1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   *  arch/arm/include/asm/pgtable-2level.h
4   *
5   *  Copyright (C) 1995-2002 Russell King
6   */
7  #ifndef _ASM_PGTABLE_2LEVEL_H
8  #define _ASM_PGTABLE_2LEVEL_H
9  
10  #define __PAGETABLE_PMD_FOLDED 1
11  
12  /*
13   * Hardware-wise, we have a two level page table structure, where the first
14   * level has 4096 entries, and the second level has 256 entries.  Each entry
15   * is one 32-bit word.  Most of the bits in the second level entry are used
16   * by hardware, and there aren't any "accessed" and "dirty" bits.
17   *
18   * Linux on the other hand has a three level page table structure, which can
19   * be wrapped to fit a two level page table structure easily - using the PGD
20   * and PTE only.  However, Linux also expects one "PTE" table per page, and
21   * at least a "dirty" bit.
22   *
23   * Therefore, we tweak the implementation slightly - we tell Linux that we
24   * have 2048 entries in the first level, each of which is 8 bytes (iow, two
25   * hardware pointers to the second level.)  The second level contains two
26   * hardware PTE tables arranged contiguously, preceded by Linux versions
27   * which contain the state information Linux needs.  We, therefore, end up
28   * with 512 entries in the "PTE" level.
29   *
30   * This leads to the page tables having the following layout:
31   *
32   *    pgd             pte
33   * |        |
34   * +--------+
35   * |        |       +------------+ +0
36   * +- - - - +       | Linux pt 0 |
37   * |        |       +------------+ +1024
38   * +--------+ +0    | Linux pt 1 |
39   * |        |-----> +------------+ +2048
40   * +- - - - + +4    |  h/w pt 0  |
41   * |        |-----> +------------+ +3072
42   * +--------+ +8    |  h/w pt 1  |
43   * |        |       +------------+ +4096
44   *
45   * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
46   * PTE_xxx for definitions of bits appearing in the "h/w pt".
47   *
48   * PMD_xxx definitions refer to bits in the first level page table.
49   *
50   * The "dirty" bit is emulated by only granting hardware write permission
51   * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
52   * means that a write to a clean page will cause a permission fault, and
53   * the Linux MM layer will mark the page dirty via handle_pte_fault().
54   * For the hardware to notice the permission change, the TLB entry must
55   * be flushed, and ptep_set_access_flags() does that for us.
56   *
57   * The "accessed" or "young" bit is emulated by a similar method; we only
58   * allow accesses to the page if the "young" bit is set.  Accesses to the
59   * page will cause a fault, and handle_pte_fault() will set the young bit
60   * for us as long as the page is marked present in the corresponding Linux
61   * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
62   * up to date.
63   *
64   * However, when the "young" bit is cleared, we deny access to the page
65   * by clearing the hardware PTE.  Currently Linux does not flush the TLB
66   * for us in this case, which means the TLB will retain the transation
67   * until either the TLB entry is evicted under pressure, or a context
68   * switch which changes the user space mapping occurs.
69   */
70  #define PTRS_PER_PTE		512
71  #define PTRS_PER_PMD		1
72  #define PTRS_PER_PGD		2048
73  
74  #define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
75  #define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
76  #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
77  
78  #define MAX_POSSIBLE_PHYSMEM_BITS	32
79  
80  /*
81   * PMD_SHIFT determines the size of the area a second-level page table can map
82   * PGDIR_SHIFT determines what a third-level page table entry can map
83   */
84  #define PMD_SHIFT		21
85  #define PGDIR_SHIFT		21
86  
87  #define PMD_SIZE		(1UL << PMD_SHIFT)
88  #define PMD_MASK		(~(PMD_SIZE-1))
89  #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
90  #define PGDIR_MASK		(~(PGDIR_SIZE-1))
91  
92  /*
93   * section address mask and size definitions.
94   */
95  #define SECTION_SHIFT		20
96  #define SECTION_SIZE		(1UL << SECTION_SHIFT)
97  #define SECTION_MASK		(~(SECTION_SIZE-1))
98  
99  /*
100   * ARMv6 supersection address mask and size definitions.
101   */
102  #define SUPERSECTION_SHIFT	24
103  #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
104  #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
105  
106  #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
107  
108  /*
109   * "Linux" PTE definitions.
110   *
111   * We keep two sets of PTEs - the hardware and the linux version.
112   * This allows greater flexibility in the way we map the Linux bits
113   * onto the hardware tables, and allows us to have YOUNG and DIRTY
114   * bits.
115   *
116   * The PTE table pointer refers to the hardware entries; the "Linux"
117   * entries are stored 1024 bytes below.
118   */
119  #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
120  #define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
121  #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
122  #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
123  #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
124  #define L_PTE_USER		(_AT(pteval_t, 1) << 8)
125  #define L_PTE_XN		(_AT(pteval_t, 1) << 9)
126  #define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
127  #define L_PTE_NONE		(_AT(pteval_t, 1) << 11)
128  
129  /* We borrow bit 7 to store the exclusive marker in swap PTEs. */
130  #define L_PTE_SWP_EXCLUSIVE	L_PTE_RDONLY
131  
132  /*
133   * These are the memory types, defined to be compatible with
134   * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
135   * ARMv6+ without TEX remapping, they are a table index.
136   * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
137   *
138   * MT type		Pre-ARMv6	ARMv6+ type / cacheable status
139   * UNCACHED		Uncached	Strongly ordered
140   * BUFFERABLE		Bufferable	Normal memory / non-cacheable
141   * WRITETHROUGH		Writethrough	Normal memory / write through
142   * WRITEBACK		Writeback	Normal memory / write back, read alloc
143   * MINICACHE		Minicache	N/A
144   * WRITEALLOC		Writeback	Normal memory / write back, write alloc
145   * DEV_SHARED		Uncached	Device memory (shared)
146   * DEV_NONSHARED	Uncached	Device memory (non-shared)
147   * DEV_WC		Bufferable	Normal memory / non-cacheable
148   * DEV_CACHED		Writeback	Normal memory / write back, read alloc
149   * VECTORS		Variable	Normal memory / variable
150   *
151   * All normal memory mappings have the following properties:
152   * - reads can be repeated with no side effects
153   * - repeated reads return the last value written
154   * - reads can fetch additional locations without side effects
155   * - writes can be repeated (in certain cases) with no side effects
156   * - writes can be merged before accessing the target
157   * - unaligned accesses can be supported
158   *
159   * All device mappings have the following properties:
160   * - no access speculation
161   * - no repetition (eg, on return from an exception)
162   * - number, order and size of accesses are maintained
163   * - unaligned accesses are "unpredictable"
164   */
165  #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
166  #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
167  #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
168  #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
169  #define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
170  #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
171  #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
172  #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
173  #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
174  #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
175  #define L_PTE_MT_VECTORS	(_AT(pteval_t, 0x0f) << 2)	/* 1111 */
176  #define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
177  
178  #ifndef __ASSEMBLY__
179  
180  /*
181   * The "pud_xxx()" functions here are trivial when the pmd is folded into
182   * the pud: the pud entry is never bad, always exists, and can't be set or
183   * cleared.
184   */
pud_none(pud_t pud)185  static inline int pud_none(pud_t pud)
186  {
187  	return 0;
188  }
189  
pud_bad(pud_t pud)190  static inline int pud_bad(pud_t pud)
191  {
192  	return 0;
193  }
194  
pud_present(pud_t pud)195  static inline int pud_present(pud_t pud)
196  {
197  	return 1;
198  }
199  
pud_clear(pud_t * pudp)200  static inline void pud_clear(pud_t *pudp)
201  {
202  }
203  
set_pud(pud_t * pudp,pud_t pud)204  static inline void set_pud(pud_t *pudp, pud_t pud)
205  {
206  }
207  
pmd_offset(pud_t * pud,unsigned long addr)208  static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
209  {
210  	return (pmd_t *)pud;
211  }
212  #define pmd_offset pmd_offset
213  
214  #define pmd_pfn(pmd)		(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
215  
216  #define pmd_leaf(pmd)		(pmd_val(pmd) & PMD_TYPE_SECT)
217  #define pmd_bad(pmd)		pmd_leaf(pmd)
218  #define pmd_present(pmd)	(pmd_val(pmd))
219  
220  #define copy_pmd(pmdpd,pmdps)		\
221  	do {				\
222  		pmdpd[0] = pmdps[0];	\
223  		pmdpd[1] = pmdps[1];	\
224  		flush_pmd_entry(pmdpd);	\
225  	} while (0)
226  
227  #define pmd_clear(pmdp)			\
228  	do {				\
229  		pmdp[0] = __pmd(0);	\
230  		pmdp[1] = __pmd(0);	\
231  		clean_pmd_entry(pmdp);	\
232  	} while (0)
233  
234  /* we don't need complex calculations here as the pmd is folded into the pgd */
235  #define pmd_addr_end(addr,end) (end)
236  
237  #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
238  
239  /*
240   * We don't have huge page support for short descriptors, for the moment
241   * define empty stubs for use by pin_page_for_write.
242   */
243  #define pmd_hugewillfault(pmd)	(0)
244  
245  #endif /* __ASSEMBLY__ */
246  
247  #endif /* _ASM_PGTABLE_2LEVEL_H */
248