpu_read_constcnt(void *val)
269 {
270 	/*
271 	 * Return 0 if the current CPU is affected by erratum 2457168. A value
272 	 * of 0 is also returned if the current CPU does not support AMUs or if
273 	 * the counter is disabled. A return value of 0 at counter read is
274 	 * properly handled as an error case by the users of the counter.
275 	 */
276 	*(u64 *)val = this_cpu_has_cap(ARM64_WORKAROUND_2457168) ?
277 		      0UL : read_constcnt();
278 }
279 
280 static inline
counters_read_on_cpu(int cpu,smp_call_func_t func,u64 * val)281 int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
282 {
283 	/*
284 	 * Abort call on counterless CPU or when interrupts are
285 	 * disabled - can lead to deadlock in smp sync call.
286 	 */
287 	if (!cpu_has_amu_feat(cpu))
288 		return -EOPNOTSUPP;
289 
290 	if (WARN_ON_ONCE(irqs_disabled()))
291 		return -EPERM;
292 
293 	smp_call_function_single(cpu, func, val, 1);
294 
295 	return 0;
296 }
297 
298 /*
299  * Refer to drivers/acpi/cppc_acpi.c for the description of the functions
300  * below.
301  */
cpc_ffh_supported(void)302 bool cpc_ffh_supported(void)
303 {
304 	int cpu = get_cpu_with_amu_feat();
305 
306 	/*
307 	 * FFH is considered supported if there is at least one present CPU that
308 	 * supports AMUs. Using FFH to read core and reference counters for CPUs
309 	 * that do not support AMUs, have counters disabled or that are affected
310 	 * by errata, will result in a return value of 0.
311 	 *
312 	 * This is done to allow any enabled and valid counters to be read
313 	 * through FFH, knowing that potentially returning 0 as counter value is
314 	 * properly handled by the users of these counters.
315 	 */
316 	if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
317 		return false;
318 
319 	return true;
320 }
321 
cpc_read_ffh(int cpu,struct cpc_reg * reg,u64 * val)322 int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
323 {
324 	int ret = -EOPNOTSUPP;
325 
326 	switch ((u64)reg->address) {
327 	case 0x0:
328 		ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
329 		break;
330 	case 0x1:
331 		ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
332 		break;
333 	}
334 
335 	if (!ret) {
336 		*val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
337 				    reg->bit_offset);
338 		*val >>= reg->bit_offset;
339 	}
340 
341 	return ret;
342 }
343 
cpc_write_ffh(int cpunum,struct cpc_reg * reg,u64 val)344 int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
345 {
346 	return -EOPNOTSUPP;
347 }
348 #endif /* CONFIG_ACPI_CPPC_LIB */
349