1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
4   *
5   * Copyright (c) 1995-2000 Advanced System Products, Inc.
6   * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7   * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8   * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
9   * All Rights Reserved.
10   */
11  
12  /*
13   * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14   * changed its name to ConnectCom Solutions, Inc.
15   * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
16   */
17  
18  #include <linux/module.h>
19  #include <linux/string.h>
20  #include <linux/kernel.h>
21  #include <linux/types.h>
22  #include <linux/ioport.h>
23  #include <linux/interrupt.h>
24  #include <linux/delay.h>
25  #include <linux/slab.h>
26  #include <linux/mm.h>
27  #include <linux/proc_fs.h>
28  #include <linux/init.h>
29  #include <linux/blkdev.h>
30  #include <linux/isa.h>
31  #include <linux/eisa.h>
32  #include <linux/pci.h>
33  #include <linux/spinlock.h>
34  #include <linux/dma-mapping.h>
35  #include <linux/firmware.h>
36  #include <linux/dmapool.h>
37  
38  #include <asm/io.h>
39  #include <asm/dma.h>
40  
41  #include <scsi/scsi_cmnd.h>
42  #include <scsi/scsi_device.h>
43  #include <scsi/scsi_tcq.h>
44  #include <scsi/scsi.h>
45  #include <scsi/scsi_host.h>
46  
47  #define DRV_NAME "advansys"
48  #define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
49  
50  /* FIXME:
51   *
52   *  1. Use scsi_transport_spi
53   *  2. advansys_info is not safe against multiple simultaneous callers
54   *  3. Add module_param to override ISA/VLB ioport array
55   */
56  
57  /* Enable driver /proc statistics. */
58  #define ADVANSYS_STATS
59  
60  /* Enable driver tracing. */
61  #undef ADVANSYS_DEBUG
62  
63  typedef unsigned char uchar;
64  
65  #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
66  
67  #define PCI_VENDOR_ID_ASP		0x10cd
68  #define PCI_DEVICE_ID_ASP_1200A		0x1100
69  #define PCI_DEVICE_ID_ASP_ABP940	0x1200
70  #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
71  #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
72  #define PCI_DEVICE_ID_38C0800_REV1	0x2500
73  #define PCI_DEVICE_ID_38C1600_REV1	0x2700
74  
75  #define PortAddr                 unsigned int	/* port address size  */
76  #define inp(port)                inb(port)
77  #define outp(port, byte)         outb((byte), (port))
78  
79  #define inpw(port)               inw(port)
80  #define outpw(port, word)        outw((word), (port))
81  
82  #define ASC_MAX_SG_QUEUE    7
83  #define ASC_MAX_SG_LIST     255
84  
85  #define ASC_CS_TYPE  unsigned short
86  
87  #define ASC_IS_EISA         (0x0002)
88  #define ASC_IS_PCI          (0x0004)
89  #define ASC_IS_PCI_ULTRA    (0x0104)
90  #define ASC_IS_PCMCIA       (0x0008)
91  #define ASC_IS_MCA          (0x0020)
92  #define ASC_IS_VL           (0x0040)
93  #define ASC_IS_WIDESCSI_16  (0x0100)
94  #define ASC_IS_WIDESCSI_32  (0x0200)
95  #define ASC_IS_BIG_ENDIAN   (0x8000)
96  
97  #define ASC_CHIP_MIN_VER_VL      (0x01)
98  #define ASC_CHIP_MAX_VER_VL      (0x07)
99  #define ASC_CHIP_MIN_VER_PCI     (0x09)
100  #define ASC_CHIP_MAX_VER_PCI     (0x0F)
101  #define ASC_CHIP_VER_PCI_BIT     (0x08)
102  #define ASC_CHIP_VER_ASYN_BUG    (0x21)
103  #define ASC_CHIP_VER_PCI             0x08
104  #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
105  #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
106  #define ASC_CHIP_MIN_VER_EISA (0x41)
107  #define ASC_CHIP_MAX_VER_EISA (0x47)
108  #define ASC_CHIP_VER_EISA_BIT (0x40)
109  #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
110  #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
111  #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
112  
113  #define ASC_SCSI_ID_BITS  3
114  #define ASC_SCSI_TIX_TYPE     uchar
115  #define ASC_ALL_DEVICE_BIT_SET  0xFF
116  #define ASC_SCSI_BIT_ID_TYPE  uchar
117  #define ASC_MAX_TID       7
118  #define ASC_MAX_LUN       7
119  #define ASC_SCSI_WIDTH_BIT_SET  0xFF
120  #define ASC_MAX_SENSE_LEN   32
121  #define ASC_MIN_SENSE_LEN   14
122  #define ASC_SCSI_RESET_HOLD_TIME_US  60
123  
124  /*
125   * Narrow boards only support 12-byte commands, while wide boards
126   * extend to 16-byte commands.
127   */
128  #define ASC_MAX_CDB_LEN     12
129  #define ADV_MAX_CDB_LEN     16
130  
131  #define MS_SDTR_LEN    0x03
132  #define MS_WDTR_LEN    0x02
133  
134  #define ASC_SG_LIST_PER_Q   7
135  #define QS_FREE        0x00
136  #define QS_READY       0x01
137  #define QS_DISC1       0x02
138  #define QS_DISC2       0x04
139  #define QS_BUSY        0x08
140  #define QS_ABORTED     0x40
141  #define QS_DONE        0x80
142  #define QC_NO_CALLBACK   0x01
143  #define QC_SG_SWAP_QUEUE 0x02
144  #define QC_SG_HEAD       0x04
145  #define QC_DATA_IN       0x08
146  #define QC_DATA_OUT      0x10
147  #define QC_URGENT        0x20
148  #define QC_MSG_OUT       0x40
149  #define QC_REQ_SENSE     0x80
150  #define QCSG_SG_XFER_LIST  0x02
151  #define QCSG_SG_XFER_MORE  0x04
152  #define QCSG_SG_XFER_END   0x08
153  #define QD_IN_PROGRESS       0x00
154  #define QD_NO_ERROR          0x01
155  #define QD_ABORTED_BY_HOST   0x02
156  #define QD_WITH_ERROR        0x04
157  #define QD_INVALID_REQUEST   0x80
158  #define QD_INVALID_HOST_NUM  0x81
159  #define QD_INVALID_DEVICE    0x82
160  #define QD_ERR_INTERNAL      0xFF
161  #define QHSTA_NO_ERROR               0x00
162  #define QHSTA_M_SEL_TIMEOUT          0x11
163  #define QHSTA_M_DATA_OVER_RUN        0x12
164  #define QHSTA_M_DATA_UNDER_RUN       0x12
165  #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
166  #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
167  #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
168  #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
169  #define QHSTA_D_HOST_ABORT_FAILED       0x23
170  #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
171  #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
172  #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
173  #define QHSTA_M_WTM_TIMEOUT         0x41
174  #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
175  #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
176  #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
177  #define QHSTA_M_TARGET_STATUS_BUSY  0x45
178  #define QHSTA_M_BAD_TAG_CODE        0x46
179  #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
180  #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
181  #define QHSTA_D_LRAM_CMP_ERROR        0x81
182  #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
183  #define ASC_FLAG_SCSIQ_REQ        0x01
184  #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
185  #define ASC_FLAG_BIOS_ASYNC_IO    0x04
186  #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
187  #define ASC_FLAG_WIN16            0x10
188  #define ASC_FLAG_WIN32            0x20
189  #define ASC_FLAG_DOS_VM_CALLBACK  0x80
190  #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
191  #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
192  #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
193  #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
194  #define ASC_SCSIQ_CPY_BEG              4
195  #define ASC_SCSIQ_SGHD_CPY_BEG         2
196  #define ASC_SCSIQ_B_FWD                0
197  #define ASC_SCSIQ_B_BWD                1
198  #define ASC_SCSIQ_B_STATUS             2
199  #define ASC_SCSIQ_B_QNO                3
200  #define ASC_SCSIQ_B_CNTL               4
201  #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
202  #define ASC_SCSIQ_D_DATA_ADDR          8
203  #define ASC_SCSIQ_D_DATA_CNT          12
204  #define ASC_SCSIQ_B_SENSE_LEN         20
205  #define ASC_SCSIQ_DONE_INFO_BEG       22
206  #define ASC_SCSIQ_D_SRBPTR            22
207  #define ASC_SCSIQ_B_TARGET_IX         26
208  #define ASC_SCSIQ_B_CDB_LEN           28
209  #define ASC_SCSIQ_B_TAG_CODE          29
210  #define ASC_SCSIQ_W_VM_ID             30
211  #define ASC_SCSIQ_DONE_STATUS         32
212  #define ASC_SCSIQ_HOST_STATUS         33
213  #define ASC_SCSIQ_SCSI_STATUS         34
214  #define ASC_SCSIQ_CDB_BEG             36
215  #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
216  #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
217  #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
218  #define ASC_SCSIQ_B_SG_WK_QP          49
219  #define ASC_SCSIQ_B_SG_WK_IX          50
220  #define ASC_SCSIQ_W_ALT_DC1           52
221  #define ASC_SCSIQ_B_LIST_CNT          6
222  #define ASC_SCSIQ_B_CUR_LIST_CNT      7
223  #define ASC_SGQ_B_SG_CNTL             4
224  #define ASC_SGQ_B_SG_HEAD_QP          5
225  #define ASC_SGQ_B_SG_LIST_CNT         6
226  #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
227  #define ASC_SGQ_LIST_BEG              8
228  #define ASC_DEF_SCSI1_QNG    4
229  #define ASC_MAX_SCSI1_QNG    4
230  #define ASC_DEF_SCSI2_QNG    16
231  #define ASC_MAX_SCSI2_QNG    32
232  #define ASC_TAG_CODE_MASK    0x23
233  #define ASC_STOP_REQ_RISC_STOP      0x01
234  #define ASC_STOP_ACK_RISC_STOP      0x03
235  #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
236  #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
237  #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
238  #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
239  #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
240  #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
241  #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
242  #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
243  #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
244  #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
245  
246  typedef struct asc_scsiq_1 {
247  	uchar status;
248  	uchar q_no;
249  	uchar cntl;
250  	uchar sg_queue_cnt;
251  	uchar target_id;
252  	uchar target_lun;
253  	__le32 data_addr;
254  	__le32 data_cnt;
255  	__le32 sense_addr;
256  	uchar sense_len;
257  	uchar extra_bytes;
258  } ASC_SCSIQ_1;
259  
260  typedef struct asc_scsiq_2 {
261  	u32 srb_tag;
262  	uchar target_ix;
263  	uchar flag;
264  	uchar cdb_len;
265  	uchar tag_code;
266  	ushort vm_id;
267  } ASC_SCSIQ_2;
268  
269  typedef struct asc_scsiq_3 {
270  	uchar done_stat;
271  	uchar host_stat;
272  	uchar scsi_stat;
273  	uchar scsi_msg;
274  } ASC_SCSIQ_3;
275  
276  typedef struct asc_scsiq_4 {
277  	uchar cdb[ASC_MAX_CDB_LEN];
278  	uchar y_first_sg_list_qp;
279  	uchar y_working_sg_qp;
280  	uchar y_working_sg_ix;
281  	uchar y_res;
282  	ushort x_req_count;
283  	ushort x_reconnect_rtn;
284  	__le32 x_saved_data_addr;
285  	__le32 x_saved_data_cnt;
286  } ASC_SCSIQ_4;
287  
288  typedef struct asc_q_done_info {
289  	ASC_SCSIQ_2 d2;
290  	ASC_SCSIQ_3 d3;
291  	uchar q_status;
292  	uchar q_no;
293  	uchar cntl;
294  	uchar sense_len;
295  	uchar extra_bytes;
296  	uchar res;
297  	u32 remain_bytes;
298  } ASC_QDONE_INFO;
299  
300  typedef struct asc_sg_list {
301  	__le32 addr;
302  	__le32 bytes;
303  } ASC_SG_LIST;
304  
305  typedef struct asc_sg_head {
306  	ushort entry_cnt;
307  	ushort queue_cnt;
308  	ushort entry_to_copy;
309  	ushort res;
310  	ASC_SG_LIST sg_list[];
311  } ASC_SG_HEAD;
312  
313  typedef struct asc_scsi_q {
314  	ASC_SCSIQ_1 q1;
315  	ASC_SCSIQ_2 q2;
316  	uchar *cdbptr;
317  	ASC_SG_HEAD *sg_head;
318  	ushort remain_sg_entry_cnt;
319  	ushort next_sg_index;
320  } ASC_SCSI_Q;
321  
322  typedef struct asc_scsi_bios_req_q {
323  	ASC_SCSIQ_1 r1;
324  	ASC_SCSIQ_2 r2;
325  	uchar *cdbptr;
326  	ASC_SG_HEAD *sg_head;
327  	uchar *sense_ptr;
328  	ASC_SCSIQ_3 r3;
329  	uchar cdb[ASC_MAX_CDB_LEN];
330  	uchar sense[ASC_MIN_SENSE_LEN];
331  } ASC_SCSI_BIOS_REQ_Q;
332  
333  typedef struct asc_risc_q {
334  	uchar fwd;
335  	uchar bwd;
336  	ASC_SCSIQ_1 i1;
337  	ASC_SCSIQ_2 i2;
338  	ASC_SCSIQ_3 i3;
339  	ASC_SCSIQ_4 i4;
340  } ASC_RISC_Q;
341  
342  typedef struct asc_sg_list_q {
343  	uchar seq_no;
344  	uchar q_no;
345  	uchar cntl;
346  	uchar sg_head_qp;
347  	uchar sg_list_cnt;
348  	uchar sg_cur_list_cnt;
349  } ASC_SG_LIST_Q;
350  
351  typedef struct asc_risc_sg_list_q {
352  	uchar fwd;
353  	uchar bwd;
354  	ASC_SG_LIST_Q sg;
355  	ASC_SG_LIST sg_list[7];
356  } ASC_RISC_SG_LIST_Q;
357  
358  #define ASCQ_ERR_Q_STATUS             0x0D
359  #define ASCQ_ERR_CUR_QNG              0x17
360  #define ASCQ_ERR_SG_Q_LINKS           0x18
361  #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
362  #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
363  #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
364  
365  /*
366   * Warning code values are set in ASC_DVC_VAR  'warn_code'.
367   */
368  #define ASC_WARN_NO_ERROR             0x0000
369  #define ASC_WARN_IO_PORT_ROTATE       0x0001
370  #define ASC_WARN_EEPROM_CHKSUM        0x0002
371  #define ASC_WARN_IRQ_MODIFIED         0x0004
372  #define ASC_WARN_AUTO_CONFIG          0x0008
373  #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
374  #define ASC_WARN_EEPROM_RECOVER       0x0020
375  #define ASC_WARN_CFG_MSW_RECOVER      0x0040
376  
377  /*
378   * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
379   */
380  #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
381  #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
382  #define ASC_IERR_SET_PC_ADDR		0x0004
383  #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
384  #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
385  #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
386  #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
387  #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
388  #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
389  #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
390  #define ASC_IERR_NO_BUS_TYPE		0x0400
391  #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
392  #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
393  #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
394  
395  #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
396  #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
397  #define ASC_MIN_FREE_Q        (0x02)
398  #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
399  #define ASC_MAX_TOTAL_QNG 240
400  #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
401  #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
402  #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
403  #define ASC_MAX_INRAM_TAG_QNG   16
404  #define ASC_IOADR_GAP   0x10
405  #define ASC_SYN_MAX_OFFSET         0x0F
406  #define ASC_DEF_SDTR_OFFSET        0x0F
407  #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
408  #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
409  
410  /* The narrow chip only supports a limited selection of transfer rates.
411   * These are encoded in the range 0..7 or 0..15 depending whether the chip
412   * is Ultra-capable or not.  These tables let us convert from one to the other.
413   */
414  static const unsigned char asc_syn_xfer_period[8] = {
415  	25, 30, 35, 40, 50, 60, 70, 85
416  };
417  
418  static const unsigned char asc_syn_ultra_xfer_period[16] = {
419  	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
420  };
421  
422  typedef struct ext_msg {
423  	uchar msg_type;
424  	uchar msg_len;
425  	uchar msg_req;
426  	union {
427  		struct {
428  			uchar sdtr_xfer_period;
429  			uchar sdtr_req_ack_offset;
430  		} sdtr;
431  		struct {
432  			uchar wdtr_width;
433  		} wdtr;
434  		struct {
435  			uchar mdp_b3;
436  			uchar mdp_b2;
437  			uchar mdp_b1;
438  			uchar mdp_b0;
439  		} mdp;
440  	} u_ext_msg;
441  	uchar res;
442  } EXT_MSG;
443  
444  #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
445  #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
446  #define wdtr_width      u_ext_msg.wdtr.wdtr_width
447  #define mdp_b3          u_ext_msg.mdp_b3
448  #define mdp_b2          u_ext_msg.mdp_b2
449  #define mdp_b1          u_ext_msg.mdp_b1
450  #define mdp_b0          u_ext_msg.mdp_b0
451  
452  typedef struct asc_dvc_cfg {
453  	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
454  	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
455  	ASC_SCSI_BIT_ID_TYPE disc_enable;
456  	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
457  	uchar chip_scsi_id;
458  	uchar chip_version;
459  	ushort mcode_date;
460  	ushort mcode_version;
461  	uchar max_tag_qng[ASC_MAX_TID + 1];
462  	uchar sdtr_period_offset[ASC_MAX_TID + 1];
463  	uchar adapter_info[6];
464  } ASC_DVC_CFG;
465  
466  #define ASC_DEF_DVC_CNTL       0xFFFF
467  #define ASC_DEF_CHIP_SCSI_ID   7
468  #define ASC_DEF_ISA_DMA_SPEED  4
469  #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
470  #define ASC_INIT_STATE_END_GET_CFG   0x0002
471  #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
472  #define ASC_INIT_STATE_END_SET_CFG   0x0008
473  #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
474  #define ASC_INIT_STATE_END_LOAD_MC   0x0020
475  #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
476  #define ASC_INIT_STATE_END_INQUIRY   0x0080
477  #define ASC_INIT_RESET_SCSI_DONE     0x0100
478  #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
479  #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
480  #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
481  #define ASC_MIN_TAGGED_CMD  7
482  #define ASC_MAX_SCSI_RESET_WAIT      30
483  #define ASC_OVERRUN_BSIZE		64
484  
485  struct asc_dvc_var;		/* Forward Declaration. */
486  
487  typedef struct asc_dvc_var {
488  	PortAddr iop_base;
489  	ushort err_code;
490  	ushort dvc_cntl;
491  	ushort bug_fix_cntl;
492  	ushort bus_type;
493  	ASC_SCSI_BIT_ID_TYPE init_sdtr;
494  	ASC_SCSI_BIT_ID_TYPE sdtr_done;
495  	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
496  	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
497  	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
498  	ASC_SCSI_BIT_ID_TYPE start_motor;
499  	uchar *overrun_buf;
500  	dma_addr_t overrun_dma;
501  	uchar scsi_reset_wait;
502  	uchar chip_no;
503  	bool is_in_int;
504  	uchar max_total_qng;
505  	uchar cur_total_qng;
506  	uchar in_critical_cnt;
507  	uchar last_q_shortage;
508  	ushort init_state;
509  	uchar cur_dvc_qng[ASC_MAX_TID + 1];
510  	uchar max_dvc_qng[ASC_MAX_TID + 1];
511  	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
512  	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
513  	const uchar *sdtr_period_tbl;
514  	ASC_DVC_CFG *cfg;
515  	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
516  	char redo_scam;
517  	ushort res2;
518  	uchar dos_int13_table[ASC_MAX_TID + 1];
519  	unsigned int max_dma_count;
520  	ASC_SCSI_BIT_ID_TYPE no_scam;
521  	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
522  	uchar min_sdtr_index;
523  	uchar max_sdtr_index;
524  	struct asc_board *drv_ptr;
525  	unsigned int uc_break;
526  } ASC_DVC_VAR;
527  
528  typedef struct asc_dvc_inq_info {
529  	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
530  } ASC_DVC_INQ_INFO;
531  
532  typedef struct asc_cap_info {
533  	u32 lba;
534  	u32 blk_size;
535  } ASC_CAP_INFO;
536  
537  typedef struct asc_cap_info_array {
538  	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
539  } ASC_CAP_INFO_ARRAY;
540  
541  #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
542  #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
543  #define ASC_CNTL_INITIATOR         (ushort)0x0001
544  #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
545  #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
546  #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
547  #define ASC_CNTL_NO_SCAM           (ushort)0x0010
548  #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
549  #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
550  #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
551  #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
552  #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
553  #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
554  #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
555  #define ASC_CNTL_BURST_MODE        (ushort)0x2000
556  #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
557  #define ASC_EEP_DVC_CFG_BEG_VL    2
558  #define ASC_EEP_MAX_DVC_ADDR_VL   15
559  #define ASC_EEP_DVC_CFG_BEG      32
560  #define ASC_EEP_MAX_DVC_ADDR     45
561  #define ASC_EEP_MAX_RETRY        20
562  
563  /*
564   * These macros keep the chip SCSI id  bitfields in board order. C bitfields
565   * aren't portable between big and little-endian platforms so they are not used.
566   */
567  
568  #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
569  #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
570  #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
571     ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
572  #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
573     ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
574  
575  typedef struct asceep_config {
576  	ushort cfg_lsw;
577  	ushort cfg_msw;
578  	uchar init_sdtr;
579  	uchar disc_enable;
580  	uchar use_cmd_qng;
581  	uchar start_motor;
582  	uchar max_total_qng;
583  	uchar max_tag_qng;
584  	uchar bios_scan;
585  	uchar power_up_wait;
586  	uchar no_scam;
587  	uchar id_speed;		/* low order 4 bits is chip scsi id */
588  	/* high order 4 bits is isa dma speed */
589  	uchar dos_int13_table[ASC_MAX_TID + 1];
590  	uchar adapter_info[6];
591  	ushort cntl;
592  	ushort chksum;
593  } ASCEEP_CONFIG;
594  
595  #define ASC_EEP_CMD_READ          0x80
596  #define ASC_EEP_CMD_WRITE         0x40
597  #define ASC_EEP_CMD_WRITE_ABLE    0x30
598  #define ASC_EEP_CMD_WRITE_DISABLE 0x00
599  #define ASCV_MSGOUT_BEG         0x0000
600  #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
601  #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
602  #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
603  #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
604  #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
605  #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
606  #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
607  #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
608  #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
609  #define ASCV_BREAK_ADDR           (ushort)0x0028
610  #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
611  #define ASCV_BREAK_CONTROL        (ushort)0x002C
612  #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
613  
614  #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
615  #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
616  #define ASCV_MCODE_SIZE_W     (ushort)0x0034
617  #define ASCV_STOP_CODE_B      (ushort)0x0036
618  #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
619  #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
620  #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
621  #define ASCV_HALTCODE_W       (ushort)0x0040
622  #define ASCV_CHKSUM_W         (ushort)0x0042
623  #define ASCV_MC_DATE_W        (ushort)0x0044
624  #define ASCV_MC_VER_W         (ushort)0x0046
625  #define ASCV_NEXTRDY_B        (ushort)0x0048
626  #define ASCV_DONENEXT_B       (ushort)0x0049
627  #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
628  #define ASCV_SCSIBUSY_B       (ushort)0x004B
629  #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
630  #define ASCV_CURCDB_B         (ushort)0x004D
631  #define ASCV_RCLUN_B          (ushort)0x004E
632  #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
633  #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
634  #define ASCV_DISC_ENABLE_B    (ushort)0x0052
635  #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
636  #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
637  #define ASCV_MCODE_CNTL_B     (ushort)0x0056
638  #define ASCV_NULL_TARGET_B    (ushort)0x0057
639  #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
640  #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
641  #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
642  #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
643  #define ASCV_HOST_FLAG_B      (ushort)0x005D
644  #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
645  #define ASCV_VER_SERIAL_B     (ushort)0x0065
646  #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
647  #define ASCV_WTM_FLAG_B       (ushort)0x0068
648  #define ASCV_RISC_FLAG_B      (ushort)0x006A
649  #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
650  #define ASC_HOST_FLAG_IN_ISR        0x01
651  #define ASC_HOST_FLAG_ACK_INT       0x02
652  #define ASC_RISC_FLAG_GEN_INT      0x01
653  #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
654  #define IOP_CTRL         (0x0F)
655  #define IOP_STATUS       (0x0E)
656  #define IOP_INT_ACK      IOP_STATUS
657  #define IOP_REG_IFC      (0x0D)
658  #define IOP_SYN_OFFSET    (0x0B)
659  #define IOP_EXTRA_CONTROL (0x0D)
660  #define IOP_REG_PC        (0x0C)
661  #define IOP_RAM_ADDR      (0x0A)
662  #define IOP_RAM_DATA      (0x08)
663  #define IOP_EEP_DATA      (0x06)
664  #define IOP_EEP_CMD       (0x07)
665  #define IOP_VERSION       (0x03)
666  #define IOP_CONFIG_HIGH   (0x04)
667  #define IOP_CONFIG_LOW    (0x02)
668  #define IOP_SIG_BYTE      (0x01)
669  #define IOP_SIG_WORD      (0x00)
670  #define IOP_REG_DC1      (0x0E)
671  #define IOP_REG_DC0      (0x0C)
672  #define IOP_REG_SB       (0x0B)
673  #define IOP_REG_DA1      (0x0A)
674  #define IOP_REG_DA0      (0x08)
675  #define IOP_REG_SC       (0x09)
676  #define IOP_DMA_SPEED    (0x07)
677  #define IOP_REG_FLAG     (0x07)
678  #define IOP_FIFO_H       (0x06)
679  #define IOP_FIFO_L       (0x04)
680  #define IOP_REG_ID       (0x05)
681  #define IOP_REG_QP       (0x03)
682  #define IOP_REG_IH       (0x02)
683  #define IOP_REG_IX       (0x01)
684  #define IOP_REG_AX       (0x00)
685  #define IFC_REG_LOCK      (0x00)
686  #define IFC_REG_UNLOCK    (0x09)
687  #define IFC_WR_EN_FILTER  (0x10)
688  #define IFC_RD_NO_EEPROM  (0x10)
689  #define IFC_SLEW_RATE     (0x20)
690  #define IFC_ACT_NEG       (0x40)
691  #define IFC_INP_FILTER    (0x80)
692  #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
693  #define SC_SEL   (uchar)(0x80)
694  #define SC_BSY   (uchar)(0x40)
695  #define SC_ACK   (uchar)(0x20)
696  #define SC_REQ   (uchar)(0x10)
697  #define SC_ATN   (uchar)(0x08)
698  #define SC_IO    (uchar)(0x04)
699  #define SC_CD    (uchar)(0x02)
700  #define SC_MSG   (uchar)(0x01)
701  #define SEC_SCSI_CTL         (uchar)(0x80)
702  #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
703  #define SEC_SLEW_RATE        (uchar)(0x20)
704  #define SEC_ENABLE_FILTER    (uchar)(0x10)
705  #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
706  #define ASC_HALT_CHK_CONDITION (ushort)0x8100
707  #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
708  #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
709  #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
710  #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
711  #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
712  #define ASC_MAX_QNO        0xF8
713  #define ASC_DATA_SEC_BEG   (ushort)0x0080
714  #define ASC_DATA_SEC_END   (ushort)0x0080
715  #define ASC_CODE_SEC_BEG   (ushort)0x0080
716  #define ASC_CODE_SEC_END   (ushort)0x0080
717  #define ASC_QADR_BEG       (0x4000)
718  #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
719  #define ASC_QADR_END       (ushort)0x7FFF
720  #define ASC_QLAST_ADR      (ushort)0x7FC0
721  #define ASC_QBLK_SIZE      0x40
722  #define ASC_BIOS_DATA_QBEG 0xF8
723  #define ASC_MIN_ACTIVE_QNO 0x01
724  #define ASC_QLINK_END      0xFF
725  #define ASC_EEPROM_WORDS   0x10
726  #define ASC_MAX_MGS_LEN    0x10
727  #define ASC_BIOS_ADDR_DEF  0xDC00
728  #define ASC_BIOS_SIZE      0x3800
729  #define ASC_BIOS_RAM_OFF   0x3800
730  #define ASC_BIOS_RAM_SIZE  0x800
731  #define ASC_BIOS_MIN_ADDR  0xC000
732  #define ASC_BIOS_MAX_ADDR  0xEC00
733  #define ASC_BIOS_BANK_SIZE 0x0400
734  #define ASC_MCODE_START_ADDR  0x0080
735  #define ASC_CFG0_HOST_INT_ON    0x0020
736  #define ASC_CFG0_BIOS_ON        0x0040
737  #define ASC_CFG0_VERA_BURST_ON  0x0080
738  #define ASC_CFG0_SCSI_PARITY_ON 0x0800
739  #define ASC_CFG1_SCSI_TARGET_ON 0x0080
740  #define ASC_CFG1_LRAM_8BITS_ON  0x0800
741  #define ASC_CFG_MSW_CLR_MASK    0x3080
742  #define CSW_TEST1             (ASC_CS_TYPE)0x8000
743  #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
744  #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
745  #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
746  #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
747  #define CSW_TEST2             (ASC_CS_TYPE)0x0400
748  #define CSW_TEST3             (ASC_CS_TYPE)0x0200
749  #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
750  #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
751  #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
752  #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
753  #define CSW_HALTED            (ASC_CS_TYPE)0x0010
754  #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
755  #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
756  #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
757  #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
758  #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
759  #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
760  #define CIW_TEST1        (ASC_CS_TYPE)0x0200
761  #define CIW_TEST2        (ASC_CS_TYPE)0x0400
762  #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
763  #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
764  #define CC_CHIP_RESET   (uchar)0x80
765  #define CC_SCSI_RESET   (uchar)0x40
766  #define CC_HALT         (uchar)0x20
767  #define CC_SINGLE_STEP  (uchar)0x10
768  #define CC_DMA_ABLE     (uchar)0x08
769  #define CC_TEST         (uchar)0x04
770  #define CC_BANK_ONE     (uchar)0x02
771  #define CC_DIAG         (uchar)0x01
772  #define ASC_1000_ID0W      0x04C1
773  #define ASC_1000_ID0W_FIX  0x00C1
774  #define ASC_1000_ID1B      0x25
775  #define ASC_EISA_REV_IOP_MASK  (0x0C83)
776  #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
777  #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
778  #define INS_HALTINT        (ushort)0x6281
779  #define INS_HALT           (ushort)0x6280
780  #define INS_SINT           (ushort)0x6200
781  #define INS_RFLAG_WTM      (ushort)0x7380
782  #define ASC_MC_SAVE_CODE_WSIZE  0x500
783  #define ASC_MC_SAVE_DATA_WSIZE  0x40
784  
785  typedef struct asc_mc_saved {
786  	ushort data[ASC_MC_SAVE_DATA_WSIZE];
787  	ushort code[ASC_MC_SAVE_CODE_WSIZE];
788  } ASC_MC_SAVED;
789  
790  #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
791  #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
792  #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
793  #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
794  #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
795  #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
796  #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
797  #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
798  #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
799  #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
800  #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
801  #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
802  #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
803  #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
804  #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
805  #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
806  #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
807  #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
808  #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
809  #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
810  #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
811  #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
812  #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
813  #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
814  #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
815  #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
816  #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
817  #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
818  #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
819  #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
820  #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
821  #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
822  #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
823  #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
824  #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
825  #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
826  #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
827  #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
828  #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
829  #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
830  #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
831  #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
832  #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
833  #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
834  #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
835  #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
836  #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
837  #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
838  #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
839  #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
840  #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
841  #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
842  #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
843  #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
844  #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
845  #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
846  #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
847  #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
848  #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
849  #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
850  #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
851  #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
852  #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
853  #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
854  #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
855  #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
856  #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
857  
858  #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
859  
860  /*
861   * Define Adv Library required memory access macros.
862   */
863  #define ADV_MEM_READB(addr) readb(addr)
864  #define ADV_MEM_READW(addr) readw(addr)
865  #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
866  #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
867  #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
868  
869  /*
870   * Define total number of simultaneous maximum element scatter-gather
871   * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
872   * maximum number of outstanding commands per wide host adapter. Each
873   * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
874   * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
875   * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
876   * structures or 255 scatter-gather elements.
877   */
878  #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
879  
880  /*
881   * Define maximum number of scatter-gather elements per request.
882   */
883  #define ADV_MAX_SG_LIST         255
884  #define NO_OF_SG_PER_BLOCK              15
885  
886  #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
887  #define ADV_EEP_DVC_CFG_END             (0x15)
888  #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
889  #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
890  
891  #define ADV_EEP_DELAY_MS                100
892  
893  #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
894  #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
895  /*
896   * For the ASC3550 Bit 13 is Termination Polarity control bit.
897   * For later ICs Bit 13 controls whether the CIS (Card Information
898   * Service Section) is loaded from EEPROM.
899   */
900  #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
901  #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
902  /*
903   * ASC38C1600 Bit 11
904   *
905   * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
906   * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
907   * Function 0 will specify INT B.
908   *
909   * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
910   * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
911   * Function 1 will specify INT A.
912   */
913  #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
914  
915  typedef struct adveep_3550_config {
916  	/* Word Offset, Description */
917  
918  	ushort cfg_lsw;		/* 00 power up initialization */
919  	/*  bit 13 set - Term Polarity Control */
920  	/*  bit 14 set - BIOS Enable */
921  	/*  bit 15 set - Big Endian Mode */
922  	ushort cfg_msw;		/* 01 unused      */
923  	ushort disc_enable;	/* 02 disconnect enable */
924  	ushort wdtr_able;	/* 03 Wide DTR able */
925  	ushort sdtr_able;	/* 04 Synchronous DTR able */
926  	ushort start_motor;	/* 05 send start up motor */
927  	ushort tagqng_able;	/* 06 tag queuing able */
928  	ushort bios_scan;	/* 07 BIOS device control */
929  	ushort scam_tolerant;	/* 08 no scam */
930  
931  	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
932  	uchar bios_boot_delay;	/*    power up wait */
933  
934  	uchar scsi_reset_delay;	/* 10 reset delay */
935  	uchar bios_id_lun;	/*    first boot device scsi id & lun */
936  	/*    high nibble is lun */
937  	/*    low nibble is scsi id */
938  
939  	uchar termination;	/* 11 0 - automatic */
940  	/*    1 - low off / high off */
941  	/*    2 - low off / high on */
942  	/*    3 - low on  / high on */
943  	/*    There is no low on  / high off */
944  
945  	uchar reserved1;	/*    reserved byte (not used) */
946  
947  	ushort bios_ctrl;	/* 12 BIOS control bits */
948  	/*  bit 0  BIOS don't act as initiator. */
949  	/*  bit 1  BIOS > 1 GB support */
950  	/*  bit 2  BIOS > 2 Disk Support */
951  	/*  bit 3  BIOS don't support removables */
952  	/*  bit 4  BIOS support bootable CD */
953  	/*  bit 5  BIOS scan enabled */
954  	/*  bit 6  BIOS support multiple LUNs */
955  	/*  bit 7  BIOS display of message */
956  	/*  bit 8  SCAM disabled */
957  	/*  bit 9  Reset SCSI bus during init. */
958  	/*  bit 10 */
959  	/*  bit 11 No verbose initialization. */
960  	/*  bit 12 SCSI parity enabled */
961  	/*  bit 13 */
962  	/*  bit 14 */
963  	/*  bit 15 */
964  	ushort ultra_able;	/* 13 ULTRA speed able */
965  	ushort reserved2;	/* 14 reserved */
966  	uchar max_host_qng;	/* 15 maximum host queuing */
967  	uchar max_dvc_qng;	/*    maximum per device queuing */
968  	ushort dvc_cntl;	/* 16 control bit for driver */
969  	ushort bug_fix;		/* 17 control bit for bug fix */
970  	ushort serial_number_word1;	/* 18 Board serial number word 1 */
971  	ushort serial_number_word2;	/* 19 Board serial number word 2 */
972  	ushort serial_number_word3;	/* 20 Board serial number word 3 */
973  	ushort check_sum;	/* 21 EEP check sum */
974  	uchar oem_name[16];	/* 22 OEM name */
975  	ushort dvc_err_code;	/* 30 last device driver error code */
976  	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
977  	ushort adv_err_addr;	/* 32 last uc error address */
978  	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
979  	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
980  	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
981  	ushort num_of_err;	/* 36 number of error */
982  } ADVEEP_3550_CONFIG;
983  
984  typedef struct adveep_38C0800_config {
985  	/* Word Offset, Description */
986  
987  	ushort cfg_lsw;		/* 00 power up initialization */
988  	/*  bit 13 set - Load CIS */
989  	/*  bit 14 set - BIOS Enable */
990  	/*  bit 15 set - Big Endian Mode */
991  	ushort cfg_msw;		/* 01 unused      */
992  	ushort disc_enable;	/* 02 disconnect enable */
993  	ushort wdtr_able;	/* 03 Wide DTR able */
994  	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
995  	ushort start_motor;	/* 05 send start up motor */
996  	ushort tagqng_able;	/* 06 tag queuing able */
997  	ushort bios_scan;	/* 07 BIOS device control */
998  	ushort scam_tolerant;	/* 08 no scam */
999  
1000  	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1001  	uchar bios_boot_delay;	/*    power up wait */
1002  
1003  	uchar scsi_reset_delay;	/* 10 reset delay */
1004  	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1005  	/*    high nibble is lun */
1006  	/*    low nibble is scsi id */
1007  
1008  	uchar termination_se;	/* 11 0 - automatic */
1009  	/*    1 - low off / high off */
1010  	/*    2 - low off / high on */
1011  	/*    3 - low on  / high on */
1012  	/*    There is no low on  / high off */
1013  
1014  	uchar termination_lvd;	/* 11 0 - automatic */
1015  	/*    1 - low off / high off */
1016  	/*    2 - low off / high on */
1017  	/*    3 - low on  / high on */
1018  	/*    There is no low on  / high off */
1019  
1020  	ushort bios_ctrl;	/* 12 BIOS control bits */
1021  	/*  bit 0  BIOS don't act as initiator. */
1022  	/*  bit 1  BIOS > 1 GB support */
1023  	/*  bit 2  BIOS > 2 Disk Support */
1024  	/*  bit 3  BIOS don't support removables */
1025  	/*  bit 4  BIOS support bootable CD */
1026  	/*  bit 5  BIOS scan enabled */
1027  	/*  bit 6  BIOS support multiple LUNs */
1028  	/*  bit 7  BIOS display of message */
1029  	/*  bit 8  SCAM disabled */
1030  	/*  bit 9  Reset SCSI bus during init. */
1031  	/*  bit 10 */
1032  	/*  bit 11 No verbose initialization. */
1033  	/*  bit 12 SCSI parity enabled */
1034  	/*  bit 13 */
1035  	/*  bit 14 */
1036  	/*  bit 15 */
1037  	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1038  	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1039  	uchar max_host_qng;	/* 15 maximum host queueing */
1040  	uchar max_dvc_qng;	/*    maximum per device queuing */
1041  	ushort dvc_cntl;	/* 16 control bit for driver */
1042  	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1043  	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1044  	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1045  	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1046  	ushort check_sum;	/* 21 EEP check sum */
1047  	uchar oem_name[16];	/* 22 OEM name */
1048  	ushort dvc_err_code;	/* 30 last device driver error code */
1049  	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1050  	ushort adv_err_addr;	/* 32 last uc error address */
1051  	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1052  	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1053  	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1054  	ushort reserved36;	/* 36 reserved */
1055  	ushort reserved37;	/* 37 reserved */
1056  	ushort reserved38;	/* 38 reserved */
1057  	ushort reserved39;	/* 39 reserved */
1058  	ushort reserved40;	/* 40 reserved */
1059  	ushort reserved41;	/* 41 reserved */
1060  	ushort reserved42;	/* 42 reserved */
1061  	ushort reserved43;	/* 43 reserved */
1062  	ushort reserved44;	/* 44 reserved */
1063  	ushort reserved45;	/* 45 reserved */
1064  	ushort reserved46;	/* 46 reserved */
1065  	ushort reserved47;	/* 47 reserved */
1066  	ushort reserved48;	/* 48 reserved */
1067  	ushort reserved49;	/* 49 reserved */
1068  	ushort reserved50;	/* 50 reserved */
1069  	ushort reserved51;	/* 51 reserved */
1070  	ushort reserved52;	/* 52 reserved */
1071  	ushort reserved53;	/* 53 reserved */
1072  	ushort reserved54;	/* 54 reserved */
1073  	ushort reserved55;	/* 55 reserved */
1074  	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1075  	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1076  	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1077  	ushort subsysid;	/* 59 SubSystem ID */
1078  	ushort reserved60;	/* 60 reserved */
1079  	ushort reserved61;	/* 61 reserved */
1080  	ushort reserved62;	/* 62 reserved */
1081  	ushort reserved63;	/* 63 reserved */
1082  } ADVEEP_38C0800_CONFIG;
1083  
1084  typedef struct adveep_38C1600_config {
1085  	/* Word Offset, Description */
1086  
1087  	ushort cfg_lsw;		/* 00 power up initialization */
1088  	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1089  	/*       clear - Func. 0 INTA, Func. 1 INTB */
1090  	/*  bit 13 set - Load CIS */
1091  	/*  bit 14 set - BIOS Enable */
1092  	/*  bit 15 set - Big Endian Mode */
1093  	ushort cfg_msw;		/* 01 unused */
1094  	ushort disc_enable;	/* 02 disconnect enable */
1095  	ushort wdtr_able;	/* 03 Wide DTR able */
1096  	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1097  	ushort start_motor;	/* 05 send start up motor */
1098  	ushort tagqng_able;	/* 06 tag queuing able */
1099  	ushort bios_scan;	/* 07 BIOS device control */
1100  	ushort scam_tolerant;	/* 08 no scam */
1101  
1102  	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1103  	uchar bios_boot_delay;	/*    power up wait */
1104  
1105  	uchar scsi_reset_delay;	/* 10 reset delay */
1106  	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1107  	/*    high nibble is lun */
1108  	/*    low nibble is scsi id */
1109  
1110  	uchar termination_se;	/* 11 0 - automatic */
1111  	/*    1 - low off / high off */
1112  	/*    2 - low off / high on */
1113  	/*    3 - low on  / high on */
1114  	/*    There is no low on  / high off */
1115  
1116  	uchar termination_lvd;	/* 11 0 - automatic */
1117  	/*    1 - low off / high off */
1118  	/*    2 - low off / high on */
1119  	/*    3 - low on  / high on */
1120  	/*    There is no low on  / high off */
1121  
1122  	ushort bios_ctrl;	/* 12 BIOS control bits */
1123  	/*  bit 0  BIOS don't act as initiator. */
1124  	/*  bit 1  BIOS > 1 GB support */
1125  	/*  bit 2  BIOS > 2 Disk Support */
1126  	/*  bit 3  BIOS don't support removables */
1127  	/*  bit 4  BIOS support bootable CD */
1128  	/*  bit 5  BIOS scan enabled */
1129  	/*  bit 6  BIOS support multiple LUNs */
1130  	/*  bit 7  BIOS display of message */
1131  	/*  bit 8  SCAM disabled */
1132  	/*  bit 9  Reset SCSI bus during init. */
1133  	/*  bit 10 Basic Integrity Checking disabled */
1134  	/*  bit 11 No verbose initialization. */
1135  	/*  bit 12 SCSI parity enabled */
1136  	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1137  	/*  bit 14 */
1138  	/*  bit 15 */
1139  	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1140  	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1141  	uchar max_host_qng;	/* 15 maximum host queueing */
1142  	uchar max_dvc_qng;	/*    maximum per device queuing */
1143  	ushort dvc_cntl;	/* 16 control bit for driver */
1144  	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1145  	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1146  	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1147  	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1148  	ushort check_sum;	/* 21 EEP check sum */
1149  	uchar oem_name[16];	/* 22 OEM name */
1150  	ushort dvc_err_code;	/* 30 last device driver error code */
1151  	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1152  	ushort adv_err_addr;	/* 32 last uc error address */
1153  	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1154  	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1155  	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1156  	ushort reserved36;	/* 36 reserved */
1157  	ushort reserved37;	/* 37 reserved */
1158  	ushort reserved38;	/* 38 reserved */
1159  	ushort reserved39;	/* 39 reserved */
1160  	ushort reserved40;	/* 40 reserved */
1161  	ushort reserved41;	/* 41 reserved */
1162  	ushort reserved42;	/* 42 reserved */
1163  	ushort reserved43;	/* 43 reserved */
1164  	ushort reserved44;	/* 44 reserved */
1165  	ushort reserved45;	/* 45 reserved */
1166  	ushort reserved46;	/* 46 reserved */
1167  	ushort reserved47;	/* 47 reserved */
1168  	ushort reserved48;	/* 48 reserved */
1169  	ushort reserved49;	/* 49 reserved */
1170  	ushort reserved50;	/* 50 reserved */
1171  	ushort reserved51;	/* 51 reserved */
1172  	ushort reserved52;	/* 52 reserved */
1173  	ushort reserved53;	/* 53 reserved */
1174  	ushort reserved54;	/* 54 reserved */
1175  	ushort reserved55;	/* 55 reserved */
1176  	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1177  	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1178  	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1179  	ushort subsysid;	/* 59 SubSystem ID */
1180  	ushort reserved60;	/* 60 reserved */
1181  	ushort reserved61;	/* 61 reserved */
1182  	ushort reserved62;	/* 62 reserved */
1183  	ushort reserved63;	/* 63 reserved */
1184  } ADVEEP_38C1600_CONFIG;
1185  
1186  /*
1187   * EEPROM Commands
1188   */
1189  #define ASC_EEP_CMD_DONE             0x0200
1190  
1191  /* bios_ctrl */
1192  #define BIOS_CTRL_BIOS               0x0001
1193  #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1194  #define BIOS_CTRL_GT_2_DISK          0x0004
1195  #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1196  #define BIOS_CTRL_BOOTABLE_CD        0x0010
1197  #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1198  #define BIOS_CTRL_DISPLAY_MSG        0x0080
1199  #define BIOS_CTRL_NO_SCAM            0x0100
1200  #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1201  #define BIOS_CTRL_INIT_VERBOSE       0x0800
1202  #define BIOS_CTRL_SCSI_PARITY        0x1000
1203  #define BIOS_CTRL_AIPP_DIS           0x2000
1204  
1205  #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1206  
1207  #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1208  
1209  /*
1210   * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1211   * a special 16K Adv Library and Microcode version. After the issue is
1212   * resolved, should restore 32K support.
1213   *
1214   * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1215   */
1216  #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1217  
1218  /*
1219   * Byte I/O register address from base of 'iop_base'.
1220   */
1221  #define IOPB_INTR_STATUS_REG    0x00
1222  #define IOPB_CHIP_ID_1          0x01
1223  #define IOPB_INTR_ENABLES       0x02
1224  #define IOPB_CHIP_TYPE_REV      0x03
1225  #define IOPB_RES_ADDR_4         0x04
1226  #define IOPB_RES_ADDR_5         0x05
1227  #define IOPB_RAM_DATA           0x06
1228  #define IOPB_RES_ADDR_7         0x07
1229  #define IOPB_FLAG_REG           0x08
1230  #define IOPB_RES_ADDR_9         0x09
1231  #define IOPB_RISC_CSR           0x0A
1232  #define IOPB_RES_ADDR_B         0x0B
1233  #define IOPB_RES_ADDR_C         0x0C
1234  #define IOPB_RES_ADDR_D         0x0D
1235  #define IOPB_SOFT_OVER_WR       0x0E
1236  #define IOPB_RES_ADDR_F         0x0F
1237  #define IOPB_MEM_CFG            0x10
1238  #define IOPB_RES_ADDR_11        0x11
1239  #define IOPB_GPIO_DATA          0x12
1240  #define IOPB_RES_ADDR_13        0x13
1241  #define IOPB_FLASH_PAGE         0x14
1242  #define IOPB_RES_ADDR_15        0x15
1243  #define IOPB_GPIO_CNTL          0x16
1244  #define IOPB_RES_ADDR_17        0x17
1245  #define IOPB_FLASH_DATA         0x18
1246  #define IOPB_RES_ADDR_19        0x19
1247  #define IOPB_RES_ADDR_1A        0x1A
1248  #define IOPB_RES_ADDR_1B        0x1B
1249  #define IOPB_RES_ADDR_1C        0x1C
1250  #define IOPB_RES_ADDR_1D        0x1D
1251  #define IOPB_RES_ADDR_1E        0x1E
1252  #define IOPB_RES_ADDR_1F        0x1F
1253  #define IOPB_DMA_CFG0           0x20
1254  #define IOPB_DMA_CFG1           0x21
1255  #define IOPB_TICKLE             0x22
1256  #define IOPB_DMA_REG_WR         0x23
1257  #define IOPB_SDMA_STATUS        0x24
1258  #define IOPB_SCSI_BYTE_CNT      0x25
1259  #define IOPB_HOST_BYTE_CNT      0x26
1260  #define IOPB_BYTE_LEFT_TO_XFER  0x27
1261  #define IOPB_BYTE_TO_XFER_0     0x28
1262  #define IOPB_BYTE_TO_XFER_1     0x29
1263  #define IOPB_BYTE_TO_XFER_2     0x2A
1264  #define IOPB_BYTE_TO_XFER_3     0x2B
1265  #define IOPB_ACC_GRP            0x2C
1266  #define IOPB_RES_ADDR_2D        0x2D
1267  #define IOPB_DEV_ID             0x2E
1268  #define IOPB_RES_ADDR_2F        0x2F
1269  #define IOPB_SCSI_DATA          0x30
1270  #define IOPB_RES_ADDR_31        0x31
1271  #define IOPB_RES_ADDR_32        0x32
1272  #define IOPB_SCSI_DATA_HSHK     0x33
1273  #define IOPB_SCSI_CTRL          0x34
1274  #define IOPB_RES_ADDR_35        0x35
1275  #define IOPB_RES_ADDR_36        0x36
1276  #define IOPB_RES_ADDR_37        0x37
1277  #define IOPB_RAM_BIST           0x38
1278  #define IOPB_PLL_TEST           0x39
1279  #define IOPB_PCI_INT_CFG        0x3A
1280  #define IOPB_RES_ADDR_3B        0x3B
1281  #define IOPB_RFIFO_CNT          0x3C
1282  #define IOPB_RES_ADDR_3D        0x3D
1283  #define IOPB_RES_ADDR_3E        0x3E
1284  #define IOPB_RES_ADDR_3F        0x3F
1285  
1286  /*
1287   * Word I/O register address from base of 'iop_base'.
1288   */
1289  #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1290  #define IOPW_CTRL_REG           0x02	/* CC    */
1291  #define IOPW_RAM_ADDR           0x04	/* LA    */
1292  #define IOPW_RAM_DATA           0x06	/* LD    */
1293  #define IOPW_RES_ADDR_08        0x08
1294  #define IOPW_RISC_CSR           0x0A	/* CSR   */
1295  #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1296  #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1297  #define IOPW_RES_ADDR_10        0x10
1298  #define IOPW_SEL_MASK           0x12	/* SM    */
1299  #define IOPW_RES_ADDR_14        0x14
1300  #define IOPW_FLASH_ADDR         0x16	/* FA    */
1301  #define IOPW_RES_ADDR_18        0x18
1302  #define IOPW_EE_CMD             0x1A	/* EC    */
1303  #define IOPW_EE_DATA            0x1C	/* ED    */
1304  #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1305  #define IOPW_RES_ADDR_20        0x20
1306  #define IOPW_Q_BASE             0x22	/* QB    */
1307  #define IOPW_QP                 0x24	/* QP    */
1308  #define IOPW_IX                 0x26	/* IX    */
1309  #define IOPW_SP                 0x28	/* SP    */
1310  #define IOPW_PC                 0x2A	/* PC    */
1311  #define IOPW_RES_ADDR_2C        0x2C
1312  #define IOPW_RES_ADDR_2E        0x2E
1313  #define IOPW_SCSI_DATA          0x30	/* SD    */
1314  #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1315  #define IOPW_SCSI_CTRL          0x34	/* SC    */
1316  #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1317  #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1318  #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1319  #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1320  #define IOPW_RES_ADDR_3C        0x3C
1321  #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1322  
1323  /*
1324   * Doubleword I/O register address from base of 'iop_base'.
1325   */
1326  #define IOPDW_RES_ADDR_0         0x00
1327  #define IOPDW_RAM_DATA           0x04
1328  #define IOPDW_RES_ADDR_8         0x08
1329  #define IOPDW_RES_ADDR_C         0x0C
1330  #define IOPDW_RES_ADDR_10        0x10
1331  #define IOPDW_COMMA              0x14
1332  #define IOPDW_COMMB              0x18
1333  #define IOPDW_RES_ADDR_1C        0x1C
1334  #define IOPDW_SDMA_ADDR0         0x20
1335  #define IOPDW_SDMA_ADDR1         0x24
1336  #define IOPDW_SDMA_COUNT         0x28
1337  #define IOPDW_SDMA_ERROR         0x2C
1338  #define IOPDW_RDMA_ADDR0         0x30
1339  #define IOPDW_RDMA_ADDR1         0x34
1340  #define IOPDW_RDMA_COUNT         0x38
1341  #define IOPDW_RDMA_ERROR         0x3C
1342  
1343  #define ADV_CHIP_ID_BYTE         0x25
1344  #define ADV_CHIP_ID_WORD         0x04C1
1345  
1346  #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1347  #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1348  #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1349  #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1350  #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1351  #define ADV_INTR_ENABLE_RST_INTR                    0x20
1352  #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1353  #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1354  
1355  #define ADV_INTR_STATUS_INTRA            0x01
1356  #define ADV_INTR_STATUS_INTRB            0x02
1357  #define ADV_INTR_STATUS_INTRC            0x04
1358  
1359  #define ADV_RISC_CSR_STOP           (0x0000)
1360  #define ADV_RISC_TEST_COND          (0x2000)
1361  #define ADV_RISC_CSR_RUN            (0x4000)
1362  #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1363  
1364  #define ADV_CTRL_REG_HOST_INTR      0x0100
1365  #define ADV_CTRL_REG_SEL_INTR       0x0200
1366  #define ADV_CTRL_REG_DPR_INTR       0x0400
1367  #define ADV_CTRL_REG_RTA_INTR       0x0800
1368  #define ADV_CTRL_REG_RMA_INTR       0x1000
1369  #define ADV_CTRL_REG_RES_BIT14      0x2000
1370  #define ADV_CTRL_REG_DPE_INTR       0x4000
1371  #define ADV_CTRL_REG_POWER_DONE     0x8000
1372  #define ADV_CTRL_REG_ANY_INTR       0xFF00
1373  
1374  #define ADV_CTRL_REG_CMD_RESET             0x00C6
1375  #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1376  #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1377  #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1378  #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1379  
1380  #define ADV_TICKLE_NOP                      0x00
1381  #define ADV_TICKLE_A                        0x01
1382  #define ADV_TICKLE_B                        0x02
1383  #define ADV_TICKLE_C                        0x03
1384  
1385  #define AdvIsIntPending(port) \
1386      (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1387  
1388  /*
1389   * SCSI_CFG0 Register bit definitions
1390   */
1391  #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1392  #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1393  #define EVEN_PARITY     0x1000	/* Select Even Parity */
1394  #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1395  #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1396  #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1397  #define SCAM_EN         0x0080	/* Enable SCAM selection */
1398  #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1399  #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1400  #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1401  #define OUR_ID          0x000F	/* SCSI ID */
1402  
1403  /*
1404   * SCSI_CFG1 Register bit definitions
1405   */
1406  #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1407  #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1408  #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1409  #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1410  #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1411  #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1412  #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1413  #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1414  #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1415  #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1416  #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1417  #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1418  #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1419  #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1420  #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1421  
1422  /*
1423   * Addendum for ASC-38C0800 Chip
1424   *
1425   * The ASC-38C1600 Chip uses the same definitions except that the
1426   * bus mode override bits [12:10] have been moved to byte register
1427   * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1428   * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1429   * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1430   * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1431   * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1432   */
1433  #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1434  #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1435  #define  HVD             0x1000	/* HVD Device Detect */
1436  #define  LVD             0x0800	/* LVD Device Detect */
1437  #define  SE              0x0400	/* SE Device Detect */
1438  #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1439  #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1440  #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1441  #define TERM_SE         0x0030	/* SE Termination Bits */
1442  #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1443  #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1444  #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1445  #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1446  #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1447  #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1448  #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1449  #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1450  
1451  #define CABLE_ILLEGAL_A 0x7
1452      /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1453  
1454  #define CABLE_ILLEGAL_B 0xB
1455      /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1456  
1457  /*
1458   * MEM_CFG Register bit definitions
1459   */
1460  #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1461  #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1462  #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1463  #define  RAM_SZ_2KB      0x00	/* 2 KB */
1464  #define  RAM_SZ_4KB      0x04	/* 4 KB */
1465  #define  RAM_SZ_8KB      0x08	/* 8 KB */
1466  #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1467  #define  RAM_SZ_32KB     0x10	/* 32 KB */
1468  #define  RAM_SZ_64KB     0x14	/* 64 KB */
1469  
1470  /*
1471   * DMA_CFG0 Register bit definitions
1472   *
1473   * This register is only accessible to the host.
1474   */
1475  #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1476  #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1477  #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1478  #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1479  #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1480  #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1481  #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1482  #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1483  #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1484  #define START_CTL       0x0C	/* DMA start conditions */
1485  #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1486  #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1487  #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1488  #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1489  #define READ_CMD        0x03	/* Memory Read Method */
1490  #define  READ_CMD_MR     0x00	/* Memory Read */
1491  #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1492  #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1493  
1494  /*
1495   * ASC-38C0800 RAM BIST Register bit definitions
1496   */
1497  #define RAM_TEST_MODE         0x80
1498  #define PRE_TEST_MODE         0x40
1499  #define NORMAL_MODE           0x00
1500  #define RAM_TEST_DONE         0x10
1501  #define RAM_TEST_STATUS       0x0F
1502  #define  RAM_TEST_HOST_ERROR   0x08
1503  #define  RAM_TEST_INTRAM_ERROR 0x04
1504  #define  RAM_TEST_RISC_ERROR   0x02
1505  #define  RAM_TEST_SCSI_ERROR   0x01
1506  #define  RAM_TEST_SUCCESS      0x00
1507  #define PRE_TEST_VALUE        0x05
1508  #define NORMAL_VALUE          0x00
1509  
1510  /*
1511   * ASC38C1600 Definitions
1512   *
1513   * IOPB_PCI_INT_CFG Bit Field Definitions
1514   */
1515  
1516  #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1517  
1518  /*
1519   * Bit 1 can be set to change the interrupt for the Function to operate in
1520   * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1521   * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1522   * mode, otherwise the operating mode is undefined.
1523   */
1524  #define TOTEMPOLE       0x02
1525  
1526  /*
1527   * Bit 0 can be used to change the Int Pin for the Function. The value is
1528   * 0 by default for both Functions with Function 0 using INT A and Function
1529   * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1530   * INT A is used.
1531   *
1532   * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1533   * value specified in the PCI Configuration Space.
1534   */
1535  #define INTAB           0x01
1536  
1537  /*
1538   * Adv Library Status Definitions
1539   */
1540  #define ADV_TRUE        1
1541  #define ADV_FALSE       0
1542  #define ADV_SUCCESS     1
1543  #define ADV_BUSY        0
1544  #define ADV_ERROR       (-1)
1545  
1546  /*
1547   * ADV_DVC_VAR 'warn_code' values
1548   */
1549  #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1550  #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1551  #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1552  #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1553  
1554  #define ADV_MAX_TID                     15	/* max. target identifier */
1555  #define ADV_MAX_LUN                     7	/* max. logical unit number */
1556  
1557  /*
1558   * Fixed locations of microcode operating variables.
1559   */
1560  #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1561  #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1562  #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1563  #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1564  #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1565  #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1566  #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1567  #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1568  #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1569  #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1570  #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1571  #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1572  #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1573  #define ASC_MC_CHIP_TYPE                0x009A
1574  #define ASC_MC_INTRB_CODE               0x009B
1575  #define ASC_MC_WDTR_ABLE                0x009C
1576  #define ASC_MC_SDTR_ABLE                0x009E
1577  #define ASC_MC_TAGQNG_ABLE              0x00A0
1578  #define ASC_MC_DISC_ENABLE              0x00A2
1579  #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1580  #define ASC_MC_IDLE_CMD                 0x00A6
1581  #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1582  #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1583  #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1584  #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1585  #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1586  #define ASC_MC_SDTR_DONE                0x00B6
1587  #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1588  #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1589  #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1590  #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1591  #define ASC_MC_WDTR_DONE                0x0124
1592  #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1593  #define ASC_MC_ICQ                      0x0160
1594  #define ASC_MC_IRQ                      0x0164
1595  #define ASC_MC_PPR_ABLE                 0x017A
1596  
1597  /*
1598   * BIOS LRAM variable absolute offsets.
1599   */
1600  #define BIOS_CODESEG    0x54
1601  #define BIOS_CODELEN    0x56
1602  #define BIOS_SIGNATURE  0x58
1603  #define BIOS_VERSION    0x5A
1604  
1605  /*
1606   * Microcode Control Flags
1607   *
1608   * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1609   * and handled by the microcode.
1610   */
1611  #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1612  #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1613  
1614  /*
1615   * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1616   */
1617  #define HSHK_CFG_WIDE_XFR       0x8000
1618  #define HSHK_CFG_RATE           0x0F00
1619  #define HSHK_CFG_OFFSET         0x001F
1620  
1621  #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1622  #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1623  #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1624  #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1625  
1626  #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1627  #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1628  #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1629  #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1630  #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1631  
1632  #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1633  #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1634  #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1635  #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1636  #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1637  /*
1638   * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1639   * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1640   */
1641  #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1642  #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1643  
1644  /*
1645   * All fields here are accessed by the board microcode and need to be
1646   * little-endian.
1647   */
1648  typedef struct adv_carr_t {
1649  	__le32 carr_va;	/* Carrier Virtual Address */
1650  	__le32 carr_pa;	/* Carrier Physical Address */
1651  	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
1652  	/*
1653  	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1654  	 *
1655  	 * next_vpa [3:1]             Reserved Bits
1656  	 * next_vpa [0]               Done Flag set in Response Queue.
1657  	 */
1658  	__le32 next_vpa;
1659  } ADV_CARR_T;
1660  
1661  /*
1662   * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1663   */
1664  #define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1665  
1666  #define ADV_RQ_DONE             0x00000001
1667  #define ADV_RQ_GOOD             0x00000002
1668  #define ADV_CQ_STOPPER          0x00000000
1669  
1670  #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1671  
1672  /*
1673   * Each carrier is 64 bytes, and we need three additional
1674   * carrier for icq, irq, and the termination carrier.
1675   */
1676  #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1677  
1678  #define ADV_CARRIER_BUFSIZE \
1679  	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1680  
1681  #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1682  #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1683  #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1684  
1685  /*
1686   * Adapter temporary configuration structure
1687   *
1688   * This structure can be discarded after initialization. Don't add
1689   * fields here needed after initialization.
1690   *
1691   * Field naming convention:
1692   *
1693   *  *_enable indicates the field enables or disables a feature. The
1694   *  value of the field is never reset.
1695   */
1696  typedef struct adv_dvc_cfg {
1697  	ushort disc_enable;	/* enable disconnection */
1698  	uchar chip_version;	/* chip version */
1699  	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1700  	ushort control_flag;	/* Microcode Control Flag */
1701  	ushort mcode_date;	/* Microcode date */
1702  	ushort mcode_version;	/* Microcode version */
1703  	ushort serial1;		/* EEPROM serial number word 1 */
1704  	ushort serial2;		/* EEPROM serial number word 2 */
1705  	ushort serial3;		/* EEPROM serial number word 3 */
1706  } ADV_DVC_CFG;
1707  
1708  struct adv_dvc_var;
1709  struct adv_scsi_req_q;
1710  
1711  typedef struct adv_sg_block {
1712  	uchar reserved1;
1713  	uchar reserved2;
1714  	uchar reserved3;
1715  	uchar sg_cnt;		/* Valid entries in block. */
1716  	__le32 sg_ptr;	/* Pointer to next sg block. */
1717  	struct {
1718  		__le32 sg_addr;	/* SG element address. */
1719  		__le32 sg_count;	/* SG element count. */
1720  	} sg_list[NO_OF_SG_PER_BLOCK];
1721  } ADV_SG_BLOCK;
1722  
1723  /*
1724   * ADV_SCSI_REQ_Q - microcode request structure
1725   *
1726   * All fields in this structure up to byte 60 are used by the microcode.
1727   * The microcode makes assumptions about the size and ordering of fields
1728   * in this structure. Do not change the structure definition here without
1729   * coordinating the change with the microcode.
1730   *
1731   * All fields accessed by microcode must be maintained in little_endian
1732   * order.
1733   */
1734  typedef struct adv_scsi_req_q {
1735  	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1736  	uchar target_cmd;
1737  	uchar target_id;	/* Device target identifier. */
1738  	uchar target_lun;	/* Device target logical unit number. */
1739  	__le32 data_addr;	/* Data buffer physical address. */
1740  	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
1741  	__le32 sense_addr;
1742  	__le32 carr_pa;
1743  	uchar mflag;
1744  	uchar sense_len;
1745  	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1746  	uchar scsi_cntl;
1747  	uchar done_status;	/* Completion status. */
1748  	uchar scsi_status;	/* SCSI status byte. */
1749  	uchar host_status;	/* Ucode host status. */
1750  	uchar sg_working_ix;
1751  	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1752  	__le32 sg_real_addr;	/* SG list physical address. */
1753  	__le32 scsiq_rptr;
1754  	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1755  	__le32 scsiq_ptr;
1756  	__le32 carr_va;
1757  	/*
1758  	 * End of microcode structure - 60 bytes. The rest of the structure
1759  	 * is used by the Adv Library and ignored by the microcode.
1760  	 */
1761  	u32 srb_tag;
1762  	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1763  } ADV_SCSI_REQ_Q;
1764  
1765  /*
1766   * The following two structures are used to process Wide Board requests.
1767   *
1768   * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1769   * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1770   * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1771   * to the Mid-Level SCSI request structure.
1772   *
1773   * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1774   * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1775   * up to 255 scatter-gather elements may be used per request or
1776   * ADV_SCSI_REQ_Q.
1777   *
1778   * Both structures must be 32 byte aligned.
1779   */
1780  typedef struct adv_sgblk {
1781  	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1782  	dma_addr_t sg_addr;	/* Physical address */
1783  	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1784  } adv_sgblk_t;
1785  
1786  typedef struct adv_req {
1787  	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1788  	uchar align[24];	/* Request structure padding. */
1789  	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1790  	dma_addr_t req_addr;
1791  	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1792  } adv_req_t __aligned(32);
1793  
1794  /*
1795   * Adapter operation variable structure.
1796   *
1797   * One structure is required per host adapter.
1798   *
1799   * Field naming convention:
1800   *
1801   *  *_able indicates both whether a feature should be enabled or disabled
1802   *  and whether a device is capable of the feature. At initialization
1803   *  this field may be set, but later if a device is found to be incapable
1804   *  of the feature, the field is cleared.
1805   */
1806  typedef struct adv_dvc_var {
1807  	AdvPortAddr iop_base;	/* I/O port address */
1808  	ushort err_code;	/* fatal error code */
1809  	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1810  	ushort wdtr_able;	/* try WDTR for a device */
1811  	ushort sdtr_able;	/* try SDTR for a device */
1812  	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1813  	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1814  	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1815  	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1816  	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1817  	ushort tagqng_able;	/* try tagged queuing with a device */
1818  	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1819  	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1820  	ushort start_motor;	/* start motor command allowed */
1821  	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1822  	uchar chip_no;		/* should be assigned by caller */
1823  	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1824  	ushort no_scam;		/* scam_tolerant of EEPROM */
1825  	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1826  	uchar chip_scsi_id;	/* chip SCSI target ID */
1827  	uchar chip_type;
1828  	uchar bist_err_code;
1829  	ADV_CARR_T *carrier;
1830  	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1831  	dma_addr_t carrier_addr;
1832  	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1833  	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1834  	ushort carr_pending_cnt;	/* Count of pending carriers. */
1835  	/*
1836  	 * Note: The following fields will not be used after initialization. The
1837  	 * driver may discard the buffer after initialization is done.
1838  	 */
1839  	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1840  } ADV_DVC_VAR;
1841  
1842  /*
1843   * Microcode idle loop commands
1844   */
1845  #define IDLE_CMD_COMPLETED           0
1846  #define IDLE_CMD_STOP_CHIP           0x0001
1847  #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1848  #define IDLE_CMD_SEND_INT            0x0004
1849  #define IDLE_CMD_ABORT               0x0008
1850  #define IDLE_CMD_DEVICE_RESET        0x0010
1851  #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1852  #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1853  #define IDLE_CMD_SCSIREQ             0x0080
1854  
1855  #define IDLE_CMD_STATUS_SUCCESS      0x0001
1856  #define IDLE_CMD_STATUS_FAILURE      0x0002
1857  
1858  /*
1859   * AdvSendIdleCmd() flag definitions.
1860   */
1861  #define ADV_NOWAIT     0x01
1862  
1863  /*
1864   * Wait loop time out values.
1865   */
1866  #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1867  #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1868  #define SCSI_MAX_RETRY               10	/* retry count */
1869  
1870  #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1871  #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1872  #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1873  #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1874  
1875  #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1876  
1877  /* Read byte from a register. */
1878  #define AdvReadByteRegister(iop_base, reg_off) \
1879       (ADV_MEM_READB((iop_base) + (reg_off)))
1880  
1881  /* Write byte to a register. */
1882  #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1883       (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1884  
1885  /* Read word (2 bytes) from a register. */
1886  #define AdvReadWordRegister(iop_base, reg_off) \
1887       (ADV_MEM_READW((iop_base) + (reg_off)))
1888  
1889  /* Write word (2 bytes) to a register. */
1890  #define AdvWriteWordRegister(iop_base, reg_off, word) \
1891       (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1892  
1893  /* Write dword (4 bytes) to a register. */
1894  #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1895       (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1896  
1897  /* Read byte from LRAM. */
1898  #define AdvReadByteLram(iop_base, addr, byte) \
1899  do { \
1900      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1901      (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1902  } while (0)
1903  
1904  /* Write byte to LRAM. */
1905  #define AdvWriteByteLram(iop_base, addr, byte) \
1906      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1907       ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1908  
1909  /* Read word (2 bytes) from LRAM. */
1910  #define AdvReadWordLram(iop_base, addr, word) \
1911  do { \
1912      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1913      (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1914  } while (0)
1915  
1916  /* Write word (2 bytes) to LRAM. */
1917  #define AdvWriteWordLram(iop_base, addr, word) \
1918      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1919       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1920  
1921  /* Write little-endian double word (4 bytes) to LRAM */
1922  /* Because of unspecified C language ordering don't use auto-increment. */
1923  #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1924      ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1925        ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1926                       cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1927       (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1928        ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1929                       cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1930  
1931  /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1932  #define AdvReadWordAutoIncLram(iop_base) \
1933       (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1934  
1935  /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1936  #define AdvWriteWordAutoIncLram(iop_base, word) \
1937       (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1938  
1939  /*
1940   * Define macro to check for Condor signature.
1941   *
1942   * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1943   * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1944   */
1945  #define AdvFindSignature(iop_base) \
1946      (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1947      ADV_CHIP_ID_BYTE) && \
1948       (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1949      ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1950  
1951  /*
1952   * Define macro to Return the version number of the chip at 'iop_base'.
1953   *
1954   * The second parameter 'bus_type' is currently unused.
1955   */
1956  #define AdvGetChipVersion(iop_base, bus_type) \
1957      AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1958  
1959  /*
1960   * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1961   * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1962   *
1963   * If the request has not yet been sent to the device it will simply be
1964   * aborted from RISC memory. If the request is disconnected it will be
1965   * aborted on reselection by sending an Abort Message to the target ID.
1966   *
1967   * Return value:
1968   *      ADV_TRUE(1) - Queue was successfully aborted.
1969   *      ADV_FALSE(0) - Queue was not found on the active queue list.
1970   */
1971  #define AdvAbortQueue(asc_dvc, srb_tag) \
1972       AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1973  		    (ADV_DCNT) (srb_tag))
1974  
1975  /*
1976   * Send a Bus Device Reset Message to the specified target ID.
1977   *
1978   * All outstanding commands will be purged if sending the
1979   * Bus Device Reset Message is successful.
1980   *
1981   * Return Value:
1982   *      ADV_TRUE(1) - All requests on the target are purged.
1983   *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1984   *                     are not purged.
1985   */
1986  #define AdvResetDevice(asc_dvc, target_id) \
1987       AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
1988  		    (ADV_DCNT) (target_id))
1989  
1990  /*
1991   * SCSI Wide Type definition.
1992   */
1993  #define ADV_SCSI_BIT_ID_TYPE   ushort
1994  
1995  /*
1996   * AdvInitScsiTarget() 'cntl_flag' options.
1997   */
1998  #define ADV_SCAN_LUN           0x01
1999  #define ADV_CAPINFO_NOLUN      0x02
2000  
2001  /*
2002   * Convert target id to target id bit mask.
2003   */
2004  #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2005  
2006  /*
2007   * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2008   */
2009  
2010  #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2011  #define QD_NO_ERROR          0x01
2012  #define QD_ABORTED_BY_HOST   0x02
2013  #define QD_WITH_ERROR        0x04
2014  
2015  #define QHSTA_NO_ERROR              0x00
2016  #define QHSTA_M_SEL_TIMEOUT         0x11
2017  #define QHSTA_M_DATA_OVER_RUN       0x12
2018  #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2019  #define QHSTA_M_QUEUE_ABORTED       0x15
2020  #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2021  #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2022  #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2023  #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2024  #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2025  #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2026  #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2027  /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2028  #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2029  #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2030  #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2031  #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2032  #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2033  #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2034  #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2035  #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2036  #define QHSTA_M_WTM_TIMEOUT         0x41
2037  #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2038  #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2039  #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2040  #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2041  #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2042  #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2043  
2044  /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2045  #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2046  
2047  /*
2048   * Total contiguous memory needed for driver SG blocks.
2049   *
2050   * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2051   * number of scatter-gather elements the driver supports in a
2052   * single request.
2053   */
2054  
2055  #define ADV_SG_LIST_MAX_BYTE_SIZE \
2056           (sizeof(ADV_SG_BLOCK) * \
2057            ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2058  
2059  /* struct asc_board flags */
2060  #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2061  
2062  #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2063  
2064  #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2065  
2066  #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2067  
2068  /* Asc Library return codes */
2069  #define ASC_TRUE        1
2070  #define ASC_FALSE       0
2071  #define ASC_NOERROR     1
2072  #define ASC_BUSY        0
2073  #define ASC_ERROR       (-1)
2074  
2075  #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2076  #ifndef ADVANSYS_STATS
2077  #define ASC_STATS_ADD(shost, counter, count)
2078  #else /* ADVANSYS_STATS */
2079  #define ASC_STATS_ADD(shost, counter, count) \
2080  	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2081  #endif /* ADVANSYS_STATS */
2082  
2083  /* If the result wraps when calculating tenths, return 0. */
2084  #define ASC_TENTHS(num, den) \
2085      (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2086      0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2087  
2088  /*
2089   * Display a message to the console.
2090   */
2091  #define ASC_PRINT(s) \
2092      { \
2093          printk("advansys: "); \
2094          printk(s); \
2095      }
2096  
2097  #define ASC_PRINT1(s, a1) \
2098      { \
2099          printk("advansys: "); \
2100          printk((s), (a1)); \
2101      }
2102  
2103  #define ASC_PRINT2(s, a1, a2) \
2104      { \
2105          printk("advansys: "); \
2106          printk((s), (a1), (a2)); \
2107      }
2108  
2109  #define ASC_PRINT3(s, a1, a2, a3) \
2110      { \
2111          printk("advansys: "); \
2112          printk((s), (a1), (a2), (a3)); \
2113      }
2114  
2115  #define ASC_PRINT4(s, a1, a2, a3, a4) \
2116      { \
2117          printk("advansys: "); \
2118          printk((s), (a1), (a2), (a3), (a4)); \
2119      }
2120  
2121  #ifndef ADVANSYS_DEBUG
2122  
2123  #define ASC_DBG(lvl, s...)
2124  #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2125  #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2126  #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2127  #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2128  #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2129  #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2130  #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2131  #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2132  #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2133  
2134  #else /* ADVANSYS_DEBUG */
2135  
2136  /*
2137   * Debugging Message Levels:
2138   * 0: Errors Only
2139   * 1: High-Level Tracing
2140   * 2-N: Verbose Tracing
2141   */
2142  
2143  #define ASC_DBG(lvl, format, arg...) {					\
2144  	if (asc_dbglvl >= (lvl))					\
2145  		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2146  			__func__ , ## arg);				\
2147  }
2148  
2149  #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2150      { \
2151          if (asc_dbglvl >= (lvl)) { \
2152              asc_prt_scsi_host(s); \
2153          } \
2154      }
2155  
2156  #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2157      { \
2158          if (asc_dbglvl >= (lvl)) { \
2159              asc_prt_asc_scsi_q(scsiqp); \
2160          } \
2161      }
2162  
2163  #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2164      { \
2165          if (asc_dbglvl >= (lvl)) { \
2166              asc_prt_asc_qdone_info(qdone); \
2167          } \
2168      }
2169  
2170  #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2171      { \
2172          if (asc_dbglvl >= (lvl)) { \
2173              asc_prt_adv_scsi_req_q(scsiqp); \
2174          } \
2175      }
2176  
2177  #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2178      { \
2179          if (asc_dbglvl >= (lvl)) { \
2180              asc_prt_hex((name), (start), (length)); \
2181          } \
2182      }
2183  
2184  #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2185          ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2186  
2187  #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2188          ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2189  
2190  #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2191          ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2192  #endif /* ADVANSYS_DEBUG */
2193  
2194  #ifdef ADVANSYS_STATS
2195  
2196  /* Per board statistics structure */
2197  struct asc_stats {
2198  	/* Driver Entrypoint Statistics */
2199  	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
2200  	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
2201  	unsigned int biosparam;	/* # calls to advansys_biosparam() */
2202  	unsigned int interrupt;	/* # advansys_interrupt() calls */
2203  	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
2204  	unsigned int done;		/* # calls to request's scsi_done function */
2205  	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2206  	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2207  	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2208  	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2209  	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
2210  	unsigned int exe_busy;	/* # ASC_BUSY returns. */
2211  	unsigned int exe_error;	/* # ASC_ERROR returns. */
2212  	unsigned int exe_unknown;	/* # unknown returns. */
2213  	/* Data Transfer Statistics */
2214  	unsigned int xfer_cnt;	/* # I/O requests received */
2215  	unsigned int xfer_elem;	/* # scatter-gather elements */
2216  	unsigned int xfer_sect;	/* # 512-byte blocks */
2217  };
2218  #endif /* ADVANSYS_STATS */
2219  
2220  /*
2221   * Structure allocated for each board.
2222   *
2223   * This structure is allocated by scsi_host_alloc() at the end
2224   * of the 'Scsi_Host' structure starting at the 'hostdata'
2225   * field. It is guaranteed to be allocated from DMA-able memory.
2226   */
2227  struct asc_board {
2228  	struct device *dev;
2229  	struct Scsi_Host *shost;
2230  	uint flags;		/* Board flags */
2231  	unsigned int irq;
2232  	union {
2233  		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2234  		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2235  	} dvc_var;
2236  	union {
2237  		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2238  		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2239  	} dvc_cfg;
2240  	ushort asc_n_io_port;	/* Number I/O ports. */
2241  	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2242  	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2243  	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2244  	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2245  	union {
2246  		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2247  		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2248  		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2249  		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2250  	} eep_config;
2251  	/* /proc/scsi/advansys/[0...] */
2252  #ifdef ADVANSYS_STATS
2253  	struct asc_stats asc_stats;	/* Board statistics */
2254  #endif				/* ADVANSYS_STATS */
2255  	/*
2256  	 * The following fields are used only for Narrow Boards.
2257  	 */
2258  	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2259  	/*
2260  	 * The following fields are used only for Wide Boards.
2261  	 */
2262  	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2263  	ushort ioport;		/* I/O Port address. */
2264  	adv_req_t *adv_reqp;	/* Request structures. */
2265  	dma_addr_t adv_reqp_addr;
2266  	size_t adv_reqp_size;
2267  	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
2268  	ushort bios_signature;	/* BIOS Signature. */
2269  	ushort bios_version;	/* BIOS Version. */
2270  	ushort bios_codeseg;	/* BIOS Code Segment. */
2271  	ushort bios_codelen;	/* BIOS Code Segment Length. */
2272  };
2273  
2274  #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2275  							dvc_var.asc_dvc_var)
2276  #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2277  							dvc_var.adv_dvc_var)
2278  #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2279  
2280  struct advansys_cmd {
2281  	dma_addr_t dma_handle;
2282  };
2283  
advansys_cmd(struct scsi_cmnd * cmd)2284  static struct advansys_cmd *advansys_cmd(struct scsi_cmnd *cmd)
2285  {
2286  	return scsi_cmd_priv(cmd);
2287  }
2288  
2289  #ifdef ADVANSYS_DEBUG
2290  static int asc_dbglvl = 3;
2291  
2292  /*
2293   * asc_prt_asc_dvc_var()
2294   */
asc_prt_asc_dvc_var(ASC_DVC_VAR * h)2295  static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2296  {
2297  	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2298  
2299  	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2300  	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2301  
2302  	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2303  		(unsigned)h->init_sdtr);
2304  
2305  	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2306  	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2307  	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2308  	       (unsigned)h->chip_no);
2309  
2310  	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2311  	       "%u,\n", (unsigned)h->queue_full_or_busy,
2312  	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2313  
2314  	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2315  	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2316  	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2317  	       (unsigned)h->in_critical_cnt);
2318  
2319  	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2320  	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2321  	       (unsigned)h->init_state, (unsigned)h->no_scam,
2322  	       (unsigned)h->pci_fix_asyn_xfer);
2323  
2324  	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2325  }
2326  
2327  /*
2328   * asc_prt_asc_dvc_cfg()
2329   */
asc_prt_asc_dvc_cfg(ASC_DVC_CFG * h)2330  static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2331  {
2332  	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2333  
2334  	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2335  	       h->can_tagged_qng, h->cmd_qng_enabled);
2336  	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2337  	       h->disc_enable, h->sdtr_enable);
2338  
2339  	printk(" chip_scsi_id %d, chip_version %d,\n",
2340  	       h->chip_scsi_id, h->chip_version);
2341  
2342  	printk(" mcode_date 0x%x, mcode_version %d\n",
2343  		h->mcode_date, h->mcode_version);
2344  }
2345  
2346  /*
2347   * asc_prt_adv_dvc_var()
2348   *
2349   * Display an ADV_DVC_VAR structure.
2350   */
asc_prt_adv_dvc_var(ADV_DVC_VAR * h)2351  static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2352  {
2353  	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2354  
2355  	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2356  	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2357  
2358  	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2359  	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2360  
2361  	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2362  	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2363  
2364  	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2365  	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2366  	       h->carr_freelist);
2367  
2368  	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2369  
2370  	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2371  	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2372  
2373  	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2374  	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2375  }
2376  
2377  /*
2378   * asc_prt_adv_dvc_cfg()
2379   *
2380   * Display an ADV_DVC_CFG structure.
2381   */
asc_prt_adv_dvc_cfg(ADV_DVC_CFG * h)2382  static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2383  {
2384  	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2385  
2386  	printk("  disc_enable 0x%x, termination 0x%x\n",
2387  	       h->disc_enable, h->termination);
2388  
2389  	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2390  	       h->chip_version, h->mcode_date);
2391  
2392  	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2393  	       h->mcode_version, h->control_flag);
2394  }
2395  
2396  /*
2397   * asc_prt_scsi_host()
2398   */
asc_prt_scsi_host(struct Scsi_Host * s)2399  static void asc_prt_scsi_host(struct Scsi_Host *s)
2400  {
2401  	struct asc_board *boardp = shost_priv(s);
2402  
2403  	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2404  	printk(" host_busy %d, host_no %d,\n",
2405  	       scsi_host_busy(s), s->host_no);
2406  
2407  	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2408  	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2409  
2410  	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2411  	       s->dma_channel, s->this_id, s->can_queue);
2412  
2413  	printk(" cmd_per_lun %d, sg_tablesize %d\n",
2414  	       s->cmd_per_lun, s->sg_tablesize);
2415  
2416  	if (ASC_NARROW_BOARD(boardp)) {
2417  		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2418  		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2419  	} else {
2420  		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2421  		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2422  	}
2423  }
2424  
2425  /*
2426   * asc_prt_hex()
2427   *
2428   * Print hexadecimal output in 4 byte groupings 32 bytes
2429   * or 8 double-words per line.
2430   */
asc_prt_hex(char * f,uchar * s,int l)2431  static void asc_prt_hex(char *f, uchar *s, int l)
2432  {
2433  	int i;
2434  	int j;
2435  	int k;
2436  	int m;
2437  
2438  	printk("%s: (%d bytes)\n", f, l);
2439  
2440  	for (i = 0; i < l; i += 32) {
2441  
2442  		/* Display a maximum of 8 double-words per line. */
2443  		if ((k = (l - i) / 4) >= 8) {
2444  			k = 8;
2445  			m = 0;
2446  		} else {
2447  			m = (l - i) % 4;
2448  		}
2449  
2450  		for (j = 0; j < k; j++) {
2451  			printk(" %2.2X%2.2X%2.2X%2.2X",
2452  			       (unsigned)s[i + (j * 4)],
2453  			       (unsigned)s[i + (j * 4) + 1],
2454  			       (unsigned)s[i + (j * 4) + 2],
2455  			       (unsigned)s[i + (j * 4) + 3]);
2456  		}
2457  
2458  		switch (m) {
2459  		case 0:
2460  		default:
2461  			break;
2462  		case 1:
2463  			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2464  			break;
2465  		case 2:
2466  			printk(" %2.2X%2.2X",
2467  			       (unsigned)s[i + (j * 4)],
2468  			       (unsigned)s[i + (j * 4) + 1]);
2469  			break;
2470  		case 3:
2471  			printk(" %2.2X%2.2X%2.2X",
2472  			       (unsigned)s[i + (j * 4) + 1],
2473  			       (unsigned)s[i + (j * 4) + 2],
2474  			       (unsigned)s[i + (j * 4) + 3]);
2475  			break;
2476  		}
2477  
2478  		printk("\n");
2479  	}
2480  }
2481  
2482  /*
2483   * asc_prt_asc_scsi_q()
2484   */
asc_prt_asc_scsi_q(ASC_SCSI_Q * q)2485  static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2486  {
2487  	ASC_SG_HEAD *sgp;
2488  	int i;
2489  
2490  	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2491  
2492  	printk
2493  	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2494  	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2495  	     q->q2.tag_code);
2496  
2497  	printk
2498  	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2499  	     (ulong)le32_to_cpu(q->q1.data_addr),
2500  	     (ulong)le32_to_cpu(q->q1.data_cnt),
2501  	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2502  
2503  	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2504  	       (ulong)q->cdbptr, q->q2.cdb_len,
2505  	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2506  
2507  	if (q->sg_head) {
2508  		sgp = q->sg_head;
2509  		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2510  		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2511  		       sgp->queue_cnt);
2512  		for (i = 0; i < sgp->entry_cnt; i++) {
2513  			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2514  			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2515  			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2516  		}
2517  
2518  	}
2519  }
2520  
2521  /*
2522   * asc_prt_asc_qdone_info()
2523   */
asc_prt_asc_qdone_info(ASC_QDONE_INFO * q)2524  static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2525  {
2526  	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2527  	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2528  	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2529  	       q->d2.tag_code);
2530  	printk
2531  	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2532  	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2533  }
2534  
2535  /*
2536   * asc_prt_adv_sgblock()
2537   *
2538   * Display an ADV_SG_BLOCK structure.
2539   */
asc_prt_adv_sgblock(int sgblockno,ADV_SG_BLOCK * b)2540  static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2541  {
2542  	int i;
2543  
2544  	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2545  	       (ulong)b, sgblockno);
2546  	printk("  sg_cnt %u, sg_ptr 0x%x\n",
2547  	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2548  	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2549  	if (b->sg_ptr != 0)
2550  		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2551  	for (i = 0; i < b->sg_cnt; i++) {
2552  		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2553  		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2554  		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2555  	}
2556  }
2557  
2558  /*
2559   * asc_prt_adv_scsi_req_q()
2560   *
2561   * Display an ADV_SCSI_REQ_Q structure.
2562   */
asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q * q)2563  static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2564  {
2565  	int sg_blk_cnt;
2566  	struct adv_sg_block *sg_ptr;
2567  	adv_sgblk_t *sgblkp;
2568  
2569  	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2570  
2571  	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2572  	       q->target_id, q->target_lun, q->srb_tag);
2573  
2574  	printk("  cntl 0x%x, data_addr 0x%lx\n",
2575  	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
2576  
2577  	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2578  	       (ulong)le32_to_cpu(q->data_cnt),
2579  	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2580  
2581  	printk
2582  	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2583  	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2584  
2585  	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2586  	       q->sg_working_ix, q->target_cmd);
2587  
2588  	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2589  	       (ulong)le32_to_cpu(q->scsiq_rptr),
2590  	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2591  
2592  	/* Display the request's ADV_SG_BLOCK structures. */
2593  	if (q->sg_list_ptr != NULL) {
2594  		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2595  		sg_blk_cnt = 0;
2596  		while (sgblkp) {
2597  			sg_ptr = &sgblkp->sg_block;
2598  			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2599  			if (sg_ptr->sg_ptr == 0) {
2600  				break;
2601  			}
2602  			sgblkp = sgblkp->next_sgblkp;
2603  			sg_blk_cnt++;
2604  		}
2605  	}
2606  }
2607  #endif /* ADVANSYS_DEBUG */
2608  
2609  /*
2610   * advansys_info()
2611   *
2612   * Return suitable for printing on the console with the argument
2613   * adapter's configuration information.
2614   *
2615   * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2616   * otherwise the static 'info' array will be overrun.
2617   */
advansys_info(struct Scsi_Host * shost)2618  static const char *advansys_info(struct Scsi_Host *shost)
2619  {
2620  	static char info[ASC_INFO_SIZE];
2621  	struct asc_board *boardp = shost_priv(shost);
2622  	ASC_DVC_VAR *asc_dvc_varp;
2623  	ADV_DVC_VAR *adv_dvc_varp;
2624  	char *busname;
2625  	char *widename = NULL;
2626  
2627  	if (ASC_NARROW_BOARD(boardp)) {
2628  		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2629  		ASC_DBG(1, "begin\n");
2630  
2631  		if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2632  			busname = "VL";
2633  		} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2634  			busname = "EISA";
2635  		} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2636  			if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2637  			    == ASC_IS_PCI_ULTRA) {
2638  				busname = "PCI Ultra";
2639  			} else {
2640  				busname = "PCI";
2641  			}
2642  		} else {
2643  			busname = "?";
2644  			shost_printk(KERN_ERR, shost, "unknown bus "
2645  				"type %d\n", asc_dvc_varp->bus_type);
2646  		}
2647  		sprintf(info,
2648  			"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2649  			ASC_VERSION, busname, (ulong)shost->io_port,
2650  			(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2651  			boardp->irq);
2652  	} else {
2653  		/*
2654  		 * Wide Adapter Information
2655  		 *
2656  		 * Memory-mapped I/O is used instead of I/O space to access
2657  		 * the adapter, but display the I/O Port range. The Memory
2658  		 * I/O address is displayed through the driver /proc file.
2659  		 */
2660  		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2661  		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2662  			widename = "Ultra-Wide";
2663  		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2664  			widename = "Ultra2-Wide";
2665  		} else {
2666  			widename = "Ultra3-Wide";
2667  		}
2668  		sprintf(info,
2669  			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2670  			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2671  			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2672  	}
2673  	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2674  	ASC_DBG(1, "end\n");
2675  	return info;
2676  }
2677  
2678  #ifdef CONFIG_PROC_FS
2679  
2680  /*
2681   * asc_prt_board_devices()
2682   *
2683   * Print driver information for devices attached to the board.
2684   */
asc_prt_board_devices(struct seq_file * m,struct Scsi_Host * shost)2685  static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2686  {
2687  	struct asc_board *boardp = shost_priv(shost);
2688  	int chip_scsi_id;
2689  	int i;
2690  
2691  	seq_printf(m,
2692  		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2693  		   shost->host_no);
2694  
2695  	if (ASC_NARROW_BOARD(boardp)) {
2696  		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2697  	} else {
2698  		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2699  	}
2700  
2701  	seq_puts(m, "Target IDs Detected:");
2702  	for (i = 0; i <= ADV_MAX_TID; i++) {
2703  		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2704  			seq_printf(m, " %X,", i);
2705  	}
2706  	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2707  }
2708  
2709  /*
2710   * Display Wide Board BIOS Information.
2711   */
asc_prt_adv_bios(struct seq_file * m,struct Scsi_Host * shost)2712  static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2713  {
2714  	struct asc_board *boardp = shost_priv(shost);
2715  	ushort major, minor, letter;
2716  
2717  	seq_puts(m, "\nROM BIOS Version: ");
2718  
2719  	/*
2720  	 * If the BIOS saved a valid signature, then fill in
2721  	 * the BIOS code segment base address.
2722  	 */
2723  	if (boardp->bios_signature != 0x55AA) {
2724  		seq_puts(m, "Disabled or Pre-3.1\n"
2725  			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2726  			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2727  	} else {
2728  		major = (boardp->bios_version >> 12) & 0xF;
2729  		minor = (boardp->bios_version >> 8) & 0xF;
2730  		letter = (boardp->bios_version & 0xFF);
2731  
2732  		seq_printf(m, "%d.%d%c\n",
2733  				   major, minor,
2734  				   letter >= 26 ? '?' : letter + 'A');
2735  		/*
2736  		 * Current available ROM BIOS release is 3.1I for UW
2737  		 * and 3.2I for U2W. This code doesn't differentiate
2738  		 * UW and U2W boards.
2739  		 */
2740  		if (major < 3 || (major <= 3 && minor < 1) ||
2741  		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2742  			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2743  				"ftp://ftp.connectcom.net/pub\n");
2744  		}
2745  	}
2746  }
2747  
2748  /*
2749   * Add serial number to information bar if signature AAh
2750   * is found in at bit 15-9 (7 bits) of word 1.
2751   *
2752   * Serial Number consists fo 12 alpha-numeric digits.
2753   *
2754   *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2755   *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2756   *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2757   *       5 - Product revision (A-J)    Word0:  "         "
2758   *
2759   *           Signature                 Word1: 15-9 (7 bits)
2760   *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2761   *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2762   *
2763   *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2764   *
2765   * Note 1: Only production cards will have a serial number.
2766   *
2767   * Note 2: Signature is most significant 7 bits (0xFE).
2768   *
2769   * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2770   */
asc_get_eeprom_string(ushort * serialnum,uchar * cp)2771  static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2772  {
2773  	ushort w, num;
2774  
2775  	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2776  		return ASC_FALSE;
2777  	} else {
2778  		/*
2779  		 * First word - 6 digits.
2780  		 */
2781  		w = serialnum[0];
2782  
2783  		/* Product type - 1st digit. */
2784  		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2785  			/* Product type is P=Prototype */
2786  			*cp += 0x8;
2787  		}
2788  		cp++;
2789  
2790  		/* Manufacturing location - 2nd digit. */
2791  		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2792  
2793  		/* Product ID - 3rd, 4th digits. */
2794  		num = w & 0x3FF;
2795  		*cp++ = '0' + (num / 100);
2796  		num %= 100;
2797  		*cp++ = '0' + (num / 10);
2798  
2799  		/* Product revision - 5th digit. */
2800  		*cp++ = 'A' + (num % 10);
2801  
2802  		/*
2803  		 * Second word
2804  		 */
2805  		w = serialnum[1];
2806  
2807  		/*
2808  		 * Year - 6th digit.
2809  		 *
2810  		 * If bit 15 of third word is set, then the
2811  		 * last digit of the year is greater than 7.
2812  		 */
2813  		if (serialnum[2] & 0x8000) {
2814  			*cp++ = '8' + ((w & 0x1C0) >> 6);
2815  		} else {
2816  			*cp++ = '0' + ((w & 0x1C0) >> 6);
2817  		}
2818  
2819  		/* Week of year - 7th, 8th digits. */
2820  		num = w & 0x003F;
2821  		*cp++ = '0' + num / 10;
2822  		num %= 10;
2823  		*cp++ = '0' + num;
2824  
2825  		/*
2826  		 * Third word
2827  		 */
2828  		w = serialnum[2] & 0x7FFF;
2829  
2830  		/* Serial number - 9th digit. */
2831  		*cp++ = 'A' + (w / 1000);
2832  
2833  		/* 10th, 11th, 12th digits. */
2834  		num = w % 1000;
2835  		*cp++ = '0' + num / 100;
2836  		num %= 100;
2837  		*cp++ = '0' + num / 10;
2838  		num %= 10;
2839  		*cp++ = '0' + num;
2840  
2841  		*cp = '\0';	/* Null Terminate the string. */
2842  		return ASC_TRUE;
2843  	}
2844  }
2845  
2846  /*
2847   * asc_prt_asc_board_eeprom()
2848   *
2849   * Print board EEPROM configuration.
2850   */
asc_prt_asc_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2851  static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2852  {
2853  	struct asc_board *boardp = shost_priv(shost);
2854  	ASCEEP_CONFIG *ep;
2855  	int i;
2856  	uchar serialstr[13];
2857  
2858  	ep = &boardp->eep_config.asc_eep;
2859  
2860  	seq_printf(m,
2861  		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2862  		   shost->host_no);
2863  
2864  	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2865  	    == ASC_TRUE)
2866  		seq_printf(m, " Serial Number: %s\n", serialstr);
2867  	else if (ep->adapter_info[5] == 0xBB)
2868  		seq_puts(m,
2869  			 " Default Settings Used for EEPROM-less Adapter.\n");
2870  	else
2871  		seq_puts(m, " Serial Number Signature Not Present.\n");
2872  
2873  	seq_printf(m,
2874  		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2875  		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2876  		   ep->max_tag_qng);
2877  
2878  	seq_printf(m,
2879  		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2880  
2881  	seq_puts(m, " Target ID:           ");
2882  	for (i = 0; i <= ASC_MAX_TID; i++)
2883  		seq_printf(m, " %d", i);
2884  
2885  	seq_puts(m, "\n Disconnects:         ");
2886  	for (i = 0; i <= ASC_MAX_TID; i++)
2887  		seq_printf(m, " %c",
2888  			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2889  
2890  	seq_puts(m, "\n Command Queuing:     ");
2891  	for (i = 0; i <= ASC_MAX_TID; i++)
2892  		seq_printf(m, " %c",
2893  			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2894  
2895  	seq_puts(m, "\n Start Motor:         ");
2896  	for (i = 0; i <= ASC_MAX_TID; i++)
2897  		seq_printf(m, " %c",
2898  			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2899  
2900  	seq_puts(m, "\n Synchronous Transfer:");
2901  	for (i = 0; i <= ASC_MAX_TID; i++)
2902  		seq_printf(m, " %c",
2903  			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2904  	seq_putc(m, '\n');
2905  }
2906  
2907  /*
2908   * asc_prt_adv_board_eeprom()
2909   *
2910   * Print board EEPROM configuration.
2911   */
asc_prt_adv_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2912  static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2913  {
2914  	struct asc_board *boardp = shost_priv(shost);
2915  	ADV_DVC_VAR *adv_dvc_varp;
2916  	int i;
2917  	char *termstr;
2918  	uchar serialstr[13];
2919  	ADVEEP_3550_CONFIG *ep_3550 = NULL;
2920  	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2921  	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2922  	ushort word;
2923  	ushort *wordp;
2924  	ushort sdtr_speed = 0;
2925  
2926  	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2927  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2928  		ep_3550 = &boardp->eep_config.adv_3550_eep;
2929  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2930  		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2931  	} else {
2932  		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2933  	}
2934  
2935  	seq_printf(m,
2936  		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2937  		   shost->host_no);
2938  
2939  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2940  		wordp = &ep_3550->serial_number_word1;
2941  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2942  		wordp = &ep_38C0800->serial_number_word1;
2943  	} else {
2944  		wordp = &ep_38C1600->serial_number_word1;
2945  	}
2946  
2947  	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2948  		seq_printf(m, " Serial Number: %s\n", serialstr);
2949  	else
2950  		seq_puts(m, " Serial Number Signature Not Present.\n");
2951  
2952  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2953  		seq_printf(m,
2954  			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2955  			   ep_3550->adapter_scsi_id,
2956  			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2957  	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2958  		seq_printf(m,
2959  			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2960  			   ep_38C0800->adapter_scsi_id,
2961  			   ep_38C0800->max_host_qng,
2962  			   ep_38C0800->max_dvc_qng);
2963  	else
2964  		seq_printf(m,
2965  			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2966  			   ep_38C1600->adapter_scsi_id,
2967  			   ep_38C1600->max_host_qng,
2968  			   ep_38C1600->max_dvc_qng);
2969  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2970  		word = ep_3550->termination;
2971  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2972  		word = ep_38C0800->termination_lvd;
2973  	} else {
2974  		word = ep_38C1600->termination_lvd;
2975  	}
2976  	switch (word) {
2977  	case 1:
2978  		termstr = "Low Off/High Off";
2979  		break;
2980  	case 2:
2981  		termstr = "Low Off/High On";
2982  		break;
2983  	case 3:
2984  		termstr = "Low On/High On";
2985  		break;
2986  	default:
2987  	case 0:
2988  		termstr = "Automatic";
2989  		break;
2990  	}
2991  
2992  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2993  		seq_printf(m,
2994  			   " termination: %u (%s), bios_ctrl: 0x%x\n",
2995  			   ep_3550->termination, termstr,
2996  			   ep_3550->bios_ctrl);
2997  	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2998  		seq_printf(m,
2999  			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3000  			   ep_38C0800->termination_lvd, termstr,
3001  			   ep_38C0800->bios_ctrl);
3002  	else
3003  		seq_printf(m,
3004  			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3005  			   ep_38C1600->termination_lvd, termstr,
3006  			   ep_38C1600->bios_ctrl);
3007  
3008  	seq_puts(m, " Target ID:           ");
3009  	for (i = 0; i <= ADV_MAX_TID; i++)
3010  		seq_printf(m, " %X", i);
3011  	seq_putc(m, '\n');
3012  
3013  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3014  		word = ep_3550->disc_enable;
3015  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3016  		word = ep_38C0800->disc_enable;
3017  	} else {
3018  		word = ep_38C1600->disc_enable;
3019  	}
3020  	seq_puts(m, " Disconnects:         ");
3021  	for (i = 0; i <= ADV_MAX_TID; i++)
3022  		seq_printf(m, " %c",
3023  			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3024  	seq_putc(m, '\n');
3025  
3026  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3027  		word = ep_3550->tagqng_able;
3028  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3029  		word = ep_38C0800->tagqng_able;
3030  	} else {
3031  		word = ep_38C1600->tagqng_able;
3032  	}
3033  	seq_puts(m, " Command Queuing:     ");
3034  	for (i = 0; i <= ADV_MAX_TID; i++)
3035  		seq_printf(m, " %c",
3036  			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3037  	seq_putc(m, '\n');
3038  
3039  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3040  		word = ep_3550->start_motor;
3041  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3042  		word = ep_38C0800->start_motor;
3043  	} else {
3044  		word = ep_38C1600->start_motor;
3045  	}
3046  	seq_puts(m, " Start Motor:         ");
3047  	for (i = 0; i <= ADV_MAX_TID; i++)
3048  		seq_printf(m, " %c",
3049  			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3050  	seq_putc(m, '\n');
3051  
3052  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3053  		seq_puts(m, " Synchronous Transfer:");
3054  		for (i = 0; i <= ADV_MAX_TID; i++)
3055  			seq_printf(m, " %c",
3056  				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3057  				   'Y' : 'N');
3058  		seq_putc(m, '\n');
3059  	}
3060  
3061  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3062  		seq_puts(m, " Ultra Transfer:      ");
3063  		for (i = 0; i <= ADV_MAX_TID; i++)
3064  			seq_printf(m, " %c",
3065  				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3066  				   ? 'Y' : 'N');
3067  		seq_putc(m, '\n');
3068  	}
3069  
3070  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3071  		word = ep_3550->wdtr_able;
3072  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3073  		word = ep_38C0800->wdtr_able;
3074  	} else {
3075  		word = ep_38C1600->wdtr_able;
3076  	}
3077  	seq_puts(m, " Wide Transfer:       ");
3078  	for (i = 0; i <= ADV_MAX_TID; i++)
3079  		seq_printf(m, " %c",
3080  			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3081  	seq_putc(m, '\n');
3082  
3083  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3084  	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3085  		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3086  		for (i = 0; i <= ADV_MAX_TID; i++) {
3087  			char *speed_str;
3088  
3089  			if (i == 0) {
3090  				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3091  			} else if (i == 4) {
3092  				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3093  			} else if (i == 8) {
3094  				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3095  			} else if (i == 12) {
3096  				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3097  			}
3098  			switch (sdtr_speed & ADV_MAX_TID) {
3099  			case 0:
3100  				speed_str = "Off";
3101  				break;
3102  			case 1:
3103  				speed_str = "  5";
3104  				break;
3105  			case 2:
3106  				speed_str = " 10";
3107  				break;
3108  			case 3:
3109  				speed_str = " 20";
3110  				break;
3111  			case 4:
3112  				speed_str = " 40";
3113  				break;
3114  			case 5:
3115  				speed_str = " 80";
3116  				break;
3117  			default:
3118  				speed_str = "Unk";
3119  				break;
3120  			}
3121  			seq_printf(m, "%X:%s ", i, speed_str);
3122  			if (i == 7)
3123  				seq_puts(m, "\n  ");
3124  			sdtr_speed >>= 4;
3125  		}
3126  		seq_putc(m, '\n');
3127  	}
3128  }
3129  
3130  /*
3131   * asc_prt_driver_conf()
3132   */
asc_prt_driver_conf(struct seq_file * m,struct Scsi_Host * shost)3133  static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3134  {
3135  	struct asc_board *boardp = shost_priv(shost);
3136  
3137  	seq_printf(m,
3138  		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3139  		shost->host_no);
3140  
3141  	seq_printf(m,
3142  		   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3143  		   scsi_host_busy(shost), shost->max_id,
3144  		   shost->max_lun, shost->max_channel);
3145  
3146  	seq_printf(m,
3147  		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3148  		   shost->unique_id, shost->can_queue, shost->this_id,
3149  		   shost->sg_tablesize, shost->cmd_per_lun);
3150  
3151  	seq_printf(m,
3152  		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3153  		   boardp->flags, shost->last_reset, jiffies,
3154  		   boardp->asc_n_io_port);
3155  
3156  	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3157  }
3158  
3159  /*
3160   * asc_prt_asc_board_info()
3161   *
3162   * Print dynamic board configuration information.
3163   */
asc_prt_asc_board_info(struct seq_file * m,struct Scsi_Host * shost)3164  static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3165  {
3166  	struct asc_board *boardp = shost_priv(shost);
3167  	int chip_scsi_id;
3168  	ASC_DVC_VAR *v;
3169  	ASC_DVC_CFG *c;
3170  	int i;
3171  	int renegotiate = 0;
3172  
3173  	v = &boardp->dvc_var.asc_dvc_var;
3174  	c = &boardp->dvc_cfg.asc_dvc_cfg;
3175  	chip_scsi_id = c->chip_scsi_id;
3176  
3177  	seq_printf(m,
3178  		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3179  		   shost->host_no);
3180  
3181  	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3182  		   "mcode_version 0x%x, err_code %u\n",
3183  		   c->chip_version, c->mcode_date, c->mcode_version,
3184  		   v->err_code);
3185  
3186  	/* Current number of commands waiting for the host. */
3187  	seq_printf(m,
3188  		   " Total Command Pending: %d\n", v->cur_total_qng);
3189  
3190  	seq_puts(m, " Command Queuing:");
3191  	for (i = 0; i <= ASC_MAX_TID; i++) {
3192  		if ((chip_scsi_id == i) ||
3193  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3194  			continue;
3195  		}
3196  		seq_printf(m, " %X:%c",
3197  			   i,
3198  			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3199  	}
3200  
3201  	/* Current number of commands waiting for a device. */
3202  	seq_puts(m, "\n Command Queue Pending:");
3203  	for (i = 0; i <= ASC_MAX_TID; i++) {
3204  		if ((chip_scsi_id == i) ||
3205  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3206  			continue;
3207  		}
3208  		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3209  	}
3210  
3211  	/* Current limit on number of commands that can be sent to a device. */
3212  	seq_puts(m, "\n Command Queue Limit:");
3213  	for (i = 0; i <= ASC_MAX_TID; i++) {
3214  		if ((chip_scsi_id == i) ||
3215  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3216  			continue;
3217  		}
3218  		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3219  	}
3220  
3221  	/* Indicate whether the device has returned queue full status. */
3222  	seq_puts(m, "\n Command Queue Full:");
3223  	for (i = 0; i <= ASC_MAX_TID; i++) {
3224  		if ((chip_scsi_id == i) ||
3225  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3226  			continue;
3227  		}
3228  		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3229  			seq_printf(m, " %X:Y-%d",
3230  				   i, boardp->queue_full_cnt[i]);
3231  		else
3232  			seq_printf(m, " %X:N", i);
3233  	}
3234  
3235  	seq_puts(m, "\n Synchronous Transfer:");
3236  	for (i = 0; i <= ASC_MAX_TID; i++) {
3237  		if ((chip_scsi_id == i) ||
3238  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3239  			continue;
3240  		}
3241  		seq_printf(m, " %X:%c",
3242  			   i,
3243  			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3244  	}
3245  	seq_putc(m, '\n');
3246  
3247  	for (i = 0; i <= ASC_MAX_TID; i++) {
3248  		uchar syn_period_ix;
3249  
3250  		if ((chip_scsi_id == i) ||
3251  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3252  		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3253  			continue;
3254  		}
3255  
3256  		seq_printf(m, "  %X:", i);
3257  
3258  		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3259  			seq_puts(m, " Asynchronous");
3260  		} else {
3261  			syn_period_ix =
3262  			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3263  							   1);
3264  
3265  			seq_printf(m,
3266  				   " Transfer Period Factor: %d (%d.%d Mhz),",
3267  				   v->sdtr_period_tbl[syn_period_ix],
3268  				   250 / v->sdtr_period_tbl[syn_period_ix],
3269  				   ASC_TENTHS(250,
3270  					      v->sdtr_period_tbl[syn_period_ix]));
3271  
3272  			seq_printf(m, " REQ/ACK Offset: %d",
3273  				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3274  		}
3275  
3276  		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3277  			seq_puts(m, "*\n");
3278  			renegotiate = 1;
3279  		} else {
3280  			seq_putc(m, '\n');
3281  		}
3282  	}
3283  
3284  	if (renegotiate) {
3285  		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3286  	}
3287  }
3288  
3289  /*
3290   * asc_prt_adv_board_info()
3291   *
3292   * Print dynamic board configuration information.
3293   */
asc_prt_adv_board_info(struct seq_file * m,struct Scsi_Host * shost)3294  static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3295  {
3296  	struct asc_board *boardp = shost_priv(shost);
3297  	int i;
3298  	ADV_DVC_VAR *v;
3299  	ADV_DVC_CFG *c;
3300  	AdvPortAddr iop_base;
3301  	ushort chip_scsi_id;
3302  	ushort lramword;
3303  	uchar lrambyte;
3304  	ushort tagqng_able;
3305  	ushort sdtr_able, wdtr_able;
3306  	ushort wdtr_done, sdtr_done;
3307  	ushort period = 0;
3308  	int renegotiate = 0;
3309  
3310  	v = &boardp->dvc_var.adv_dvc_var;
3311  	c = &boardp->dvc_cfg.adv_dvc_cfg;
3312  	iop_base = v->iop_base;
3313  	chip_scsi_id = v->chip_scsi_id;
3314  
3315  	seq_printf(m,
3316  		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3317  		   shost->host_no);
3318  
3319  	seq_printf(m,
3320  		   " iop_base 0x%p, cable_detect: %X, err_code %u\n",
3321  		   v->iop_base,
3322  		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3323  		   v->err_code);
3324  
3325  	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3326  		   "mcode_version 0x%x\n", c->chip_version,
3327  		   c->mcode_date, c->mcode_version);
3328  
3329  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3330  	seq_puts(m, " Queuing Enabled:");
3331  	for (i = 0; i <= ADV_MAX_TID; i++) {
3332  		if ((chip_scsi_id == i) ||
3333  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3334  			continue;
3335  		}
3336  
3337  		seq_printf(m, " %X:%c",
3338  			   i,
3339  			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3340  	}
3341  
3342  	seq_puts(m, "\n Queue Limit:");
3343  	for (i = 0; i <= ADV_MAX_TID; i++) {
3344  		if ((chip_scsi_id == i) ||
3345  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3346  			continue;
3347  		}
3348  
3349  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3350  				lrambyte);
3351  
3352  		seq_printf(m, " %X:%d", i, lrambyte);
3353  	}
3354  
3355  	seq_puts(m, "\n Command Pending:");
3356  	for (i = 0; i <= ADV_MAX_TID; i++) {
3357  		if ((chip_scsi_id == i) ||
3358  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3359  			continue;
3360  		}
3361  
3362  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3363  				lrambyte);
3364  
3365  		seq_printf(m, " %X:%d", i, lrambyte);
3366  	}
3367  	seq_putc(m, '\n');
3368  
3369  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3370  	seq_puts(m, " Wide Enabled:");
3371  	for (i = 0; i <= ADV_MAX_TID; i++) {
3372  		if ((chip_scsi_id == i) ||
3373  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3374  			continue;
3375  		}
3376  
3377  		seq_printf(m, " %X:%c",
3378  			   i,
3379  			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3380  	}
3381  	seq_putc(m, '\n');
3382  
3383  	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3384  	seq_puts(m, " Transfer Bit Width:");
3385  	for (i = 0; i <= ADV_MAX_TID; i++) {
3386  		if ((chip_scsi_id == i) ||
3387  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3388  			continue;
3389  		}
3390  
3391  		AdvReadWordLram(iop_base,
3392  				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3393  				lramword);
3394  
3395  		seq_printf(m, " %X:%d",
3396  			   i, (lramword & 0x8000) ? 16 : 8);
3397  
3398  		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3399  		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3400  			seq_putc(m, '*');
3401  			renegotiate = 1;
3402  		}
3403  	}
3404  	seq_putc(m, '\n');
3405  
3406  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3407  	seq_puts(m, " Synchronous Enabled:");
3408  	for (i = 0; i <= ADV_MAX_TID; i++) {
3409  		if ((chip_scsi_id == i) ||
3410  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3411  			continue;
3412  		}
3413  
3414  		seq_printf(m, " %X:%c",
3415  			   i,
3416  			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3417  	}
3418  	seq_putc(m, '\n');
3419  
3420  	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3421  	for (i = 0; i <= ADV_MAX_TID; i++) {
3422  
3423  		AdvReadWordLram(iop_base,
3424  				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3425  				lramword);
3426  		lramword &= ~0x8000;
3427  
3428  		if ((chip_scsi_id == i) ||
3429  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3430  		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3431  			continue;
3432  		}
3433  
3434  		seq_printf(m, "  %X:", i);
3435  
3436  		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3437  			seq_puts(m, " Asynchronous");
3438  		} else {
3439  			seq_puts(m, " Transfer Period Factor: ");
3440  
3441  			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3442  				seq_puts(m, "9 (80.0 Mhz),");
3443  			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3444  				seq_puts(m, "10 (40.0 Mhz),");
3445  			} else {	/* 20 Mhz or below. */
3446  
3447  				period = (((lramword >> 8) * 25) + 50) / 4;
3448  
3449  				if (period == 0) {	/* Should never happen. */
3450  					seq_printf(m, "%d (? Mhz), ", period);
3451  				} else {
3452  					seq_printf(m,
3453  						   "%d (%d.%d Mhz),",
3454  						   period, 250 / period,
3455  						   ASC_TENTHS(250, period));
3456  				}
3457  			}
3458  
3459  			seq_printf(m, " REQ/ACK Offset: %d",
3460  				   lramword & 0x1F);
3461  		}
3462  
3463  		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3464  			seq_puts(m, "*\n");
3465  			renegotiate = 1;
3466  		} else {
3467  			seq_putc(m, '\n');
3468  		}
3469  	}
3470  
3471  	if (renegotiate) {
3472  		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3473  	}
3474  }
3475  
3476  #ifdef ADVANSYS_STATS
3477  /*
3478   * asc_prt_board_stats()
3479   */
asc_prt_board_stats(struct seq_file * m,struct Scsi_Host * shost)3480  static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3481  {
3482  	struct asc_board *boardp = shost_priv(shost);
3483  	struct asc_stats *s = &boardp->asc_stats;
3484  
3485  	seq_printf(m,
3486  		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3487  		   shost->host_no);
3488  
3489  	seq_printf(m,
3490  		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3491  		   s->queuecommand, s->reset, s->biosparam,
3492  		   s->interrupt);
3493  
3494  	seq_printf(m,
3495  		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3496  		   s->callback, s->done, s->build_error,
3497  		   s->adv_build_noreq, s->adv_build_nosg);
3498  
3499  	seq_printf(m,
3500  		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3501  		   s->exe_noerror, s->exe_busy, s->exe_error,
3502  		   s->exe_unknown);
3503  
3504  	/*
3505  	 * Display data transfer statistics.
3506  	 */
3507  	if (s->xfer_cnt > 0) {
3508  		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3509  			   s->xfer_cnt, s->xfer_elem);
3510  
3511  		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3512  			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3513  
3514  		/* Scatter gather transfer statistics */
3515  		seq_printf(m, " avg_num_elem %u.%01u, ",
3516  			   s->xfer_elem / s->xfer_cnt,
3517  			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3518  
3519  		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3520  			   (s->xfer_sect / 2) / s->xfer_elem,
3521  			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3522  
3523  		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3524  			   (s->xfer_sect / 2) / s->xfer_cnt,
3525  			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3526  	}
3527  }
3528  #endif /* ADVANSYS_STATS */
3529  
3530  /*
3531   * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3532   *
3533   * m: seq_file to print into
3534   * shost: Scsi_Host
3535   *
3536   * Return the number of bytes read from or written to a
3537   * /proc/scsi/advansys/[0...] file.
3538   */
3539  static int
advansys_show_info(struct seq_file * m,struct Scsi_Host * shost)3540  advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3541  {
3542  	struct asc_board *boardp = shost_priv(shost);
3543  
3544  	ASC_DBG(1, "begin\n");
3545  
3546  	/*
3547  	 * User read of /proc/scsi/advansys/[0...] file.
3548  	 */
3549  
3550  	/*
3551  	 * Get board configuration information.
3552  	 *
3553  	 * advansys_info() returns the board string from its own static buffer.
3554  	 */
3555  	/* Copy board information. */
3556  	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3557  	/*
3558  	 * Display Wide Board BIOS Information.
3559  	 */
3560  	if (!ASC_NARROW_BOARD(boardp))
3561  		asc_prt_adv_bios(m, shost);
3562  
3563  	/*
3564  	 * Display driver information for each device attached to the board.
3565  	 */
3566  	asc_prt_board_devices(m, shost);
3567  
3568  	/*
3569  	 * Display EEPROM configuration for the board.
3570  	 */
3571  	if (ASC_NARROW_BOARD(boardp))
3572  		asc_prt_asc_board_eeprom(m, shost);
3573  	else
3574  		asc_prt_adv_board_eeprom(m, shost);
3575  
3576  	/*
3577  	 * Display driver configuration and information for the board.
3578  	 */
3579  	asc_prt_driver_conf(m, shost);
3580  
3581  #ifdef ADVANSYS_STATS
3582  	/*
3583  	 * Display driver statistics for the board.
3584  	 */
3585  	asc_prt_board_stats(m, shost);
3586  #endif /* ADVANSYS_STATS */
3587  
3588  	/*
3589  	 * Display Asc Library dynamic configuration information
3590  	 * for the board.
3591  	 */
3592  	if (ASC_NARROW_BOARD(boardp))
3593  		asc_prt_asc_board_info(m, shost);
3594  	else
3595  		asc_prt_adv_board_info(m, shost);
3596  	return 0;
3597  }
3598  #endif /* CONFIG_PROC_FS */
3599  
asc_scsi_done(struct scsi_cmnd * scp)3600  static void asc_scsi_done(struct scsi_cmnd *scp)
3601  {
3602  	scsi_dma_unmap(scp);
3603  	ASC_STATS(scp->device->host, done);
3604  	scsi_done(scp);
3605  }
3606  
AscSetBank(PortAddr iop_base,uchar bank)3607  static void AscSetBank(PortAddr iop_base, uchar bank)
3608  {
3609  	uchar val;
3610  
3611  	val = AscGetChipControl(iop_base) &
3612  	    (~
3613  	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3614  	      CC_CHIP_RESET));
3615  	if (bank == 1) {
3616  		val |= CC_BANK_ONE;
3617  	} else if (bank == 2) {
3618  		val |= CC_DIAG | CC_BANK_ONE;
3619  	} else {
3620  		val &= ~CC_BANK_ONE;
3621  	}
3622  	AscSetChipControl(iop_base, val);
3623  }
3624  
AscSetChipIH(PortAddr iop_base,ushort ins_code)3625  static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3626  {
3627  	AscSetBank(iop_base, 1);
3628  	AscWriteChipIH(iop_base, ins_code);
3629  	AscSetBank(iop_base, 0);
3630  }
3631  
AscStartChip(PortAddr iop_base)3632  static int AscStartChip(PortAddr iop_base)
3633  {
3634  	AscSetChipControl(iop_base, 0);
3635  	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3636  		return (0);
3637  	}
3638  	return (1);
3639  }
3640  
AscStopChip(PortAddr iop_base)3641  static bool AscStopChip(PortAddr iop_base)
3642  {
3643  	uchar cc_val;
3644  
3645  	cc_val =
3646  	    AscGetChipControl(iop_base) &
3647  	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3648  	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3649  	AscSetChipIH(iop_base, INS_HALT);
3650  	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3651  	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3652  		return false;
3653  	}
3654  	return true;
3655  }
3656  
AscIsChipHalted(PortAddr iop_base)3657  static bool AscIsChipHalted(PortAddr iop_base)
3658  {
3659  	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3660  		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3661  			return true;
3662  		}
3663  	}
3664  	return false;
3665  }
3666  
AscResetChipAndScsiBus(ASC_DVC_VAR * asc_dvc)3667  static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3668  {
3669  	PortAddr iop_base;
3670  	int i = 10;
3671  
3672  	iop_base = asc_dvc->iop_base;
3673  	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3674  	       && (i-- > 0)) {
3675  		mdelay(100);
3676  	}
3677  	AscStopChip(iop_base);
3678  	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3679  	udelay(60);
3680  	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3681  	AscSetChipIH(iop_base, INS_HALT);
3682  	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3683  	AscSetChipControl(iop_base, CC_HALT);
3684  	mdelay(200);
3685  	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3686  	AscSetChipStatus(iop_base, 0);
3687  	return (AscIsChipHalted(iop_base));
3688  }
3689  
AscFindSignature(PortAddr iop_base)3690  static int AscFindSignature(PortAddr iop_base)
3691  {
3692  	ushort sig_word;
3693  
3694  	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3695  		 iop_base, AscGetChipSignatureByte(iop_base));
3696  	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3697  		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3698  			 iop_base, AscGetChipSignatureWord(iop_base));
3699  		sig_word = AscGetChipSignatureWord(iop_base);
3700  		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3701  		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3702  			return (1);
3703  		}
3704  	}
3705  	return (0);
3706  }
3707  
AscEnableInterrupt(PortAddr iop_base)3708  static void AscEnableInterrupt(PortAddr iop_base)
3709  {
3710  	ushort cfg;
3711  
3712  	cfg = AscGetChipCfgLsw(iop_base);
3713  	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3714  }
3715  
AscDisableInterrupt(PortAddr iop_base)3716  static void AscDisableInterrupt(PortAddr iop_base)
3717  {
3718  	ushort cfg;
3719  
3720  	cfg = AscGetChipCfgLsw(iop_base);
3721  	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3722  }
3723  
AscReadLramByte(PortAddr iop_base,ushort addr)3724  static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3725  {
3726  	unsigned char byte_data;
3727  	unsigned short word_data;
3728  
3729  	if (isodd_word(addr)) {
3730  		AscSetChipLramAddr(iop_base, addr - 1);
3731  		word_data = AscGetChipLramData(iop_base);
3732  		byte_data = (word_data >> 8) & 0xFF;
3733  	} else {
3734  		AscSetChipLramAddr(iop_base, addr);
3735  		word_data = AscGetChipLramData(iop_base);
3736  		byte_data = word_data & 0xFF;
3737  	}
3738  	return byte_data;
3739  }
3740  
AscReadLramWord(PortAddr iop_base,ushort addr)3741  static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3742  {
3743  	ushort word_data;
3744  
3745  	AscSetChipLramAddr(iop_base, addr);
3746  	word_data = AscGetChipLramData(iop_base);
3747  	return (word_data);
3748  }
3749  
3750  static void
AscMemWordSetLram(PortAddr iop_base,ushort s_addr,ushort set_wval,int words)3751  AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3752  {
3753  	int i;
3754  
3755  	AscSetChipLramAddr(iop_base, s_addr);
3756  	for (i = 0; i < words; i++) {
3757  		AscSetChipLramData(iop_base, set_wval);
3758  	}
3759  }
3760  
AscWriteLramWord(PortAddr iop_base,ushort addr,ushort word_val)3761  static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3762  {
3763  	AscSetChipLramAddr(iop_base, addr);
3764  	AscSetChipLramData(iop_base, word_val);
3765  }
3766  
AscWriteLramByte(PortAddr iop_base,ushort addr,uchar byte_val)3767  static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3768  {
3769  	ushort word_data;
3770  
3771  	if (isodd_word(addr)) {
3772  		addr--;
3773  		word_data = AscReadLramWord(iop_base, addr);
3774  		word_data &= 0x00FF;
3775  		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3776  	} else {
3777  		word_data = AscReadLramWord(iop_base, addr);
3778  		word_data &= 0xFF00;
3779  		word_data |= ((ushort)byte_val & 0x00FF);
3780  	}
3781  	AscWriteLramWord(iop_base, addr, word_data);
3782  }
3783  
3784  /*
3785   * Copy 2 bytes to LRAM.
3786   *
3787   * The source data is assumed to be in little-endian order in memory
3788   * and is maintained in little-endian order when written to LRAM.
3789   */
3790  static void
AscMemWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,const uchar * s_buffer,int words)3791  AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3792  			const uchar *s_buffer, int words)
3793  {
3794  	int i;
3795  
3796  	AscSetChipLramAddr(iop_base, s_addr);
3797  	for (i = 0; i < 2 * words; i += 2) {
3798  		/*
3799  		 * On a little-endian system the second argument below
3800  		 * produces a little-endian ushort which is written to
3801  		 * LRAM in little-endian order. On a big-endian system
3802  		 * the second argument produces a big-endian ushort which
3803  		 * is "transparently" byte-swapped by outpw() and written
3804  		 * in little-endian order to LRAM.
3805  		 */
3806  		outpw(iop_base + IOP_RAM_DATA,
3807  		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3808  	}
3809  }
3810  
3811  /*
3812   * Copy 4 bytes to LRAM.
3813   *
3814   * The source data is assumed to be in little-endian order in memory
3815   * and is maintained in little-endian order when written to LRAM.
3816   */
3817  static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,uchar * s_buffer,int dwords)3818  AscMemDWordCopyPtrToLram(PortAddr iop_base,
3819  			 ushort s_addr, uchar *s_buffer, int dwords)
3820  {
3821  	int i;
3822  
3823  	AscSetChipLramAddr(iop_base, s_addr);
3824  	for (i = 0; i < 4 * dwords; i += 4) {
3825  		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
3826  		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
3827  	}
3828  }
3829  
3830  /*
3831   * Copy 2 bytes from LRAM.
3832   *
3833   * The source data is assumed to be in little-endian order in LRAM
3834   * and is maintained in little-endian order when written to memory.
3835   */
3836  static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,ushort s_addr,uchar * d_buffer,int words)3837  AscMemWordCopyPtrFromLram(PortAddr iop_base,
3838  			  ushort s_addr, uchar *d_buffer, int words)
3839  {
3840  	int i;
3841  	ushort word;
3842  
3843  	AscSetChipLramAddr(iop_base, s_addr);
3844  	for (i = 0; i < 2 * words; i += 2) {
3845  		word = inpw(iop_base + IOP_RAM_DATA);
3846  		d_buffer[i] = word & 0xff;
3847  		d_buffer[i + 1] = (word >> 8) & 0xff;
3848  	}
3849  }
3850  
AscMemSumLramWord(PortAddr iop_base,ushort s_addr,int words)3851  static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3852  {
3853  	u32 sum = 0;
3854  	int i;
3855  
3856  	for (i = 0; i < words; i++, s_addr += 2) {
3857  		sum += AscReadLramWord(iop_base, s_addr);
3858  	}
3859  	return (sum);
3860  }
3861  
AscInitLram(ASC_DVC_VAR * asc_dvc)3862  static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3863  {
3864  	uchar i;
3865  	ushort s_addr;
3866  	PortAddr iop_base;
3867  
3868  	iop_base = asc_dvc->iop_base;
3869  	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3870  			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3871  				    64) >> 1));
3872  	i = ASC_MIN_ACTIVE_QNO;
3873  	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3874  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3875  			 (uchar)(i + 1));
3876  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3877  			 (uchar)(asc_dvc->max_total_qng));
3878  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3879  			 (uchar)i);
3880  	i++;
3881  	s_addr += ASC_QBLK_SIZE;
3882  	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3883  		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3884  				 (uchar)(i + 1));
3885  		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3886  				 (uchar)(i - 1));
3887  		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3888  				 (uchar)i);
3889  	}
3890  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3891  			 (uchar)ASC_QLINK_END);
3892  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3893  			 (uchar)(asc_dvc->max_total_qng - 1));
3894  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3895  			 (uchar)asc_dvc->max_total_qng);
3896  	i++;
3897  	s_addr += ASC_QBLK_SIZE;
3898  	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3899  	     i++, s_addr += ASC_QBLK_SIZE) {
3900  		AscWriteLramByte(iop_base,
3901  				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3902  		AscWriteLramByte(iop_base,
3903  				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3904  		AscWriteLramByte(iop_base,
3905  				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3906  	}
3907  }
3908  
3909  static u32
AscLoadMicroCode(PortAddr iop_base,ushort s_addr,const uchar * mcode_buf,ushort mcode_size)3910  AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3911  		 const uchar *mcode_buf, ushort mcode_size)
3912  {
3913  	u32 chksum;
3914  	ushort mcode_word_size;
3915  	ushort mcode_chksum;
3916  
3917  	/* Write the microcode buffer starting at LRAM address 0. */
3918  	mcode_word_size = (ushort)(mcode_size >> 1);
3919  	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3920  	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3921  
3922  	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3923  	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3924  	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3925  						 (ushort)ASC_CODE_SEC_BEG,
3926  						 (ushort)((mcode_size -
3927  							   s_addr - (ushort)
3928  							   ASC_CODE_SEC_BEG) /
3929  							  2));
3930  	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3931  	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3932  	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3933  	return chksum;
3934  }
3935  
AscInitQLinkVar(ASC_DVC_VAR * asc_dvc)3936  static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3937  {
3938  	PortAddr iop_base;
3939  	int i;
3940  	ushort lram_addr;
3941  
3942  	iop_base = asc_dvc->iop_base;
3943  	AscPutRiscVarFreeQHead(iop_base, 1);
3944  	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3945  	AscPutVarFreeQHead(iop_base, 1);
3946  	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3947  	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3948  			 (uchar)((int)asc_dvc->max_total_qng + 1));
3949  	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3950  			 (uchar)((int)asc_dvc->max_total_qng + 2));
3951  	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
3952  			 asc_dvc->max_total_qng);
3953  	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
3954  	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
3955  	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
3956  	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
3957  	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
3958  	AscPutQDoneInProgress(iop_base, 0);
3959  	lram_addr = ASC_QADR_BEG;
3960  	for (i = 0; i < 32; i++, lram_addr += 2) {
3961  		AscWriteLramWord(iop_base, lram_addr, 0);
3962  	}
3963  }
3964  
AscInitMicroCodeVar(ASC_DVC_VAR * asc_dvc)3965  static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
3966  {
3967  	int i;
3968  	int warn_code;
3969  	PortAddr iop_base;
3970  	__le32 phy_addr;
3971  	__le32 phy_size;
3972  	struct asc_board *board = asc_dvc_to_board(asc_dvc);
3973  
3974  	iop_base = asc_dvc->iop_base;
3975  	warn_code = 0;
3976  	for (i = 0; i <= ASC_MAX_TID; i++) {
3977  		AscPutMCodeInitSDTRAtID(iop_base, i,
3978  					asc_dvc->cfg->sdtr_period_offset[i]);
3979  	}
3980  
3981  	AscInitQLinkVar(asc_dvc);
3982  	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
3983  			 asc_dvc->cfg->disc_enable);
3984  	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
3985  			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
3986  
3987  	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
3988  	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
3989  	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
3990  					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
3991  	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
3992  		warn_code = -ENOMEM;
3993  		goto err_dma_map;
3994  	}
3995  	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
3996  	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
3997  				 (uchar *)&phy_addr, 1);
3998  	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
3999  	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4000  				 (uchar *)&phy_size, 1);
4001  
4002  	asc_dvc->cfg->mcode_date =
4003  	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4004  	asc_dvc->cfg->mcode_version =
4005  	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4006  
4007  	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4008  	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4009  		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4010  		warn_code = -EINVAL;
4011  		goto err_mcode_start;
4012  	}
4013  	if (AscStartChip(iop_base) != 1) {
4014  		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4015  		warn_code = -EIO;
4016  		goto err_mcode_start;
4017  	}
4018  
4019  	return warn_code;
4020  
4021  err_mcode_start:
4022  	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4023  			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4024  err_dma_map:
4025  	asc_dvc->overrun_dma = 0;
4026  	return warn_code;
4027  }
4028  
AscInitAsc1000Driver(ASC_DVC_VAR * asc_dvc)4029  static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4030  {
4031  	const struct firmware *fw;
4032  	const char fwname[] = "advansys/mcode.bin";
4033  	int err;
4034  	unsigned long chksum;
4035  	int warn_code;
4036  	PortAddr iop_base;
4037  
4038  	iop_base = asc_dvc->iop_base;
4039  	warn_code = 0;
4040  	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4041  	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4042  		AscResetChipAndScsiBus(asc_dvc);
4043  		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4044  	}
4045  	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4046  	if (asc_dvc->err_code != 0)
4047  		return ASC_ERROR;
4048  	if (!AscFindSignature(asc_dvc->iop_base)) {
4049  		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4050  		return warn_code;
4051  	}
4052  	AscDisableInterrupt(iop_base);
4053  	AscInitLram(asc_dvc);
4054  
4055  	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4056  	if (err) {
4057  		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4058  		       fwname, err);
4059  		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4060  		return err;
4061  	}
4062  	if (fw->size < 4) {
4063  		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4064  		       fw->size, fwname);
4065  		release_firmware(fw);
4066  		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4067  		return -EINVAL;
4068  	}
4069  	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4070  		 (fw->data[1] << 8) | fw->data[0];
4071  	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4072  	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4073  			     fw->size - 4) != chksum) {
4074  		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4075  		release_firmware(fw);
4076  		return warn_code;
4077  	}
4078  	release_firmware(fw);
4079  	warn_code |= AscInitMicroCodeVar(asc_dvc);
4080  	if (!asc_dvc->overrun_dma)
4081  		return warn_code;
4082  	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4083  	AscEnableInterrupt(iop_base);
4084  	return warn_code;
4085  }
4086  
4087  /*
4088   * Load the Microcode
4089   *
4090   * Write the microcode image to RISC memory starting at address 0.
4091   *
4092   * The microcode is stored compressed in the following format:
4093   *
4094   *  254 word (508 byte) table indexed by byte code followed
4095   *  by the following byte codes:
4096   *
4097   *    1-Byte Code:
4098   *      00: Emit word 0 in table.
4099   *      01: Emit word 1 in table.
4100   *      .
4101   *      FD: Emit word 253 in table.
4102   *
4103   *    Multi-Byte Code:
4104   *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4105   *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4106   *
4107   * Returns 0 or an error if the checksum doesn't match
4108   */
AdvLoadMicrocode(AdvPortAddr iop_base,const unsigned char * buf,int size,int memsize,int chksum)4109  static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4110  			    int size, int memsize, int chksum)
4111  {
4112  	int i, j, end, len = 0;
4113  	u32 sum;
4114  
4115  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4116  
4117  	for (i = 253 * 2; i < size; i++) {
4118  		if (buf[i] == 0xff) {
4119  			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4120  			for (j = 0; j < buf[i + 1]; j++) {
4121  				AdvWriteWordAutoIncLram(iop_base, word);
4122  				len += 2;
4123  			}
4124  			i += 3;
4125  		} else if (buf[i] == 0xfe) {
4126  			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4127  			AdvWriteWordAutoIncLram(iop_base, word);
4128  			i += 2;
4129  			len += 2;
4130  		} else {
4131  			unsigned int off = buf[i] * 2;
4132  			unsigned short word = (buf[off + 1] << 8) | buf[off];
4133  			AdvWriteWordAutoIncLram(iop_base, word);
4134  			len += 2;
4135  		}
4136  	}
4137  
4138  	end = len;
4139  
4140  	while (len < memsize) {
4141  		AdvWriteWordAutoIncLram(iop_base, 0);
4142  		len += 2;
4143  	}
4144  
4145  	/* Verify the microcode checksum. */
4146  	sum = 0;
4147  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4148  
4149  	for (len = 0; len < end; len += 2) {
4150  		sum += AdvReadWordAutoIncLram(iop_base);
4151  	}
4152  
4153  	if (sum != chksum)
4154  		return ASC_IERR_MCODE_CHKSUM;
4155  
4156  	return 0;
4157  }
4158  
AdvBuildCarrierFreelist(struct adv_dvc_var * adv_dvc)4159  static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4160  {
4161  	off_t carr_offset = 0, next_offset;
4162  	dma_addr_t carr_paddr;
4163  	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4164  
4165  	for (i = 0; i < carr_num; i++) {
4166  		carr_offset = i * sizeof(ADV_CARR_T);
4167  		/* Get physical address of the carrier 'carrp'. */
4168  		carr_paddr = adv_dvc->carrier_addr + carr_offset;
4169  
4170  		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4171  		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4172  		adv_dvc->carrier[i].areq_vpa = 0;
4173  		next_offset = carr_offset + sizeof(ADV_CARR_T);
4174  		if (i == carr_num)
4175  			next_offset = ~0;
4176  		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4177  	}
4178  	/*
4179  	 * We cannot have a carrier with 'carr_va' of '0', as
4180  	 * a reference to this carrier would be interpreted as
4181  	 * list termination.
4182  	 * So start at carrier 1 with the freelist.
4183  	 */
4184  	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4185  }
4186  
adv_get_carrier(struct adv_dvc_var * adv_dvc,u32 offset)4187  static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4188  {
4189  	int index;
4190  
4191  	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4192  
4193  	index = offset / sizeof(ADV_CARR_T);
4194  	return &adv_dvc->carrier[index];
4195  }
4196  
adv_get_next_carrier(struct adv_dvc_var * adv_dvc)4197  static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4198  {
4199  	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4200  	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4201  
4202  	if (next_vpa == 0 || next_vpa == ~0) {
4203  		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4204  		return NULL;
4205  	}
4206  
4207  	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4208  	/*
4209  	 * insert stopper carrier to terminate list
4210  	 */
4211  	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4212  
4213  	return carrp;
4214  }
4215  
4216  /*
4217   * 'offset' is the index in the request pointer array
4218   */
adv_get_reqp(struct adv_dvc_var * adv_dvc,u32 offset)4219  static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4220  {
4221  	struct asc_board *boardp = adv_dvc->drv_ptr;
4222  
4223  	BUG_ON(offset > adv_dvc->max_host_qng);
4224  	return &boardp->adv_reqp[offset];
4225  }
4226  
4227  /*
4228   * Send an idle command to the chip and wait for completion.
4229   *
4230   * Command completion is polled for once per microsecond.
4231   *
4232   * The function can be called from anywhere including an interrupt handler.
4233   * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4234   * functions to prevent reentrancy.
4235   *
4236   * Return Values:
4237   *   ADV_TRUE - command completed successfully
4238   *   ADV_FALSE - command failed
4239   *   ADV_ERROR - command timed out
4240   */
4241  static int
AdvSendIdleCmd(ADV_DVC_VAR * asc_dvc,ushort idle_cmd,u32 idle_cmd_parameter)4242  AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4243  	       ushort idle_cmd, u32 idle_cmd_parameter)
4244  {
4245  	int result, i, j;
4246  	AdvPortAddr iop_base;
4247  
4248  	iop_base = asc_dvc->iop_base;
4249  
4250  	/*
4251  	 * Clear the idle command status which is set by the microcode
4252  	 * to a non-zero value to indicate when the command is completed.
4253  	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4254  	 */
4255  	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4256  
4257  	/*
4258  	 * Write the idle command value after the idle command parameter
4259  	 * has been written to avoid a race condition. If the order is not
4260  	 * followed, the microcode may process the idle command before the
4261  	 * parameters have been written to LRAM.
4262  	 */
4263  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4264  				cpu_to_le32(idle_cmd_parameter));
4265  	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4266  
4267  	/*
4268  	 * Tickle the RISC to tell it to process the idle command.
4269  	 */
4270  	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4271  	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4272  		/*
4273  		 * Clear the tickle value. In the ASC-3550 the RISC flag
4274  		 * command 'clr_tickle_b' does not work unless the host
4275  		 * value is cleared.
4276  		 */
4277  		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4278  	}
4279  
4280  	/* Wait for up to 100 millisecond for the idle command to timeout. */
4281  	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4282  		/* Poll once each microsecond for command completion. */
4283  		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4284  			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4285  					result);
4286  			if (result != 0)
4287  				return result;
4288  			udelay(1);
4289  		}
4290  	}
4291  
4292  	BUG();		/* The idle command should never timeout. */
4293  	return ADV_ERROR;
4294  }
4295  
4296  /*
4297   * Reset SCSI Bus and purge all outstanding requests.
4298   *
4299   * Return Value:
4300   *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4301   *      ADV_FALSE(0) -  Microcode command failed.
4302   *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4303   *                      may be hung which requires driver recovery.
4304   */
AdvResetSB(ADV_DVC_VAR * asc_dvc)4305  static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4306  {
4307  	int status;
4308  
4309  	/*
4310  	 * Send the SCSI Bus Reset idle start idle command which asserts
4311  	 * the SCSI Bus Reset signal.
4312  	 */
4313  	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4314  	if (status != ADV_TRUE) {
4315  		return status;
4316  	}
4317  
4318  	/*
4319  	 * Delay for the specified SCSI Bus Reset hold time.
4320  	 *
4321  	 * The hold time delay is done on the host because the RISC has no
4322  	 * microsecond accurate timer.
4323  	 */
4324  	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4325  
4326  	/*
4327  	 * Send the SCSI Bus Reset end idle command which de-asserts
4328  	 * the SCSI Bus Reset signal and purges any pending requests.
4329  	 */
4330  	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4331  	if (status != ADV_TRUE) {
4332  		return status;
4333  	}
4334  
4335  	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4336  
4337  	return status;
4338  }
4339  
4340  /*
4341   * Initialize the ASC-3550.
4342   *
4343   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4344   *
4345   * For a non-fatal error return a warning code. If there are no warnings
4346   * then 0 is returned.
4347   *
4348   * Needed after initialization for error recovery.
4349   */
AdvInitAsc3550Driver(ADV_DVC_VAR * asc_dvc)4350  static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4351  {
4352  	const struct firmware *fw;
4353  	const char fwname[] = "advansys/3550.bin";
4354  	AdvPortAddr iop_base;
4355  	ushort warn_code;
4356  	int begin_addr;
4357  	int end_addr;
4358  	ushort code_sum;
4359  	int word;
4360  	int i;
4361  	int err;
4362  	unsigned long chksum;
4363  	ushort scsi_cfg1;
4364  	uchar tid;
4365  	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4366  	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4367  	uchar max_cmd[ADV_MAX_TID + 1];
4368  
4369  	/* If there is already an error, don't continue. */
4370  	if (asc_dvc->err_code != 0)
4371  		return ADV_ERROR;
4372  
4373  	/*
4374  	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4375  	 */
4376  	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4377  		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4378  		return ADV_ERROR;
4379  	}
4380  
4381  	warn_code = 0;
4382  	iop_base = asc_dvc->iop_base;
4383  
4384  	/*
4385  	 * Save the RISC memory BIOS region before writing the microcode.
4386  	 * The BIOS may already be loaded and using its RISC LRAM region
4387  	 * so its region must be saved and restored.
4388  	 *
4389  	 * Note: This code makes the assumption, which is currently true,
4390  	 * that a chip reset does not clear RISC LRAM.
4391  	 */
4392  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4393  		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4394  				bios_mem[i]);
4395  	}
4396  
4397  	/*
4398  	 * Save current per TID negotiated values.
4399  	 */
4400  	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4401  		ushort bios_version, major, minor;
4402  
4403  		bios_version =
4404  		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4405  		major = (bios_version >> 12) & 0xF;
4406  		minor = (bios_version >> 8) & 0xF;
4407  		if (major < 3 || (major == 3 && minor == 1)) {
4408  			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4409  			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4410  		} else {
4411  			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4412  		}
4413  	}
4414  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4415  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4416  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4417  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4418  				max_cmd[tid]);
4419  	}
4420  
4421  	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4422  	if (err) {
4423  		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4424  		       fwname, err);
4425  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4426  		return err;
4427  	}
4428  	if (fw->size < 4) {
4429  		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4430  		       fw->size, fwname);
4431  		release_firmware(fw);
4432  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4433  		return -EINVAL;
4434  	}
4435  	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4436  		 (fw->data[1] << 8) | fw->data[0];
4437  	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4438  					     fw->size - 4, ADV_3550_MEMSIZE,
4439  					     chksum);
4440  	release_firmware(fw);
4441  	if (asc_dvc->err_code)
4442  		return ADV_ERROR;
4443  
4444  	/*
4445  	 * Restore the RISC memory BIOS region.
4446  	 */
4447  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4448  		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4449  				 bios_mem[i]);
4450  	}
4451  
4452  	/*
4453  	 * Calculate and write the microcode code checksum to the microcode
4454  	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4455  	 */
4456  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4457  	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4458  	code_sum = 0;
4459  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4460  	for (word = begin_addr; word < end_addr; word += 2) {
4461  		code_sum += AdvReadWordAutoIncLram(iop_base);
4462  	}
4463  	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4464  
4465  	/*
4466  	 * Read and save microcode version and date.
4467  	 */
4468  	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4469  			asc_dvc->cfg->mcode_date);
4470  	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4471  			asc_dvc->cfg->mcode_version);
4472  
4473  	/*
4474  	 * Set the chip type to indicate the ASC3550.
4475  	 */
4476  	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4477  
4478  	/*
4479  	 * If the PCI Configuration Command Register "Parity Error Response
4480  	 * Control" Bit was clear (0), then set the microcode variable
4481  	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4482  	 * to ignore DMA parity errors.
4483  	 */
4484  	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4485  		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4486  		word |= CONTROL_FLAG_IGNORE_PERR;
4487  		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4488  	}
4489  
4490  	/*
4491  	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4492  	 * threshold of 128 bytes. This register is only accessible to the host.
4493  	 */
4494  	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4495  			     START_CTL_EMFU | READ_CMD_MRM);
4496  
4497  	/*
4498  	 * Microcode operating variables for WDTR, SDTR, and command tag
4499  	 * queuing will be set in slave_configure() based on what a
4500  	 * device reports it is capable of in Inquiry byte 7.
4501  	 *
4502  	 * If SCSI Bus Resets have been disabled, then directly set
4503  	 * SDTR and WDTR from the EEPROM configuration. This will allow
4504  	 * the BIOS and warm boot to work without a SCSI bus hang on
4505  	 * the Inquiry caused by host and target mismatched DTR values.
4506  	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4507  	 * be assumed to be in Asynchronous, Narrow mode.
4508  	 */
4509  	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4510  		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4511  				 asc_dvc->wdtr_able);
4512  		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4513  				 asc_dvc->sdtr_able);
4514  	}
4515  
4516  	/*
4517  	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4518  	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4519  	 * bitmask. These values determine the maximum SDTR speed negotiated
4520  	 * with a device.
4521  	 *
4522  	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4523  	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4524  	 * without determining here whether the device supports SDTR.
4525  	 *
4526  	 * 4-bit speed  SDTR speed name
4527  	 * ===========  ===============
4528  	 * 0000b (0x0)  SDTR disabled
4529  	 * 0001b (0x1)  5 Mhz
4530  	 * 0010b (0x2)  10 Mhz
4531  	 * 0011b (0x3)  20 Mhz (Ultra)
4532  	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4533  	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4534  	 * 0110b (0x6)  Undefined
4535  	 * .
4536  	 * 1111b (0xF)  Undefined
4537  	 */
4538  	word = 0;
4539  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4540  		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4541  			/* Set Ultra speed for TID 'tid'. */
4542  			word |= (0x3 << (4 * (tid % 4)));
4543  		} else {
4544  			/* Set Fast speed for TID 'tid'. */
4545  			word |= (0x2 << (4 * (tid % 4)));
4546  		}
4547  		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4548  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4549  			word = 0;
4550  		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4551  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4552  			word = 0;
4553  		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4554  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4555  			word = 0;
4556  		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4557  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4558  			/* End of loop. */
4559  		}
4560  	}
4561  
4562  	/*
4563  	 * Set microcode operating variable for the disconnect per TID bitmask.
4564  	 */
4565  	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4566  			 asc_dvc->cfg->disc_enable);
4567  
4568  	/*
4569  	 * Set SCSI_CFG0 Microcode Default Value.
4570  	 *
4571  	 * The microcode will set the SCSI_CFG0 register using this value
4572  	 * after it is started below.
4573  	 */
4574  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4575  			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4576  			 asc_dvc->chip_scsi_id);
4577  
4578  	/*
4579  	 * Determine SCSI_CFG1 Microcode Default Value.
4580  	 *
4581  	 * The microcode will set the SCSI_CFG1 register using this value
4582  	 * after it is started below.
4583  	 */
4584  
4585  	/* Read current SCSI_CFG1 Register value. */
4586  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4587  
4588  	/*
4589  	 * If all three connectors are in use, return an error.
4590  	 */
4591  	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4592  	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4593  		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4594  		return ADV_ERROR;
4595  	}
4596  
4597  	/*
4598  	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4599  	 * register signals will be set. Check for and return an error if
4600  	 * this condition is found.
4601  	 */
4602  	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4603  		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4604  		return ADV_ERROR;
4605  	}
4606  
4607  	/*
4608  	 * If this is a differential board and a single-ended device
4609  	 * is attached to one of the connectors, return an error.
4610  	 */
4611  	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4612  		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4613  		return ADV_ERROR;
4614  	}
4615  
4616  	/*
4617  	 * If automatic termination control is enabled, then set the
4618  	 * termination value based on a table listed in a_condor.h.
4619  	 *
4620  	 * If manual termination was specified with an EEPROM setting
4621  	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4622  	 * is ready to be 'ored' into SCSI_CFG1.
4623  	 */
4624  	if (asc_dvc->cfg->termination == 0) {
4625  		/*
4626  		 * The software always controls termination by setting TERM_CTL_SEL.
4627  		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4628  		 */
4629  		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4630  
4631  		switch (scsi_cfg1 & CABLE_DETECT) {
4632  			/* TERM_CTL_H: on, TERM_CTL_L: on */
4633  		case 0x3:
4634  		case 0x7:
4635  		case 0xB:
4636  		case 0xD:
4637  		case 0xE:
4638  		case 0xF:
4639  			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4640  			break;
4641  
4642  			/* TERM_CTL_H: on, TERM_CTL_L: off */
4643  		case 0x1:
4644  		case 0x5:
4645  		case 0x9:
4646  		case 0xA:
4647  		case 0xC:
4648  			asc_dvc->cfg->termination |= TERM_CTL_H;
4649  			break;
4650  
4651  			/* TERM_CTL_H: off, TERM_CTL_L: off */
4652  		case 0x2:
4653  		case 0x6:
4654  			break;
4655  		}
4656  	}
4657  
4658  	/*
4659  	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4660  	 */
4661  	scsi_cfg1 &= ~TERM_CTL;
4662  
4663  	/*
4664  	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4665  	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4666  	 * referenced, because the hardware internally inverts
4667  	 * the Termination High and Low bits if TERM_POL is set.
4668  	 */
4669  	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4670  
4671  	/*
4672  	 * Set SCSI_CFG1 Microcode Default Value
4673  	 *
4674  	 * Set filter value and possibly modified termination control
4675  	 * bits in the Microcode SCSI_CFG1 Register Value.
4676  	 *
4677  	 * The microcode will set the SCSI_CFG1 register using this value
4678  	 * after it is started below.
4679  	 */
4680  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4681  			 FLTR_DISABLE | scsi_cfg1);
4682  
4683  	/*
4684  	 * Set MEM_CFG Microcode Default Value
4685  	 *
4686  	 * The microcode will set the MEM_CFG register using this value
4687  	 * after it is started below.
4688  	 *
4689  	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4690  	 * are defined.
4691  	 *
4692  	 * ASC-3550 has 8KB internal memory.
4693  	 */
4694  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4695  			 BIOS_EN | RAM_SZ_8KB);
4696  
4697  	/*
4698  	 * Set SEL_MASK Microcode Default Value
4699  	 *
4700  	 * The microcode will set the SEL_MASK register using this value
4701  	 * after it is started below.
4702  	 */
4703  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4704  			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4705  
4706  	AdvBuildCarrierFreelist(asc_dvc);
4707  
4708  	/*
4709  	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4710  	 */
4711  
4712  	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4713  	if (!asc_dvc->icq_sp) {
4714  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4715  		return ADV_ERROR;
4716  	}
4717  
4718  	/*
4719  	 * Set RISC ICQ physical address start value.
4720  	 */
4721  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4722  
4723  	/*
4724  	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4725  	 */
4726  	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4727  	if (!asc_dvc->irq_sp) {
4728  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4729  		return ADV_ERROR;
4730  	}
4731  
4732  	/*
4733  	 * Set RISC IRQ physical address start value.
4734  	 */
4735  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4736  	asc_dvc->carr_pending_cnt = 0;
4737  
4738  	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4739  			     (ADV_INTR_ENABLE_HOST_INTR |
4740  			      ADV_INTR_ENABLE_GLOBAL_INTR));
4741  
4742  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4743  	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4744  
4745  	/* finally, finally, gentlemen, start your engine */
4746  	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4747  
4748  	/*
4749  	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4750  	 * Resets should be performed. The RISC has to be running
4751  	 * to issue a SCSI Bus Reset.
4752  	 */
4753  	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4754  		/*
4755  		 * If the BIOS Signature is present in memory, restore the
4756  		 * BIOS Handshake Configuration Table and do not perform
4757  		 * a SCSI Bus Reset.
4758  		 */
4759  		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4760  		    0x55AA) {
4761  			/*
4762  			 * Restore per TID negotiated values.
4763  			 */
4764  			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4765  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4766  			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4767  					 tagqng_able);
4768  			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4769  				AdvWriteByteLram(iop_base,
4770  						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4771  						 max_cmd[tid]);
4772  			}
4773  		} else {
4774  			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4775  				warn_code = ASC_WARN_BUSRESET_ERROR;
4776  			}
4777  		}
4778  	}
4779  
4780  	return warn_code;
4781  }
4782  
4783  /*
4784   * Initialize the ASC-38C0800.
4785   *
4786   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4787   *
4788   * For a non-fatal error return a warning code. If there are no warnings
4789   * then 0 is returned.
4790   *
4791   * Needed after initialization for error recovery.
4792   */
AdvInitAsc38C0800Driver(ADV_DVC_VAR * asc_dvc)4793  static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4794  {
4795  	const struct firmware *fw;
4796  	const char fwname[] = "advansys/38C0800.bin";
4797  	AdvPortAddr iop_base;
4798  	ushort warn_code;
4799  	int begin_addr;
4800  	int end_addr;
4801  	ushort code_sum;
4802  	int word;
4803  	int i;
4804  	int err;
4805  	unsigned long chksum;
4806  	ushort scsi_cfg1;
4807  	uchar byte;
4808  	uchar tid;
4809  	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4810  	ushort wdtr_able, sdtr_able, tagqng_able;
4811  	uchar max_cmd[ADV_MAX_TID + 1];
4812  
4813  	/* If there is already an error, don't continue. */
4814  	if (asc_dvc->err_code != 0)
4815  		return ADV_ERROR;
4816  
4817  	/*
4818  	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4819  	 */
4820  	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4821  		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4822  		return ADV_ERROR;
4823  	}
4824  
4825  	warn_code = 0;
4826  	iop_base = asc_dvc->iop_base;
4827  
4828  	/*
4829  	 * Save the RISC memory BIOS region before writing the microcode.
4830  	 * The BIOS may already be loaded and using its RISC LRAM region
4831  	 * so its region must be saved and restored.
4832  	 *
4833  	 * Note: This code makes the assumption, which is currently true,
4834  	 * that a chip reset does not clear RISC LRAM.
4835  	 */
4836  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4837  		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4838  				bios_mem[i]);
4839  	}
4840  
4841  	/*
4842  	 * Save current per TID negotiated values.
4843  	 */
4844  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4845  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4846  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4847  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4848  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4849  				max_cmd[tid]);
4850  	}
4851  
4852  	/*
4853  	 * RAM BIST (RAM Built-In Self Test)
4854  	 *
4855  	 * Address : I/O base + offset 0x38h register (byte).
4856  	 * Function: Bit 7-6(RW) : RAM mode
4857  	 *                          Normal Mode   : 0x00
4858  	 *                          Pre-test Mode : 0x40
4859  	 *                          RAM Test Mode : 0x80
4860  	 *           Bit 5       : unused
4861  	 *           Bit 4(RO)   : Done bit
4862  	 *           Bit 3-0(RO) : Status
4863  	 *                          Host Error    : 0x08
4864  	 *                          Int_RAM Error : 0x04
4865  	 *                          RISC Error    : 0x02
4866  	 *                          SCSI Error    : 0x01
4867  	 *                          No Error      : 0x00
4868  	 *
4869  	 * Note: RAM BIST code should be put right here, before loading the
4870  	 * microcode and after saving the RISC memory BIOS region.
4871  	 */
4872  
4873  	/*
4874  	 * LRAM Pre-test
4875  	 *
4876  	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4877  	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4878  	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4879  	 * to NORMAL_MODE, return an error too.
4880  	 */
4881  	for (i = 0; i < 2; i++) {
4882  		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4883  		mdelay(10);	/* Wait for 10ms before reading back. */
4884  		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4885  		if ((byte & RAM_TEST_DONE) == 0
4886  		    || (byte & 0x0F) != PRE_TEST_VALUE) {
4887  			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4888  			return ADV_ERROR;
4889  		}
4890  
4891  		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4892  		mdelay(10);	/* Wait for 10ms before reading back. */
4893  		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4894  		    != NORMAL_VALUE) {
4895  			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4896  			return ADV_ERROR;
4897  		}
4898  	}
4899  
4900  	/*
4901  	 * LRAM Test - It takes about 1.5 ms to run through the test.
4902  	 *
4903  	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4904  	 * If Done bit not set or Status not 0, save register byte, set the
4905  	 * err_code, and return an error.
4906  	 */
4907  	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4908  	mdelay(10);	/* Wait for 10ms before checking status. */
4909  
4910  	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4911  	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4912  		/* Get here if Done bit not set or Status not 0. */
4913  		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
4914  		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4915  		return ADV_ERROR;
4916  	}
4917  
4918  	/* We need to reset back to normal mode after LRAM test passes. */
4919  	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4920  
4921  	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4922  	if (err) {
4923  		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4924  		       fwname, err);
4925  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4926  		return err;
4927  	}
4928  	if (fw->size < 4) {
4929  		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4930  		       fw->size, fwname);
4931  		release_firmware(fw);
4932  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4933  		return -EINVAL;
4934  	}
4935  	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4936  		 (fw->data[1] << 8) | fw->data[0];
4937  	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4938  					     fw->size - 4, ADV_38C0800_MEMSIZE,
4939  					     chksum);
4940  	release_firmware(fw);
4941  	if (asc_dvc->err_code)
4942  		return ADV_ERROR;
4943  
4944  	/*
4945  	 * Restore the RISC memory BIOS region.
4946  	 */
4947  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4948  		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4949  				 bios_mem[i]);
4950  	}
4951  
4952  	/*
4953  	 * Calculate and write the microcode code checksum to the microcode
4954  	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4955  	 */
4956  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4957  	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4958  	code_sum = 0;
4959  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4960  	for (word = begin_addr; word < end_addr; word += 2) {
4961  		code_sum += AdvReadWordAutoIncLram(iop_base);
4962  	}
4963  	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4964  
4965  	/*
4966  	 * Read microcode version and date.
4967  	 */
4968  	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4969  			asc_dvc->cfg->mcode_date);
4970  	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4971  			asc_dvc->cfg->mcode_version);
4972  
4973  	/*
4974  	 * Set the chip type to indicate the ASC38C0800.
4975  	 */
4976  	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
4977  
4978  	/*
4979  	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
4980  	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
4981  	 * cable detection and then we are able to read C_DET[3:0].
4982  	 *
4983  	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
4984  	 * Microcode Default Value' section below.
4985  	 */
4986  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4987  	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
4988  			     scsi_cfg1 | DIS_TERM_DRV);
4989  
4990  	/*
4991  	 * If the PCI Configuration Command Register "Parity Error Response
4992  	 * Control" Bit was clear (0), then set the microcode variable
4993  	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4994  	 * to ignore DMA parity errors.
4995  	 */
4996  	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4997  		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4998  		word |= CONTROL_FLAG_IGNORE_PERR;
4999  		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5000  	}
5001  
5002  	/*
5003  	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5004  	 * bits for the default FIFO threshold.
5005  	 *
5006  	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5007  	 *
5008  	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5009  	 */
5010  	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5011  			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5012  			     READ_CMD_MRM);
5013  
5014  	/*
5015  	 * Microcode operating variables for WDTR, SDTR, and command tag
5016  	 * queuing will be set in slave_configure() based on what a
5017  	 * device reports it is capable of in Inquiry byte 7.
5018  	 *
5019  	 * If SCSI Bus Resets have been disabled, then directly set
5020  	 * SDTR and WDTR from the EEPROM configuration. This will allow
5021  	 * the BIOS and warm boot to work without a SCSI bus hang on
5022  	 * the Inquiry caused by host and target mismatched DTR values.
5023  	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5024  	 * be assumed to be in Asynchronous, Narrow mode.
5025  	 */
5026  	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5027  		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5028  				 asc_dvc->wdtr_able);
5029  		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5030  				 asc_dvc->sdtr_able);
5031  	}
5032  
5033  	/*
5034  	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5035  	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5036  	 * configuration values.
5037  	 *
5038  	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5039  	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5040  	 * without determining here whether the device supports SDTR.
5041  	 */
5042  	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5043  			 asc_dvc->cfg->disc_enable);
5044  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5045  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5046  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5047  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5048  
5049  	/*
5050  	 * Set SCSI_CFG0 Microcode Default Value.
5051  	 *
5052  	 * The microcode will set the SCSI_CFG0 register using this value
5053  	 * after it is started below.
5054  	 */
5055  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5056  			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5057  			 asc_dvc->chip_scsi_id);
5058  
5059  	/*
5060  	 * Determine SCSI_CFG1 Microcode Default Value.
5061  	 *
5062  	 * The microcode will set the SCSI_CFG1 register using this value
5063  	 * after it is started below.
5064  	 */
5065  
5066  	/* Read current SCSI_CFG1 Register value. */
5067  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5068  
5069  	/*
5070  	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5071  	 * register signals will be set. Check for and return an error if
5072  	 * this condition is found.
5073  	 */
5074  	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5075  		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5076  		return ADV_ERROR;
5077  	}
5078  
5079  	/*
5080  	 * All kind of combinations of devices attached to one of four
5081  	 * connectors are acceptable except HVD device attached. For example,
5082  	 * LVD device can be attached to SE connector while SE device attached
5083  	 * to LVD connector.  If LVD device attached to SE connector, it only
5084  	 * runs up to Ultra speed.
5085  	 *
5086  	 * If an HVD device is attached to one of LVD connectors, return an
5087  	 * error.  However, there is no way to detect HVD device attached to
5088  	 * SE connectors.
5089  	 */
5090  	if (scsi_cfg1 & HVD) {
5091  		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5092  		return ADV_ERROR;
5093  	}
5094  
5095  	/*
5096  	 * If either SE or LVD automatic termination control is enabled, then
5097  	 * set the termination value based on a table listed in a_condor.h.
5098  	 *
5099  	 * If manual termination was specified with an EEPROM setting then
5100  	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5101  	 * to be 'ored' into SCSI_CFG1.
5102  	 */
5103  	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5104  		/* SE automatic termination control is enabled. */
5105  		switch (scsi_cfg1 & C_DET_SE) {
5106  			/* TERM_SE_HI: on, TERM_SE_LO: on */
5107  		case 0x1:
5108  		case 0x2:
5109  		case 0x3:
5110  			asc_dvc->cfg->termination |= TERM_SE;
5111  			break;
5112  
5113  			/* TERM_SE_HI: on, TERM_SE_LO: off */
5114  		case 0x0:
5115  			asc_dvc->cfg->termination |= TERM_SE_HI;
5116  			break;
5117  		}
5118  	}
5119  
5120  	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5121  		/* LVD automatic termination control is enabled. */
5122  		switch (scsi_cfg1 & C_DET_LVD) {
5123  			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5124  		case 0x4:
5125  		case 0x8:
5126  		case 0xC:
5127  			asc_dvc->cfg->termination |= TERM_LVD;
5128  			break;
5129  
5130  			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5131  		case 0x0:
5132  			break;
5133  		}
5134  	}
5135  
5136  	/*
5137  	 * Clear any set TERM_SE and TERM_LVD bits.
5138  	 */
5139  	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5140  
5141  	/*
5142  	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5143  	 */
5144  	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5145  
5146  	/*
5147  	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5148  	 * bits and set possibly modified termination control bits in the
5149  	 * Microcode SCSI_CFG1 Register Value.
5150  	 */
5151  	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5152  
5153  	/*
5154  	 * Set SCSI_CFG1 Microcode Default Value
5155  	 *
5156  	 * Set possibly modified termination control and reset DIS_TERM_DRV
5157  	 * bits in the Microcode SCSI_CFG1 Register Value.
5158  	 *
5159  	 * The microcode will set the SCSI_CFG1 register using this value
5160  	 * after it is started below.
5161  	 */
5162  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5163  
5164  	/*
5165  	 * Set MEM_CFG Microcode Default Value
5166  	 *
5167  	 * The microcode will set the MEM_CFG register using this value
5168  	 * after it is started below.
5169  	 *
5170  	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5171  	 * are defined.
5172  	 *
5173  	 * ASC-38C0800 has 16KB internal memory.
5174  	 */
5175  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5176  			 BIOS_EN | RAM_SZ_16KB);
5177  
5178  	/*
5179  	 * Set SEL_MASK Microcode Default Value
5180  	 *
5181  	 * The microcode will set the SEL_MASK register using this value
5182  	 * after it is started below.
5183  	 */
5184  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5185  			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5186  
5187  	AdvBuildCarrierFreelist(asc_dvc);
5188  
5189  	/*
5190  	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5191  	 */
5192  
5193  	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5194  	if (!asc_dvc->icq_sp) {
5195  		ASC_DBG(0, "Failed to get ICQ carrier\n");
5196  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5197  		return ADV_ERROR;
5198  	}
5199  
5200  	/*
5201  	 * Set RISC ICQ physical address start value.
5202  	 * carr_pa is LE, must be native before write
5203  	 */
5204  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5205  
5206  	/*
5207  	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5208  	 */
5209  	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5210  	if (!asc_dvc->irq_sp) {
5211  		ASC_DBG(0, "Failed to get IRQ carrier\n");
5212  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5213  		return ADV_ERROR;
5214  	}
5215  
5216  	/*
5217  	 * Set RISC IRQ physical address start value.
5218  	 *
5219  	 * carr_pa is LE, must be native before write *
5220  	 */
5221  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5222  	asc_dvc->carr_pending_cnt = 0;
5223  
5224  	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5225  			     (ADV_INTR_ENABLE_HOST_INTR |
5226  			      ADV_INTR_ENABLE_GLOBAL_INTR));
5227  
5228  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5229  	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5230  
5231  	/* finally, finally, gentlemen, start your engine */
5232  	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5233  
5234  	/*
5235  	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5236  	 * Resets should be performed. The RISC has to be running
5237  	 * to issue a SCSI Bus Reset.
5238  	 */
5239  	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5240  		/*
5241  		 * If the BIOS Signature is present in memory, restore the
5242  		 * BIOS Handshake Configuration Table and do not perform
5243  		 * a SCSI Bus Reset.
5244  		 */
5245  		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5246  		    0x55AA) {
5247  			/*
5248  			 * Restore per TID negotiated values.
5249  			 */
5250  			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5251  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5252  			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5253  					 tagqng_able);
5254  			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5255  				AdvWriteByteLram(iop_base,
5256  						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5257  						 max_cmd[tid]);
5258  			}
5259  		} else {
5260  			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5261  				warn_code = ASC_WARN_BUSRESET_ERROR;
5262  			}
5263  		}
5264  	}
5265  
5266  	return warn_code;
5267  }
5268  
5269  /*
5270   * Initialize the ASC-38C1600.
5271   *
5272   * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5273   *
5274   * For a non-fatal error return a warning code. If there are no warnings
5275   * then 0 is returned.
5276   *
5277   * Needed after initialization for error recovery.
5278   */
AdvInitAsc38C1600Driver(ADV_DVC_VAR * asc_dvc)5279  static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5280  {
5281  	const struct firmware *fw;
5282  	const char fwname[] = "advansys/38C1600.bin";
5283  	AdvPortAddr iop_base;
5284  	ushort warn_code;
5285  	int begin_addr;
5286  	int end_addr;
5287  	ushort code_sum;
5288  	long word;
5289  	int i;
5290  	int err;
5291  	unsigned long chksum;
5292  	ushort scsi_cfg1;
5293  	uchar byte;
5294  	uchar tid;
5295  	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5296  	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5297  	uchar max_cmd[ASC_MAX_TID + 1];
5298  
5299  	/* If there is already an error, don't continue. */
5300  	if (asc_dvc->err_code != 0) {
5301  		return ADV_ERROR;
5302  	}
5303  
5304  	/*
5305  	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5306  	 */
5307  	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5308  		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5309  		return ADV_ERROR;
5310  	}
5311  
5312  	warn_code = 0;
5313  	iop_base = asc_dvc->iop_base;
5314  
5315  	/*
5316  	 * Save the RISC memory BIOS region before writing the microcode.
5317  	 * The BIOS may already be loaded and using its RISC LRAM region
5318  	 * so its region must be saved and restored.
5319  	 *
5320  	 * Note: This code makes the assumption, which is currently true,
5321  	 * that a chip reset does not clear RISC LRAM.
5322  	 */
5323  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5324  		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5325  				bios_mem[i]);
5326  	}
5327  
5328  	/*
5329  	 * Save current per TID negotiated values.
5330  	 */
5331  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5332  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5333  	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5334  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5335  	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5336  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5337  				max_cmd[tid]);
5338  	}
5339  
5340  	/*
5341  	 * RAM BIST (Built-In Self Test)
5342  	 *
5343  	 * Address : I/O base + offset 0x38h register (byte).
5344  	 * Function: Bit 7-6(RW) : RAM mode
5345  	 *                          Normal Mode   : 0x00
5346  	 *                          Pre-test Mode : 0x40
5347  	 *                          RAM Test Mode : 0x80
5348  	 *           Bit 5       : unused
5349  	 *           Bit 4(RO)   : Done bit
5350  	 *           Bit 3-0(RO) : Status
5351  	 *                          Host Error    : 0x08
5352  	 *                          Int_RAM Error : 0x04
5353  	 *                          RISC Error    : 0x02
5354  	 *                          SCSI Error    : 0x01
5355  	 *                          No Error      : 0x00
5356  	 *
5357  	 * Note: RAM BIST code should be put right here, before loading the
5358  	 * microcode and after saving the RISC memory BIOS region.
5359  	 */
5360  
5361  	/*
5362  	 * LRAM Pre-test
5363  	 *
5364  	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5365  	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5366  	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5367  	 * to NORMAL_MODE, return an error too.
5368  	 */
5369  	for (i = 0; i < 2; i++) {
5370  		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5371  		mdelay(10);	/* Wait for 10ms before reading back. */
5372  		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5373  		if ((byte & RAM_TEST_DONE) == 0
5374  		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5375  			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5376  			return ADV_ERROR;
5377  		}
5378  
5379  		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5380  		mdelay(10);	/* Wait for 10ms before reading back. */
5381  		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5382  		    != NORMAL_VALUE) {
5383  			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5384  			return ADV_ERROR;
5385  		}
5386  	}
5387  
5388  	/*
5389  	 * LRAM Test - It takes about 1.5 ms to run through the test.
5390  	 *
5391  	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5392  	 * If Done bit not set or Status not 0, save register byte, set the
5393  	 * err_code, and return an error.
5394  	 */
5395  	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5396  	mdelay(10);	/* Wait for 10ms before checking status. */
5397  
5398  	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5399  	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5400  		/* Get here if Done bit not set or Status not 0. */
5401  		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5402  		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5403  		return ADV_ERROR;
5404  	}
5405  
5406  	/* We need to reset back to normal mode after LRAM test passes. */
5407  	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5408  
5409  	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5410  	if (err) {
5411  		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5412  		       fwname, err);
5413  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5414  		return err;
5415  	}
5416  	if (fw->size < 4) {
5417  		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5418  		       fw->size, fwname);
5419  		release_firmware(fw);
5420  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5421  		return -EINVAL;
5422  	}
5423  	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5424  		 (fw->data[1] << 8) | fw->data[0];
5425  	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5426  					     fw->size - 4, ADV_38C1600_MEMSIZE,
5427  					     chksum);
5428  	release_firmware(fw);
5429  	if (asc_dvc->err_code)
5430  		return ADV_ERROR;
5431  
5432  	/*
5433  	 * Restore the RISC memory BIOS region.
5434  	 */
5435  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5436  		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5437  				 bios_mem[i]);
5438  	}
5439  
5440  	/*
5441  	 * Calculate and write the microcode code checksum to the microcode
5442  	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5443  	 */
5444  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5445  	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5446  	code_sum = 0;
5447  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5448  	for (word = begin_addr; word < end_addr; word += 2) {
5449  		code_sum += AdvReadWordAutoIncLram(iop_base);
5450  	}
5451  	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5452  
5453  	/*
5454  	 * Read microcode version and date.
5455  	 */
5456  	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5457  			asc_dvc->cfg->mcode_date);
5458  	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5459  			asc_dvc->cfg->mcode_version);
5460  
5461  	/*
5462  	 * Set the chip type to indicate the ASC38C1600.
5463  	 */
5464  	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5465  
5466  	/*
5467  	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5468  	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5469  	 * cable detection and then we are able to read C_DET[3:0].
5470  	 *
5471  	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5472  	 * Microcode Default Value' section below.
5473  	 */
5474  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5475  	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5476  			     scsi_cfg1 | DIS_TERM_DRV);
5477  
5478  	/*
5479  	 * If the PCI Configuration Command Register "Parity Error Response
5480  	 * Control" Bit was clear (0), then set the microcode variable
5481  	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5482  	 * to ignore DMA parity errors.
5483  	 */
5484  	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5485  		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5486  		word |= CONTROL_FLAG_IGNORE_PERR;
5487  		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5488  	}
5489  
5490  	/*
5491  	 * If the BIOS control flag AIPP (Asynchronous Information
5492  	 * Phase Protection) disable bit is not set, then set the firmware
5493  	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5494  	 * AIPP checking and encoding.
5495  	 */
5496  	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5497  		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5498  		word |= CONTROL_FLAG_ENABLE_AIPP;
5499  		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5500  	}
5501  
5502  	/*
5503  	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5504  	 * and START_CTL_TH [3:2].
5505  	 */
5506  	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5507  			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5508  
5509  	/*
5510  	 * Microcode operating variables for WDTR, SDTR, and command tag
5511  	 * queuing will be set in slave_configure() based on what a
5512  	 * device reports it is capable of in Inquiry byte 7.
5513  	 *
5514  	 * If SCSI Bus Resets have been disabled, then directly set
5515  	 * SDTR and WDTR from the EEPROM configuration. This will allow
5516  	 * the BIOS and warm boot to work without a SCSI bus hang on
5517  	 * the Inquiry caused by host and target mismatched DTR values.
5518  	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5519  	 * be assumed to be in Asynchronous, Narrow mode.
5520  	 */
5521  	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5522  		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5523  				 asc_dvc->wdtr_able);
5524  		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5525  				 asc_dvc->sdtr_able);
5526  	}
5527  
5528  	/*
5529  	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5530  	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5531  	 * configuration values.
5532  	 *
5533  	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5534  	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5535  	 * without determining here whether the device supports SDTR.
5536  	 */
5537  	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5538  			 asc_dvc->cfg->disc_enable);
5539  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5540  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5541  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5542  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5543  
5544  	/*
5545  	 * Set SCSI_CFG0 Microcode Default Value.
5546  	 *
5547  	 * The microcode will set the SCSI_CFG0 register using this value
5548  	 * after it is started below.
5549  	 */
5550  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5551  			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5552  			 asc_dvc->chip_scsi_id);
5553  
5554  	/*
5555  	 * Calculate SCSI_CFG1 Microcode Default Value.
5556  	 *
5557  	 * The microcode will set the SCSI_CFG1 register using this value
5558  	 * after it is started below.
5559  	 *
5560  	 * Each ASC-38C1600 function has only two cable detect bits.
5561  	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5562  	 */
5563  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5564  
5565  	/*
5566  	 * If the cable is reversed all of the SCSI_CTRL register signals
5567  	 * will be set. Check for and return an error if this condition is
5568  	 * found.
5569  	 */
5570  	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5571  		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5572  		return ADV_ERROR;
5573  	}
5574  
5575  	/*
5576  	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5577  	 * can not be connected to either connector. An LVD device or SE device
5578  	 * may be connected to either connecor. If an SE device is connected,
5579  	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5580  	 *
5581  	 * If an HVD device is attached, return an error.
5582  	 */
5583  	if (scsi_cfg1 & HVD) {
5584  		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5585  		return ADV_ERROR;
5586  	}
5587  
5588  	/*
5589  	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5590  	 * termination because there are two connectors for each function. Each
5591  	 * function may use either LVD or SE mode. Corresponding the SE automatic
5592  	 * termination control EEPROM bits are used for each function. Each
5593  	 * function has its own EEPROM. If SE automatic control is enabled for
5594  	 * the function, then set the termination value based on a table listed
5595  	 * in a_condor.h.
5596  	 *
5597  	 * If manual termination is specified in the EEPROM for the function,
5598  	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5599  	 * ready to be 'ored' into SCSI_CFG1.
5600  	 */
5601  	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5602  		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5603  		/* SE automatic termination control is enabled. */
5604  		switch (scsi_cfg1 & C_DET_SE) {
5605  			/* TERM_SE_HI: on, TERM_SE_LO: on */
5606  		case 0x1:
5607  		case 0x2:
5608  		case 0x3:
5609  			asc_dvc->cfg->termination |= TERM_SE;
5610  			break;
5611  
5612  		case 0x0:
5613  			if (PCI_FUNC(pdev->devfn) == 0) {
5614  				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5615  			} else {
5616  				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5617  				asc_dvc->cfg->termination |= TERM_SE_HI;
5618  			}
5619  			break;
5620  		}
5621  	}
5622  
5623  	/*
5624  	 * Clear any set TERM_SE bits.
5625  	 */
5626  	scsi_cfg1 &= ~TERM_SE;
5627  
5628  	/*
5629  	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5630  	 */
5631  	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5632  
5633  	/*
5634  	 * Clear Big Endian and Terminator Polarity bits and set possibly
5635  	 * modified termination control bits in the Microcode SCSI_CFG1
5636  	 * Register Value.
5637  	 *
5638  	 * Big Endian bit is not used even on big endian machines.
5639  	 */
5640  	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5641  
5642  	/*
5643  	 * Set SCSI_CFG1 Microcode Default Value
5644  	 *
5645  	 * Set possibly modified termination control bits in the Microcode
5646  	 * SCSI_CFG1 Register Value.
5647  	 *
5648  	 * The microcode will set the SCSI_CFG1 register using this value
5649  	 * after it is started below.
5650  	 */
5651  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5652  
5653  	/*
5654  	 * Set MEM_CFG Microcode Default Value
5655  	 *
5656  	 * The microcode will set the MEM_CFG register using this value
5657  	 * after it is started below.
5658  	 *
5659  	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5660  	 * are defined.
5661  	 *
5662  	 * ASC-38C1600 has 32KB internal memory.
5663  	 *
5664  	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5665  	 * out a special 16K Adv Library and Microcode version. After the issue
5666  	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5667  	 * mcode.sas files also need to be updated.
5668  	 *
5669  	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5670  	 *  BIOS_EN | RAM_SZ_32KB);
5671  	 */
5672  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5673  			 BIOS_EN | RAM_SZ_16KB);
5674  
5675  	/*
5676  	 * Set SEL_MASK Microcode Default Value
5677  	 *
5678  	 * The microcode will set the SEL_MASK register using this value
5679  	 * after it is started below.
5680  	 */
5681  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5682  			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5683  
5684  	AdvBuildCarrierFreelist(asc_dvc);
5685  
5686  	/*
5687  	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5688  	 */
5689  	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5690  	if (!asc_dvc->icq_sp) {
5691  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5692  		return ADV_ERROR;
5693  	}
5694  
5695  	/*
5696  	 * Set RISC ICQ physical address start value. Initialize the
5697  	 * COMMA register to the same value otherwise the RISC will
5698  	 * prematurely detect a command is available.
5699  	 */
5700  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5701  	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5702  			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5703  
5704  	/*
5705  	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5706  	 */
5707  	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5708  	if (!asc_dvc->irq_sp) {
5709  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5710  		return ADV_ERROR;
5711  	}
5712  
5713  	/*
5714  	 * Set RISC IRQ physical address start value.
5715  	 */
5716  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5717  	asc_dvc->carr_pending_cnt = 0;
5718  
5719  	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5720  			     (ADV_INTR_ENABLE_HOST_INTR |
5721  			      ADV_INTR_ENABLE_GLOBAL_INTR));
5722  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5723  	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5724  
5725  	/* finally, finally, gentlemen, start your engine */
5726  	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5727  
5728  	/*
5729  	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5730  	 * Resets should be performed. The RISC has to be running
5731  	 * to issue a SCSI Bus Reset.
5732  	 */
5733  	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5734  		/*
5735  		 * If the BIOS Signature is present in memory, restore the
5736  		 * per TID microcode operating variables.
5737  		 */
5738  		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5739  		    0x55AA) {
5740  			/*
5741  			 * Restore per TID negotiated values.
5742  			 */
5743  			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5744  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5745  			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5746  			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5747  					 tagqng_able);
5748  			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5749  				AdvWriteByteLram(iop_base,
5750  						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5751  						 max_cmd[tid]);
5752  			}
5753  		} else {
5754  			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5755  				warn_code = ASC_WARN_BUSRESET_ERROR;
5756  			}
5757  		}
5758  	}
5759  
5760  	return warn_code;
5761  }
5762  
5763  /*
5764   * Reset chip and SCSI Bus.
5765   *
5766   * Return Value:
5767   *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5768   *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5769   */
AdvResetChipAndSB(ADV_DVC_VAR * asc_dvc)5770  static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5771  {
5772  	int status;
5773  	ushort wdtr_able, sdtr_able, tagqng_able;
5774  	ushort ppr_able = 0;
5775  	uchar tid, max_cmd[ADV_MAX_TID + 1];
5776  	AdvPortAddr iop_base;
5777  	ushort bios_sig;
5778  
5779  	iop_base = asc_dvc->iop_base;
5780  
5781  	/*
5782  	 * Save current per TID negotiated values.
5783  	 */
5784  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5785  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5786  	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5787  		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5788  	}
5789  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5790  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5791  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5792  				max_cmd[tid]);
5793  	}
5794  
5795  	/*
5796  	 * Force the AdvInitAsc3550/38C0800Driver() function to
5797  	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5798  	 * The initialization functions assumes a SCSI Bus Reset is not
5799  	 * needed if the BIOS signature word is present.
5800  	 */
5801  	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5802  	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5803  
5804  	/*
5805  	 * Stop chip and reset it.
5806  	 */
5807  	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5808  	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5809  	mdelay(100);
5810  	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5811  			     ADV_CTRL_REG_CMD_WR_IO_REG);
5812  
5813  	/*
5814  	 * Reset Adv Library error code, if any, and try
5815  	 * re-initializing the chip.
5816  	 */
5817  	asc_dvc->err_code = 0;
5818  	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5819  		status = AdvInitAsc38C1600Driver(asc_dvc);
5820  	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5821  		status = AdvInitAsc38C0800Driver(asc_dvc);
5822  	} else {
5823  		status = AdvInitAsc3550Driver(asc_dvc);
5824  	}
5825  
5826  	/* Translate initialization return value to status value. */
5827  	if (status == 0) {
5828  		status = ADV_TRUE;
5829  	} else {
5830  		status = ADV_FALSE;
5831  	}
5832  
5833  	/*
5834  	 * Restore the BIOS signature word.
5835  	 */
5836  	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5837  
5838  	/*
5839  	 * Restore per TID negotiated values.
5840  	 */
5841  	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5842  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5843  	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5844  		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5845  	}
5846  	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5847  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5848  		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5849  				 max_cmd[tid]);
5850  	}
5851  
5852  	return status;
5853  }
5854  
5855  /*
5856   * adv_async_callback() - Adv Library asynchronous event callback function.
5857   */
adv_async_callback(ADV_DVC_VAR * adv_dvc_varp,uchar code)5858  static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5859  {
5860  	switch (code) {
5861  	case ADV_ASYNC_SCSI_BUS_RESET_DET:
5862  		/*
5863  		 * The firmware detected a SCSI Bus reset.
5864  		 */
5865  		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5866  		break;
5867  
5868  	case ADV_ASYNC_RDMA_FAILURE:
5869  		/*
5870  		 * Handle RDMA failure by resetting the SCSI Bus and
5871  		 * possibly the chip if it is unresponsive. Log the error
5872  		 * with a unique code.
5873  		 */
5874  		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5875  		AdvResetChipAndSB(adv_dvc_varp);
5876  		break;
5877  
5878  	case ADV_HOST_SCSI_BUS_RESET:
5879  		/*
5880  		 * Host generated SCSI bus reset occurred.
5881  		 */
5882  		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5883  		break;
5884  
5885  	default:
5886  		ASC_DBG(0, "unknown code 0x%x\n", code);
5887  		break;
5888  	}
5889  }
5890  
5891  /*
5892   * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5893   *
5894   * Callback function for the Wide SCSI Adv Library.
5895   */
adv_isr_callback(ADV_DVC_VAR * adv_dvc_varp,ADV_SCSI_REQ_Q * scsiqp)5896  static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5897  {
5898  	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5899  	adv_req_t *reqp;
5900  	adv_sgblk_t *sgblkp;
5901  	struct scsi_cmnd *scp;
5902  	u32 resid_cnt;
5903  	dma_addr_t sense_addr;
5904  
5905  	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5906  		adv_dvc_varp, scsiqp);
5907  	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5908  
5909  	/*
5910  	 * Get the adv_req_t structure for the command that has been
5911  	 * completed. The adv_req_t structure actually contains the
5912  	 * completed ADV_SCSI_REQ_Q structure.
5913  	 */
5914  	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5915  
5916  	ASC_DBG(1, "scp 0x%p\n", scp);
5917  	if (scp == NULL) {
5918  		ASC_PRINT
5919  		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5920  		return;
5921  	}
5922  	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5923  
5924  	reqp = (adv_req_t *)scp->host_scribble;
5925  	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5926  	if (reqp == NULL) {
5927  		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5928  		return;
5929  	}
5930  	/*
5931  	 * Remove backreferences to avoid duplicate
5932  	 * command completions.
5933  	 */
5934  	scp->host_scribble = NULL;
5935  	reqp->cmndp = NULL;
5936  
5937  	ASC_STATS(boardp->shost, callback);
5938  	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5939  
5940  	sense_addr = le32_to_cpu(scsiqp->sense_addr);
5941  	dma_unmap_single(boardp->dev, sense_addr,
5942  			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5943  
5944  	/*
5945  	 * 'done_status' contains the command's ending status.
5946  	 */
5947  	scp->result = 0;
5948  	switch (scsiqp->done_status) {
5949  	case QD_NO_ERROR:
5950  		ASC_DBG(2, "QD_NO_ERROR\n");
5951  
5952  		/*
5953  		 * Check for an underrun condition.
5954  		 *
5955  		 * If there was no error and an underrun condition, then
5956  		 * then return the number of underrun bytes.
5957  		 */
5958  		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
5959  		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
5960  		    resid_cnt <= scsi_bufflen(scp)) {
5961  			ASC_DBG(1, "underrun condition %lu bytes\n",
5962  				 (ulong)resid_cnt);
5963  			scsi_set_resid(scp, resid_cnt);
5964  		}
5965  		break;
5966  
5967  	case QD_WITH_ERROR:
5968  		ASC_DBG(2, "QD_WITH_ERROR\n");
5969  		switch (scsiqp->host_status) {
5970  		case QHSTA_NO_ERROR:
5971  			set_status_byte(scp, scsiqp->scsi_status);
5972  			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
5973  				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
5974  				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
5975  						  SCSI_SENSE_BUFFERSIZE);
5976  			}
5977  			break;
5978  
5979  		default:
5980  			/* Some other QHSTA error occurred. */
5981  			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
5982  			set_host_byte(scp, DID_BAD_TARGET);
5983  			break;
5984  		}
5985  		break;
5986  
5987  	case QD_ABORTED_BY_HOST:
5988  		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
5989  		set_status_byte(scp, scsiqp->scsi_status);
5990  		set_host_byte(scp, DID_ABORT);
5991  		break;
5992  
5993  	default:
5994  		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
5995  		set_status_byte(scp, scsiqp->scsi_status);
5996  		set_host_byte(scp, DID_ERROR);
5997  		break;
5998  	}
5999  
6000  	/*
6001  	 * If the 'init_tidmask' bit isn't already set for the target and the
6002  	 * current request finished normally, then set the bit for the target
6003  	 * to indicate that a device is present.
6004  	 */
6005  	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6006  	    scsiqp->done_status == QD_NO_ERROR &&
6007  	    scsiqp->host_status == QHSTA_NO_ERROR) {
6008  		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6009  	}
6010  
6011  	asc_scsi_done(scp);
6012  
6013  	/*
6014  	 * Free all 'adv_sgblk_t' structures allocated for the request.
6015  	 */
6016  	while ((sgblkp = reqp->sgblkp) != NULL) {
6017  		/* Remove 'sgblkp' from the request list. */
6018  		reqp->sgblkp = sgblkp->next_sgblkp;
6019  
6020  		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6021  			      sgblkp->sg_addr);
6022  	}
6023  
6024  	ASC_DBG(1, "done\n");
6025  }
6026  
6027  /*
6028   * Adv Library Interrupt Service Routine
6029   *
6030   *  This function is called by a driver's interrupt service routine.
6031   *  The function disables and re-enables interrupts.
6032   *
6033   *  When a microcode idle command is completed, the ADV_DVC_VAR
6034   *  'idle_cmd_done' field is set to ADV_TRUE.
6035   *
6036   *  Note: AdvISR() can be called when interrupts are disabled or even
6037   *  when there is no hardware interrupt condition present. It will
6038   *  always check for completed idle commands and microcode requests.
6039   *  This is an important feature that shouldn't be changed because it
6040   *  allows commands to be completed from polling mode loops.
6041   *
6042   * Return:
6043   *   ADV_TRUE(1) - interrupt was pending
6044   *   ADV_FALSE(0) - no interrupt was pending
6045   */
AdvISR(ADV_DVC_VAR * asc_dvc)6046  static int AdvISR(ADV_DVC_VAR *asc_dvc)
6047  {
6048  	AdvPortAddr iop_base;
6049  	uchar int_stat;
6050  	ADV_CARR_T *free_carrp;
6051  	__le32 irq_next_vpa;
6052  	ADV_SCSI_REQ_Q *scsiq;
6053  	adv_req_t *reqp;
6054  
6055  	iop_base = asc_dvc->iop_base;
6056  
6057  	/* Reading the register clears the interrupt. */
6058  	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6059  
6060  	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6061  			 ADV_INTR_STATUS_INTRC)) == 0) {
6062  		return ADV_FALSE;
6063  	}
6064  
6065  	/*
6066  	 * Notify the driver of an asynchronous microcode condition by
6067  	 * calling the adv_async_callback function. The function
6068  	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6069  	 */
6070  	if (int_stat & ADV_INTR_STATUS_INTRB) {
6071  		uchar intrb_code;
6072  
6073  		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6074  
6075  		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6076  		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6077  			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6078  			    asc_dvc->carr_pending_cnt != 0) {
6079  				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6080  						     ADV_TICKLE_A);
6081  				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6082  					AdvWriteByteRegister(iop_base,
6083  							     IOPB_TICKLE,
6084  							     ADV_TICKLE_NOP);
6085  				}
6086  			}
6087  		}
6088  
6089  		adv_async_callback(asc_dvc, intrb_code);
6090  	}
6091  
6092  	/*
6093  	 * Check if the IRQ stopper carrier contains a completed request.
6094  	 */
6095  	while (((irq_next_vpa =
6096  		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6097  		/*
6098  		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6099  		 * The RISC will have set 'areq_vpa' to a virtual address.
6100  		 *
6101  		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6102  		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6103  		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6104  		 * in AdvExeScsiQueue().
6105  		 */
6106  		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6107  		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6108  			asc_dvc->irq_sp, pa_offset);
6109  		reqp = adv_get_reqp(asc_dvc, pa_offset);
6110  		scsiq = &reqp->scsi_req_q;
6111  
6112  		/*
6113  		 * Request finished with good status and the queue was not
6114  		 * DMAed to host memory by the firmware. Set all status fields
6115  		 * to indicate good status.
6116  		 */
6117  		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6118  			scsiq->done_status = QD_NO_ERROR;
6119  			scsiq->host_status = scsiq->scsi_status = 0;
6120  			scsiq->data_cnt = 0L;
6121  		}
6122  
6123  		/*
6124  		 * Advance the stopper pointer to the next carrier
6125  		 * ignoring the lower four bits. Free the previous
6126  		 * stopper carrier.
6127  		 */
6128  		free_carrp = asc_dvc->irq_sp;
6129  		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6130  						  ADV_GET_CARRP(irq_next_vpa));
6131  
6132  		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6133  		asc_dvc->carr_freelist = free_carrp;
6134  		asc_dvc->carr_pending_cnt--;
6135  
6136  		/*
6137  		 * Clear request microcode control flag.
6138  		 */
6139  		scsiq->cntl = 0;
6140  
6141  		/*
6142  		 * Notify the driver of the completed request by passing
6143  		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6144  		 */
6145  		adv_isr_callback(asc_dvc, scsiq);
6146  		/*
6147  		 * Note: After the driver callback function is called, 'scsiq'
6148  		 * can no longer be referenced.
6149  		 *
6150  		 * Fall through and continue processing other completed
6151  		 * requests...
6152  		 */
6153  	}
6154  	return ADV_TRUE;
6155  }
6156  
AscSetLibErrorCode(ASC_DVC_VAR * asc_dvc,ushort err_code)6157  static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6158  {
6159  	if (asc_dvc->err_code == 0) {
6160  		asc_dvc->err_code = err_code;
6161  		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6162  				 err_code);
6163  	}
6164  	return err_code;
6165  }
6166  
AscAckInterrupt(PortAddr iop_base)6167  static void AscAckInterrupt(PortAddr iop_base)
6168  {
6169  	uchar host_flag;
6170  	uchar risc_flag;
6171  	ushort loop;
6172  
6173  	loop = 0;
6174  	do {
6175  		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6176  		if (loop++ > 0x7FFF) {
6177  			break;
6178  		}
6179  	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6180  	host_flag =
6181  	    AscReadLramByte(iop_base,
6182  			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6183  	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6184  			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6185  	AscSetChipStatus(iop_base, CIW_INT_ACK);
6186  	loop = 0;
6187  	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6188  		AscSetChipStatus(iop_base, CIW_INT_ACK);
6189  		if (loop++ > 3) {
6190  			break;
6191  		}
6192  	}
6193  	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6194  }
6195  
AscGetSynPeriodIndex(ASC_DVC_VAR * asc_dvc,uchar syn_time)6196  static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6197  {
6198  	const uchar *period_table;
6199  	int max_index;
6200  	int min_index;
6201  	int i;
6202  
6203  	period_table = asc_dvc->sdtr_period_tbl;
6204  	max_index = (int)asc_dvc->max_sdtr_index;
6205  	min_index = (int)asc_dvc->min_sdtr_index;
6206  	if ((syn_time <= period_table[max_index])) {
6207  		for (i = min_index; i < (max_index - 1); i++) {
6208  			if (syn_time <= period_table[i]) {
6209  				return (uchar)i;
6210  			}
6211  		}
6212  		return (uchar)max_index;
6213  	} else {
6214  		return (uchar)(max_index + 1);
6215  	}
6216  }
6217  
6218  static uchar
AscMsgOutSDTR(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar sdtr_offset)6219  AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6220  {
6221  	PortAddr iop_base = asc_dvc->iop_base;
6222  	uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6223  	EXT_MSG sdtr_buf = {
6224  		.msg_type = EXTENDED_MESSAGE,
6225  		.msg_len = MS_SDTR_LEN,
6226  		.msg_req = EXTENDED_SDTR,
6227  		.xfer_period = sdtr_period,
6228  		.req_ack_offset = sdtr_offset,
6229  	};
6230  	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6231  
6232  	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6233  		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6234  					(uchar *)&sdtr_buf,
6235  					sizeof(EXT_MSG) >> 1);
6236  		return ((sdtr_period_index << 4) | sdtr_offset);
6237  	} else {
6238  		sdtr_buf.req_ack_offset = 0;
6239  		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6240  					(uchar *)&sdtr_buf,
6241  					sizeof(EXT_MSG) >> 1);
6242  		return 0;
6243  	}
6244  }
6245  
6246  static uchar
AscCalSDTRData(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar syn_offset)6247  AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6248  {
6249  	uchar byte;
6250  	uchar sdtr_period_ix;
6251  
6252  	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6253  	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6254  		return 0xFF;
6255  	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6256  	return byte;
6257  }
6258  
AscSetChipSynRegAtID(PortAddr iop_base,uchar id,uchar sdtr_data)6259  static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6260  {
6261  	ASC_SCSI_BIT_ID_TYPE org_id;
6262  	int i;
6263  	bool sta = true;
6264  
6265  	AscSetBank(iop_base, 1);
6266  	org_id = AscReadChipDvcID(iop_base);
6267  	for (i = 0; i <= ASC_MAX_TID; i++) {
6268  		if (org_id == (0x01 << i))
6269  			break;
6270  	}
6271  	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6272  	AscWriteChipDvcID(iop_base, id);
6273  	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6274  		AscSetBank(iop_base, 0);
6275  		AscSetChipSyn(iop_base, sdtr_data);
6276  		if (AscGetChipSyn(iop_base) != sdtr_data) {
6277  			sta = false;
6278  		}
6279  	} else {
6280  		sta = false;
6281  	}
6282  	AscSetBank(iop_base, 1);
6283  	AscWriteChipDvcID(iop_base, org_id);
6284  	AscSetBank(iop_base, 0);
6285  	return (sta);
6286  }
6287  
AscSetChipSDTR(PortAddr iop_base,uchar sdtr_data,uchar tid_no)6288  static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6289  {
6290  	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6291  	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6292  }
6293  
AscIsrChipHalted(ASC_DVC_VAR * asc_dvc)6294  static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6295  {
6296  	EXT_MSG ext_msg;
6297  	EXT_MSG out_msg;
6298  	ushort halt_q_addr;
6299  	bool sdtr_accept;
6300  	ushort int_halt_code;
6301  	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6302  	ASC_SCSI_BIT_ID_TYPE target_id;
6303  	PortAddr iop_base;
6304  	uchar tag_code;
6305  	uchar q_status;
6306  	uchar halt_qp;
6307  	uchar sdtr_data;
6308  	uchar target_ix;
6309  	uchar q_cntl, tid_no;
6310  	uchar cur_dvc_qng;
6311  	uchar asyn_sdtr;
6312  	uchar scsi_status;
6313  	struct asc_board *boardp;
6314  
6315  	BUG_ON(!asc_dvc->drv_ptr);
6316  	boardp = asc_dvc->drv_ptr;
6317  
6318  	iop_base = asc_dvc->iop_base;
6319  	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6320  
6321  	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6322  	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6323  	target_ix = AscReadLramByte(iop_base,
6324  				    (ushort)(halt_q_addr +
6325  					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6326  	q_cntl = AscReadLramByte(iop_base,
6327  			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6328  	tid_no = ASC_TIX_TO_TID(target_ix);
6329  	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6330  	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6331  		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6332  	} else {
6333  		asyn_sdtr = 0;
6334  	}
6335  	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6336  		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6337  			AscSetChipSDTR(iop_base, 0, tid_no);
6338  			boardp->sdtr_data[tid_no] = 0;
6339  		}
6340  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6341  		return;
6342  	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6343  		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6344  			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6345  			boardp->sdtr_data[tid_no] = asyn_sdtr;
6346  		}
6347  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6348  		return;
6349  	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6350  		AscMemWordCopyPtrFromLram(iop_base,
6351  					  ASCV_MSGIN_BEG,
6352  					  (uchar *)&ext_msg,
6353  					  sizeof(EXT_MSG) >> 1);
6354  
6355  		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6356  		    ext_msg.msg_req == EXTENDED_SDTR &&
6357  		    ext_msg.msg_len == MS_SDTR_LEN) {
6358  			sdtr_accept = true;
6359  			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6360  
6361  				sdtr_accept = false;
6362  				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6363  			}
6364  			if ((ext_msg.xfer_period <
6365  			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6366  			    || (ext_msg.xfer_period >
6367  				asc_dvc->sdtr_period_tbl[asc_dvc->
6368  							 max_sdtr_index])) {
6369  				sdtr_accept = false;
6370  				ext_msg.xfer_period =
6371  				    asc_dvc->sdtr_period_tbl[asc_dvc->
6372  							     min_sdtr_index];
6373  			}
6374  			if (sdtr_accept) {
6375  				sdtr_data =
6376  				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6377  						   ext_msg.req_ack_offset);
6378  				if (sdtr_data == 0xFF) {
6379  
6380  					q_cntl |= QC_MSG_OUT;
6381  					asc_dvc->init_sdtr &= ~target_id;
6382  					asc_dvc->sdtr_done &= ~target_id;
6383  					AscSetChipSDTR(iop_base, asyn_sdtr,
6384  						       tid_no);
6385  					boardp->sdtr_data[tid_no] = asyn_sdtr;
6386  				}
6387  			}
6388  			if (ext_msg.req_ack_offset == 0) {
6389  
6390  				q_cntl &= ~QC_MSG_OUT;
6391  				asc_dvc->init_sdtr &= ~target_id;
6392  				asc_dvc->sdtr_done &= ~target_id;
6393  				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6394  			} else {
6395  				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6396  					q_cntl &= ~QC_MSG_OUT;
6397  					asc_dvc->sdtr_done |= target_id;
6398  					asc_dvc->init_sdtr |= target_id;
6399  					asc_dvc->pci_fix_asyn_xfer &=
6400  					    ~target_id;
6401  					sdtr_data =
6402  					    AscCalSDTRData(asc_dvc,
6403  							   ext_msg.xfer_period,
6404  							   ext_msg.
6405  							   req_ack_offset);
6406  					AscSetChipSDTR(iop_base, sdtr_data,
6407  						       tid_no);
6408  					boardp->sdtr_data[tid_no] = sdtr_data;
6409  				} else {
6410  					q_cntl |= QC_MSG_OUT;
6411  					AscMsgOutSDTR(asc_dvc,
6412  						      ext_msg.xfer_period,
6413  						      ext_msg.req_ack_offset);
6414  					asc_dvc->pci_fix_asyn_xfer &=
6415  					    ~target_id;
6416  					sdtr_data =
6417  					    AscCalSDTRData(asc_dvc,
6418  							   ext_msg.xfer_period,
6419  							   ext_msg.
6420  							   req_ack_offset);
6421  					AscSetChipSDTR(iop_base, sdtr_data,
6422  						       tid_no);
6423  					boardp->sdtr_data[tid_no] = sdtr_data;
6424  					asc_dvc->sdtr_done |= target_id;
6425  					asc_dvc->init_sdtr |= target_id;
6426  				}
6427  			}
6428  
6429  			AscWriteLramByte(iop_base,
6430  					 (ushort)(halt_q_addr +
6431  						  (ushort)ASC_SCSIQ_B_CNTL),
6432  					 q_cntl);
6433  			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6434  			return;
6435  		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6436  			   ext_msg.msg_req == EXTENDED_WDTR &&
6437  			   ext_msg.msg_len == MS_WDTR_LEN) {
6438  
6439  			ext_msg.wdtr_width = 0;
6440  			AscMemWordCopyPtrToLram(iop_base,
6441  						ASCV_MSGOUT_BEG,
6442  						(uchar *)&ext_msg,
6443  						sizeof(EXT_MSG) >> 1);
6444  			q_cntl |= QC_MSG_OUT;
6445  			AscWriteLramByte(iop_base,
6446  					 (ushort)(halt_q_addr +
6447  						  (ushort)ASC_SCSIQ_B_CNTL),
6448  					 q_cntl);
6449  			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6450  			return;
6451  		} else {
6452  
6453  			ext_msg.msg_type = MESSAGE_REJECT;
6454  			AscMemWordCopyPtrToLram(iop_base,
6455  						ASCV_MSGOUT_BEG,
6456  						(uchar *)&ext_msg,
6457  						sizeof(EXT_MSG) >> 1);
6458  			q_cntl |= QC_MSG_OUT;
6459  			AscWriteLramByte(iop_base,
6460  					 (ushort)(halt_q_addr +
6461  						  (ushort)ASC_SCSIQ_B_CNTL),
6462  					 q_cntl);
6463  			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6464  			return;
6465  		}
6466  	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6467  
6468  		q_cntl |= QC_REQ_SENSE;
6469  
6470  		if ((asc_dvc->init_sdtr & target_id) != 0) {
6471  
6472  			asc_dvc->sdtr_done &= ~target_id;
6473  
6474  			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6475  			q_cntl |= QC_MSG_OUT;
6476  			AscMsgOutSDTR(asc_dvc,
6477  				      asc_dvc->
6478  				      sdtr_period_tbl[(sdtr_data >> 4) &
6479  						      (uchar)(asc_dvc->
6480  							      max_sdtr_index -
6481  							      1)],
6482  				      (uchar)(sdtr_data & (uchar)
6483  					      ASC_SYN_MAX_OFFSET));
6484  		}
6485  
6486  		AscWriteLramByte(iop_base,
6487  				 (ushort)(halt_q_addr +
6488  					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6489  
6490  		tag_code = AscReadLramByte(iop_base,
6491  					   (ushort)(halt_q_addr + (ushort)
6492  						    ASC_SCSIQ_B_TAG_CODE));
6493  		tag_code &= 0xDC;
6494  		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6495  		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6496  		    ) {
6497  
6498  			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6499  				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6500  
6501  		}
6502  		AscWriteLramByte(iop_base,
6503  				 (ushort)(halt_q_addr +
6504  					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6505  				 tag_code);
6506  
6507  		q_status = AscReadLramByte(iop_base,
6508  					   (ushort)(halt_q_addr + (ushort)
6509  						    ASC_SCSIQ_B_STATUS));
6510  		q_status |= (QS_READY | QS_BUSY);
6511  		AscWriteLramByte(iop_base,
6512  				 (ushort)(halt_q_addr +
6513  					  (ushort)ASC_SCSIQ_B_STATUS),
6514  				 q_status);
6515  
6516  		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6517  		scsi_busy &= ~target_id;
6518  		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6519  
6520  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6521  		return;
6522  	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6523  
6524  		AscMemWordCopyPtrFromLram(iop_base,
6525  					  ASCV_MSGOUT_BEG,
6526  					  (uchar *)&out_msg,
6527  					  sizeof(EXT_MSG) >> 1);
6528  
6529  		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6530  		    (out_msg.msg_len == MS_SDTR_LEN) &&
6531  		    (out_msg.msg_req == EXTENDED_SDTR)) {
6532  
6533  			asc_dvc->init_sdtr &= ~target_id;
6534  			asc_dvc->sdtr_done &= ~target_id;
6535  			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6536  			boardp->sdtr_data[tid_no] = asyn_sdtr;
6537  		}
6538  		q_cntl &= ~QC_MSG_OUT;
6539  		AscWriteLramByte(iop_base,
6540  				 (ushort)(halt_q_addr +
6541  					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6542  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6543  		return;
6544  	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6545  
6546  		scsi_status = AscReadLramByte(iop_base,
6547  					      (ushort)((ushort)halt_q_addr +
6548  						       (ushort)
6549  						       ASC_SCSIQ_SCSI_STATUS));
6550  		cur_dvc_qng =
6551  		    AscReadLramByte(iop_base,
6552  				    (ushort)((ushort)ASC_QADR_BEG +
6553  					     (ushort)target_ix));
6554  		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6555  
6556  			scsi_busy = AscReadLramByte(iop_base,
6557  						    (ushort)ASCV_SCSIBUSY_B);
6558  			scsi_busy |= target_id;
6559  			AscWriteLramByte(iop_base,
6560  					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6561  			asc_dvc->queue_full_or_busy |= target_id;
6562  
6563  			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6564  				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6565  					cur_dvc_qng -= 1;
6566  					asc_dvc->max_dvc_qng[tid_no] =
6567  					    cur_dvc_qng;
6568  
6569  					AscWriteLramByte(iop_base,
6570  							 (ushort)((ushort)
6571  								  ASCV_MAX_DVC_QNG_BEG
6572  								  + (ushort)
6573  								  tid_no),
6574  							 cur_dvc_qng);
6575  
6576  					/*
6577  					 * Set the device queue depth to the
6578  					 * number of active requests when the
6579  					 * QUEUE FULL condition was encountered.
6580  					 */
6581  					boardp->queue_full |= target_id;
6582  					boardp->queue_full_cnt[tid_no] =
6583  					    cur_dvc_qng;
6584  				}
6585  			}
6586  		}
6587  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6588  		return;
6589  	}
6590  	return;
6591  }
6592  
6593  /*
6594   * void
6595   * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6596   *
6597   * Calling/Exit State:
6598   *    none
6599   *
6600   * Description:
6601   *     Input an ASC_QDONE_INFO structure from the chip
6602   */
6603  static void
DvcGetQinfo(PortAddr iop_base,ushort s_addr,uchar * inbuf,int words)6604  DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6605  {
6606  	int i;
6607  	ushort word;
6608  
6609  	AscSetChipLramAddr(iop_base, s_addr);
6610  	for (i = 0; i < 2 * words; i += 2) {
6611  		if (i == 10) {
6612  			continue;
6613  		}
6614  		word = inpw(iop_base + IOP_RAM_DATA);
6615  		inbuf[i] = word & 0xff;
6616  		inbuf[i + 1] = (word >> 8) & 0xff;
6617  	}
6618  	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6619  }
6620  
6621  static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,ushort q_addr,ASC_QDONE_INFO * scsiq,unsigned int max_dma_count)6622  _AscCopyLramScsiDoneQ(PortAddr iop_base,
6623  		      ushort q_addr,
6624  		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6625  {
6626  	ushort _val;
6627  	uchar sg_queue_cnt;
6628  
6629  	DvcGetQinfo(iop_base,
6630  		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6631  		    (uchar *)scsiq,
6632  		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6633  
6634  	_val = AscReadLramWord(iop_base,
6635  			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6636  	scsiq->q_status = (uchar)_val;
6637  	scsiq->q_no = (uchar)(_val >> 8);
6638  	_val = AscReadLramWord(iop_base,
6639  			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6640  	scsiq->cntl = (uchar)_val;
6641  	sg_queue_cnt = (uchar)(_val >> 8);
6642  	_val = AscReadLramWord(iop_base,
6643  			       (ushort)(q_addr +
6644  					(ushort)ASC_SCSIQ_B_SENSE_LEN));
6645  	scsiq->sense_len = (uchar)_val;
6646  	scsiq->extra_bytes = (uchar)(_val >> 8);
6647  
6648  	/*
6649  	 * Read high word of remain bytes from alternate location.
6650  	 */
6651  	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6652  						     (ushort)(q_addr +
6653  							      (ushort)
6654  							      ASC_SCSIQ_W_ALT_DC1)))
6655  			       << 16);
6656  	/*
6657  	 * Read low word of remain bytes from original location.
6658  	 */
6659  	scsiq->remain_bytes += AscReadLramWord(iop_base,
6660  					       (ushort)(q_addr + (ushort)
6661  							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6662  
6663  	scsiq->remain_bytes &= max_dma_count;
6664  	return sg_queue_cnt;
6665  }
6666  
6667  /*
6668   * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6669   *
6670   * Interrupt callback function for the Narrow SCSI Asc Library.
6671   */
asc_isr_callback(ASC_DVC_VAR * asc_dvc_varp,ASC_QDONE_INFO * qdonep)6672  static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6673  {
6674  	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6675  	u32 srb_tag;
6676  	struct scsi_cmnd *scp;
6677  
6678  	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6679  	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6680  
6681  	/*
6682  	 * Decrease the srb_tag by 1 to find the SCSI command
6683  	 */
6684  	srb_tag = qdonep->d2.srb_tag - 1;
6685  	scp = scsi_host_find_tag(boardp->shost, srb_tag);
6686  	if (!scp)
6687  		return;
6688  
6689  	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6690  
6691  	ASC_STATS(boardp->shost, callback);
6692  
6693  	dma_unmap_single(boardp->dev, advansys_cmd(scp)->dma_handle,
6694  			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6695  	/*
6696  	 * 'qdonep' contains the command's ending status.
6697  	 */
6698  	scp->result = 0;
6699  	switch (qdonep->d3.done_stat) {
6700  	case QD_NO_ERROR:
6701  		ASC_DBG(2, "QD_NO_ERROR\n");
6702  
6703  		/*
6704  		 * Check for an underrun condition.
6705  		 *
6706  		 * If there was no error and an underrun condition, then
6707  		 * return the number of underrun bytes.
6708  		 */
6709  		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6710  		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6711  			ASC_DBG(1, "underrun condition %u bytes\n",
6712  				 (unsigned)qdonep->remain_bytes);
6713  			scsi_set_resid(scp, qdonep->remain_bytes);
6714  		}
6715  		break;
6716  
6717  	case QD_WITH_ERROR:
6718  		ASC_DBG(2, "QD_WITH_ERROR\n");
6719  		switch (qdonep->d3.host_stat) {
6720  		case QHSTA_NO_ERROR:
6721  			set_status_byte(scp, qdonep->d3.scsi_stat);
6722  			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6723  				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6724  				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6725  						  SCSI_SENSE_BUFFERSIZE);
6726  			}
6727  			break;
6728  
6729  		default:
6730  			/* QHSTA error occurred */
6731  			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6732  			set_host_byte(scp, DID_BAD_TARGET);
6733  			break;
6734  		}
6735  		break;
6736  
6737  	case QD_ABORTED_BY_HOST:
6738  		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6739  		set_status_byte(scp, qdonep->d3.scsi_stat);
6740  		set_host_byte(scp, DID_ABORT);
6741  		break;
6742  
6743  	default:
6744  		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6745  		set_status_byte(scp, qdonep->d3.scsi_stat);
6746  		set_host_byte(scp, DID_ERROR);
6747  		break;
6748  	}
6749  
6750  	/*
6751  	 * If the 'init_tidmask' bit isn't already set for the target and the
6752  	 * current request finished normally, then set the bit for the target
6753  	 * to indicate that a device is present.
6754  	 */
6755  	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6756  	    qdonep->d3.done_stat == QD_NO_ERROR &&
6757  	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6758  		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6759  	}
6760  
6761  	asc_scsi_done(scp);
6762  }
6763  
AscIsrQDone(ASC_DVC_VAR * asc_dvc)6764  static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6765  {
6766  	uchar next_qp;
6767  	uchar n_q_used;
6768  	uchar sg_list_qp;
6769  	uchar sg_queue_cnt;
6770  	uchar q_cnt;
6771  	uchar done_q_tail;
6772  	uchar tid_no;
6773  	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6774  	ASC_SCSI_BIT_ID_TYPE target_id;
6775  	PortAddr iop_base;
6776  	ushort q_addr;
6777  	ushort sg_q_addr;
6778  	uchar cur_target_qng;
6779  	ASC_QDONE_INFO scsiq_buf;
6780  	ASC_QDONE_INFO *scsiq;
6781  	bool false_overrun;
6782  
6783  	iop_base = asc_dvc->iop_base;
6784  	n_q_used = 1;
6785  	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6786  	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6787  	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6788  	next_qp = AscReadLramByte(iop_base,
6789  				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6790  	if (next_qp != ASC_QLINK_END) {
6791  		AscPutVarDoneQTail(iop_base, next_qp);
6792  		q_addr = ASC_QNO_TO_QADDR(next_qp);
6793  		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6794  						     asc_dvc->max_dma_count);
6795  		AscWriteLramByte(iop_base,
6796  				 (ushort)(q_addr +
6797  					  (ushort)ASC_SCSIQ_B_STATUS),
6798  				 (uchar)(scsiq->
6799  					 q_status & (uchar)~(QS_READY |
6800  							     QS_ABORTED)));
6801  		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6802  		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6803  		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6804  			sg_q_addr = q_addr;
6805  			sg_list_qp = next_qp;
6806  			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6807  				sg_list_qp = AscReadLramByte(iop_base,
6808  							     (ushort)(sg_q_addr
6809  								      + (ushort)
6810  								      ASC_SCSIQ_B_FWD));
6811  				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6812  				if (sg_list_qp == ASC_QLINK_END) {
6813  					AscSetLibErrorCode(asc_dvc,
6814  							   ASCQ_ERR_SG_Q_LINKS);
6815  					scsiq->d3.done_stat = QD_WITH_ERROR;
6816  					scsiq->d3.host_stat =
6817  					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6818  					goto FATAL_ERR_QDONE;
6819  				}
6820  				AscWriteLramByte(iop_base,
6821  						 (ushort)(sg_q_addr + (ushort)
6822  							  ASC_SCSIQ_B_STATUS),
6823  						 QS_FREE);
6824  			}
6825  			n_q_used = sg_queue_cnt + 1;
6826  			AscPutVarDoneQTail(iop_base, sg_list_qp);
6827  		}
6828  		if (asc_dvc->queue_full_or_busy & target_id) {
6829  			cur_target_qng = AscReadLramByte(iop_base,
6830  							 (ushort)((ushort)
6831  								  ASC_QADR_BEG
6832  								  + (ushort)
6833  								  scsiq->d2.
6834  								  target_ix));
6835  			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6836  				scsi_busy = AscReadLramByte(iop_base, (ushort)
6837  							    ASCV_SCSIBUSY_B);
6838  				scsi_busy &= ~target_id;
6839  				AscWriteLramByte(iop_base,
6840  						 (ushort)ASCV_SCSIBUSY_B,
6841  						 scsi_busy);
6842  				asc_dvc->queue_full_or_busy &= ~target_id;
6843  			}
6844  		}
6845  		if (asc_dvc->cur_total_qng >= n_q_used) {
6846  			asc_dvc->cur_total_qng -= n_q_used;
6847  			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6848  				asc_dvc->cur_dvc_qng[tid_no]--;
6849  			}
6850  		} else {
6851  			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6852  			scsiq->d3.done_stat = QD_WITH_ERROR;
6853  			goto FATAL_ERR_QDONE;
6854  		}
6855  		if ((scsiq->d2.srb_tag == 0UL) ||
6856  		    ((scsiq->q_status & QS_ABORTED) != 0)) {
6857  			return (0x11);
6858  		} else if (scsiq->q_status == QS_DONE) {
6859  			/*
6860  			 * This is also curious.
6861  			 * false_overrun will _always_ be set to 'false'
6862  			 */
6863  			false_overrun = false;
6864  			if (scsiq->extra_bytes != 0) {
6865  				scsiq->remain_bytes += scsiq->extra_bytes;
6866  			}
6867  			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6868  				if (scsiq->d3.host_stat ==
6869  				    QHSTA_M_DATA_OVER_RUN) {
6870  					if ((scsiq->
6871  					     cntl & (QC_DATA_IN | QC_DATA_OUT))
6872  					    == 0) {
6873  						scsiq->d3.done_stat =
6874  						    QD_NO_ERROR;
6875  						scsiq->d3.host_stat =
6876  						    QHSTA_NO_ERROR;
6877  					} else if (false_overrun) {
6878  						scsiq->d3.done_stat =
6879  						    QD_NO_ERROR;
6880  						scsiq->d3.host_stat =
6881  						    QHSTA_NO_ERROR;
6882  					}
6883  				} else if (scsiq->d3.host_stat ==
6884  					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6885  					AscStopChip(iop_base);
6886  					AscSetChipControl(iop_base,
6887  							  (uchar)(CC_SCSI_RESET
6888  								  | CC_HALT));
6889  					udelay(60);
6890  					AscSetChipControl(iop_base, CC_HALT);
6891  					AscSetChipStatus(iop_base,
6892  							 CIW_CLR_SCSI_RESET_INT);
6893  					AscSetChipStatus(iop_base, 0);
6894  					AscSetChipControl(iop_base, 0);
6895  				}
6896  			}
6897  			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6898  				asc_isr_callback(asc_dvc, scsiq);
6899  			} else {
6900  				if ((AscReadLramByte(iop_base,
6901  						     (ushort)(q_addr + (ushort)
6902  							      ASC_SCSIQ_CDB_BEG))
6903  				     == START_STOP)) {
6904  					asc_dvc->unit_not_ready &= ~target_id;
6905  					if (scsiq->d3.done_stat != QD_NO_ERROR) {
6906  						asc_dvc->start_motor &=
6907  						    ~target_id;
6908  					}
6909  				}
6910  			}
6911  			return (1);
6912  		} else {
6913  			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
6914   FATAL_ERR_QDONE:
6915  			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6916  				asc_isr_callback(asc_dvc, scsiq);
6917  			}
6918  			return (0x80);
6919  		}
6920  	}
6921  	return (0);
6922  }
6923  
AscISR(ASC_DVC_VAR * asc_dvc)6924  static int AscISR(ASC_DVC_VAR *asc_dvc)
6925  {
6926  	ASC_CS_TYPE chipstat;
6927  	PortAddr iop_base;
6928  	ushort saved_ram_addr;
6929  	uchar ctrl_reg;
6930  	uchar saved_ctrl_reg;
6931  	int int_pending;
6932  	int status;
6933  	uchar host_flag;
6934  
6935  	iop_base = asc_dvc->iop_base;
6936  	int_pending = ASC_FALSE;
6937  
6938  	if (AscIsIntPending(iop_base) == 0)
6939  		return int_pending;
6940  
6941  	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
6942  		return ASC_ERROR;
6943  	}
6944  	if (asc_dvc->in_critical_cnt != 0) {
6945  		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
6946  		return ASC_ERROR;
6947  	}
6948  	if (asc_dvc->is_in_int) {
6949  		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
6950  		return ASC_ERROR;
6951  	}
6952  	asc_dvc->is_in_int = true;
6953  	ctrl_reg = AscGetChipControl(iop_base);
6954  	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
6955  				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
6956  	chipstat = AscGetChipStatus(iop_base);
6957  	if (chipstat & CSW_SCSI_RESET_LATCH) {
6958  		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
6959  			int i = 10;
6960  			int_pending = ASC_TRUE;
6961  			asc_dvc->sdtr_done = 0;
6962  			saved_ctrl_reg &= (uchar)(~CC_HALT);
6963  			while ((AscGetChipStatus(iop_base) &
6964  				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
6965  				mdelay(100);
6966  			}
6967  			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
6968  			AscSetChipControl(iop_base, CC_HALT);
6969  			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
6970  			AscSetChipStatus(iop_base, 0);
6971  			chipstat = AscGetChipStatus(iop_base);
6972  		}
6973  	}
6974  	saved_ram_addr = AscGetChipLramAddr(iop_base);
6975  	host_flag = AscReadLramByte(iop_base,
6976  				    ASCV_HOST_FLAG_B) &
6977  	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
6978  	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6979  			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
6980  	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
6981  		AscAckInterrupt(iop_base);
6982  		int_pending = ASC_TRUE;
6983  		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
6984  			AscIsrChipHalted(asc_dvc);
6985  			saved_ctrl_reg &= (uchar)(~CC_HALT);
6986  		} else {
6987  			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
6988  				while (((status =
6989  					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
6990  				}
6991  			} else {
6992  				do {
6993  					if ((status =
6994  					     AscIsrQDone(asc_dvc)) == 1) {
6995  						break;
6996  					}
6997  				} while (status == 0x11);
6998  			}
6999  			if ((status & 0x80) != 0)
7000  				int_pending = ASC_ERROR;
7001  		}
7002  	}
7003  	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7004  	AscSetChipLramAddr(iop_base, saved_ram_addr);
7005  	AscSetChipControl(iop_base, saved_ctrl_reg);
7006  	asc_dvc->is_in_int = false;
7007  	return int_pending;
7008  }
7009  
7010  /*
7011   * advansys_reset()
7012   *
7013   * Reset the host associated with the command 'scp'.
7014   *
7015   * This function runs its own thread. Interrupts must be blocked but
7016   * sleeping is allowed and no locking other than for host structures is
7017   * required. Returns SUCCESS or FAILED.
7018   */
advansys_reset(struct scsi_cmnd * scp)7019  static int advansys_reset(struct scsi_cmnd *scp)
7020  {
7021  	struct Scsi_Host *shost = scp->device->host;
7022  	struct asc_board *boardp = shost_priv(shost);
7023  	unsigned long flags;
7024  	int status;
7025  	int ret = SUCCESS;
7026  
7027  	ASC_DBG(1, "0x%p\n", scp);
7028  
7029  	ASC_STATS(shost, reset);
7030  
7031  	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7032  
7033  	if (ASC_NARROW_BOARD(boardp)) {
7034  		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7035  
7036  		/* Reset the chip and SCSI bus. */
7037  		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7038  		status = AscInitAsc1000Driver(asc_dvc);
7039  
7040  		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7041  		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7042  			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7043  				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7044  				    status);
7045  			ret = FAILED;
7046  		} else if (status) {
7047  			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7048  				    "0x%x\n", status);
7049  		} else {
7050  			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7051  				    "successful\n");
7052  		}
7053  
7054  		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7055  	} else {
7056  		/*
7057  		 * If the suggest reset bus flags are set, then reset the bus.
7058  		 * Otherwise only reset the device.
7059  		 */
7060  		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7061  
7062  		/*
7063  		 * Reset the chip and SCSI bus.
7064  		 */
7065  		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7066  		switch (AdvResetChipAndSB(adv_dvc)) {
7067  		case ASC_TRUE:
7068  			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7069  				    "successful\n");
7070  			break;
7071  		case ASC_FALSE:
7072  		default:
7073  			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7074  			ret = FAILED;
7075  			break;
7076  		}
7077  		spin_lock_irqsave(shost->host_lock, flags);
7078  		AdvISR(adv_dvc);
7079  		spin_unlock_irqrestore(shost->host_lock, flags);
7080  	}
7081  
7082  	ASC_DBG(1, "ret %d\n", ret);
7083  
7084  	return ret;
7085  }
7086  
7087  /*
7088   * advansys_biosparam()
7089   *
7090   * Translate disk drive geometry if the "BIOS greater than 1 GB"
7091   * support is enabled for a drive.
7092   *
7093   * ip (information pointer) is an int array with the following definition:
7094   * ip[0]: heads
7095   * ip[1]: sectors
7096   * ip[2]: cylinders
7097   */
7098  static int
advansys_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int ip[])7099  advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7100  		   sector_t capacity, int ip[])
7101  {
7102  	struct asc_board *boardp = shost_priv(sdev->host);
7103  
7104  	ASC_DBG(1, "begin\n");
7105  	ASC_STATS(sdev->host, biosparam);
7106  	if (ASC_NARROW_BOARD(boardp)) {
7107  		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7108  		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7109  			ip[0] = 255;
7110  			ip[1] = 63;
7111  		} else {
7112  			ip[0] = 64;
7113  			ip[1] = 32;
7114  		}
7115  	} else {
7116  		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7117  		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7118  			ip[0] = 255;
7119  			ip[1] = 63;
7120  		} else {
7121  			ip[0] = 64;
7122  			ip[1] = 32;
7123  		}
7124  	}
7125  	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7126  	ASC_DBG(1, "end\n");
7127  	return 0;
7128  }
7129  
7130  /*
7131   * First-level interrupt handler.
7132   *
7133   * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7134   */
advansys_interrupt(int irq,void * dev_id)7135  static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7136  {
7137  	struct Scsi_Host *shost = dev_id;
7138  	struct asc_board *boardp = shost_priv(shost);
7139  	irqreturn_t result = IRQ_NONE;
7140  	unsigned long flags;
7141  
7142  	ASC_DBG(2, "boardp 0x%p\n", boardp);
7143  	spin_lock_irqsave(shost->host_lock, flags);
7144  	if (ASC_NARROW_BOARD(boardp)) {
7145  		if (AscIsIntPending(shost->io_port)) {
7146  			result = IRQ_HANDLED;
7147  			ASC_STATS(shost, interrupt);
7148  			ASC_DBG(1, "before AscISR()\n");
7149  			AscISR(&boardp->dvc_var.asc_dvc_var);
7150  		}
7151  	} else {
7152  		ASC_DBG(1, "before AdvISR()\n");
7153  		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7154  			result = IRQ_HANDLED;
7155  			ASC_STATS(shost, interrupt);
7156  		}
7157  	}
7158  	spin_unlock_irqrestore(shost->host_lock, flags);
7159  
7160  	ASC_DBG(1, "end\n");
7161  	return result;
7162  }
7163  
AscHostReqRiscHalt(PortAddr iop_base)7164  static bool AscHostReqRiscHalt(PortAddr iop_base)
7165  {
7166  	int count = 0;
7167  	bool sta = false;
7168  	uchar saved_stop_code;
7169  
7170  	if (AscIsChipHalted(iop_base))
7171  		return true;
7172  	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7173  	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7174  			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7175  	do {
7176  		if (AscIsChipHalted(iop_base)) {
7177  			sta = true;
7178  			break;
7179  		}
7180  		mdelay(100);
7181  	} while (count++ < 20);
7182  	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7183  	return sta;
7184  }
7185  
7186  static bool
AscSetRunChipSynRegAtID(PortAddr iop_base,uchar tid_no,uchar sdtr_data)7187  AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7188  {
7189  	bool sta = false;
7190  
7191  	if (AscHostReqRiscHalt(iop_base)) {
7192  		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7193  		AscStartChip(iop_base);
7194  	}
7195  	return sta;
7196  }
7197  
AscAsyncFix(ASC_DVC_VAR * asc_dvc,struct scsi_device * sdev)7198  static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7199  {
7200  	char type = sdev->type;
7201  	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7202  
7203  	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7204  		return;
7205  	if (asc_dvc->init_sdtr & tid_bits)
7206  		return;
7207  
7208  	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7209  		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7210  
7211  	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7212  	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7213  	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7214  		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7215  
7216  	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7217  		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7218  					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7219  }
7220  
7221  static void
advansys_narrow_slave_configure(struct scsi_device * sdev,ASC_DVC_VAR * asc_dvc)7222  advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7223  {
7224  	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7225  	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7226  
7227  	if (sdev->lun == 0) {
7228  		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7229  		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7230  			asc_dvc->init_sdtr |= tid_bit;
7231  		} else {
7232  			asc_dvc->init_sdtr &= ~tid_bit;
7233  		}
7234  
7235  		if (orig_init_sdtr != asc_dvc->init_sdtr)
7236  			AscAsyncFix(asc_dvc, sdev);
7237  	}
7238  
7239  	if (sdev->tagged_supported) {
7240  		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7241  			if (sdev->lun == 0) {
7242  				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7243  				asc_dvc->use_tagged_qng |= tid_bit;
7244  			}
7245  			scsi_change_queue_depth(sdev,
7246  						asc_dvc->max_dvc_qng[sdev->id]);
7247  		}
7248  	} else {
7249  		if (sdev->lun == 0) {
7250  			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7251  			asc_dvc->use_tagged_qng &= ~tid_bit;
7252  		}
7253  	}
7254  
7255  	if ((sdev->lun == 0) &&
7256  	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7257  		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7258  				 asc_dvc->cfg->disc_enable);
7259  		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7260  				 asc_dvc->use_tagged_qng);
7261  		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7262  				 asc_dvc->cfg->can_tagged_qng);
7263  
7264  		asc_dvc->max_dvc_qng[sdev->id] =
7265  					asc_dvc->cfg->max_tag_qng[sdev->id];
7266  		AscWriteLramByte(asc_dvc->iop_base,
7267  				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7268  				 asc_dvc->max_dvc_qng[sdev->id]);
7269  	}
7270  }
7271  
7272  /*
7273   * Wide Transfers
7274   *
7275   * If the EEPROM enabled WDTR for the device and the device supports wide
7276   * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7277   * write the new value to the microcode.
7278   */
7279  static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base,unsigned short tidmask)7280  advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7281  {
7282  	unsigned short cfg_word;
7283  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7284  	if ((cfg_word & tidmask) != 0)
7285  		return;
7286  
7287  	cfg_word |= tidmask;
7288  	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7289  
7290  	/*
7291  	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7292  	 * the target to cause it to negotiate with the new setting set above.
7293  	 * WDTR when accepted causes the target to enter asynchronous mode, so
7294  	 * SDTR must be negotiated.
7295  	 */
7296  	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7297  	cfg_word &= ~tidmask;
7298  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7299  	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7300  	cfg_word &= ~tidmask;
7301  	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7302  }
7303  
7304  /*
7305   * Synchronous Transfers
7306   *
7307   * If the EEPROM enabled SDTR for the device and the device
7308   * supports synchronous transfers, then turn on the device's
7309   * 'sdtr_able' bit. Write the new value to the microcode.
7310   */
7311  static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base,unsigned short tidmask)7312  advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7313  {
7314  	unsigned short cfg_word;
7315  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7316  	if ((cfg_word & tidmask) != 0)
7317  		return;
7318  
7319  	cfg_word |= tidmask;
7320  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7321  
7322  	/*
7323  	 * Clear the microcode "SDTR negotiation" done indicator for the
7324  	 * target to cause it to negotiate with the new setting set above.
7325  	 */
7326  	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7327  	cfg_word &= ~tidmask;
7328  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7329  }
7330  
7331  /*
7332   * PPR (Parallel Protocol Request) Capable
7333   *
7334   * If the device supports DT mode, then it must be PPR capable.
7335   * The PPR message will be used in place of the SDTR and WDTR
7336   * messages to negotiate synchronous speed and offset, transfer
7337   * width, and protocol options.
7338   */
advansys_wide_enable_ppr(ADV_DVC_VAR * adv_dvc,AdvPortAddr iop_base,unsigned short tidmask)7339  static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7340  				AdvPortAddr iop_base, unsigned short tidmask)
7341  {
7342  	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7343  	adv_dvc->ppr_able |= tidmask;
7344  	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7345  }
7346  
7347  static void
advansys_wide_slave_configure(struct scsi_device * sdev,ADV_DVC_VAR * adv_dvc)7348  advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7349  {
7350  	AdvPortAddr iop_base = adv_dvc->iop_base;
7351  	unsigned short tidmask = 1 << sdev->id;
7352  
7353  	if (sdev->lun == 0) {
7354  		/*
7355  		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7356  		 * is enabled in the EEPROM and the device supports the
7357  		 * feature, then enable it in the microcode.
7358  		 */
7359  
7360  		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7361  			advansys_wide_enable_wdtr(iop_base, tidmask);
7362  		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7363  			advansys_wide_enable_sdtr(iop_base, tidmask);
7364  		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7365  			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7366  
7367  		/*
7368  		 * Tag Queuing is disabled for the BIOS which runs in polled
7369  		 * mode and would see no benefit from Tag Queuing. Also by
7370  		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7371  		 * bugs will at least work with the BIOS.
7372  		 */
7373  		if ((adv_dvc->tagqng_able & tidmask) &&
7374  		    sdev->tagged_supported) {
7375  			unsigned short cfg_word;
7376  			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7377  			cfg_word |= tidmask;
7378  			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7379  					 cfg_word);
7380  			AdvWriteByteLram(iop_base,
7381  					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7382  					 adv_dvc->max_dvc_qng);
7383  		}
7384  	}
7385  
7386  	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7387  		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7388  }
7389  
7390  /*
7391   * Set the number of commands to queue per device for the
7392   * specified host adapter.
7393   */
advansys_slave_configure(struct scsi_device * sdev)7394  static int advansys_slave_configure(struct scsi_device *sdev)
7395  {
7396  	struct asc_board *boardp = shost_priv(sdev->host);
7397  
7398  	if (ASC_NARROW_BOARD(boardp))
7399  		advansys_narrow_slave_configure(sdev,
7400  						&boardp->dvc_var.asc_dvc_var);
7401  	else
7402  		advansys_wide_slave_configure(sdev,
7403  						&boardp->dvc_var.adv_dvc_var);
7404  
7405  	return 0;
7406  }
7407  
asc_get_sense_buffer_dma(struct scsi_cmnd * scp)7408  static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7409  {
7410  	struct asc_board *board = shost_priv(scp->device->host);
7411  	struct advansys_cmd *acmd = advansys_cmd(scp);
7412  
7413  	acmd->dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7414  					SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7415  	if (dma_mapping_error(board->dev, acmd->dma_handle)) {
7416  		ASC_DBG(1, "failed to map sense buffer\n");
7417  		return 0;
7418  	}
7419  	return cpu_to_le32(acmd->dma_handle);
7420  }
7421  
asc_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,struct asc_scsi_q * asc_scsi_q)7422  static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7423  			struct asc_scsi_q *asc_scsi_q)
7424  {
7425  	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7426  	int use_sg;
7427  	u32 srb_tag;
7428  
7429  	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7430  
7431  	/*
7432  	 * Set the srb_tag to the command tag + 1, as
7433  	 * srb_tag '0' is used internally by the chip.
7434  	 */
7435  	srb_tag = scsi_cmd_to_rq(scp)->tag + 1;
7436  	asc_scsi_q->q2.srb_tag = srb_tag;
7437  
7438  	/*
7439  	 * Build the ASC_SCSI_Q request.
7440  	 */
7441  	asc_scsi_q->cdbptr = &scp->cmnd[0];
7442  	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7443  	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7444  	asc_scsi_q->q1.target_lun = scp->device->lun;
7445  	asc_scsi_q->q2.target_ix =
7446  	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7447  	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7448  	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7449  	if (!asc_scsi_q->q1.sense_addr)
7450  		return ASC_BUSY;
7451  
7452  	/*
7453  	 * If there are any outstanding requests for the current target,
7454  	 * then every 255th request send an ORDERED request. This heuristic
7455  	 * tries to retain the benefit of request sorting while preventing
7456  	 * request starvation. 255 is the max number of tags or pending commands
7457  	 * a device may have outstanding.
7458  	 *
7459  	 * The request count is incremented below for every successfully
7460  	 * started request.
7461  	 *
7462  	 */
7463  	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7464  	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7465  		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7466  	} else {
7467  		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7468  	}
7469  
7470  	/* Build ASC_SCSI_Q */
7471  	use_sg = scsi_dma_map(scp);
7472  	if (use_sg < 0) {
7473  		ASC_DBG(1, "failed to map sglist\n");
7474  		return ASC_BUSY;
7475  	} else if (use_sg > 0) {
7476  		int sgcnt;
7477  		struct scatterlist *slp;
7478  		struct asc_sg_head *asc_sg_head;
7479  
7480  		if (use_sg > scp->device->host->sg_tablesize) {
7481  			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7482  				"sg_tablesize %d\n", use_sg,
7483  				scp->device->host->sg_tablesize);
7484  			scsi_dma_unmap(scp);
7485  			set_host_byte(scp, DID_ERROR);
7486  			return ASC_ERROR;
7487  		}
7488  
7489  		asc_sg_head = kzalloc(struct_size(asc_sg_head, sg_list, use_sg),
7490  				      GFP_ATOMIC);
7491  		if (!asc_sg_head) {
7492  			scsi_dma_unmap(scp);
7493  			set_host_byte(scp, DID_SOFT_ERROR);
7494  			return ASC_ERROR;
7495  		}
7496  
7497  		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7498  		asc_scsi_q->sg_head = asc_sg_head;
7499  		asc_scsi_q->q1.data_cnt = 0;
7500  		asc_scsi_q->q1.data_addr = 0;
7501  		/* This is a byte value, otherwise it would need to be swapped. */
7502  		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7503  		ASC_STATS_ADD(scp->device->host, xfer_elem,
7504  			      asc_sg_head->entry_cnt);
7505  
7506  		/*
7507  		 * Convert scatter-gather list into ASC_SG_HEAD list.
7508  		 */
7509  		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7510  			asc_sg_head->sg_list[sgcnt].addr =
7511  			    cpu_to_le32(sg_dma_address(slp));
7512  			asc_sg_head->sg_list[sgcnt].bytes =
7513  			    cpu_to_le32(sg_dma_len(slp));
7514  			ASC_STATS_ADD(scp->device->host, xfer_sect,
7515  				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7516  		}
7517  	}
7518  
7519  	ASC_STATS(scp->device->host, xfer_cnt);
7520  
7521  	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7522  	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7523  
7524  	return ASC_NOERROR;
7525  }
7526  
7527  /*
7528   * Build scatter-gather list for Adv Library (Wide Board).
7529   *
7530   * Additional ADV_SG_BLOCK structures will need to be allocated
7531   * if the total number of scatter-gather elements exceeds
7532   * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7533   * assumed to be physically contiguous.
7534   *
7535   * Return:
7536   *      ADV_SUCCESS(1) - SG List successfully created
7537   *      ADV_ERROR(-1) - SG List creation failed
7538   */
7539  static int
adv_get_sglist(struct asc_board * boardp,adv_req_t * reqp,ADV_SCSI_REQ_Q * scsiqp,struct scsi_cmnd * scp,int use_sg)7540  adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7541  	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7542  {
7543  	adv_sgblk_t *sgblkp, *prev_sgblkp;
7544  	struct scatterlist *slp;
7545  	int sg_elem_cnt;
7546  	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7547  	dma_addr_t sgblk_paddr;
7548  	int i;
7549  
7550  	slp = scsi_sglist(scp);
7551  	sg_elem_cnt = use_sg;
7552  	prev_sgblkp = NULL;
7553  	prev_sg_block = NULL;
7554  	reqp->sgblkp = NULL;
7555  
7556  	for (;;) {
7557  		/*
7558  		 * Allocate a 'adv_sgblk_t' structure from the board free
7559  		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7560  		 * (15) scatter-gather elements.
7561  		 */
7562  		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7563  					&sgblk_paddr);
7564  		if (!sgblkp) {
7565  			ASC_DBG(1, "no free adv_sgblk_t\n");
7566  			ASC_STATS(scp->device->host, adv_build_nosg);
7567  
7568  			/*
7569  			 * Allocation failed. Free 'adv_sgblk_t' structures
7570  			 * already allocated for the request.
7571  			 */
7572  			while ((sgblkp = reqp->sgblkp) != NULL) {
7573  				/* Remove 'sgblkp' from the request list. */
7574  				reqp->sgblkp = sgblkp->next_sgblkp;
7575  				sgblkp->next_sgblkp = NULL;
7576  				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7577  					      sgblkp->sg_addr);
7578  			}
7579  			return ASC_BUSY;
7580  		}
7581  		/* Complete 'adv_sgblk_t' board allocation. */
7582  		sgblkp->sg_addr = sgblk_paddr;
7583  		sgblkp->next_sgblkp = NULL;
7584  		sg_block = &sgblkp->sg_block;
7585  
7586  		/*
7587  		 * Check if this is the first 'adv_sgblk_t' for the
7588  		 * request.
7589  		 */
7590  		if (reqp->sgblkp == NULL) {
7591  			/* Request's first scatter-gather block. */
7592  			reqp->sgblkp = sgblkp;
7593  
7594  			/*
7595  			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7596  			 * address pointers.
7597  			 */
7598  			scsiqp->sg_list_ptr = sg_block;
7599  			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7600  		} else {
7601  			/* Request's second or later scatter-gather block. */
7602  			prev_sgblkp->next_sgblkp = sgblkp;
7603  
7604  			/*
7605  			 * Point the previous ADV_SG_BLOCK structure to
7606  			 * the newly allocated ADV_SG_BLOCK structure.
7607  			 */
7608  			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7609  		}
7610  
7611  		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7612  			sg_block->sg_list[i].sg_addr =
7613  					cpu_to_le32(sg_dma_address(slp));
7614  			sg_block->sg_list[i].sg_count =
7615  					cpu_to_le32(sg_dma_len(slp));
7616  			ASC_STATS_ADD(scp->device->host, xfer_sect,
7617  				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7618  
7619  			if (--sg_elem_cnt == 0) {
7620  				/*
7621  				 * Last ADV_SG_BLOCK and scatter-gather entry.
7622  				 */
7623  				sg_block->sg_cnt = i + 1;
7624  				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7625  				return ADV_SUCCESS;
7626  			}
7627  			slp = sg_next(slp);
7628  		}
7629  		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7630  		prev_sg_block = sg_block;
7631  		prev_sgblkp = sgblkp;
7632  	}
7633  }
7634  
7635  /*
7636   * Build a request structure for the Adv Library (Wide Board).
7637   *
7638   * If an adv_req_t can not be allocated to issue the request,
7639   * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7640   *
7641   * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7642   * microcode for DMA addresses or math operations are byte swapped
7643   * to little-endian order.
7644   */
7645  static int
adv_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,adv_req_t ** adv_reqpp)7646  adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7647  	      adv_req_t **adv_reqpp)
7648  {
7649  	u32 srb_tag = scsi_cmd_to_rq(scp)->tag;
7650  	adv_req_t *reqp;
7651  	ADV_SCSI_REQ_Q *scsiqp;
7652  	int ret;
7653  	int use_sg;
7654  	dma_addr_t sense_addr;
7655  
7656  	/*
7657  	 * Allocate an adv_req_t structure from the board to execute
7658  	 * the command.
7659  	 */
7660  	reqp = &boardp->adv_reqp[srb_tag];
7661  	if (reqp->cmndp && reqp->cmndp != scp ) {
7662  		ASC_DBG(1, "no free adv_req_t\n");
7663  		ASC_STATS(scp->device->host, adv_build_noreq);
7664  		return ASC_BUSY;
7665  	}
7666  
7667  	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7668  
7669  	scsiqp = &reqp->scsi_req_q;
7670  
7671  	/*
7672  	 * Initialize the structure.
7673  	 */
7674  	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7675  
7676  	/*
7677  	 * Set the srb_tag to the command tag.
7678  	 */
7679  	scsiqp->srb_tag = srb_tag;
7680  
7681  	/*
7682  	 * Set 'host_scribble' to point to the adv_req_t structure.
7683  	 */
7684  	reqp->cmndp = scp;
7685  	scp->host_scribble = (void *)reqp;
7686  
7687  	/*
7688  	 * Build the ADV_SCSI_REQ_Q request.
7689  	 */
7690  
7691  	/* Set CDB length and copy it to the request structure.  */
7692  	scsiqp->cdb_len = scp->cmd_len;
7693  	/* Copy first 12 CDB bytes to cdb[]. */
7694  	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7695  	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
7696  	if (scp->cmd_len > 12) {
7697  		int cdb16_len = scp->cmd_len - 12;
7698  
7699  		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7700  	}
7701  
7702  	scsiqp->target_id = scp->device->id;
7703  	scsiqp->target_lun = scp->device->lun;
7704  
7705  	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7706  				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7707  	if (dma_mapping_error(boardp->dev, sense_addr)) {
7708  		ASC_DBG(1, "failed to map sense buffer\n");
7709  		ASC_STATS(scp->device->host, adv_build_noreq);
7710  		return ASC_BUSY;
7711  	}
7712  	scsiqp->sense_addr = cpu_to_le32(sense_addr);
7713  	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7714  
7715  	/* Build ADV_SCSI_REQ_Q */
7716  
7717  	use_sg = scsi_dma_map(scp);
7718  	if (use_sg < 0) {
7719  		ASC_DBG(1, "failed to map SG list\n");
7720  		ASC_STATS(scp->device->host, adv_build_noreq);
7721  		return ASC_BUSY;
7722  	} else if (use_sg == 0) {
7723  		/* Zero-length transfer */
7724  		reqp->sgblkp = NULL;
7725  		scsiqp->data_cnt = 0;
7726  
7727  		scsiqp->data_addr = 0;
7728  		scsiqp->sg_list_ptr = NULL;
7729  		scsiqp->sg_real_addr = 0;
7730  	} else {
7731  		if (use_sg > ADV_MAX_SG_LIST) {
7732  			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7733  				   "ADV_MAX_SG_LIST %d\n", use_sg,
7734  				   scp->device->host->sg_tablesize);
7735  			scsi_dma_unmap(scp);
7736  			set_host_byte(scp, DID_ERROR);
7737  			reqp->cmndp = NULL;
7738  			scp->host_scribble = NULL;
7739  
7740  			return ASC_ERROR;
7741  		}
7742  
7743  		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7744  
7745  		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7746  		if (ret != ADV_SUCCESS) {
7747  			scsi_dma_unmap(scp);
7748  			set_host_byte(scp, DID_ERROR);
7749  			reqp->cmndp = NULL;
7750  			scp->host_scribble = NULL;
7751  
7752  			return ret;
7753  		}
7754  
7755  		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7756  	}
7757  
7758  	ASC_STATS(scp->device->host, xfer_cnt);
7759  
7760  	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7761  	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7762  
7763  	*adv_reqpp = reqp;
7764  
7765  	return ASC_NOERROR;
7766  }
7767  
AscSgListToQueue(int sg_list)7768  static int AscSgListToQueue(int sg_list)
7769  {
7770  	int n_sg_list_qs;
7771  
7772  	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7773  	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7774  		n_sg_list_qs++;
7775  	return n_sg_list_qs + 1;
7776  }
7777  
7778  static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR * asc_dvc,uchar target_ix,uchar n_qs)7779  AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7780  {
7781  	uint cur_used_qs;
7782  	uint cur_free_qs;
7783  	ASC_SCSI_BIT_ID_TYPE target_id;
7784  	uchar tid_no;
7785  
7786  	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7787  	tid_no = ASC_TIX_TO_TID(target_ix);
7788  	if ((asc_dvc->unit_not_ready & target_id) ||
7789  	    (asc_dvc->queue_full_or_busy & target_id)) {
7790  		return 0;
7791  	}
7792  	if (n_qs == 1) {
7793  		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7794  		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7795  	} else {
7796  		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7797  		    (uint) ASC_MIN_FREE_Q;
7798  	}
7799  	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7800  		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7801  		if (asc_dvc->cur_dvc_qng[tid_no] >=
7802  		    asc_dvc->max_dvc_qng[tid_no]) {
7803  			return 0;
7804  		}
7805  		return cur_free_qs;
7806  	}
7807  	if (n_qs > 1) {
7808  		if ((n_qs > asc_dvc->last_q_shortage)
7809  		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7810  			asc_dvc->last_q_shortage = n_qs;
7811  		}
7812  	}
7813  	return 0;
7814  }
7815  
AscAllocFreeQueue(PortAddr iop_base,uchar free_q_head)7816  static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7817  {
7818  	ushort q_addr;
7819  	uchar next_qp;
7820  	uchar q_status;
7821  
7822  	q_addr = ASC_QNO_TO_QADDR(free_q_head);
7823  	q_status = (uchar)AscReadLramByte(iop_base,
7824  					  (ushort)(q_addr +
7825  						   ASC_SCSIQ_B_STATUS));
7826  	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7827  	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7828  		return next_qp;
7829  	return ASC_QLINK_END;
7830  }
7831  
7832  static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base,uchar free_q_head,uchar n_free_q)7833  AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7834  {
7835  	uchar i;
7836  
7837  	for (i = 0; i < n_free_q; i++) {
7838  		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7839  		if (free_q_head == ASC_QLINK_END)
7840  			break;
7841  	}
7842  	return free_q_head;
7843  }
7844  
7845  /*
7846   * void
7847   * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7848   *
7849   * Calling/Exit State:
7850   *    none
7851   *
7852   * Description:
7853   *     Output an ASC_SCSI_Q structure to the chip
7854   */
7855  static void
DvcPutScsiQ(PortAddr iop_base,ushort s_addr,uchar * outbuf,int words)7856  DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7857  {
7858  	int i;
7859  
7860  	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7861  	AscSetChipLramAddr(iop_base, s_addr);
7862  	for (i = 0; i < 2 * words; i += 2) {
7863  		if (i == 4 || i == 20) {
7864  			continue;
7865  		}
7866  		outpw(iop_base + IOP_RAM_DATA,
7867  		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7868  	}
7869  }
7870  
AscPutReadyQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)7871  static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7872  {
7873  	ushort q_addr;
7874  	uchar tid_no;
7875  	uchar sdtr_data;
7876  	uchar syn_period_ix;
7877  	uchar syn_offset;
7878  	PortAddr iop_base;
7879  
7880  	iop_base = asc_dvc->iop_base;
7881  	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7882  	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7883  		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7884  		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7885  		syn_period_ix =
7886  		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7887  		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7888  		AscMsgOutSDTR(asc_dvc,
7889  			      asc_dvc->sdtr_period_tbl[syn_period_ix],
7890  			      syn_offset);
7891  		scsiq->q1.cntl |= QC_MSG_OUT;
7892  	}
7893  	q_addr = ASC_QNO_TO_QADDR(q_no);
7894  	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7895  		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7896  	}
7897  	scsiq->q1.status = QS_FREE;
7898  	AscMemWordCopyPtrToLram(iop_base,
7899  				q_addr + ASC_SCSIQ_CDB_BEG,
7900  				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7901  
7902  	DvcPutScsiQ(iop_base,
7903  		    q_addr + ASC_SCSIQ_CPY_BEG,
7904  		    (uchar *)&scsiq->q1.cntl,
7905  		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7906  	AscWriteLramWord(iop_base,
7907  			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7908  			 (ushort)(((ushort)scsiq->q1.
7909  				   q_no << 8) | (ushort)QS_READY));
7910  	return 1;
7911  }
7912  
7913  static int
AscPutReadySgListQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)7914  AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7915  {
7916  	int sta;
7917  	int i;
7918  	ASC_SG_HEAD *sg_head;
7919  	ASC_SG_LIST_Q scsi_sg_q;
7920  	__le32 saved_data_addr;
7921  	__le32 saved_data_cnt;
7922  	PortAddr iop_base;
7923  	ushort sg_list_dwords;
7924  	ushort sg_index;
7925  	ushort sg_entry_cnt;
7926  	ushort q_addr;
7927  	uchar next_qp;
7928  
7929  	iop_base = asc_dvc->iop_base;
7930  	sg_head = scsiq->sg_head;
7931  	saved_data_addr = scsiq->q1.data_addr;
7932  	saved_data_cnt = scsiq->q1.data_cnt;
7933  	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
7934  	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
7935  	/*
7936  	 * Set sg_entry_cnt to be the number of SG elements that
7937  	 * will fit in the allocated SG queues. It is minus 1, because
7938  	 * the first SG element is handled above.
7939  	 */
7940  	sg_entry_cnt = sg_head->entry_cnt - 1;
7941  
7942  	if (sg_entry_cnt != 0) {
7943  		scsiq->q1.cntl |= QC_SG_HEAD;
7944  		q_addr = ASC_QNO_TO_QADDR(q_no);
7945  		sg_index = 1;
7946  		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
7947  		scsi_sg_q.sg_head_qp = q_no;
7948  		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7949  		for (i = 0; i < sg_head->queue_cnt; i++) {
7950  			scsi_sg_q.seq_no = i + 1;
7951  			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7952  				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7953  				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7954  				if (i == 0) {
7955  					scsi_sg_q.sg_list_cnt =
7956  					    ASC_SG_LIST_PER_Q;
7957  					scsi_sg_q.sg_cur_list_cnt =
7958  					    ASC_SG_LIST_PER_Q;
7959  				} else {
7960  					scsi_sg_q.sg_list_cnt =
7961  					    ASC_SG_LIST_PER_Q - 1;
7962  					scsi_sg_q.sg_cur_list_cnt =
7963  					    ASC_SG_LIST_PER_Q - 1;
7964  				}
7965  			} else {
7966  				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7967  				sg_list_dwords = sg_entry_cnt << 1;
7968  				if (i == 0) {
7969  					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
7970  					scsi_sg_q.sg_cur_list_cnt =
7971  					    sg_entry_cnt;
7972  				} else {
7973  					scsi_sg_q.sg_list_cnt =
7974  					    sg_entry_cnt - 1;
7975  					scsi_sg_q.sg_cur_list_cnt =
7976  					    sg_entry_cnt - 1;
7977  				}
7978  				sg_entry_cnt = 0;
7979  			}
7980  			next_qp = AscReadLramByte(iop_base,
7981  						  (ushort)(q_addr +
7982  							   ASC_SCSIQ_B_FWD));
7983  			scsi_sg_q.q_no = next_qp;
7984  			q_addr = ASC_QNO_TO_QADDR(next_qp);
7985  			AscMemWordCopyPtrToLram(iop_base,
7986  						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7987  						(uchar *)&scsi_sg_q,
7988  						sizeof(ASC_SG_LIST_Q) >> 1);
7989  			AscMemDWordCopyPtrToLram(iop_base,
7990  						 q_addr + ASC_SGQ_LIST_BEG,
7991  						 (uchar *)&sg_head->
7992  						 sg_list[sg_index],
7993  						 sg_list_dwords);
7994  			sg_index += ASC_SG_LIST_PER_Q;
7995  			scsiq->next_sg_index = sg_index;
7996  		}
7997  	} else {
7998  		scsiq->q1.cntl &= ~QC_SG_HEAD;
7999  	}
8000  	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8001  	scsiq->q1.data_addr = saved_data_addr;
8002  	scsiq->q1.data_cnt = saved_data_cnt;
8003  	return (sta);
8004  }
8005  
8006  static int
AscSendScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar n_q_required)8007  AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8008  {
8009  	PortAddr iop_base;
8010  	uchar free_q_head;
8011  	uchar next_qp;
8012  	uchar tid_no;
8013  	uchar target_ix;
8014  	int sta;
8015  
8016  	iop_base = asc_dvc->iop_base;
8017  	target_ix = scsiq->q2.target_ix;
8018  	tid_no = ASC_TIX_TO_TID(target_ix);
8019  	sta = 0;
8020  	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8021  	if (n_q_required > 1) {
8022  		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8023  						    (uchar)n_q_required);
8024  		if (next_qp != ASC_QLINK_END) {
8025  			asc_dvc->last_q_shortage = 0;
8026  			scsiq->sg_head->queue_cnt = n_q_required - 1;
8027  			scsiq->q1.q_no = free_q_head;
8028  			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8029  						     free_q_head);
8030  		}
8031  	} else if (n_q_required == 1) {
8032  		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8033  		if (next_qp != ASC_QLINK_END) {
8034  			scsiq->q1.q_no = free_q_head;
8035  			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8036  		}
8037  	}
8038  	if (sta == 1) {
8039  		AscPutVarFreeQHead(iop_base, next_qp);
8040  		asc_dvc->cur_total_qng += n_q_required;
8041  		asc_dvc->cur_dvc_qng[tid_no]++;
8042  	}
8043  	return sta;
8044  }
8045  
8046  #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8047  static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8048  	INQUIRY,
8049  	REQUEST_SENSE,
8050  	READ_CAPACITY,
8051  	READ_TOC,
8052  	MODE_SELECT,
8053  	MODE_SENSE,
8054  	MODE_SELECT_10,
8055  	MODE_SENSE_10,
8056  	0xFF,
8057  	0xFF,
8058  	0xFF,
8059  	0xFF,
8060  	0xFF,
8061  	0xFF,
8062  	0xFF,
8063  	0xFF
8064  };
8065  
AscExeScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq)8066  static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8067  {
8068  	PortAddr iop_base;
8069  	int sta;
8070  	int n_q_required;
8071  	bool disable_syn_offset_one_fix;
8072  	int i;
8073  	u32 addr;
8074  	ushort sg_entry_cnt = 0;
8075  	ushort sg_entry_cnt_minus_one = 0;
8076  	uchar target_ix;
8077  	uchar tid_no;
8078  	uchar sdtr_data;
8079  	uchar extra_bytes;
8080  	uchar scsi_cmd;
8081  	uchar disable_cmd;
8082  	ASC_SG_HEAD *sg_head;
8083  	unsigned long data_cnt;
8084  
8085  	iop_base = asc_dvc->iop_base;
8086  	sg_head = scsiq->sg_head;
8087  	if (asc_dvc->err_code != 0)
8088  		return ASC_ERROR;
8089  	scsiq->q1.q_no = 0;
8090  	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8091  		scsiq->q1.extra_bytes = 0;
8092  	}
8093  	sta = 0;
8094  	target_ix = scsiq->q2.target_ix;
8095  	tid_no = ASC_TIX_TO_TID(target_ix);
8096  	n_q_required = 1;
8097  	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8098  		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8099  			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8100  			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8101  			AscMsgOutSDTR(asc_dvc,
8102  				      asc_dvc->
8103  				      sdtr_period_tbl[(sdtr_data >> 4) &
8104  						      (uchar)(asc_dvc->
8105  							      max_sdtr_index -
8106  							      1)],
8107  				      (uchar)(sdtr_data & (uchar)
8108  					      ASC_SYN_MAX_OFFSET));
8109  			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8110  		}
8111  	}
8112  	if (asc_dvc->in_critical_cnt != 0) {
8113  		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8114  		return ASC_ERROR;
8115  	}
8116  	asc_dvc->in_critical_cnt++;
8117  	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8118  		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8119  			asc_dvc->in_critical_cnt--;
8120  			return ASC_ERROR;
8121  		}
8122  		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8123  			asc_dvc->in_critical_cnt--;
8124  			return ASC_ERROR;
8125  		}
8126  		if (sg_entry_cnt == 1) {
8127  			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8128  			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8129  			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8130  		}
8131  		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8132  	}
8133  	scsi_cmd = scsiq->cdbptr[0];
8134  	disable_syn_offset_one_fix = false;
8135  	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8136  	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8137  		if (scsiq->q1.cntl & QC_SG_HEAD) {
8138  			data_cnt = 0;
8139  			for (i = 0; i < sg_entry_cnt; i++) {
8140  				data_cnt += le32_to_cpu(sg_head->sg_list[i].
8141  							bytes);
8142  			}
8143  		} else {
8144  			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8145  		}
8146  		if (data_cnt != 0UL) {
8147  			if (data_cnt < 512UL) {
8148  				disable_syn_offset_one_fix = true;
8149  			} else {
8150  				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8151  				     i++) {
8152  					disable_cmd =
8153  					    _syn_offset_one_disable_cmd[i];
8154  					if (disable_cmd == 0xFF) {
8155  						break;
8156  					}
8157  					if (scsi_cmd == disable_cmd) {
8158  						disable_syn_offset_one_fix =
8159  						    true;
8160  						break;
8161  					}
8162  				}
8163  			}
8164  		}
8165  	}
8166  	if (disable_syn_offset_one_fix) {
8167  		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8168  		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8169  				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8170  	} else {
8171  		scsiq->q2.tag_code &= 0x27;
8172  	}
8173  	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8174  		if (asc_dvc->bug_fix_cntl) {
8175  			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8176  				if ((scsi_cmd == READ_6) ||
8177  				    (scsi_cmd == READ_10)) {
8178  					addr = le32_to_cpu(sg_head->
8179  								   sg_list
8180  								   [sg_entry_cnt_minus_one].
8181  								   addr) +
8182  						le32_to_cpu(sg_head->
8183  								  sg_list
8184  								  [sg_entry_cnt_minus_one].
8185  								  bytes);
8186  					extra_bytes =
8187  					    (uchar)((ushort)addr & 0x0003);
8188  					if ((extra_bytes != 0)
8189  					    &&
8190  					    ((scsiq->q2.
8191  					      tag_code &
8192  					      ASC_TAG_FLAG_EXTRA_BYTES)
8193  					     == 0)) {
8194  						scsiq->q2.tag_code |=
8195  						    ASC_TAG_FLAG_EXTRA_BYTES;
8196  						scsiq->q1.extra_bytes =
8197  						    extra_bytes;
8198  						data_cnt =
8199  						    le32_to_cpu(sg_head->
8200  								sg_list
8201  								[sg_entry_cnt_minus_one].
8202  								bytes);
8203  						data_cnt -= extra_bytes;
8204  						sg_head->
8205  						    sg_list
8206  						    [sg_entry_cnt_minus_one].
8207  						    bytes =
8208  						    cpu_to_le32(data_cnt);
8209  					}
8210  				}
8211  			}
8212  		}
8213  		sg_head->entry_to_copy = sg_head->entry_cnt;
8214  		n_q_required = AscSgListToQueue(sg_entry_cnt);
8215  		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8216  		     (uint) n_q_required)
8217  		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8218  			if ((sta =
8219  			     AscSendScsiQueue(asc_dvc, scsiq,
8220  					      n_q_required)) == 1) {
8221  				asc_dvc->in_critical_cnt--;
8222  				return (sta);
8223  			}
8224  		}
8225  	} else {
8226  		if (asc_dvc->bug_fix_cntl) {
8227  			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8228  				if ((scsi_cmd == READ_6) ||
8229  				    (scsi_cmd == READ_10)) {
8230  					addr =
8231  					    le32_to_cpu(scsiq->q1.data_addr) +
8232  					    le32_to_cpu(scsiq->q1.data_cnt);
8233  					extra_bytes =
8234  					    (uchar)((ushort)addr & 0x0003);
8235  					if ((extra_bytes != 0)
8236  					    &&
8237  					    ((scsiq->q2.
8238  					      tag_code &
8239  					      ASC_TAG_FLAG_EXTRA_BYTES)
8240  					     == 0)) {
8241  						data_cnt =
8242  						    le32_to_cpu(scsiq->q1.
8243  								data_cnt);
8244  						if (((ushort)data_cnt & 0x01FF)
8245  						    == 0) {
8246  							scsiq->q2.tag_code |=
8247  							    ASC_TAG_FLAG_EXTRA_BYTES;
8248  							data_cnt -= extra_bytes;
8249  							scsiq->q1.data_cnt =
8250  							    cpu_to_le32
8251  							    (data_cnt);
8252  							scsiq->q1.extra_bytes =
8253  							    extra_bytes;
8254  						}
8255  					}
8256  				}
8257  			}
8258  		}
8259  		n_q_required = 1;
8260  		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8261  		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8262  			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8263  						    n_q_required)) == 1) {
8264  				asc_dvc->in_critical_cnt--;
8265  				return (sta);
8266  			}
8267  		}
8268  	}
8269  	asc_dvc->in_critical_cnt--;
8270  	return (sta);
8271  }
8272  
8273  /*
8274   * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8275   *
8276   *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8277   *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8278   *   RISC to notify it a new command is ready to be executed.
8279   *
8280   * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8281   * set to SCSI_MAX_RETRY.
8282   *
8283   * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8284   * for DMA addresses or math operations are byte swapped to little-endian
8285   * order.
8286   *
8287   * Return:
8288   *      ADV_SUCCESS(1) - The request was successfully queued.
8289   *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8290   *                       request completes.
8291   *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8292   *                       host IC error.
8293   */
AdvExeScsiQueue(ADV_DVC_VAR * asc_dvc,adv_req_t * reqp)8294  static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8295  {
8296  	AdvPortAddr iop_base;
8297  	ADV_CARR_T *new_carrp;
8298  	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8299  
8300  	/*
8301  	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8302  	 */
8303  	if (scsiq->target_id > ADV_MAX_TID) {
8304  		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8305  		scsiq->done_status = QD_WITH_ERROR;
8306  		return ADV_ERROR;
8307  	}
8308  
8309  	iop_base = asc_dvc->iop_base;
8310  
8311  	/*
8312  	 * Allocate a carrier ensuring at least one carrier always
8313  	 * remains on the freelist and initialize fields.
8314  	 */
8315  	new_carrp = adv_get_next_carrier(asc_dvc);
8316  	if (!new_carrp) {
8317  		ASC_DBG(1, "No free carriers\n");
8318  		return ADV_BUSY;
8319  	}
8320  
8321  	asc_dvc->carr_pending_cnt++;
8322  
8323  	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8324  	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8325  	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8326  
8327  	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8328  	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8329  
8330  	/*
8331  	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8332  	 * the microcode. The newly allocated stopper will become the new
8333  	 * stopper.
8334  	 */
8335  	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8336  
8337  	/*
8338  	 * Set the 'next_vpa' pointer for the old stopper to be the
8339  	 * physical address of the new stopper. The RISC can only
8340  	 * follow physical addresses.
8341  	 */
8342  	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8343  
8344  	/*
8345  	 * Set the host adapter stopper pointer to point to the new carrier.
8346  	 */
8347  	asc_dvc->icq_sp = new_carrp;
8348  
8349  	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8350  	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8351  		/*
8352  		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8353  		 */
8354  		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8355  		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8356  			/*
8357  			 * Clear the tickle value. In the ASC-3550 the RISC flag
8358  			 * command 'clr_tickle_a' does not work unless the host
8359  			 * value is cleared.
8360  			 */
8361  			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8362  					     ADV_TICKLE_NOP);
8363  		}
8364  	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8365  		/*
8366  		 * Notify the RISC a carrier is ready by writing the physical
8367  		 * address of the new carrier stopper to the COMMA register.
8368  		 */
8369  		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8370  				      le32_to_cpu(new_carrp->carr_pa));
8371  	}
8372  
8373  	return ADV_SUCCESS;
8374  }
8375  
8376  /*
8377   * Execute a single 'struct scsi_cmnd'.
8378   */
asc_execute_scsi_cmnd(struct scsi_cmnd * scp)8379  static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8380  {
8381  	int ret, err_code;
8382  	struct asc_board *boardp = shost_priv(scp->device->host);
8383  
8384  	ASC_DBG(1, "scp 0x%p\n", scp);
8385  
8386  	if (ASC_NARROW_BOARD(boardp)) {
8387  		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8388  		struct asc_scsi_q asc_scsi_q;
8389  
8390  		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8391  		if (ret != ASC_NOERROR) {
8392  			ASC_STATS(scp->device->host, build_error);
8393  			return ret;
8394  		}
8395  
8396  		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8397  		kfree(asc_scsi_q.sg_head);
8398  		err_code = asc_dvc->err_code;
8399  	} else {
8400  		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8401  		adv_req_t *adv_reqp;
8402  
8403  		switch (adv_build_req(boardp, scp, &adv_reqp)) {
8404  		case ASC_NOERROR:
8405  			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8406  			break;
8407  		case ASC_BUSY:
8408  			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8409  			/*
8410  			 * The asc_stats fields 'adv_build_noreq' and
8411  			 * 'adv_build_nosg' count wide board busy conditions.
8412  			 * They are updated in adv_build_req and
8413  			 * adv_get_sglist, respectively.
8414  			 */
8415  			return ASC_BUSY;
8416  		case ASC_ERROR:
8417  		default:
8418  			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8419  			ASC_STATS(scp->device->host, build_error);
8420  			return ASC_ERROR;
8421  		}
8422  
8423  		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8424  		err_code = adv_dvc->err_code;
8425  	}
8426  
8427  	switch (ret) {
8428  	case ASC_NOERROR:
8429  		ASC_STATS(scp->device->host, exe_noerror);
8430  		/*
8431  		 * Increment monotonically increasing per device
8432  		 * successful request counter. Wrapping doesn't matter.
8433  		 */
8434  		boardp->reqcnt[scp->device->id]++;
8435  		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8436  		break;
8437  	case ASC_BUSY:
8438  		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8439  		ASC_STATS(scp->device->host, exe_busy);
8440  		break;
8441  	case ASC_ERROR:
8442  		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8443  			"err_code 0x%x\n", err_code);
8444  		ASC_STATS(scp->device->host, exe_error);
8445  		set_host_byte(scp, DID_ERROR);
8446  		break;
8447  	default:
8448  		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8449  			"err_code 0x%x\n", err_code);
8450  		ASC_STATS(scp->device->host, exe_unknown);
8451  		set_host_byte(scp, DID_ERROR);
8452  		break;
8453  	}
8454  
8455  	ASC_DBG(1, "end\n");
8456  	return ret;
8457  }
8458  
8459  /*
8460   * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8461   *
8462   * This function always returns 0. Command return status is saved
8463   * in the 'scp' result field.
8464   */
advansys_queuecommand_lck(struct scsi_cmnd * scp)8465  static int advansys_queuecommand_lck(struct scsi_cmnd *scp)
8466  {
8467  	struct Scsi_Host *shost = scp->device->host;
8468  	int asc_res, result = 0;
8469  
8470  	ASC_STATS(shost, queuecommand);
8471  
8472  	asc_res = asc_execute_scsi_cmnd(scp);
8473  
8474  	switch (asc_res) {
8475  	case ASC_NOERROR:
8476  		break;
8477  	case ASC_BUSY:
8478  		result = SCSI_MLQUEUE_HOST_BUSY;
8479  		break;
8480  	case ASC_ERROR:
8481  	default:
8482  		asc_scsi_done(scp);
8483  		break;
8484  	}
8485  
8486  	return result;
8487  }
8488  
DEF_SCSI_QCMD(advansys_queuecommand)8489  static DEF_SCSI_QCMD(advansys_queuecommand)
8490  
8491  static ushort AscGetEisaChipCfg(PortAddr iop_base)
8492  {
8493  	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8494  	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8495  	return inpw(eisa_cfg_iop);
8496  }
8497  
8498  /*
8499   * Return the BIOS address of the adapter at the specified
8500   * I/O port and with the specified bus type.
8501   */
AscGetChipBiosAddress(PortAddr iop_base,unsigned short bus_type)8502  static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8503  					    unsigned short bus_type)
8504  {
8505  	unsigned short cfg_lsw;
8506  	unsigned short bios_addr;
8507  
8508  	/*
8509  	 * The PCI BIOS is re-located by the motherboard BIOS. Because
8510  	 * of this the driver can not determine where a PCI BIOS is
8511  	 * loaded and executes.
8512  	 */
8513  	if (bus_type & ASC_IS_PCI)
8514  		return 0;
8515  
8516  	if ((bus_type & ASC_IS_EISA) != 0) {
8517  		cfg_lsw = AscGetEisaChipCfg(iop_base);
8518  		cfg_lsw &= 0x000F;
8519  		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8520  		return bios_addr;
8521  	}
8522  
8523  	cfg_lsw = AscGetChipCfgLsw(iop_base);
8524  	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8525  	return bios_addr;
8526  }
8527  
AscSetChipScsiID(PortAddr iop_base,uchar new_host_id)8528  static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8529  {
8530  	ushort cfg_lsw;
8531  
8532  	if (AscGetChipScsiID(iop_base) == new_host_id) {
8533  		return (new_host_id);
8534  	}
8535  	cfg_lsw = AscGetChipCfgLsw(iop_base);
8536  	cfg_lsw &= 0xF8FF;
8537  	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8538  	AscSetChipCfgLsw(iop_base, cfg_lsw);
8539  	return (AscGetChipScsiID(iop_base));
8540  }
8541  
AscGetChipScsiCtrl(PortAddr iop_base)8542  static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8543  {
8544  	unsigned char sc;
8545  
8546  	AscSetBank(iop_base, 1);
8547  	sc = inp(iop_base + IOP_REG_SC);
8548  	AscSetBank(iop_base, 0);
8549  	return sc;
8550  }
8551  
AscGetChipVersion(PortAddr iop_base,unsigned short bus_type)8552  static unsigned char AscGetChipVersion(PortAddr iop_base,
8553  				       unsigned short bus_type)
8554  {
8555  	if (bus_type & ASC_IS_EISA) {
8556  		PortAddr eisa_iop;
8557  		unsigned char revision;
8558  		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8559  		    (PortAddr) ASC_EISA_REV_IOP_MASK;
8560  		revision = inp(eisa_iop);
8561  		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8562  	}
8563  	return AscGetChipVerNo(iop_base);
8564  }
8565  
AscStopQueueExe(PortAddr iop_base)8566  static int AscStopQueueExe(PortAddr iop_base)
8567  {
8568  	int count = 0;
8569  
8570  	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8571  		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8572  				 ASC_STOP_REQ_RISC_STOP);
8573  		do {
8574  			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8575  			    ASC_STOP_ACK_RISC_STOP) {
8576  				return (1);
8577  			}
8578  			mdelay(100);
8579  		} while (count++ < 20);
8580  	}
8581  	return (0);
8582  }
8583  
AscGetMaxDmaCount(ushort bus_type)8584  static unsigned int AscGetMaxDmaCount(ushort bus_type)
8585  {
8586  	if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8587  		return ASC_MAX_VL_DMA_COUNT;
8588  	return ASC_MAX_PCI_DMA_COUNT;
8589  }
8590  
AscInitAscDvcVar(ASC_DVC_VAR * asc_dvc)8591  static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8592  {
8593  	int i;
8594  	PortAddr iop_base;
8595  	uchar chip_version;
8596  
8597  	iop_base = asc_dvc->iop_base;
8598  	asc_dvc->err_code = 0;
8599  	if ((asc_dvc->bus_type &
8600  	     (ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8601  		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8602  	}
8603  	AscSetChipControl(iop_base, CC_HALT);
8604  	AscSetChipStatus(iop_base, 0);
8605  	asc_dvc->bug_fix_cntl = 0;
8606  	asc_dvc->pci_fix_asyn_xfer = 0;
8607  	asc_dvc->pci_fix_asyn_xfer_always = 0;
8608  	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
8609  	asc_dvc->sdtr_done = 0;
8610  	asc_dvc->cur_total_qng = 0;
8611  	asc_dvc->is_in_int = false;
8612  	asc_dvc->in_critical_cnt = 0;
8613  	asc_dvc->last_q_shortage = 0;
8614  	asc_dvc->use_tagged_qng = 0;
8615  	asc_dvc->no_scam = 0;
8616  	asc_dvc->unit_not_ready = 0;
8617  	asc_dvc->queue_full_or_busy = 0;
8618  	asc_dvc->redo_scam = 0;
8619  	asc_dvc->res2 = 0;
8620  	asc_dvc->min_sdtr_index = 0;
8621  	asc_dvc->cfg->can_tagged_qng = 0;
8622  	asc_dvc->cfg->cmd_qng_enabled = 0;
8623  	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8624  	asc_dvc->init_sdtr = 0;
8625  	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8626  	asc_dvc->scsi_reset_wait = 3;
8627  	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8628  	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8629  	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8630  	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8631  	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8632  	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8633  	asc_dvc->cfg->chip_version = chip_version;
8634  	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8635  	asc_dvc->max_sdtr_index = 7;
8636  	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8637  	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8638  		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8639  		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8640  		asc_dvc->max_sdtr_index = 15;
8641  		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8642  			AscSetExtraControl(iop_base,
8643  					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8644  		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8645  			AscSetExtraControl(iop_base,
8646  					   (SEC_ACTIVE_NEGATE |
8647  					    SEC_ENABLE_FILTER));
8648  		}
8649  	}
8650  	if (asc_dvc->bus_type == ASC_IS_PCI) {
8651  		AscSetExtraControl(iop_base,
8652  				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8653  	}
8654  
8655  	for (i = 0; i <= ASC_MAX_TID; i++) {
8656  		asc_dvc->cur_dvc_qng[i] = 0;
8657  		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8658  		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8659  		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8660  		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8661  	}
8662  }
8663  
AscWriteEEPCmdReg(PortAddr iop_base,uchar cmd_reg)8664  static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8665  {
8666  	int retry;
8667  
8668  	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8669  		unsigned char read_back;
8670  		AscSetChipEEPCmd(iop_base, cmd_reg);
8671  		mdelay(1);
8672  		read_back = AscGetChipEEPCmd(iop_base);
8673  		if (read_back == cmd_reg)
8674  			return 1;
8675  	}
8676  	return 0;
8677  }
8678  
AscWaitEEPRead(void)8679  static void AscWaitEEPRead(void)
8680  {
8681  	mdelay(1);
8682  }
8683  
AscReadEEPWord(PortAddr iop_base,uchar addr)8684  static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8685  {
8686  	ushort read_wval;
8687  	uchar cmd_reg;
8688  
8689  	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8690  	AscWaitEEPRead();
8691  	cmd_reg = addr | ASC_EEP_CMD_READ;
8692  	AscWriteEEPCmdReg(iop_base, cmd_reg);
8693  	AscWaitEEPRead();
8694  	read_wval = AscGetChipEEPData(iop_base);
8695  	AscWaitEEPRead();
8696  	return read_wval;
8697  }
8698  
AscGetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8699  static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8700  			      ushort bus_type)
8701  {
8702  	ushort wval;
8703  	ushort sum;
8704  	ushort *wbuf;
8705  	int cfg_beg;
8706  	int cfg_end;
8707  	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8708  	int s_addr;
8709  
8710  	wbuf = (ushort *)cfg_buf;
8711  	sum = 0;
8712  	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8713  	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8714  		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8715  		sum += *wbuf;
8716  	}
8717  	if (bus_type & ASC_IS_VL) {
8718  		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8719  		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8720  	} else {
8721  		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8722  		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8723  	}
8724  	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8725  		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8726  		if (s_addr <= uchar_end_in_config) {
8727  			/*
8728  			 * Swap all char fields - must unswap bytes already swapped
8729  			 * by AscReadEEPWord().
8730  			 */
8731  			*wbuf = le16_to_cpu(wval);
8732  		} else {
8733  			/* Don't swap word field at the end - cntl field. */
8734  			*wbuf = wval;
8735  		}
8736  		sum += wval;	/* Checksum treats all EEPROM data as words. */
8737  	}
8738  	/*
8739  	 * Read the checksum word which will be compared against 'sum'
8740  	 * by the caller. Word field already swapped.
8741  	 */
8742  	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8743  	return sum;
8744  }
8745  
AscTestExternalLram(ASC_DVC_VAR * asc_dvc)8746  static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8747  {
8748  	PortAddr iop_base;
8749  	ushort q_addr;
8750  	ushort saved_word;
8751  	int sta;
8752  
8753  	iop_base = asc_dvc->iop_base;
8754  	sta = 0;
8755  	q_addr = ASC_QNO_TO_QADDR(241);
8756  	saved_word = AscReadLramWord(iop_base, q_addr);
8757  	AscSetChipLramAddr(iop_base, q_addr);
8758  	AscSetChipLramData(iop_base, 0x55AA);
8759  	mdelay(10);
8760  	AscSetChipLramAddr(iop_base, q_addr);
8761  	if (AscGetChipLramData(iop_base) == 0x55AA) {
8762  		sta = 1;
8763  		AscWriteLramWord(iop_base, q_addr, saved_word);
8764  	}
8765  	return (sta);
8766  }
8767  
AscWaitEEPWrite(void)8768  static void AscWaitEEPWrite(void)
8769  {
8770  	mdelay(20);
8771  }
8772  
AscWriteEEPDataReg(PortAddr iop_base,ushort data_reg)8773  static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8774  {
8775  	ushort read_back;
8776  	int retry;
8777  
8778  	retry = 0;
8779  	while (true) {
8780  		AscSetChipEEPData(iop_base, data_reg);
8781  		mdelay(1);
8782  		read_back = AscGetChipEEPData(iop_base);
8783  		if (read_back == data_reg) {
8784  			return (1);
8785  		}
8786  		if (retry++ > ASC_EEP_MAX_RETRY) {
8787  			return (0);
8788  		}
8789  	}
8790  }
8791  
AscWriteEEPWord(PortAddr iop_base,uchar addr,ushort word_val)8792  static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8793  {
8794  	ushort read_wval;
8795  
8796  	read_wval = AscReadEEPWord(iop_base, addr);
8797  	if (read_wval != word_val) {
8798  		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8799  		AscWaitEEPRead();
8800  		AscWriteEEPDataReg(iop_base, word_val);
8801  		AscWaitEEPRead();
8802  		AscWriteEEPCmdReg(iop_base,
8803  				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8804  		AscWaitEEPWrite();
8805  		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8806  		AscWaitEEPRead();
8807  		return (AscReadEEPWord(iop_base, addr));
8808  	}
8809  	return (read_wval);
8810  }
8811  
AscSetEEPConfigOnce(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8812  static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8813  			       ushort bus_type)
8814  {
8815  	int n_error;
8816  	ushort *wbuf;
8817  	ushort word;
8818  	ushort sum;
8819  	int s_addr;
8820  	int cfg_beg;
8821  	int cfg_end;
8822  	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8823  
8824  	wbuf = (ushort *)cfg_buf;
8825  	n_error = 0;
8826  	sum = 0;
8827  	/* Write two config words; AscWriteEEPWord() will swap bytes. */
8828  	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8829  		sum += *wbuf;
8830  		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8831  			n_error++;
8832  		}
8833  	}
8834  	if (bus_type & ASC_IS_VL) {
8835  		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8836  		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8837  	} else {
8838  		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8839  		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8840  	}
8841  	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8842  		if (s_addr <= uchar_end_in_config) {
8843  			/*
8844  			 * This is a char field. Swap char fields before they are
8845  			 * swapped again by AscWriteEEPWord().
8846  			 */
8847  			word = cpu_to_le16(*wbuf);
8848  			if (word !=
8849  			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
8850  				n_error++;
8851  			}
8852  		} else {
8853  			/* Don't swap word field at the end - cntl field. */
8854  			if (*wbuf !=
8855  			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8856  				n_error++;
8857  			}
8858  		}
8859  		sum += *wbuf;	/* Checksum calculated from word values. */
8860  	}
8861  	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
8862  	*wbuf = sum;
8863  	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
8864  		n_error++;
8865  	}
8866  
8867  	/* Read EEPROM back again. */
8868  	wbuf = (ushort *)cfg_buf;
8869  	/*
8870  	 * Read two config words; Byte-swapping done by AscReadEEPWord().
8871  	 */
8872  	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8873  		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
8874  			n_error++;
8875  		}
8876  	}
8877  	if (bus_type & ASC_IS_VL) {
8878  		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8879  		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8880  	} else {
8881  		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8882  		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8883  	}
8884  	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8885  		if (s_addr <= uchar_end_in_config) {
8886  			/*
8887  			 * Swap all char fields. Must unswap bytes already swapped
8888  			 * by AscReadEEPWord().
8889  			 */
8890  			word =
8891  			    le16_to_cpu(AscReadEEPWord
8892  					(iop_base, (uchar)s_addr));
8893  		} else {
8894  			/* Don't swap word field at the end - cntl field. */
8895  			word = AscReadEEPWord(iop_base, (uchar)s_addr);
8896  		}
8897  		if (*wbuf != word) {
8898  			n_error++;
8899  		}
8900  	}
8901  	/* Read checksum; Byte swapping not needed. */
8902  	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
8903  		n_error++;
8904  	}
8905  	return n_error;
8906  }
8907  
AscSetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8908  static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8909  			   ushort bus_type)
8910  {
8911  	int retry;
8912  	int n_error;
8913  
8914  	retry = 0;
8915  	while (true) {
8916  		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
8917  						   bus_type)) == 0) {
8918  			break;
8919  		}
8920  		if (++retry > ASC_EEP_MAX_RETRY) {
8921  			break;
8922  		}
8923  	}
8924  	return n_error;
8925  }
8926  
AscInitFromEEP(ASC_DVC_VAR * asc_dvc)8927  static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
8928  {
8929  	ASCEEP_CONFIG eep_config_buf;
8930  	ASCEEP_CONFIG *eep_config;
8931  	PortAddr iop_base;
8932  	ushort chksum;
8933  	ushort warn_code;
8934  	ushort cfg_msw, cfg_lsw;
8935  	int i;
8936  	int write_eep = 0;
8937  
8938  	iop_base = asc_dvc->iop_base;
8939  	warn_code = 0;
8940  	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
8941  	AscStopQueueExe(iop_base);
8942  	if ((AscStopChip(iop_base)) ||
8943  	    (AscGetChipScsiCtrl(iop_base) != 0)) {
8944  		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
8945  		AscResetChipAndScsiBus(asc_dvc);
8946  		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
8947  	}
8948  	if (!AscIsChipHalted(iop_base)) {
8949  		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
8950  		return (warn_code);
8951  	}
8952  	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
8953  	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
8954  		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
8955  		return (warn_code);
8956  	}
8957  	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
8958  	cfg_msw = AscGetChipCfgMsw(iop_base);
8959  	cfg_lsw = AscGetChipCfgLsw(iop_base);
8960  	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
8961  		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8962  		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
8963  		AscSetChipCfgMsw(iop_base, cfg_msw);
8964  	}
8965  	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
8966  	ASC_DBG(1, "chksum 0x%x\n", chksum);
8967  	if (chksum == 0) {
8968  		chksum = 0xaa55;
8969  	}
8970  	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
8971  		warn_code |= ASC_WARN_AUTO_CONFIG;
8972  		if (asc_dvc->cfg->chip_version == 3) {
8973  			if (eep_config->cfg_lsw != cfg_lsw) {
8974  				warn_code |= ASC_WARN_EEPROM_RECOVER;
8975  				eep_config->cfg_lsw =
8976  				    AscGetChipCfgLsw(iop_base);
8977  			}
8978  			if (eep_config->cfg_msw != cfg_msw) {
8979  				warn_code |= ASC_WARN_EEPROM_RECOVER;
8980  				eep_config->cfg_msw =
8981  				    AscGetChipCfgMsw(iop_base);
8982  			}
8983  		}
8984  	}
8985  	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8986  	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
8987  	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
8988  	if (chksum != eep_config->chksum) {
8989  		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
8990  		    ASC_CHIP_VER_PCI_ULTRA_3050) {
8991  			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
8992  			eep_config->init_sdtr = 0xFF;
8993  			eep_config->disc_enable = 0xFF;
8994  			eep_config->start_motor = 0xFF;
8995  			eep_config->use_cmd_qng = 0;
8996  			eep_config->max_total_qng = 0xF0;
8997  			eep_config->max_tag_qng = 0x20;
8998  			eep_config->cntl = 0xBFFF;
8999  			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9000  			eep_config->no_scam = 0;
9001  			eep_config->adapter_info[0] = 0;
9002  			eep_config->adapter_info[1] = 0;
9003  			eep_config->adapter_info[2] = 0;
9004  			eep_config->adapter_info[3] = 0;
9005  			eep_config->adapter_info[4] = 0;
9006  			/* Indicate EEPROM-less board. */
9007  			eep_config->adapter_info[5] = 0xBB;
9008  		} else {
9009  			ASC_PRINT
9010  			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9011  			write_eep = 1;
9012  			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9013  		}
9014  	}
9015  	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9016  	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9017  	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9018  	asc_dvc->start_motor = eep_config->start_motor;
9019  	asc_dvc->dvc_cntl = eep_config->cntl;
9020  	asc_dvc->no_scam = eep_config->no_scam;
9021  	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9022  	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9023  	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9024  	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9025  	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9026  	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9027  	if (!AscTestExternalLram(asc_dvc)) {
9028  		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9029  		     ASC_IS_PCI_ULTRA)) {
9030  			eep_config->max_total_qng =
9031  			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9032  			eep_config->max_tag_qng =
9033  			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9034  		} else {
9035  			eep_config->cfg_msw |= 0x0800;
9036  			cfg_msw |= 0x0800;
9037  			AscSetChipCfgMsw(iop_base, cfg_msw);
9038  			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9039  			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9040  		}
9041  	} else {
9042  	}
9043  	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9044  		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9045  	}
9046  	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9047  		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9048  	}
9049  	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9050  		eep_config->max_tag_qng = eep_config->max_total_qng;
9051  	}
9052  	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9053  		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9054  	}
9055  	asc_dvc->max_total_qng = eep_config->max_total_qng;
9056  	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9057  	    eep_config->use_cmd_qng) {
9058  		eep_config->disc_enable = eep_config->use_cmd_qng;
9059  		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9060  	}
9061  	ASC_EEP_SET_CHIP_ID(eep_config,
9062  			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9063  	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9064  	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9065  	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9066  		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9067  	}
9068  
9069  	for (i = 0; i <= ASC_MAX_TID; i++) {
9070  		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9071  		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9072  		asc_dvc->cfg->sdtr_period_offset[i] =
9073  		    (uchar)(ASC_DEF_SDTR_OFFSET |
9074  			    (asc_dvc->min_sdtr_index << 4));
9075  	}
9076  	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9077  	if (write_eep) {
9078  		if ((i = AscSetEEPConfig(iop_base, eep_config,
9079  				     asc_dvc->bus_type)) != 0) {
9080  			ASC_PRINT1
9081  			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9082  			     i);
9083  		} else {
9084  			ASC_PRINT
9085  			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9086  		}
9087  	}
9088  	return (warn_code);
9089  }
9090  
AscInitGetConfig(struct Scsi_Host * shost)9091  static int AscInitGetConfig(struct Scsi_Host *shost)
9092  {
9093  	struct asc_board *board = shost_priv(shost);
9094  	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9095  	unsigned short warn_code = 0;
9096  
9097  	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9098  	if (asc_dvc->err_code != 0)
9099  		return asc_dvc->err_code;
9100  
9101  	if (AscFindSignature(asc_dvc->iop_base)) {
9102  		AscInitAscDvcVar(asc_dvc);
9103  		warn_code = AscInitFromEEP(asc_dvc);
9104  		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9105  		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9106  			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9107  	} else {
9108  		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9109  	}
9110  
9111  	switch (warn_code) {
9112  	case 0:	/* No error */
9113  		break;
9114  	case ASC_WARN_IO_PORT_ROTATE:
9115  		shost_printk(KERN_WARNING, shost, "I/O port address "
9116  				"modified\n");
9117  		break;
9118  	case ASC_WARN_AUTO_CONFIG:
9119  		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9120  				"enabled\n");
9121  		break;
9122  	case ASC_WARN_EEPROM_CHKSUM:
9123  		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9124  		break;
9125  	case ASC_WARN_IRQ_MODIFIED:
9126  		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9127  		break;
9128  	case ASC_WARN_CMD_QNG_CONFLICT:
9129  		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9130  				"disconnects\n");
9131  		break;
9132  	default:
9133  		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9134  				warn_code);
9135  		break;
9136  	}
9137  
9138  	if (asc_dvc->err_code != 0)
9139  		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9140  			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9141  
9142  	return asc_dvc->err_code;
9143  }
9144  
AscInitSetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)9145  static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9146  {
9147  	struct asc_board *board = shost_priv(shost);
9148  	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9149  	PortAddr iop_base = asc_dvc->iop_base;
9150  	unsigned short cfg_msw;
9151  	unsigned short warn_code = 0;
9152  
9153  	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9154  	if (asc_dvc->err_code != 0)
9155  		return asc_dvc->err_code;
9156  	if (!AscFindSignature(asc_dvc->iop_base)) {
9157  		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9158  		return asc_dvc->err_code;
9159  	}
9160  
9161  	cfg_msw = AscGetChipCfgMsw(iop_base);
9162  	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9163  		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9164  		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9165  		AscSetChipCfgMsw(iop_base, cfg_msw);
9166  	}
9167  	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9168  	    asc_dvc->cfg->cmd_qng_enabled) {
9169  		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9170  		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9171  	}
9172  	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9173  		warn_code |= ASC_WARN_AUTO_CONFIG;
9174  	}
9175  #ifdef CONFIG_PCI
9176  	if (asc_dvc->bus_type & ASC_IS_PCI) {
9177  		cfg_msw &= 0xFFC0;
9178  		AscSetChipCfgMsw(iop_base, cfg_msw);
9179  		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9180  		} else {
9181  			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9182  			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9183  				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9184  				asc_dvc->bug_fix_cntl |=
9185  				    ASC_BUG_FIX_ASYN_USE_SYN;
9186  			}
9187  		}
9188  	} else
9189  #endif /* CONFIG_PCI */
9190  	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9191  	    asc_dvc->cfg->chip_scsi_id) {
9192  		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9193  	}
9194  
9195  	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9196  
9197  	switch (warn_code) {
9198  	case 0:	/* No error. */
9199  		break;
9200  	case ASC_WARN_IO_PORT_ROTATE:
9201  		shost_printk(KERN_WARNING, shost, "I/O port address "
9202  				"modified\n");
9203  		break;
9204  	case ASC_WARN_AUTO_CONFIG:
9205  		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9206  				"enabled\n");
9207  		break;
9208  	case ASC_WARN_EEPROM_CHKSUM:
9209  		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9210  		break;
9211  	case ASC_WARN_IRQ_MODIFIED:
9212  		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9213  		break;
9214  	case ASC_WARN_CMD_QNG_CONFLICT:
9215  		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9216  				"disconnects\n");
9217  		break;
9218  	default:
9219  		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9220  				warn_code);
9221  		break;
9222  	}
9223  
9224  	if (asc_dvc->err_code != 0)
9225  		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9226  			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9227  
9228  	return asc_dvc->err_code;
9229  }
9230  
9231  /*
9232   * EEPROM Configuration.
9233   *
9234   * All drivers should use this structure to set the default EEPROM
9235   * configuration. The BIOS now uses this structure when it is built.
9236   * Additional structure information can be found in a_condor.h where
9237   * the structure is defined.
9238   *
9239   * The *_Field_IsChar structs are needed to correct for endianness.
9240   * These values are read from the board 16 bits at a time directly
9241   * into the structs. Because some fields are char, the values will be
9242   * in the wrong order. The *_Field_IsChar tells when to flip the
9243   * bytes. Data read and written to PCI memory is automatically swapped
9244   * on big-endian platforms so char fields read as words are actually being
9245   * unswapped on big-endian platforms.
9246   */
9247  #ifdef CONFIG_PCI
9248  static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9249  	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9250  	0x0000,			/* cfg_msw */
9251  	0xFFFF,			/* disc_enable */
9252  	0xFFFF,			/* wdtr_able */
9253  	0xFFFF,			/* sdtr_able */
9254  	0xFFFF,			/* start_motor */
9255  	0xFFFF,			/* tagqng_able */
9256  	0xFFFF,			/* bios_scan */
9257  	0,			/* scam_tolerant */
9258  	7,			/* adapter_scsi_id */
9259  	0,			/* bios_boot_delay */
9260  	3,			/* scsi_reset_delay */
9261  	0,			/* bios_id_lun */
9262  	0,			/* termination */
9263  	0,			/* reserved1 */
9264  	0xFFE7,			/* bios_ctrl */
9265  	0xFFFF,			/* ultra_able */
9266  	0,			/* reserved2 */
9267  	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9268  	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9269  	0,			/* dvc_cntl */
9270  	0,			/* bug_fix */
9271  	0,			/* serial_number_word1 */
9272  	0,			/* serial_number_word2 */
9273  	0,			/* serial_number_word3 */
9274  	0,			/* check_sum */
9275  	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9276  	,			/* oem_name[16] */
9277  	0,			/* dvc_err_code */
9278  	0,			/* adv_err_code */
9279  	0,			/* adv_err_addr */
9280  	0,			/* saved_dvc_err_code */
9281  	0,			/* saved_adv_err_code */
9282  	0,			/* saved_adv_err_addr */
9283  	0			/* num_of_err */
9284  };
9285  
9286  static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9287  	0,			/* cfg_lsw */
9288  	0,			/* cfg_msw */
9289  	0,			/* -disc_enable */
9290  	0,			/* wdtr_able */
9291  	0,			/* sdtr_able */
9292  	0,			/* start_motor */
9293  	0,			/* tagqng_able */
9294  	0,			/* bios_scan */
9295  	0,			/* scam_tolerant */
9296  	1,			/* adapter_scsi_id */
9297  	1,			/* bios_boot_delay */
9298  	1,			/* scsi_reset_delay */
9299  	1,			/* bios_id_lun */
9300  	1,			/* termination */
9301  	1,			/* reserved1 */
9302  	0,			/* bios_ctrl */
9303  	0,			/* ultra_able */
9304  	0,			/* reserved2 */
9305  	1,			/* max_host_qng */
9306  	1,			/* max_dvc_qng */
9307  	0,			/* dvc_cntl */
9308  	0,			/* bug_fix */
9309  	0,			/* serial_number_word1 */
9310  	0,			/* serial_number_word2 */
9311  	0,			/* serial_number_word3 */
9312  	0,			/* check_sum */
9313  	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9314  	,			/* oem_name[16] */
9315  	0,			/* dvc_err_code */
9316  	0,			/* adv_err_code */
9317  	0,			/* adv_err_addr */
9318  	0,			/* saved_dvc_err_code */
9319  	0,			/* saved_adv_err_code */
9320  	0,			/* saved_adv_err_addr */
9321  	0			/* num_of_err */
9322  };
9323  
9324  static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9325  	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9326  	0x0000,			/* 01 cfg_msw */
9327  	0xFFFF,			/* 02 disc_enable */
9328  	0xFFFF,			/* 03 wdtr_able */
9329  	0x4444,			/* 04 sdtr_speed1 */
9330  	0xFFFF,			/* 05 start_motor */
9331  	0xFFFF,			/* 06 tagqng_able */
9332  	0xFFFF,			/* 07 bios_scan */
9333  	0,			/* 08 scam_tolerant */
9334  	7,			/* 09 adapter_scsi_id */
9335  	0,			/*    bios_boot_delay */
9336  	3,			/* 10 scsi_reset_delay */
9337  	0,			/*    bios_id_lun */
9338  	0,			/* 11 termination_se */
9339  	0,			/*    termination_lvd */
9340  	0xFFE7,			/* 12 bios_ctrl */
9341  	0x4444,			/* 13 sdtr_speed2 */
9342  	0x4444,			/* 14 sdtr_speed3 */
9343  	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9344  	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9345  	0,			/* 16 dvc_cntl */
9346  	0x4444,			/* 17 sdtr_speed4 */
9347  	0,			/* 18 serial_number_word1 */
9348  	0,			/* 19 serial_number_word2 */
9349  	0,			/* 20 serial_number_word3 */
9350  	0,			/* 21 check_sum */
9351  	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9352  	,			/* 22-29 oem_name[16] */
9353  	0,			/* 30 dvc_err_code */
9354  	0,			/* 31 adv_err_code */
9355  	0,			/* 32 adv_err_addr */
9356  	0,			/* 33 saved_dvc_err_code */
9357  	0,			/* 34 saved_adv_err_code */
9358  	0,			/* 35 saved_adv_err_addr */
9359  	0,			/* 36 reserved */
9360  	0,			/* 37 reserved */
9361  	0,			/* 38 reserved */
9362  	0,			/* 39 reserved */
9363  	0,			/* 40 reserved */
9364  	0,			/* 41 reserved */
9365  	0,			/* 42 reserved */
9366  	0,			/* 43 reserved */
9367  	0,			/* 44 reserved */
9368  	0,			/* 45 reserved */
9369  	0,			/* 46 reserved */
9370  	0,			/* 47 reserved */
9371  	0,			/* 48 reserved */
9372  	0,			/* 49 reserved */
9373  	0,			/* 50 reserved */
9374  	0,			/* 51 reserved */
9375  	0,			/* 52 reserved */
9376  	0,			/* 53 reserved */
9377  	0,			/* 54 reserved */
9378  	0,			/* 55 reserved */
9379  	0,			/* 56 cisptr_lsw */
9380  	0,			/* 57 cisprt_msw */
9381  	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9382  	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
9383  	0,			/* 60 reserved */
9384  	0,			/* 61 reserved */
9385  	0,			/* 62 reserved */
9386  	0			/* 63 reserved */
9387  };
9388  
9389  static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9390  	0,			/* 00 cfg_lsw */
9391  	0,			/* 01 cfg_msw */
9392  	0,			/* 02 disc_enable */
9393  	0,			/* 03 wdtr_able */
9394  	0,			/* 04 sdtr_speed1 */
9395  	0,			/* 05 start_motor */
9396  	0,			/* 06 tagqng_able */
9397  	0,			/* 07 bios_scan */
9398  	0,			/* 08 scam_tolerant */
9399  	1,			/* 09 adapter_scsi_id */
9400  	1,			/*    bios_boot_delay */
9401  	1,			/* 10 scsi_reset_delay */
9402  	1,			/*    bios_id_lun */
9403  	1,			/* 11 termination_se */
9404  	1,			/*    termination_lvd */
9405  	0,			/* 12 bios_ctrl */
9406  	0,			/* 13 sdtr_speed2 */
9407  	0,			/* 14 sdtr_speed3 */
9408  	1,			/* 15 max_host_qng */
9409  	1,			/*    max_dvc_qng */
9410  	0,			/* 16 dvc_cntl */
9411  	0,			/* 17 sdtr_speed4 */
9412  	0,			/* 18 serial_number_word1 */
9413  	0,			/* 19 serial_number_word2 */
9414  	0,			/* 20 serial_number_word3 */
9415  	0,			/* 21 check_sum */
9416  	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9417  	,			/* 22-29 oem_name[16] */
9418  	0,			/* 30 dvc_err_code */
9419  	0,			/* 31 adv_err_code */
9420  	0,			/* 32 adv_err_addr */
9421  	0,			/* 33 saved_dvc_err_code */
9422  	0,			/* 34 saved_adv_err_code */
9423  	0,			/* 35 saved_adv_err_addr */
9424  	0,			/* 36 reserved */
9425  	0,			/* 37 reserved */
9426  	0,			/* 38 reserved */
9427  	0,			/* 39 reserved */
9428  	0,			/* 40 reserved */
9429  	0,			/* 41 reserved */
9430  	0,			/* 42 reserved */
9431  	0,			/* 43 reserved */
9432  	0,			/* 44 reserved */
9433  	0,			/* 45 reserved */
9434  	0,			/* 46 reserved */
9435  	0,			/* 47 reserved */
9436  	0,			/* 48 reserved */
9437  	0,			/* 49 reserved */
9438  	0,			/* 50 reserved */
9439  	0,			/* 51 reserved */
9440  	0,			/* 52 reserved */
9441  	0,			/* 53 reserved */
9442  	0,			/* 54 reserved */
9443  	0,			/* 55 reserved */
9444  	0,			/* 56 cisptr_lsw */
9445  	0,			/* 57 cisprt_msw */
9446  	0,			/* 58 subsysvid */
9447  	0,			/* 59 subsysid */
9448  	0,			/* 60 reserved */
9449  	0,			/* 61 reserved */
9450  	0,			/* 62 reserved */
9451  	0			/* 63 reserved */
9452  };
9453  
9454  static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9455  	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9456  	0x0000,			/* 01 cfg_msw */
9457  	0xFFFF,			/* 02 disc_enable */
9458  	0xFFFF,			/* 03 wdtr_able */
9459  	0x5555,			/* 04 sdtr_speed1 */
9460  	0xFFFF,			/* 05 start_motor */
9461  	0xFFFF,			/* 06 tagqng_able */
9462  	0xFFFF,			/* 07 bios_scan */
9463  	0,			/* 08 scam_tolerant */
9464  	7,			/* 09 adapter_scsi_id */
9465  	0,			/*    bios_boot_delay */
9466  	3,			/* 10 scsi_reset_delay */
9467  	0,			/*    bios_id_lun */
9468  	0,			/* 11 termination_se */
9469  	0,			/*    termination_lvd */
9470  	0xFFE7,			/* 12 bios_ctrl */
9471  	0x5555,			/* 13 sdtr_speed2 */
9472  	0x5555,			/* 14 sdtr_speed3 */
9473  	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9474  	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9475  	0,			/* 16 dvc_cntl */
9476  	0x5555,			/* 17 sdtr_speed4 */
9477  	0,			/* 18 serial_number_word1 */
9478  	0,			/* 19 serial_number_word2 */
9479  	0,			/* 20 serial_number_word3 */
9480  	0,			/* 21 check_sum */
9481  	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9482  	,			/* 22-29 oem_name[16] */
9483  	0,			/* 30 dvc_err_code */
9484  	0,			/* 31 adv_err_code */
9485  	0,			/* 32 adv_err_addr */
9486  	0,			/* 33 saved_dvc_err_code */
9487  	0,			/* 34 saved_adv_err_code */
9488  	0,			/* 35 saved_adv_err_addr */
9489  	0,			/* 36 reserved */
9490  	0,			/* 37 reserved */
9491  	0,			/* 38 reserved */
9492  	0,			/* 39 reserved */
9493  	0,			/* 40 reserved */
9494  	0,			/* 41 reserved */
9495  	0,			/* 42 reserved */
9496  	0,			/* 43 reserved */
9497  	0,			/* 44 reserved */
9498  	0,			/* 45 reserved */
9499  	0,			/* 46 reserved */
9500  	0,			/* 47 reserved */
9501  	0,			/* 48 reserved */
9502  	0,			/* 49 reserved */
9503  	0,			/* 50 reserved */
9504  	0,			/* 51 reserved */
9505  	0,			/* 52 reserved */
9506  	0,			/* 53 reserved */
9507  	0,			/* 54 reserved */
9508  	0,			/* 55 reserved */
9509  	0,			/* 56 cisptr_lsw */
9510  	0,			/* 57 cisprt_msw */
9511  	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9512  	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
9513  	0,			/* 60 reserved */
9514  	0,			/* 61 reserved */
9515  	0,			/* 62 reserved */
9516  	0			/* 63 reserved */
9517  };
9518  
9519  static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9520  	0,			/* 00 cfg_lsw */
9521  	0,			/* 01 cfg_msw */
9522  	0,			/* 02 disc_enable */
9523  	0,			/* 03 wdtr_able */
9524  	0,			/* 04 sdtr_speed1 */
9525  	0,			/* 05 start_motor */
9526  	0,			/* 06 tagqng_able */
9527  	0,			/* 07 bios_scan */
9528  	0,			/* 08 scam_tolerant */
9529  	1,			/* 09 adapter_scsi_id */
9530  	1,			/*    bios_boot_delay */
9531  	1,			/* 10 scsi_reset_delay */
9532  	1,			/*    bios_id_lun */
9533  	1,			/* 11 termination_se */
9534  	1,			/*    termination_lvd */
9535  	0,			/* 12 bios_ctrl */
9536  	0,			/* 13 sdtr_speed2 */
9537  	0,			/* 14 sdtr_speed3 */
9538  	1,			/* 15 max_host_qng */
9539  	1,			/*    max_dvc_qng */
9540  	0,			/* 16 dvc_cntl */
9541  	0,			/* 17 sdtr_speed4 */
9542  	0,			/* 18 serial_number_word1 */
9543  	0,			/* 19 serial_number_word2 */
9544  	0,			/* 20 serial_number_word3 */
9545  	0,			/* 21 check_sum */
9546  	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9547  	,			/* 22-29 oem_name[16] */
9548  	0,			/* 30 dvc_err_code */
9549  	0,			/* 31 adv_err_code */
9550  	0,			/* 32 adv_err_addr */
9551  	0,			/* 33 saved_dvc_err_code */
9552  	0,			/* 34 saved_adv_err_code */
9553  	0,			/* 35 saved_adv_err_addr */
9554  	0,			/* 36 reserved */
9555  	0,			/* 37 reserved */
9556  	0,			/* 38 reserved */
9557  	0,			/* 39 reserved */
9558  	0,			/* 40 reserved */
9559  	0,			/* 41 reserved */
9560  	0,			/* 42 reserved */
9561  	0,			/* 43 reserved */
9562  	0,			/* 44 reserved */
9563  	0,			/* 45 reserved */
9564  	0,			/* 46 reserved */
9565  	0,			/* 47 reserved */
9566  	0,			/* 48 reserved */
9567  	0,			/* 49 reserved */
9568  	0,			/* 50 reserved */
9569  	0,			/* 51 reserved */
9570  	0,			/* 52 reserved */
9571  	0,			/* 53 reserved */
9572  	0,			/* 54 reserved */
9573  	0,			/* 55 reserved */
9574  	0,			/* 56 cisptr_lsw */
9575  	0,			/* 57 cisprt_msw */
9576  	0,			/* 58 subsysvid */
9577  	0,			/* 59 subsysid */
9578  	0,			/* 60 reserved */
9579  	0,			/* 61 reserved */
9580  	0,			/* 62 reserved */
9581  	0			/* 63 reserved */
9582  };
9583  
9584  /*
9585   * Wait for EEPROM command to complete
9586   */
AdvWaitEEPCmd(AdvPortAddr iop_base)9587  static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9588  {
9589  	int eep_delay_ms;
9590  
9591  	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9592  		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9593  		    ASC_EEP_CMD_DONE) {
9594  			break;
9595  		}
9596  		mdelay(1);
9597  	}
9598  	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9599  	    0)
9600  		BUG();
9601  }
9602  
9603  /*
9604   * Read the EEPROM from specified location
9605   */
AdvReadEEPWord(AdvPortAddr iop_base,int eep_word_addr)9606  static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9607  {
9608  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9609  			     ASC_EEP_CMD_READ | eep_word_addr);
9610  	AdvWaitEEPCmd(iop_base);
9611  	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9612  }
9613  
9614  /*
9615   * Write the EEPROM from 'cfg_buf'.
9616   */
AdvSet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)9617  static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9618  				ADVEEP_3550_CONFIG *cfg_buf)
9619  {
9620  	ushort *wbuf;
9621  	ushort addr, chksum;
9622  	ushort *charfields;
9623  
9624  	wbuf = (ushort *)cfg_buf;
9625  	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9626  	chksum = 0;
9627  
9628  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9629  	AdvWaitEEPCmd(iop_base);
9630  
9631  	/*
9632  	 * Write EEPROM from word 0 to word 20.
9633  	 */
9634  	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9635  	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9636  		ushort word;
9637  
9638  		if (*charfields++) {
9639  			word = cpu_to_le16(*wbuf);
9640  		} else {
9641  			word = *wbuf;
9642  		}
9643  		chksum += *wbuf;	/* Checksum is calculated from word values. */
9644  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9645  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9646  				     ASC_EEP_CMD_WRITE | addr);
9647  		AdvWaitEEPCmd(iop_base);
9648  		mdelay(ADV_EEP_DELAY_MS);
9649  	}
9650  
9651  	/*
9652  	 * Write EEPROM checksum at word 21.
9653  	 */
9654  	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9655  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9656  	AdvWaitEEPCmd(iop_base);
9657  	wbuf++;
9658  	charfields++;
9659  
9660  	/*
9661  	 * Write EEPROM OEM name at words 22 to 29.
9662  	 */
9663  	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9664  	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9665  		ushort word;
9666  
9667  		if (*charfields++) {
9668  			word = cpu_to_le16(*wbuf);
9669  		} else {
9670  			word = *wbuf;
9671  		}
9672  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9673  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9674  				     ASC_EEP_CMD_WRITE | addr);
9675  		AdvWaitEEPCmd(iop_base);
9676  	}
9677  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9678  	AdvWaitEEPCmd(iop_base);
9679  }
9680  
9681  /*
9682   * Write the EEPROM from 'cfg_buf'.
9683   */
AdvSet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)9684  static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9685  				   ADVEEP_38C0800_CONFIG *cfg_buf)
9686  {
9687  	ushort *wbuf;
9688  	ushort *charfields;
9689  	ushort addr, chksum;
9690  
9691  	wbuf = (ushort *)cfg_buf;
9692  	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9693  	chksum = 0;
9694  
9695  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9696  	AdvWaitEEPCmd(iop_base);
9697  
9698  	/*
9699  	 * Write EEPROM from word 0 to word 20.
9700  	 */
9701  	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9702  	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9703  		ushort word;
9704  
9705  		if (*charfields++) {
9706  			word = cpu_to_le16(*wbuf);
9707  		} else {
9708  			word = *wbuf;
9709  		}
9710  		chksum += *wbuf;	/* Checksum is calculated from word values. */
9711  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9712  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9713  				     ASC_EEP_CMD_WRITE | addr);
9714  		AdvWaitEEPCmd(iop_base);
9715  		mdelay(ADV_EEP_DELAY_MS);
9716  	}
9717  
9718  	/*
9719  	 * Write EEPROM checksum at word 21.
9720  	 */
9721  	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9722  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9723  	AdvWaitEEPCmd(iop_base);
9724  	wbuf++;
9725  	charfields++;
9726  
9727  	/*
9728  	 * Write EEPROM OEM name at words 22 to 29.
9729  	 */
9730  	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9731  	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9732  		ushort word;
9733  
9734  		if (*charfields++) {
9735  			word = cpu_to_le16(*wbuf);
9736  		} else {
9737  			word = *wbuf;
9738  		}
9739  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9740  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9741  				     ASC_EEP_CMD_WRITE | addr);
9742  		AdvWaitEEPCmd(iop_base);
9743  	}
9744  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9745  	AdvWaitEEPCmd(iop_base);
9746  }
9747  
9748  /*
9749   * Write the EEPROM from 'cfg_buf'.
9750   */
AdvSet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)9751  static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9752  				   ADVEEP_38C1600_CONFIG *cfg_buf)
9753  {
9754  	ushort *wbuf;
9755  	ushort *charfields;
9756  	ushort addr, chksum;
9757  
9758  	wbuf = (ushort *)cfg_buf;
9759  	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9760  	chksum = 0;
9761  
9762  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9763  	AdvWaitEEPCmd(iop_base);
9764  
9765  	/*
9766  	 * Write EEPROM from word 0 to word 20.
9767  	 */
9768  	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9769  	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9770  		ushort word;
9771  
9772  		if (*charfields++) {
9773  			word = cpu_to_le16(*wbuf);
9774  		} else {
9775  			word = *wbuf;
9776  		}
9777  		chksum += *wbuf;	/* Checksum is calculated from word values. */
9778  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9779  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9780  				     ASC_EEP_CMD_WRITE | addr);
9781  		AdvWaitEEPCmd(iop_base);
9782  		mdelay(ADV_EEP_DELAY_MS);
9783  	}
9784  
9785  	/*
9786  	 * Write EEPROM checksum at word 21.
9787  	 */
9788  	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9789  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9790  	AdvWaitEEPCmd(iop_base);
9791  	wbuf++;
9792  	charfields++;
9793  
9794  	/*
9795  	 * Write EEPROM OEM name at words 22 to 29.
9796  	 */
9797  	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9798  	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9799  		ushort word;
9800  
9801  		if (*charfields++) {
9802  			word = cpu_to_le16(*wbuf);
9803  		} else {
9804  			word = *wbuf;
9805  		}
9806  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9807  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9808  				     ASC_EEP_CMD_WRITE | addr);
9809  		AdvWaitEEPCmd(iop_base);
9810  	}
9811  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9812  	AdvWaitEEPCmd(iop_base);
9813  }
9814  
9815  /*
9816   * Read EEPROM configuration into the specified buffer.
9817   *
9818   * Return a checksum based on the EEPROM configuration read.
9819   */
AdvGet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)9820  static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
9821  				  ADVEEP_3550_CONFIG *cfg_buf)
9822  {
9823  	ushort wval, chksum;
9824  	ushort *wbuf;
9825  	int eep_addr;
9826  	ushort *charfields;
9827  
9828  	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9829  	wbuf = (ushort *)cfg_buf;
9830  	chksum = 0;
9831  
9832  	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9833  	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9834  		wval = AdvReadEEPWord(iop_base, eep_addr);
9835  		chksum += wval;	/* Checksum is calculated from word values. */
9836  		if (*charfields++) {
9837  			*wbuf = le16_to_cpu(wval);
9838  		} else {
9839  			*wbuf = wval;
9840  		}
9841  	}
9842  	/* Read checksum word. */
9843  	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9844  	wbuf++;
9845  	charfields++;
9846  
9847  	/* Read rest of EEPROM not covered by the checksum. */
9848  	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9849  	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9850  		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9851  		if (*charfields++) {
9852  			*wbuf = le16_to_cpu(*wbuf);
9853  		}
9854  	}
9855  	return chksum;
9856  }
9857  
9858  /*
9859   * Read EEPROM configuration into the specified buffer.
9860   *
9861   * Return a checksum based on the EEPROM configuration read.
9862   */
AdvGet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)9863  static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
9864  				     ADVEEP_38C0800_CONFIG *cfg_buf)
9865  {
9866  	ushort wval, chksum;
9867  	ushort *wbuf;
9868  	int eep_addr;
9869  	ushort *charfields;
9870  
9871  	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9872  	wbuf = (ushort *)cfg_buf;
9873  	chksum = 0;
9874  
9875  	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9876  	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9877  		wval = AdvReadEEPWord(iop_base, eep_addr);
9878  		chksum += wval;	/* Checksum is calculated from word values. */
9879  		if (*charfields++) {
9880  			*wbuf = le16_to_cpu(wval);
9881  		} else {
9882  			*wbuf = wval;
9883  		}
9884  	}
9885  	/* Read checksum word. */
9886  	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9887  	wbuf++;
9888  	charfields++;
9889  
9890  	/* Read rest of EEPROM not covered by the checksum. */
9891  	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9892  	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9893  		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9894  		if (*charfields++) {
9895  			*wbuf = le16_to_cpu(*wbuf);
9896  		}
9897  	}
9898  	return chksum;
9899  }
9900  
9901  /*
9902   * Read EEPROM configuration into the specified buffer.
9903   *
9904   * Return a checksum based on the EEPROM configuration read.
9905   */
AdvGet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)9906  static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
9907  				     ADVEEP_38C1600_CONFIG *cfg_buf)
9908  {
9909  	ushort wval, chksum;
9910  	ushort *wbuf;
9911  	int eep_addr;
9912  	ushort *charfields;
9913  
9914  	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9915  	wbuf = (ushort *)cfg_buf;
9916  	chksum = 0;
9917  
9918  	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9919  	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9920  		wval = AdvReadEEPWord(iop_base, eep_addr);
9921  		chksum += wval;	/* Checksum is calculated from word values. */
9922  		if (*charfields++) {
9923  			*wbuf = le16_to_cpu(wval);
9924  		} else {
9925  			*wbuf = wval;
9926  		}
9927  	}
9928  	/* Read checksum word. */
9929  	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9930  	wbuf++;
9931  	charfields++;
9932  
9933  	/* Read rest of EEPROM not covered by the checksum. */
9934  	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9935  	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9936  		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9937  		if (*charfields++) {
9938  			*wbuf = le16_to_cpu(*wbuf);
9939  		}
9940  	}
9941  	return chksum;
9942  }
9943  
9944  /*
9945   * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
9946   * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
9947   * all of this is done.
9948   *
9949   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
9950   *
9951   * For a non-fatal error return a warning code. If there are no warnings
9952   * then 0 is returned.
9953   *
9954   * Note: Chip is stopped on entry.
9955   */
AdvInitFrom3550EEP(ADV_DVC_VAR * asc_dvc)9956  static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
9957  {
9958  	AdvPortAddr iop_base;
9959  	ushort warn_code;
9960  	ADVEEP_3550_CONFIG eep_config;
9961  
9962  	iop_base = asc_dvc->iop_base;
9963  
9964  	warn_code = 0;
9965  
9966  	/*
9967  	 * Read the board's EEPROM configuration.
9968  	 *
9969  	 * Set default values if a bad checksum is found.
9970  	 */
9971  	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
9972  		warn_code |= ASC_WARN_EEPROM_CHKSUM;
9973  
9974  		/*
9975  		 * Set EEPROM default values.
9976  		 */
9977  		memcpy(&eep_config, &Default_3550_EEPROM_Config,
9978  			sizeof(ADVEEP_3550_CONFIG));
9979  
9980  		/*
9981  		 * Assume the 6 byte board serial number that was read from
9982  		 * EEPROM is correct even if the EEPROM checksum failed.
9983  		 */
9984  		eep_config.serial_number_word3 =
9985  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
9986  
9987  		eep_config.serial_number_word2 =
9988  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
9989  
9990  		eep_config.serial_number_word1 =
9991  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
9992  
9993  		AdvSet3550EEPConfig(iop_base, &eep_config);
9994  	}
9995  	/*
9996  	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
9997  	 * EEPROM configuration that was read.
9998  	 *
9999  	 * This is the mapping of EEPROM fields to Adv Library fields.
10000  	 */
10001  	asc_dvc->wdtr_able = eep_config.wdtr_able;
10002  	asc_dvc->sdtr_able = eep_config.sdtr_able;
10003  	asc_dvc->ultra_able = eep_config.ultra_able;
10004  	asc_dvc->tagqng_able = eep_config.tagqng_able;
10005  	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10006  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10007  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10008  	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10009  	asc_dvc->start_motor = eep_config.start_motor;
10010  	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10011  	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10012  	asc_dvc->no_scam = eep_config.scam_tolerant;
10013  	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10014  	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10015  	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10016  
10017  	/*
10018  	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10019  	 * maximum queuing (max. 63, min. 4).
10020  	 */
10021  	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10022  		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10023  	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10024  		/* If the value is zero, assume it is uninitialized. */
10025  		if (eep_config.max_host_qng == 0) {
10026  			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10027  		} else {
10028  			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10029  		}
10030  	}
10031  
10032  	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10033  		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10034  	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10035  		/* If the value is zero, assume it is uninitialized. */
10036  		if (eep_config.max_dvc_qng == 0) {
10037  			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10038  		} else {
10039  			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10040  		}
10041  	}
10042  
10043  	/*
10044  	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10045  	 * set 'max_dvc_qng' to 'max_host_qng'.
10046  	 */
10047  	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10048  		eep_config.max_dvc_qng = eep_config.max_host_qng;
10049  	}
10050  
10051  	/*
10052  	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10053  	 * values based on possibly adjusted EEPROM values.
10054  	 */
10055  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10056  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10057  
10058  	/*
10059  	 * If the EEPROM 'termination' field is set to automatic (0), then set
10060  	 * the ADV_DVC_CFG 'termination' field to automatic also.
10061  	 *
10062  	 * If the termination is specified with a non-zero 'termination'
10063  	 * value check that a legal value is set and set the ADV_DVC_CFG
10064  	 * 'termination' field appropriately.
10065  	 */
10066  	if (eep_config.termination == 0) {
10067  		asc_dvc->cfg->termination = 0;	/* auto termination */
10068  	} else {
10069  		/* Enable manual control with low off / high off. */
10070  		if (eep_config.termination == 1) {
10071  			asc_dvc->cfg->termination = TERM_CTL_SEL;
10072  
10073  			/* Enable manual control with low off / high on. */
10074  		} else if (eep_config.termination == 2) {
10075  			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10076  
10077  			/* Enable manual control with low on / high on. */
10078  		} else if (eep_config.termination == 3) {
10079  			asc_dvc->cfg->termination =
10080  			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10081  		} else {
10082  			/*
10083  			 * The EEPROM 'termination' field contains a bad value. Use
10084  			 * automatic termination instead.
10085  			 */
10086  			asc_dvc->cfg->termination = 0;
10087  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10088  		}
10089  	}
10090  
10091  	return warn_code;
10092  }
10093  
10094  /*
10095   * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10096   * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10097   * all of this is done.
10098   *
10099   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10100   *
10101   * For a non-fatal error return a warning code. If there are no warnings
10102   * then 0 is returned.
10103   *
10104   * Note: Chip is stopped on entry.
10105   */
AdvInitFrom38C0800EEP(ADV_DVC_VAR * asc_dvc)10106  static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10107  {
10108  	AdvPortAddr iop_base;
10109  	ushort warn_code;
10110  	ADVEEP_38C0800_CONFIG eep_config;
10111  	uchar tid, termination;
10112  	ushort sdtr_speed = 0;
10113  
10114  	iop_base = asc_dvc->iop_base;
10115  
10116  	warn_code = 0;
10117  
10118  	/*
10119  	 * Read the board's EEPROM configuration.
10120  	 *
10121  	 * Set default values if a bad checksum is found.
10122  	 */
10123  	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10124  	    eep_config.check_sum) {
10125  		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10126  
10127  		/*
10128  		 * Set EEPROM default values.
10129  		 */
10130  		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10131  			sizeof(ADVEEP_38C0800_CONFIG));
10132  
10133  		/*
10134  		 * Assume the 6 byte board serial number that was read from
10135  		 * EEPROM is correct even if the EEPROM checksum failed.
10136  		 */
10137  		eep_config.serial_number_word3 =
10138  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10139  
10140  		eep_config.serial_number_word2 =
10141  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10142  
10143  		eep_config.serial_number_word1 =
10144  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10145  
10146  		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10147  	}
10148  	/*
10149  	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10150  	 * EEPROM configuration that was read.
10151  	 *
10152  	 * This is the mapping of EEPROM fields to Adv Library fields.
10153  	 */
10154  	asc_dvc->wdtr_able = eep_config.wdtr_able;
10155  	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10156  	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10157  	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10158  	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10159  	asc_dvc->tagqng_able = eep_config.tagqng_able;
10160  	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10161  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10162  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10163  	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10164  	asc_dvc->start_motor = eep_config.start_motor;
10165  	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10166  	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10167  	asc_dvc->no_scam = eep_config.scam_tolerant;
10168  	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10169  	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10170  	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10171  
10172  	/*
10173  	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10174  	 * are set, then set an 'sdtr_able' bit for it.
10175  	 */
10176  	asc_dvc->sdtr_able = 0;
10177  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10178  		if (tid == 0) {
10179  			sdtr_speed = asc_dvc->sdtr_speed1;
10180  		} else if (tid == 4) {
10181  			sdtr_speed = asc_dvc->sdtr_speed2;
10182  		} else if (tid == 8) {
10183  			sdtr_speed = asc_dvc->sdtr_speed3;
10184  		} else if (tid == 12) {
10185  			sdtr_speed = asc_dvc->sdtr_speed4;
10186  		}
10187  		if (sdtr_speed & ADV_MAX_TID) {
10188  			asc_dvc->sdtr_able |= (1 << tid);
10189  		}
10190  		sdtr_speed >>= 4;
10191  	}
10192  
10193  	/*
10194  	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10195  	 * maximum queuing (max. 63, min. 4).
10196  	 */
10197  	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10198  		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10199  	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10200  		/* If the value is zero, assume it is uninitialized. */
10201  		if (eep_config.max_host_qng == 0) {
10202  			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10203  		} else {
10204  			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10205  		}
10206  	}
10207  
10208  	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10209  		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10210  	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10211  		/* If the value is zero, assume it is uninitialized. */
10212  		if (eep_config.max_dvc_qng == 0) {
10213  			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10214  		} else {
10215  			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10216  		}
10217  	}
10218  
10219  	/*
10220  	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10221  	 * set 'max_dvc_qng' to 'max_host_qng'.
10222  	 */
10223  	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10224  		eep_config.max_dvc_qng = eep_config.max_host_qng;
10225  	}
10226  
10227  	/*
10228  	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10229  	 * values based on possibly adjusted EEPROM values.
10230  	 */
10231  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10232  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10233  
10234  	/*
10235  	 * If the EEPROM 'termination' field is set to automatic (0), then set
10236  	 * the ADV_DVC_CFG 'termination' field to automatic also.
10237  	 *
10238  	 * If the termination is specified with a non-zero 'termination'
10239  	 * value check that a legal value is set and set the ADV_DVC_CFG
10240  	 * 'termination' field appropriately.
10241  	 */
10242  	if (eep_config.termination_se == 0) {
10243  		termination = 0;	/* auto termination for SE */
10244  	} else {
10245  		/* Enable manual control with low off / high off. */
10246  		if (eep_config.termination_se == 1) {
10247  			termination = 0;
10248  
10249  			/* Enable manual control with low off / high on. */
10250  		} else if (eep_config.termination_se == 2) {
10251  			termination = TERM_SE_HI;
10252  
10253  			/* Enable manual control with low on / high on. */
10254  		} else if (eep_config.termination_se == 3) {
10255  			termination = TERM_SE;
10256  		} else {
10257  			/*
10258  			 * The EEPROM 'termination_se' field contains a bad value.
10259  			 * Use automatic termination instead.
10260  			 */
10261  			termination = 0;
10262  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10263  		}
10264  	}
10265  
10266  	if (eep_config.termination_lvd == 0) {
10267  		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10268  	} else {
10269  		/* Enable manual control with low off / high off. */
10270  		if (eep_config.termination_lvd == 1) {
10271  			asc_dvc->cfg->termination = termination;
10272  
10273  			/* Enable manual control with low off / high on. */
10274  		} else if (eep_config.termination_lvd == 2) {
10275  			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10276  
10277  			/* Enable manual control with low on / high on. */
10278  		} else if (eep_config.termination_lvd == 3) {
10279  			asc_dvc->cfg->termination = termination | TERM_LVD;
10280  		} else {
10281  			/*
10282  			 * The EEPROM 'termination_lvd' field contains a bad value.
10283  			 * Use automatic termination instead.
10284  			 */
10285  			asc_dvc->cfg->termination = termination;
10286  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10287  		}
10288  	}
10289  
10290  	return warn_code;
10291  }
10292  
10293  /*
10294   * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10295   * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10296   * all of this is done.
10297   *
10298   * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10299   *
10300   * For a non-fatal error return a warning code. If there are no warnings
10301   * then 0 is returned.
10302   *
10303   * Note: Chip is stopped on entry.
10304   */
AdvInitFrom38C1600EEP(ADV_DVC_VAR * asc_dvc)10305  static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10306  {
10307  	AdvPortAddr iop_base;
10308  	ushort warn_code;
10309  	ADVEEP_38C1600_CONFIG eep_config;
10310  	uchar tid, termination;
10311  	ushort sdtr_speed = 0;
10312  
10313  	iop_base = asc_dvc->iop_base;
10314  
10315  	warn_code = 0;
10316  
10317  	/*
10318  	 * Read the board's EEPROM configuration.
10319  	 *
10320  	 * Set default values if a bad checksum is found.
10321  	 */
10322  	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10323  	    eep_config.check_sum) {
10324  		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10325  		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10326  
10327  		/*
10328  		 * Set EEPROM default values.
10329  		 */
10330  		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10331  			sizeof(ADVEEP_38C1600_CONFIG));
10332  
10333  		if (PCI_FUNC(pdev->devfn) != 0) {
10334  			u8 ints;
10335  			/*
10336  			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10337  			 * and old Mac system booting problem. The Expansion
10338  			 * ROM must be disabled in Function 1 for these systems
10339  			 */
10340  			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10341  			/*
10342  			 * Clear the INTAB (bit 11) if the GPIO 0 input
10343  			 * indicates the Function 1 interrupt line is wired
10344  			 * to INTB.
10345  			 *
10346  			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10347  			 *   1 - Function 1 interrupt line wired to INT A.
10348  			 *   0 - Function 1 interrupt line wired to INT B.
10349  			 *
10350  			 * Note: Function 0 is always wired to INTA.
10351  			 * Put all 5 GPIO bits in input mode and then read
10352  			 * their input values.
10353  			 */
10354  			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10355  			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10356  			if ((ints & 0x01) == 0)
10357  				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10358  		}
10359  
10360  		/*
10361  		 * Assume the 6 byte board serial number that was read from
10362  		 * EEPROM is correct even if the EEPROM checksum failed.
10363  		 */
10364  		eep_config.serial_number_word3 =
10365  			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10366  		eep_config.serial_number_word2 =
10367  			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10368  		eep_config.serial_number_word1 =
10369  			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10370  
10371  		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10372  	}
10373  
10374  	/*
10375  	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10376  	 * EEPROM configuration that was read.
10377  	 *
10378  	 * This is the mapping of EEPROM fields to Adv Library fields.
10379  	 */
10380  	asc_dvc->wdtr_able = eep_config.wdtr_able;
10381  	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10382  	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10383  	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10384  	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10385  	asc_dvc->ppr_able = 0;
10386  	asc_dvc->tagqng_able = eep_config.tagqng_able;
10387  	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10388  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10389  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10390  	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10391  	asc_dvc->start_motor = eep_config.start_motor;
10392  	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10393  	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10394  	asc_dvc->no_scam = eep_config.scam_tolerant;
10395  
10396  	/*
10397  	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10398  	 * are set, then set an 'sdtr_able' bit for it.
10399  	 */
10400  	asc_dvc->sdtr_able = 0;
10401  	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10402  		if (tid == 0) {
10403  			sdtr_speed = asc_dvc->sdtr_speed1;
10404  		} else if (tid == 4) {
10405  			sdtr_speed = asc_dvc->sdtr_speed2;
10406  		} else if (tid == 8) {
10407  			sdtr_speed = asc_dvc->sdtr_speed3;
10408  		} else if (tid == 12) {
10409  			sdtr_speed = asc_dvc->sdtr_speed4;
10410  		}
10411  		if (sdtr_speed & ASC_MAX_TID) {
10412  			asc_dvc->sdtr_able |= (1 << tid);
10413  		}
10414  		sdtr_speed >>= 4;
10415  	}
10416  
10417  	/*
10418  	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10419  	 * maximum queuing (max. 63, min. 4).
10420  	 */
10421  	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10422  		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10423  	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10424  		/* If the value is zero, assume it is uninitialized. */
10425  		if (eep_config.max_host_qng == 0) {
10426  			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10427  		} else {
10428  			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10429  		}
10430  	}
10431  
10432  	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10433  		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10434  	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10435  		/* If the value is zero, assume it is uninitialized. */
10436  		if (eep_config.max_dvc_qng == 0) {
10437  			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10438  		} else {
10439  			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10440  		}
10441  	}
10442  
10443  	/*
10444  	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10445  	 * set 'max_dvc_qng' to 'max_host_qng'.
10446  	 */
10447  	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10448  		eep_config.max_dvc_qng = eep_config.max_host_qng;
10449  	}
10450  
10451  	/*
10452  	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10453  	 * values based on possibly adjusted EEPROM values.
10454  	 */
10455  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10456  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10457  
10458  	/*
10459  	 * If the EEPROM 'termination' field is set to automatic (0), then set
10460  	 * the ASC_DVC_CFG 'termination' field to automatic also.
10461  	 *
10462  	 * If the termination is specified with a non-zero 'termination'
10463  	 * value check that a legal value is set and set the ASC_DVC_CFG
10464  	 * 'termination' field appropriately.
10465  	 */
10466  	if (eep_config.termination_se == 0) {
10467  		termination = 0;	/* auto termination for SE */
10468  	} else {
10469  		/* Enable manual control with low off / high off. */
10470  		if (eep_config.termination_se == 1) {
10471  			termination = 0;
10472  
10473  			/* Enable manual control with low off / high on. */
10474  		} else if (eep_config.termination_se == 2) {
10475  			termination = TERM_SE_HI;
10476  
10477  			/* Enable manual control with low on / high on. */
10478  		} else if (eep_config.termination_se == 3) {
10479  			termination = TERM_SE;
10480  		} else {
10481  			/*
10482  			 * The EEPROM 'termination_se' field contains a bad value.
10483  			 * Use automatic termination instead.
10484  			 */
10485  			termination = 0;
10486  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10487  		}
10488  	}
10489  
10490  	if (eep_config.termination_lvd == 0) {
10491  		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10492  	} else {
10493  		/* Enable manual control with low off / high off. */
10494  		if (eep_config.termination_lvd == 1) {
10495  			asc_dvc->cfg->termination = termination;
10496  
10497  			/* Enable manual control with low off / high on. */
10498  		} else if (eep_config.termination_lvd == 2) {
10499  			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10500  
10501  			/* Enable manual control with low on / high on. */
10502  		} else if (eep_config.termination_lvd == 3) {
10503  			asc_dvc->cfg->termination = termination | TERM_LVD;
10504  		} else {
10505  			/*
10506  			 * The EEPROM 'termination_lvd' field contains a bad value.
10507  			 * Use automatic termination instead.
10508  			 */
10509  			asc_dvc->cfg->termination = termination;
10510  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10511  		}
10512  	}
10513  
10514  	return warn_code;
10515  }
10516  
10517  /*
10518   * Initialize the ADV_DVC_VAR structure.
10519   *
10520   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10521   *
10522   * For a non-fatal error return a warning code. If there are no warnings
10523   * then 0 is returned.
10524   */
AdvInitGetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)10525  static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10526  {
10527  	struct asc_board *board = shost_priv(shost);
10528  	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10529  	unsigned short warn_code = 0;
10530  	AdvPortAddr iop_base = asc_dvc->iop_base;
10531  	u16 cmd;
10532  	int status;
10533  
10534  	asc_dvc->err_code = 0;
10535  
10536  	/*
10537  	 * Save the state of the PCI Configuration Command Register
10538  	 * "Parity Error Response Control" Bit. If the bit is clear (0),
10539  	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10540  	 * DMA parity errors.
10541  	 */
10542  	asc_dvc->cfg->control_flag = 0;
10543  	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10544  	if ((cmd & PCI_COMMAND_PARITY) == 0)
10545  		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10546  
10547  	asc_dvc->cfg->chip_version =
10548  	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10549  
10550  	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10551  		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10552  		 (ushort)ADV_CHIP_ID_BYTE);
10553  
10554  	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10555  		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10556  		 (ushort)ADV_CHIP_ID_WORD);
10557  
10558  	/*
10559  	 * Reset the chip to start and allow register writes.
10560  	 */
10561  	if (AdvFindSignature(iop_base) == 0) {
10562  		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10563  		return ADV_ERROR;
10564  	} else {
10565  		/*
10566  		 * The caller must set 'chip_type' to a valid setting.
10567  		 */
10568  		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10569  		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10570  		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10571  			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10572  			return ADV_ERROR;
10573  		}
10574  
10575  		/*
10576  		 * Reset Chip.
10577  		 */
10578  		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10579  				     ADV_CTRL_REG_CMD_RESET);
10580  		mdelay(100);
10581  		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10582  				     ADV_CTRL_REG_CMD_WR_IO_REG);
10583  
10584  		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10585  			status = AdvInitFrom38C1600EEP(asc_dvc);
10586  		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10587  			status = AdvInitFrom38C0800EEP(asc_dvc);
10588  		} else {
10589  			status = AdvInitFrom3550EEP(asc_dvc);
10590  		}
10591  		warn_code |= status;
10592  	}
10593  
10594  	if (warn_code != 0)
10595  		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10596  
10597  	if (asc_dvc->err_code)
10598  		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10599  				asc_dvc->err_code);
10600  
10601  	return asc_dvc->err_code;
10602  }
10603  #endif
10604  
10605  static const struct scsi_host_template advansys_template = {
10606  	.proc_name = DRV_NAME,
10607  #ifdef CONFIG_PROC_FS
10608  	.show_info = advansys_show_info,
10609  #endif
10610  	.name = DRV_NAME,
10611  	.info = advansys_info,
10612  	.queuecommand = advansys_queuecommand,
10613  	.eh_host_reset_handler = advansys_reset,
10614  	.bios_param = advansys_biosparam,
10615  	.slave_configure = advansys_slave_configure,
10616  	.cmd_size = sizeof(struct advansys_cmd),
10617  };
10618  
advansys_wide_init_chip(struct Scsi_Host * shost)10619  static int advansys_wide_init_chip(struct Scsi_Host *shost)
10620  {
10621  	struct asc_board *board = shost_priv(shost);
10622  	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10623  	size_t sgblk_pool_size;
10624  	int warn_code, err_code;
10625  
10626  	/*
10627  	 * Allocate buffer carrier structures. The total size
10628  	 * is about 8 KB, so allocate all at once.
10629  	 */
10630  	adv_dvc->carrier = dma_alloc_coherent(board->dev,
10631  		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10632  	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10633  
10634  	if (!adv_dvc->carrier)
10635  		goto kmalloc_failed;
10636  
10637  	/*
10638  	 * Allocate up to 'max_host_qng' request structures for the Wide
10639  	 * board. The total size is about 16 KB, so allocate all at once.
10640  	 * If the allocation fails decrement and try again.
10641  	 */
10642  	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10643  	if (board->adv_reqp_size & 0x1f) {
10644  		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10645  		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10646  	}
10647  	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10648  		&board->adv_reqp_addr, GFP_KERNEL);
10649  
10650  	if (!board->adv_reqp)
10651  		goto kmalloc_failed;
10652  
10653  	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10654  		adv_dvc->max_host_qng, board->adv_reqp_size);
10655  
10656  	/*
10657  	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10658  	 * the Wide board. Each structure is about 136 bytes.
10659  	 */
10660  	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10661  	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10662  						sgblk_pool_size, 32, 0);
10663  
10664  	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10665  		sizeof(adv_sgblk_t), sgblk_pool_size);
10666  
10667  	if (!board->adv_sgblk_pool)
10668  		goto kmalloc_failed;
10669  
10670  	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10671  		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10672  		warn_code = AdvInitAsc3550Driver(adv_dvc);
10673  	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10674  		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10675  		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10676  	} else {
10677  		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10678  		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10679  	}
10680  	err_code = adv_dvc->err_code;
10681  
10682  	if (warn_code || err_code) {
10683  		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10684  			"0x%x\n", warn_code, err_code);
10685  	}
10686  
10687  	goto exit;
10688  
10689   kmalloc_failed:
10690  	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10691  	err_code = ADV_ERROR;
10692   exit:
10693  	return err_code;
10694  }
10695  
advansys_wide_free_mem(struct asc_board * board)10696  static void advansys_wide_free_mem(struct asc_board *board)
10697  {
10698  	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10699  
10700  	if (adv_dvc->carrier) {
10701  		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10702  				  adv_dvc->carrier, adv_dvc->carrier_addr);
10703  		adv_dvc->carrier = NULL;
10704  	}
10705  	if (board->adv_reqp) {
10706  		dma_free_coherent(board->dev, board->adv_reqp_size,
10707  				  board->adv_reqp, board->adv_reqp_addr);
10708  		board->adv_reqp = NULL;
10709  	}
10710  	if (board->adv_sgblk_pool) {
10711  		dma_pool_destroy(board->adv_sgblk_pool);
10712  		board->adv_sgblk_pool = NULL;
10713  	}
10714  }
10715  
advansys_board_found(struct Scsi_Host * shost,unsigned int iop,int bus_type)10716  static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10717  				int bus_type)
10718  {
10719  	struct pci_dev *pdev;
10720  	struct asc_board *boardp = shost_priv(shost);
10721  	ASC_DVC_VAR *asc_dvc_varp = NULL;
10722  	ADV_DVC_VAR *adv_dvc_varp = NULL;
10723  	int share_irq, warn_code, ret;
10724  
10725  	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10726  
10727  	if (ASC_NARROW_BOARD(boardp)) {
10728  		ASC_DBG(1, "narrow board\n");
10729  		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10730  		asc_dvc_varp->bus_type = bus_type;
10731  		asc_dvc_varp->drv_ptr = boardp;
10732  		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10733  		asc_dvc_varp->iop_base = iop;
10734  	} else {
10735  #ifdef CONFIG_PCI
10736  		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10737  		adv_dvc_varp->drv_ptr = boardp;
10738  		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10739  		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10740  			ASC_DBG(1, "wide board ASC-3550\n");
10741  			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10742  		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10743  			ASC_DBG(1, "wide board ASC-38C0800\n");
10744  			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10745  		} else {
10746  			ASC_DBG(1, "wide board ASC-38C1600\n");
10747  			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10748  		}
10749  
10750  		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10751  		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10752  		if (!boardp->ioremap_addr) {
10753  			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10754  					"returned NULL\n",
10755  					(long)pci_resource_start(pdev, 1),
10756  					boardp->asc_n_io_port);
10757  			ret = -ENODEV;
10758  			goto err_shost;
10759  		}
10760  		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10761  		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10762  
10763  		/*
10764  		 * Even though it isn't used to access wide boards, other
10765  		 * than for the debug line below, save I/O Port address so
10766  		 * that it can be reported.
10767  		 */
10768  		boardp->ioport = iop;
10769  
10770  		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10771  				(ushort)inp(iop + 1), (ushort)inpw(iop));
10772  #endif /* CONFIG_PCI */
10773  	}
10774  
10775  	if (ASC_NARROW_BOARD(boardp)) {
10776  		/*
10777  		 * Set the board bus type and PCI IRQ before
10778  		 * calling AscInitGetConfig().
10779  		 */
10780  		switch (asc_dvc_varp->bus_type) {
10781  #ifdef CONFIG_ISA
10782  		case ASC_IS_VL:
10783  			share_irq = 0;
10784  			break;
10785  		case ASC_IS_EISA:
10786  			share_irq = IRQF_SHARED;
10787  			break;
10788  #endif /* CONFIG_ISA */
10789  #ifdef CONFIG_PCI
10790  		case ASC_IS_PCI:
10791  			share_irq = IRQF_SHARED;
10792  			break;
10793  #endif /* CONFIG_PCI */
10794  		default:
10795  			shost_printk(KERN_ERR, shost, "unknown adapter type: "
10796  					"%d\n", asc_dvc_varp->bus_type);
10797  			share_irq = 0;
10798  			break;
10799  		}
10800  
10801  		/*
10802  		 * NOTE: AscInitGetConfig() may change the board's
10803  		 * bus_type value. The bus_type value should no
10804  		 * longer be used. If the bus_type field must be
10805  		 * referenced only use the bit-wise AND operator "&".
10806  		 */
10807  		ASC_DBG(2, "AscInitGetConfig()\n");
10808  		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
10809  	} else {
10810  #ifdef CONFIG_PCI
10811  		/*
10812  		 * For Wide boards set PCI information before calling
10813  		 * AdvInitGetConfig().
10814  		 */
10815  		share_irq = IRQF_SHARED;
10816  		ASC_DBG(2, "AdvInitGetConfig()\n");
10817  
10818  		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
10819  #else
10820  		share_irq = 0;
10821  		ret = -ENODEV;
10822  #endif /* CONFIG_PCI */
10823  	}
10824  
10825  	if (ret)
10826  		goto err_unmap;
10827  
10828  	/*
10829  	 * Save the EEPROM configuration so that it can be displayed
10830  	 * from /proc/scsi/advansys/[0...].
10831  	 */
10832  	if (ASC_NARROW_BOARD(boardp)) {
10833  
10834  		ASCEEP_CONFIG *ep;
10835  
10836  		/*
10837  		 * Set the adapter's target id bit in the 'init_tidmask' field.
10838  		 */
10839  		boardp->init_tidmask |=
10840  		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
10841  
10842  		/*
10843  		 * Save EEPROM settings for the board.
10844  		 */
10845  		ep = &boardp->eep_config.asc_eep;
10846  
10847  		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
10848  		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
10849  		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
10850  		ASC_EEP_SET_DMA_SPD(ep, ASC_DEF_ISA_DMA_SPEED);
10851  		ep->start_motor = asc_dvc_varp->start_motor;
10852  		ep->cntl = asc_dvc_varp->dvc_cntl;
10853  		ep->no_scam = asc_dvc_varp->no_scam;
10854  		ep->max_total_qng = asc_dvc_varp->max_total_qng;
10855  		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
10856  		/* 'max_tag_qng' is set to the same value for every device. */
10857  		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
10858  		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
10859  		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
10860  		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
10861  		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
10862  		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
10863  		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
10864  
10865  		/*
10866  		 * Modify board configuration.
10867  		 */
10868  		ASC_DBG(2, "AscInitSetConfig()\n");
10869  		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
10870  		if (ret)
10871  			goto err_unmap;
10872  	} else {
10873  		ADVEEP_3550_CONFIG *ep_3550;
10874  		ADVEEP_38C0800_CONFIG *ep_38C0800;
10875  		ADVEEP_38C1600_CONFIG *ep_38C1600;
10876  
10877  		/*
10878  		 * Save Wide EEP Configuration Information.
10879  		 */
10880  		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
10881  			ep_3550 = &boardp->eep_config.adv_3550_eep;
10882  
10883  			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
10884  			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
10885  			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10886  			ep_3550->termination = adv_dvc_varp->cfg->termination;
10887  			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
10888  			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
10889  			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
10890  			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
10891  			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
10892  			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
10893  			ep_3550->start_motor = adv_dvc_varp->start_motor;
10894  			ep_3550->scsi_reset_delay =
10895  			    adv_dvc_varp->scsi_reset_wait;
10896  			ep_3550->serial_number_word1 =
10897  			    adv_dvc_varp->cfg->serial1;
10898  			ep_3550->serial_number_word2 =
10899  			    adv_dvc_varp->cfg->serial2;
10900  			ep_3550->serial_number_word3 =
10901  			    adv_dvc_varp->cfg->serial3;
10902  		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
10903  			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
10904  
10905  			ep_38C0800->adapter_scsi_id =
10906  			    adv_dvc_varp->chip_scsi_id;
10907  			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
10908  			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10909  			ep_38C0800->termination_lvd =
10910  			    adv_dvc_varp->cfg->termination;
10911  			ep_38C0800->disc_enable =
10912  			    adv_dvc_varp->cfg->disc_enable;
10913  			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
10914  			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
10915  			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10916  			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10917  			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10918  			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10919  			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10920  			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10921  			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
10922  			ep_38C0800->scsi_reset_delay =
10923  			    adv_dvc_varp->scsi_reset_wait;
10924  			ep_38C0800->serial_number_word1 =
10925  			    adv_dvc_varp->cfg->serial1;
10926  			ep_38C0800->serial_number_word2 =
10927  			    adv_dvc_varp->cfg->serial2;
10928  			ep_38C0800->serial_number_word3 =
10929  			    adv_dvc_varp->cfg->serial3;
10930  		} else {
10931  			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
10932  
10933  			ep_38C1600->adapter_scsi_id =
10934  			    adv_dvc_varp->chip_scsi_id;
10935  			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
10936  			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10937  			ep_38C1600->termination_lvd =
10938  			    adv_dvc_varp->cfg->termination;
10939  			ep_38C1600->disc_enable =
10940  			    adv_dvc_varp->cfg->disc_enable;
10941  			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
10942  			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
10943  			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10944  			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10945  			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10946  			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10947  			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10948  			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10949  			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
10950  			ep_38C1600->scsi_reset_delay =
10951  			    adv_dvc_varp->scsi_reset_wait;
10952  			ep_38C1600->serial_number_word1 =
10953  			    adv_dvc_varp->cfg->serial1;
10954  			ep_38C1600->serial_number_word2 =
10955  			    adv_dvc_varp->cfg->serial2;
10956  			ep_38C1600->serial_number_word3 =
10957  			    adv_dvc_varp->cfg->serial3;
10958  		}
10959  
10960  		/*
10961  		 * Set the adapter's target id bit in the 'init_tidmask' field.
10962  		 */
10963  		boardp->init_tidmask |=
10964  		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
10965  	}
10966  
10967  	/*
10968  	 * Channels are numbered beginning with 0. For AdvanSys one host
10969  	 * structure supports one channel. Multi-channel boards have a
10970  	 * separate host structure for each channel.
10971  	 */
10972  	shost->max_channel = 0;
10973  	if (ASC_NARROW_BOARD(boardp)) {
10974  		shost->max_id = ASC_MAX_TID + 1;
10975  		shost->max_lun = ASC_MAX_LUN + 1;
10976  		shost->max_cmd_len = ASC_MAX_CDB_LEN;
10977  
10978  		shost->io_port = asc_dvc_varp->iop_base;
10979  		boardp->asc_n_io_port = ASC_IOADR_GAP;
10980  		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
10981  
10982  		/* Set maximum number of queues the adapter can handle. */
10983  		shost->can_queue = asc_dvc_varp->max_total_qng;
10984  	} else {
10985  		shost->max_id = ADV_MAX_TID + 1;
10986  		shost->max_lun = ADV_MAX_LUN + 1;
10987  		shost->max_cmd_len = ADV_MAX_CDB_LEN;
10988  
10989  		/*
10990  		 * Save the I/O Port address and length even though
10991  		 * I/O ports are not used to access Wide boards.
10992  		 * Instead the Wide boards are accessed with
10993  		 * PCI Memory Mapped I/O.
10994  		 */
10995  		shost->io_port = iop;
10996  
10997  		shost->this_id = adv_dvc_varp->chip_scsi_id;
10998  
10999  		/* Set maximum number of queues the adapter can handle. */
11000  		shost->can_queue = adv_dvc_varp->max_host_qng;
11001  	}
11002  
11003  	/*
11004  	 * Set the maximum number of scatter-gather elements the
11005  	 * adapter can handle.
11006  	 */
11007  	if (ASC_NARROW_BOARD(boardp)) {
11008  		/*
11009  		 * Allow two commands with 'sg_tablesize' scatter-gather
11010  		 * elements to be executed simultaneously. This value is
11011  		 * the theoretical hardware limit. It may be decreased
11012  		 * below.
11013  		 */
11014  		shost->sg_tablesize =
11015  		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11016  		     ASC_SG_LIST_PER_Q) + 1;
11017  	} else {
11018  		shost->sg_tablesize = ADV_MAX_SG_LIST;
11019  	}
11020  
11021  	/*
11022  	 * The value of 'sg_tablesize' can not exceed the SCSI
11023  	 * mid-level driver definition of SG_ALL. SG_ALL also
11024  	 * must not be exceeded, because it is used to define the
11025  	 * size of the scatter-gather table in 'struct asc_sg_head'.
11026  	 */
11027  	if (shost->sg_tablesize > SG_ALL) {
11028  		shost->sg_tablesize = SG_ALL;
11029  	}
11030  
11031  	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11032  
11033  	/* BIOS start address. */
11034  	if (ASC_NARROW_BOARD(boardp)) {
11035  		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11036  						    asc_dvc_varp->bus_type);
11037  	} else {
11038  		/*
11039  		 * Fill-in BIOS board variables. The Wide BIOS saves
11040  		 * information in LRAM that is used by the driver.
11041  		 */
11042  		AdvReadWordLram(adv_dvc_varp->iop_base,
11043  				BIOS_SIGNATURE, boardp->bios_signature);
11044  		AdvReadWordLram(adv_dvc_varp->iop_base,
11045  				BIOS_VERSION, boardp->bios_version);
11046  		AdvReadWordLram(adv_dvc_varp->iop_base,
11047  				BIOS_CODESEG, boardp->bios_codeseg);
11048  		AdvReadWordLram(adv_dvc_varp->iop_base,
11049  				BIOS_CODELEN, boardp->bios_codelen);
11050  
11051  		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11052  			 boardp->bios_signature, boardp->bios_version);
11053  
11054  		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11055  			 boardp->bios_codeseg, boardp->bios_codelen);
11056  
11057  		/*
11058  		 * If the BIOS saved a valid signature, then fill in
11059  		 * the BIOS code segment base address.
11060  		 */
11061  		if (boardp->bios_signature == 0x55AA) {
11062  			/*
11063  			 * Convert x86 realmode code segment to a linear
11064  			 * address by shifting left 4.
11065  			 */
11066  			shost->base = ((ulong)boardp->bios_codeseg << 4);
11067  		} else {
11068  			shost->base = 0;
11069  		}
11070  	}
11071  
11072  	/*
11073  	 * Register Board Resources - I/O Port, DMA, IRQ
11074  	 */
11075  
11076  	/* Register DMA Channel for Narrow boards. */
11077  	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11078  
11079  	/* Register IRQ Number. */
11080  	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11081  
11082  	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11083  			  DRV_NAME, shost);
11084  
11085  	if (ret) {
11086  		if (ret == -EBUSY) {
11087  			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11088  					"already in use\n", boardp->irq);
11089  		} else if (ret == -EINVAL) {
11090  			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11091  					"not valid\n", boardp->irq);
11092  		} else {
11093  			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11094  					"failed with %d\n", boardp->irq, ret);
11095  		}
11096  		goto err_unmap;
11097  	}
11098  
11099  	/*
11100  	 * Initialize board RISC chip and enable interrupts.
11101  	 */
11102  	if (ASC_NARROW_BOARD(boardp)) {
11103  		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11104  
11105  		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11106  		if (!asc_dvc_varp->overrun_buf) {
11107  			ret = -ENOMEM;
11108  			goto err_free_irq;
11109  		}
11110  		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11111  
11112  		if (warn_code || asc_dvc_varp->err_code) {
11113  			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11114  					"warn 0x%x, error 0x%x\n",
11115  					asc_dvc_varp->init_state, warn_code,
11116  					asc_dvc_varp->err_code);
11117  			if (!asc_dvc_varp->overrun_dma) {
11118  				ret = -ENODEV;
11119  				goto err_free_mem;
11120  			}
11121  		}
11122  	} else {
11123  		if (advansys_wide_init_chip(shost)) {
11124  			ret = -ENODEV;
11125  			goto err_free_mem;
11126  		}
11127  	}
11128  
11129  	ASC_DBG_PRT_SCSI_HOST(2, shost);
11130  
11131  	ret = scsi_add_host(shost, boardp->dev);
11132  	if (ret)
11133  		goto err_free_mem;
11134  
11135  	scsi_scan_host(shost);
11136  	return 0;
11137  
11138   err_free_mem:
11139  	if (ASC_NARROW_BOARD(boardp)) {
11140  		if (asc_dvc_varp->overrun_dma)
11141  			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11142  					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11143  		kfree(asc_dvc_varp->overrun_buf);
11144  	} else
11145  		advansys_wide_free_mem(boardp);
11146   err_free_irq:
11147  	free_irq(boardp->irq, shost);
11148   err_unmap:
11149  	if (boardp->ioremap_addr)
11150  		iounmap(boardp->ioremap_addr);
11151  #ifdef CONFIG_PCI
11152   err_shost:
11153  #endif
11154  	return ret;
11155  }
11156  
11157  /*
11158   * advansys_release()
11159   *
11160   * Release resources allocated for a single AdvanSys adapter.
11161   */
advansys_release(struct Scsi_Host * shost)11162  static int advansys_release(struct Scsi_Host *shost)
11163  {
11164  	struct asc_board *board = shost_priv(shost);
11165  	ASC_DBG(1, "begin\n");
11166  	scsi_remove_host(shost);
11167  	free_irq(board->irq, shost);
11168  
11169  	if (ASC_NARROW_BOARD(board)) {
11170  		dma_unmap_single(board->dev,
11171  					board->dvc_var.asc_dvc_var.overrun_dma,
11172  					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11173  		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11174  	} else {
11175  		iounmap(board->ioremap_addr);
11176  		advansys_wide_free_mem(board);
11177  	}
11178  	scsi_host_put(shost);
11179  	ASC_DBG(1, "end\n");
11180  	return 0;
11181  }
11182  
11183  #define ASC_IOADR_TABLE_MAX_IX  11
11184  
11185  static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11186  	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11187  	0x0210, 0x0230, 0x0250, 0x0330
11188  };
11189  
advansys_vlb_remove(struct device * dev,unsigned int id)11190  static void advansys_vlb_remove(struct device *dev, unsigned int id)
11191  {
11192  	int ioport = _asc_def_iop_base[id];
11193  	advansys_release(dev_get_drvdata(dev));
11194  	release_region(ioport, ASC_IOADR_GAP);
11195  }
11196  
11197  /*
11198   * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11199   * 000: invalid
11200   * 001: 10
11201   * 010: 11
11202   * 011: 12
11203   * 100: invalid
11204   * 101: 14
11205   * 110: 15
11206   * 111: invalid
11207   */
advansys_vlb_irq_no(PortAddr iop_base)11208  static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11209  {
11210  	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11211  	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11212  	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11213  		return 0;
11214  	return chip_irq;
11215  }
11216  
advansys_vlb_probe(struct device * dev,unsigned int id)11217  static int advansys_vlb_probe(struct device *dev, unsigned int id)
11218  {
11219  	int err = -ENODEV;
11220  	PortAddr iop_base = _asc_def_iop_base[id];
11221  	struct Scsi_Host *shost;
11222  	struct asc_board *board;
11223  
11224  	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11225  		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11226  		return -ENODEV;
11227  	}
11228  	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11229  	if (!AscFindSignature(iop_base))
11230  		goto release_region;
11231  	/*
11232  	 * I don't think this condition can actually happen, but the old
11233  	 * driver did it, and the chances of finding a VLB setup in 2007
11234  	 * to do testing with is slight to none.
11235  	 */
11236  	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11237  		goto release_region;
11238  
11239  	err = -ENOMEM;
11240  	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11241  	if (!shost)
11242  		goto release_region;
11243  
11244  	board = shost_priv(shost);
11245  	board->irq = advansys_vlb_irq_no(iop_base);
11246  	board->dev = dev;
11247  	board->shost = shost;
11248  
11249  	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11250  	if (err)
11251  		goto free_host;
11252  
11253  	dev_set_drvdata(dev, shost);
11254  	return 0;
11255  
11256   free_host:
11257  	scsi_host_put(shost);
11258   release_region:
11259  	release_region(iop_base, ASC_IOADR_GAP);
11260  	return -ENODEV;
11261  }
11262  
11263  static struct isa_driver advansys_vlb_driver = {
11264  	.probe		= advansys_vlb_probe,
11265  	.remove		= advansys_vlb_remove,
11266  	.driver = {
11267  		.owner	= THIS_MODULE,
11268  		.name	= "advansys_vlb",
11269  	},
11270  };
11271  
11272  static struct eisa_device_id advansys_eisa_table[] = {
11273  	{ "ABP7401" },
11274  	{ "ABP7501" },
11275  	{ "" }
11276  };
11277  
11278  MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11279  
11280  /*
11281   * EISA is a little more tricky than PCI; each EISA device may have two
11282   * channels, and this driver is written to make each channel its own Scsi_Host
11283   */
11284  struct eisa_scsi_data {
11285  	struct Scsi_Host *host[2];
11286  };
11287  
11288  /*
11289   * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11290   * 000: 10
11291   * 001: 11
11292   * 010: 12
11293   * 011: invalid
11294   * 100: 14
11295   * 101: 15
11296   * 110: invalid
11297   * 111: invalid
11298   */
advansys_eisa_irq_no(struct eisa_device * edev)11299  static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11300  {
11301  	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11302  	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11303  	if ((chip_irq == 13) || (chip_irq > 15))
11304  		return 0;
11305  	return chip_irq;
11306  }
11307  
advansys_eisa_probe(struct device * dev)11308  static int advansys_eisa_probe(struct device *dev)
11309  {
11310  	int i, ioport, irq = 0;
11311  	int err;
11312  	struct eisa_device *edev = to_eisa_device(dev);
11313  	struct eisa_scsi_data *data;
11314  
11315  	err = -ENOMEM;
11316  	data = kzalloc(sizeof(*data), GFP_KERNEL);
11317  	if (!data)
11318  		goto fail;
11319  	ioport = edev->base_addr + 0xc30;
11320  
11321  	err = -ENODEV;
11322  	for (i = 0; i < 2; i++, ioport += 0x20) {
11323  		struct asc_board *board;
11324  		struct Scsi_Host *shost;
11325  		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11326  			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11327  			       ioport + ASC_IOADR_GAP - 1);
11328  			continue;
11329  		}
11330  		if (!AscFindSignature(ioport)) {
11331  			release_region(ioport, ASC_IOADR_GAP);
11332  			continue;
11333  		}
11334  
11335  		/*
11336  		 * I don't know why we need to do this for EISA chips, but
11337  		 * not for any others.  It looks to be equivalent to
11338  		 * AscGetChipCfgMsw, but I may have overlooked something,
11339  		 * so I'm not converting it until I get an EISA board to
11340  		 * test with.
11341  		 */
11342  		inw(ioport + 4);
11343  
11344  		if (!irq)
11345  			irq = advansys_eisa_irq_no(edev);
11346  
11347  		err = -ENOMEM;
11348  		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11349  		if (!shost)
11350  			goto release_region;
11351  
11352  		board = shost_priv(shost);
11353  		board->irq = irq;
11354  		board->dev = dev;
11355  		board->shost = shost;
11356  
11357  		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11358  		if (!err) {
11359  			data->host[i] = shost;
11360  			continue;
11361  		}
11362  
11363  		scsi_host_put(shost);
11364   release_region:
11365  		release_region(ioport, ASC_IOADR_GAP);
11366  		break;
11367  	}
11368  
11369  	if (err)
11370  		goto free_data;
11371  	dev_set_drvdata(dev, data);
11372  	return 0;
11373  
11374   free_data:
11375  	kfree(data->host[0]);
11376  	kfree(data->host[1]);
11377  	kfree(data);
11378   fail:
11379  	return err;
11380  }
11381  
advansys_eisa_remove(struct device * dev)11382  static int advansys_eisa_remove(struct device *dev)
11383  {
11384  	int i;
11385  	struct eisa_scsi_data *data = dev_get_drvdata(dev);
11386  
11387  	for (i = 0; i < 2; i++) {
11388  		int ioport;
11389  		struct Scsi_Host *shost = data->host[i];
11390  		if (!shost)
11391  			continue;
11392  		ioport = shost->io_port;
11393  		advansys_release(shost);
11394  		release_region(ioport, ASC_IOADR_GAP);
11395  	}
11396  
11397  	kfree(data);
11398  	return 0;
11399  }
11400  
11401  static struct eisa_driver advansys_eisa_driver = {
11402  	.id_table =		advansys_eisa_table,
11403  	.driver = {
11404  		.name =		DRV_NAME,
11405  		.probe =	advansys_eisa_probe,
11406  		.remove =	advansys_eisa_remove,
11407  	}
11408  };
11409  
11410  /* PCI Devices supported by this driver */
11411  static struct pci_device_id advansys_pci_tbl[] = {
11412  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11413  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11414  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11415  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11416  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11417  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11418  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11419  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11420  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11421  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11422  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11423  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11424  	{}
11425  };
11426  
11427  MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11428  
advansys_set_latency(struct pci_dev * pdev)11429  static void advansys_set_latency(struct pci_dev *pdev)
11430  {
11431  	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11432  	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11433  		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11434  	} else {
11435  		u8 latency;
11436  		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11437  		if (latency < 0x20)
11438  			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11439  	}
11440  }
11441  
advansys_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11442  static int advansys_pci_probe(struct pci_dev *pdev,
11443  			      const struct pci_device_id *ent)
11444  {
11445  	int err, ioport;
11446  	struct Scsi_Host *shost;
11447  	struct asc_board *board;
11448  
11449  	err = pci_enable_device(pdev);
11450  	if (err)
11451  		goto fail;
11452  	err = pci_request_regions(pdev, DRV_NAME);
11453  	if (err)
11454  		goto disable_device;
11455  	pci_set_master(pdev);
11456  	advansys_set_latency(pdev);
11457  
11458  	err = -ENODEV;
11459  	if (pci_resource_len(pdev, 0) == 0)
11460  		goto release_region;
11461  
11462  	ioport = pci_resource_start(pdev, 0);
11463  
11464  	err = -ENOMEM;
11465  	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11466  	if (!shost)
11467  		goto release_region;
11468  
11469  	board = shost_priv(shost);
11470  	board->irq = pdev->irq;
11471  	board->dev = &pdev->dev;
11472  	board->shost = shost;
11473  
11474  	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11475  	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11476  	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11477  		board->flags |= ASC_IS_WIDE_BOARD;
11478  	}
11479  
11480  	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11481  	if (err)
11482  		goto free_host;
11483  
11484  	pci_set_drvdata(pdev, shost);
11485  	return 0;
11486  
11487   free_host:
11488  	scsi_host_put(shost);
11489   release_region:
11490  	pci_release_regions(pdev);
11491   disable_device:
11492  	pci_disable_device(pdev);
11493   fail:
11494  	return err;
11495  }
11496  
advansys_pci_remove(struct pci_dev * pdev)11497  static void advansys_pci_remove(struct pci_dev *pdev)
11498  {
11499  	advansys_release(pci_get_drvdata(pdev));
11500  	pci_release_regions(pdev);
11501  	pci_disable_device(pdev);
11502  }
11503  
11504  static struct pci_driver advansys_pci_driver = {
11505  	.name =		DRV_NAME,
11506  	.id_table =	advansys_pci_tbl,
11507  	.probe =	advansys_pci_probe,
11508  	.remove =	advansys_pci_remove,
11509  };
11510  
advansys_init(void)11511  static int __init advansys_init(void)
11512  {
11513  	int error;
11514  
11515  	error = isa_register_driver(&advansys_vlb_driver,
11516  				    ASC_IOADR_TABLE_MAX_IX);
11517  	if (error)
11518  		goto fail;
11519  
11520  	error = eisa_driver_register(&advansys_eisa_driver);
11521  	if (error)
11522  		goto unregister_vlb;
11523  
11524  	error = pci_register_driver(&advansys_pci_driver);
11525  	if (error)
11526  		goto unregister_eisa;
11527  
11528  	return 0;
11529  
11530   unregister_eisa:
11531  	eisa_driver_unregister(&advansys_eisa_driver);
11532   unregister_vlb:
11533  	isa_unregister_driver(&advansys_vlb_driver);
11534   fail:
11535  	return error;
11536  }
11537  
advansys_exit(void)11538  static void __exit advansys_exit(void)
11539  {
11540  	pci_unregister_driver(&advansys_pci_driver);
11541  	eisa_driver_unregister(&advansys_eisa_driver);
11542  	isa_unregister_driver(&advansys_vlb_driver);
11543  }
11544  
11545  module_init(advansys_init);
11546  module_exit(advansys_exit);
11547  
11548  MODULE_DESCRIPTION("AdvanSys SCSI Adapter driver");
11549  MODULE_LICENSE("GPL");
11550  MODULE_FIRMWARE("advansys/mcode.bin");
11551  MODULE_FIRMWARE("advansys/3550.bin");
11552  MODULE_FIRMWARE("advansys/38C0800.bin");
11553  MODULE_FIRMWARE("advansys/38C1600.bin");
11554