1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/overflow.h>
12 #include <linux/pci.h>
13 #include <linux/pci_regs.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/dma-direct.h> /* for bus_dma_region */
18
19 #include "of_private.h"
20
21 /* Max address size we deal with */
22 #define OF_MAX_ADDR_CELLS 4
23 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
24 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
25
26 /* Debug utility */
27 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)28 static void of_dump_addr(const char *s, const __be32 *addr, int na)
29 {
30 pr_debug("%s", s);
31 while (na--)
32 pr_cont(" %08x", be32_to_cpu(*(addr++)));
33 pr_cont("\n");
34 }
35 #else
of_dump_addr(const char * s,const __be32 * addr,int na)36 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
37 #endif
38
39 /* Callbacks for bus specific translators */
40 struct of_bus {
41 const char *name;
42 const char *addresses;
43 int (*match)(struct device_node *parent);
44 void (*count_cells)(struct device_node *child,
45 int *addrc, int *sizec);
46 u64 (*map)(__be32 *addr, const __be32 *range,
47 int na, int ns, int pna, int fna);
48 int (*translate)(__be32 *addr, u64 offset, int na);
49 int flag_cells;
50 unsigned int (*get_flags)(const __be32 *addr);
51 };
52
53 /*
54 * Default translator (generic bus)
55 */
56
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)57 static void of_bus_default_count_cells(struct device_node *dev,
58 int *addrc, int *sizec)
59 {
60 if (addrc)
61 *addrc = of_n_addr_cells(dev);
62 if (sizec)
63 *sizec = of_n_size_cells(dev);
64 }
65
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna,int fna)66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 int na, int ns, int pna, int fna)
68 {
69 u64 cp, s, da;
70
71 cp = of_read_number(range + fna, na - fna);
72 s = of_read_number(range + na + pna, ns);
73 da = of_read_number(addr + fna, na - fna);
74
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
76
77 if (da < cp || da >= (cp + s))
78 return OF_BAD_ADDR;
79 return da - cp;
80 }
81
of_bus_default_translate(__be32 * addr,u64 offset,int na)82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 u64 a = of_read_number(addr, na);
85 memset(addr, 0, na * 4);
86 a += offset;
87 if (na > 1)
88 addr[na - 2] = cpu_to_be32(a >> 32);
89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90
91 return 0;
92 }
93
of_bus_default_flags_get_flags(const __be32 * addr)94 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
95 {
96 return of_read_number(addr, 1);
97 }
98
of_bus_default_get_flags(const __be32 * addr)99 static unsigned int of_bus_default_get_flags(const __be32 *addr)
100 {
101 return IORESOURCE_MEM;
102 }
103
of_bus_default_flags_map(__be32 * addr,const __be32 * range,int na,int ns,int pna,int fna)104 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
105 int ns, int pna, int fna)
106 {
107 /* Check that flags match */
108 if (*addr != *range)
109 return OF_BAD_ADDR;
110
111 return of_bus_default_map(addr, range, na, ns, pna, fna);
112 }
113
of_bus_default_flags_translate(__be32 * addr,u64 offset,int na)114 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
115 {
116 /* Keep "flags" part (high cell) in translated address */
117 return of_bus_default_translate(addr + 1, offset, na - 1);
118 }
119
120 #ifdef CONFIG_PCI
of_bus_pci_get_flags(const __be32 * addr)121 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122 {
123 unsigned int flags = 0;
124 u32 w = be32_to_cpup(addr);
125
126 if (!IS_ENABLED(CONFIG_PCI))
127 return 0;
128
129 switch((w >> 24) & 0x03) {
130 case 0x01:
131 flags |= IORESOURCE_IO;
132 break;
133 case 0x02: /* 32 bits */
134 flags |= IORESOURCE_MEM;
135 break;
136
137 case 0x03: /* 64 bits */
138 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
139 break;
140 }
141 if (w & 0x40000000)
142 flags |= IORESOURCE_PREFETCH;
143 return flags;
144 }
145
146 /*
147 * PCI bus specific translator
148 */
149
of_node_is_pcie(struct device_node * np)150 static bool of_node_is_pcie(struct device_node *np)
151 {
152 bool is_pcie = of_node_name_eq(np, "pcie");
153
154 if (is_pcie)
155 pr_warn_once("%pOF: Missing device_type\n", np);
156
157 return is_pcie;
158 }
159
of_bus_pci_match(struct device_node * np)160 static int of_bus_pci_match(struct device_node *np)
161 {
162 /*
163 * "pciex" is PCI Express
164 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
165 * "ht" is hypertransport
166 *
167 * If none of the device_type match, and that the node name is
168 * "pcie", accept the device as PCI (with a warning).
169 */
170 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
171 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
172 of_node_is_pcie(np);
173 }
174
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)175 static void of_bus_pci_count_cells(struct device_node *np,
176 int *addrc, int *sizec)
177 {
178 if (addrc)
179 *addrc = 3;
180 if (sizec)
181 *sizec = 2;
182 }
183
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna,int fna)184 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
185 int pna, int fna)
186 {
187 unsigned int af, rf;
188
189 af = of_bus_pci_get_flags(addr);
190 rf = of_bus_pci_get_flags(range);
191
192 /* Check address type match */
193 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
194 return OF_BAD_ADDR;
195
196 return of_bus_default_map(addr, range, na, ns, pna, fna);
197 }
198
199 #endif /* CONFIG_PCI */
200
__of_address_resource_bounds(struct resource * r,u64 start,u64 size)201 static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
202 {
203 u64 end = start;
204
205 if (overflows_type(start, r->start))
206 return -EOVERFLOW;
207 if (size && check_add_overflow(end, size - 1, &end))
208 return -EOVERFLOW;
209 if (overflows_type(end, r->end))
210 return -EOVERFLOW;
211
212 r->start = start;
213 r->end = end;
214
215 return 0;
216 }
217
218 /*
219 * of_pci_range_to_resource - Create a resource from an of_pci_range
220 * @range: the PCI range that describes the resource
221 * @np: device node where the range belongs to
222 * @res: pointer to a valid resource that will be updated to
223 * reflect the values contained in the range.
224 *
225 * Returns -EINVAL if the range cannot be converted to resource.
226 *
227 * Note that if the range is an IO range, the resource will be converted
228 * using pci_address_to_pio() which can fail if it is called too early or
229 * if the range cannot be matched to any host bridge IO space (our case here).
230 * To guard against that we try to register the IO range first.
231 * If that fails we know that pci_address_to_pio() will do too.
232 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)233 int of_pci_range_to_resource(struct of_pci_range *range,
234 struct device_node *np, struct resource *res)
235 {
236 u64 start;
237 int err;
238 res->flags = range->flags;
239 res->parent = res->child = res->sibling = NULL;
240 res->name = np->full_name;
241
242 if (res->flags & IORESOURCE_IO) {
243 unsigned long port;
244 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
245 range->size);
246 if (err)
247 goto invalid_range;
248 port = pci_address_to_pio(range->cpu_addr);
249 if (port == (unsigned long)-1) {
250 err = -EINVAL;
251 goto invalid_range;
252 }
253 start = port;
254 } else {
255 start = range->cpu_addr;
256 }
257 return __of_address_resource_bounds(res, start, range->size);
258
259 invalid_range:
260 res->start = (resource_size_t)OF_BAD_ADDR;
261 res->end = (resource_size_t)OF_BAD_ADDR;
262 return err;
263 }
264 EXPORT_SYMBOL(of_pci_range_to_resource);
265
266 /*
267 * of_range_to_resource - Create a resource from a ranges entry
268 * @np: device node where the range belongs to
269 * @index: the 'ranges' index to convert to a resource
270 * @res: pointer to a valid resource that will be updated to
271 * reflect the values contained in the range.
272 *
273 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
274 * cannot be converted to resource.
275 */
of_range_to_resource(struct device_node * np,int index,struct resource * res)276 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
277 {
278 int ret, i = 0;
279 struct of_range_parser parser;
280 struct of_range range;
281
282 ret = of_range_parser_init(&parser, np);
283 if (ret)
284 return ret;
285
286 for_each_of_range(&parser, &range)
287 if (i++ == index)
288 return of_pci_range_to_resource(&range, np, res);
289
290 return -ENOENT;
291 }
292 EXPORT_SYMBOL(of_range_to_resource);
293
294 /*
295 * ISA bus specific translator
296 */
297
of_bus_isa_match(struct device_node * np)298 static int of_bus_isa_match(struct device_node *np)
299 {
300 return of_node_name_eq(np, "isa");
301 }
302
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)303 static void of_bus_isa_count_cells(struct device_node *child,
304 int *addrc, int *sizec)
305 {
306 if (addrc)
307 *addrc = 2;
308 if (sizec)
309 *sizec = 1;
310 }
311
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna,int fna)312 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
313 int pna, int fna)
314 {
315 /* Check address type match */
316 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
317 return OF_BAD_ADDR;
318
319 return of_bus_default_map(addr, range, na, ns, pna, fna);
320 }
321
of_bus_isa_get_flags(const __be32 * addr)322 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
323 {
324 unsigned int flags = 0;
325 u32 w = be32_to_cpup(addr);
326
327 if (w & 1)
328 flags |= IORESOURCE_IO;
329 else
330 flags |= IORESOURCE_MEM;
331 return flags;
332 }
333
of_bus_default_flags_match(struct device_node * np)334 static int of_bus_default_flags_match(struct device_node *np)
335 {
336 return of_bus_n_addr_cells(np) == 3;
337 }
338
339 /*
340 * Array of bus specific translators
341 */
342
343 static struct of_bus of_busses[] = {
344 #ifdef CONFIG_PCI
345 /* PCI */
346 {
347 .name = "pci",
348 .addresses = "assigned-addresses",
349 .match = of_bus_pci_match,
350 .count_cells = of_bus_pci_count_cells,
351 .map = of_bus_pci_map,
352 .translate = of_bus_default_flags_translate,
353 .flag_cells = 1,
354 .get_flags = of_bus_pci_get_flags,
355 },
356 #endif /* CONFIG_PCI */
357 /* ISA */
358 {
359 .name = "isa",
360 .addresses = "reg",
361 .match = of_bus_isa_match,
362 .count_cells = of_bus_isa_count_cells,
363 .map = of_bus_isa_map,
364 .translate = of_bus_default_flags_translate,
365 .flag_cells = 1,
366 .get_flags = of_bus_isa_get_flags,
367 },
368 /* Default with flags cell */
369 {
370 .name = "default-flags",
371 .addresses = "reg",
372 .match = of_bus_default_flags_match,
373 .count_cells = of_bus_default_count_cells,
374 .map = of_bus_default_flags_map,
375 .translate = of_bus_default_flags_translate,
376 .flag_cells = 1,
377 .get_flags = of_bus_default_flags_get_flags,
378 },
379 /* Default */
380 {
381 .name = "default",
382 .addresses = "reg",
383 .match = NULL,
384 .count_cells = of_bus_default_count_cells,
385 .map = of_bus_default_map,
386 .translate = of_bus_default_translate,
387 .get_flags = of_bus_default_get_flags,
388 },
389 };
390
of_match_bus(struct device_node * np)391 static struct of_bus *of_match_bus(struct device_node *np)
392 {
393 int i;
394
395 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
396 if (!of_busses[i].match || of_busses[i].match(np))
397 return &of_busses[i];
398 BUG();
399 return NULL;
400 }
401
of_empty_ranges_quirk(struct device_node * np)402 static int of_empty_ranges_quirk(struct device_node *np)
403 {
404 if (IS_ENABLED(CONFIG_PPC)) {
405 /* To save cycles, we cache the result for global "Mac" setting */
406 static int quirk_state = -1;
407
408 /* PA-SEMI sdc DT bug */
409 if (of_device_is_compatible(np, "1682m-sdc"))
410 return true;
411
412 /* Make quirk cached */
413 if (quirk_state < 0)
414 quirk_state =
415 of_machine_is_compatible("Power Macintosh") ||
416 of_machine_is_compatible("MacRISC");
417 return quirk_state;
418 }
419 return false;
420 }
421
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)422 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
423 struct of_bus *pbus, __be32 *addr,
424 int na, int ns, int pna, const char *rprop)
425 {
426 const __be32 *ranges;
427 unsigned int rlen;
428 int rone;
429 u64 offset = OF_BAD_ADDR;
430
431 /*
432 * Normally, an absence of a "ranges" property means we are
433 * crossing a non-translatable boundary, and thus the addresses
434 * below the current cannot be converted to CPU physical ones.
435 * Unfortunately, while this is very clear in the spec, it's not
436 * what Apple understood, and they do have things like /uni-n or
437 * /ht nodes with no "ranges" property and a lot of perfectly
438 * useable mapped devices below them. Thus we treat the absence of
439 * "ranges" as equivalent to an empty "ranges" property which means
440 * a 1:1 translation at that level. It's up to the caller not to try
441 * to translate addresses that aren't supposed to be translated in
442 * the first place. --BenH.
443 *
444 * As far as we know, this damage only exists on Apple machines, so
445 * This code is only enabled on powerpc. --gcl
446 *
447 * This quirk also applies for 'dma-ranges' which frequently exist in
448 * child nodes without 'dma-ranges' in the parent nodes. --RobH
449 */
450 ranges = of_get_property(parent, rprop, &rlen);
451 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
452 strcmp(rprop, "dma-ranges")) {
453 pr_debug("no ranges; cannot translate\n");
454 return 1;
455 }
456 if (ranges == NULL || rlen == 0) {
457 offset = of_read_number(addr, na);
458 memset(addr, 0, pna * 4);
459 pr_debug("empty ranges; 1:1 translation\n");
460 goto finish;
461 }
462
463 pr_debug("walking ranges...\n");
464
465 /* Now walk through the ranges */
466 rlen /= 4;
467 rone = na + pna + ns;
468 for (; rlen >= rone; rlen -= rone, ranges += rone) {
469 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
470 if (offset != OF_BAD_ADDR)
471 break;
472 }
473 if (offset == OF_BAD_ADDR) {
474 pr_debug("not found !\n");
475 return 1;
476 }
477 memcpy(addr, ranges + na, 4 * pna);
478
479 finish:
480 of_dump_addr("parent translation for:", addr, pna);
481 pr_debug("with offset: %llx\n", offset);
482
483 /* Translate it into parent bus space */
484 return pbus->translate(addr, offset, pna);
485 }
486
487 /*
488 * Translate an address from the device-tree into a CPU physical address,
489 * this walks up the tree and applies the various bus mappings on the
490 * way.
491 *
492 * Note: We consider that crossing any level with #size-cells == 0 to mean
493 * that translation is impossible (that is we are not dealing with a value
494 * that can be mapped to a cpu physical address). This is not really specified
495 * that way, but this is traditionally the way IBM at least do things
496 *
497 * Whenever the translation fails, the *host pointer will be set to the
498 * device that had registered logical PIO mapping, and the return code is
499 * relative to that node.
500 */
__of_translate_address(struct device_node * node,struct device_node * (* get_parent)(const struct device_node *),const __be32 * in_addr,const char * rprop,struct device_node ** host)501 static u64 __of_translate_address(struct device_node *node,
502 struct device_node *(*get_parent)(const struct device_node *),
503 const __be32 *in_addr, const char *rprop,
504 struct device_node **host)
505 {
506 struct device_node *dev __free(device_node) = of_node_get(node);
507 struct device_node *parent __free(device_node) = get_parent(dev);
508 struct of_bus *bus, *pbus;
509 __be32 addr[OF_MAX_ADDR_CELLS];
510 int na, ns, pna, pns;
511
512 pr_debug("** translation for device %pOF **\n", dev);
513
514 *host = NULL;
515
516 if (parent == NULL)
517 return OF_BAD_ADDR;
518 bus = of_match_bus(parent);
519
520 /* Count address cells & copy address locally */
521 bus->count_cells(dev, &na, &ns);
522 if (!OF_CHECK_COUNTS(na, ns)) {
523 pr_debug("Bad cell count for %pOF\n", dev);
524 return OF_BAD_ADDR;
525 }
526 memcpy(addr, in_addr, na * 4);
527
528 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
529 bus->name, na, ns, parent);
530 of_dump_addr("translating address:", addr, na);
531
532 /* Translate */
533 for (;;) {
534 struct logic_pio_hwaddr *iorange;
535
536 /* Switch to parent bus */
537 of_node_put(dev);
538 dev = parent;
539 parent = get_parent(dev);
540
541 /* If root, we have finished */
542 if (parent == NULL) {
543 pr_debug("reached root node\n");
544 return of_read_number(addr, na);
545 }
546
547 /*
548 * For indirectIO device which has no ranges property, get
549 * the address from reg directly.
550 */
551 iorange = find_io_range_by_fwnode(&dev->fwnode);
552 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
553 u64 result = of_read_number(addr + 1, na - 1);
554 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
555 dev, result);
556 *host = no_free_ptr(dev);
557 return result;
558 }
559
560 /* Get new parent bus and counts */
561 pbus = of_match_bus(parent);
562 pbus->count_cells(dev, &pna, &pns);
563 if (!OF_CHECK_COUNTS(pna, pns)) {
564 pr_err("Bad cell count for %pOF\n", dev);
565 return OF_BAD_ADDR;
566 }
567
568 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
569 pbus->name, pna, pns, parent);
570
571 /* Apply bus translation */
572 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
573 return OF_BAD_ADDR;
574
575 /* Complete the move up one level */
576 na = pna;
577 ns = pns;
578 bus = pbus;
579
580 of_dump_addr("one level translation:", addr, na);
581 }
582
583 unreachable();
584 }
585
of_translate_address(struct device_node * dev,const __be32 * in_addr)586 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
587 {
588 struct device_node *host;
589 u64 ret;
590
591 ret = __of_translate_address(dev, of_get_parent,
592 in_addr, "ranges", &host);
593 if (host) {
594 of_node_put(host);
595 return OF_BAD_ADDR;
596 }
597
598 return ret;
599 }
600 EXPORT_SYMBOL(of_translate_address);
601
602 #ifdef CONFIG_HAS_DMA
__of_get_dma_parent(const struct device_node * np)603 struct device_node *__of_get_dma_parent(const struct device_node *np)
604 {
605 struct of_phandle_args args;
606 int ret, index;
607
608 index = of_property_match_string(np, "interconnect-names", "dma-mem");
609 if (index < 0)
610 return of_get_parent(np);
611
612 ret = of_parse_phandle_with_args(np, "interconnects",
613 "#interconnect-cells",
614 index, &args);
615 if (ret < 0)
616 return of_get_parent(np);
617
618 return of_node_get(args.np);
619 }
620 #endif
621
of_get_next_dma_parent(struct device_node * np)622 static struct device_node *of_get_next_dma_parent(struct device_node *np)
623 {
624 struct device_node *parent;
625
626 parent = __of_get_dma_parent(np);
627 of_node_put(np);
628
629 return parent;
630 }
631
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)632 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
633 {
634 struct device_node *host;
635 u64 ret;
636
637 ret = __of_translate_address(dev, __of_get_dma_parent,
638 in_addr, "dma-ranges", &host);
639
640 if (host) {
641 of_node_put(host);
642 return OF_BAD_ADDR;
643 }
644
645 return ret;
646 }
647 EXPORT_SYMBOL(of_translate_dma_address);
648
649 /**
650 * of_translate_dma_region - Translate device tree address and size tuple
651 * @dev: device tree node for which to translate
652 * @prop: pointer into array of cells
653 * @start: return value for the start of the DMA range
654 * @length: return value for the length of the DMA range
655 *
656 * Returns a pointer to the cell immediately following the translated DMA region.
657 */
of_translate_dma_region(struct device_node * dev,const __be32 * prop,phys_addr_t * start,size_t * length)658 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
659 phys_addr_t *start, size_t *length)
660 {
661 struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
662 u64 address, size;
663 int na, ns;
664
665 if (!parent)
666 return NULL;
667
668 na = of_bus_n_addr_cells(parent);
669 ns = of_bus_n_size_cells(parent);
670
671 address = of_translate_dma_address(dev, prop);
672 if (address == OF_BAD_ADDR)
673 return NULL;
674
675 size = of_read_number(prop + na, ns);
676
677 if (start)
678 *start = address;
679
680 if (length)
681 *length = size;
682
683 return prop + na + ns;
684 }
685 EXPORT_SYMBOL(of_translate_dma_region);
686
__of_get_address(struct device_node * dev,int index,int bar_no,u64 * size,unsigned int * flags)687 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
688 u64 *size, unsigned int *flags)
689 {
690 const __be32 *prop;
691 unsigned int psize;
692 struct device_node *parent __free(device_node) = of_get_parent(dev);
693 struct of_bus *bus;
694 int onesize, i, na, ns;
695
696 if (parent == NULL)
697 return NULL;
698
699 /* match the parent's bus type */
700 bus = of_match_bus(parent);
701 if (strcmp(bus->name, "pci") && (bar_no >= 0))
702 return NULL;
703
704 bus->count_cells(dev, &na, &ns);
705 if (!OF_CHECK_ADDR_COUNT(na))
706 return NULL;
707
708 /* Get "reg" or "assigned-addresses" property */
709 prop = of_get_property(dev, bus->addresses, &psize);
710 if (prop == NULL)
711 return NULL;
712 psize /= 4;
713
714 onesize = na + ns;
715 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
716 u32 val = be32_to_cpu(prop[0]);
717 /* PCI bus matches on BAR number instead of index */
718 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
719 ((index >= 0) && (i == index))) {
720 if (size)
721 *size = of_read_number(prop + na, ns);
722 if (flags)
723 *flags = bus->get_flags(prop);
724 return prop;
725 }
726 }
727 return NULL;
728 }
729 EXPORT_SYMBOL(__of_get_address);
730
731 /**
732 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
733 * @np: device tree node for which to retrieve "reg" from
734 * @idx: "reg" entry index to read
735 * @addr: return value for the untranslated address
736 * @size: return value for the entry size
737 *
738 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
739 * size values filled in.
740 */
of_property_read_reg(struct device_node * np,int idx,u64 * addr,u64 * size)741 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
742 {
743 const __be32 *prop = of_get_address(np, idx, size, NULL);
744
745 if (!prop)
746 return -EINVAL;
747
748 *addr = of_read_number(prop, of_n_addr_cells(np));
749
750 return 0;
751 }
752 EXPORT_SYMBOL(of_property_read_reg);
753
parser_init(struct of_pci_range_parser * parser,struct device_node * node,const char * name)754 static int parser_init(struct of_pci_range_parser *parser,
755 struct device_node *node, const char *name)
756 {
757 int rlen;
758
759 parser->node = node;
760 parser->pna = of_n_addr_cells(node);
761 parser->na = of_bus_n_addr_cells(node);
762 parser->ns = of_bus_n_size_cells(node);
763 parser->dma = !strcmp(name, "dma-ranges");
764 parser->bus = of_match_bus(node);
765
766 parser->range = of_get_property(node, name, &rlen);
767 if (parser->range == NULL)
768 return -ENOENT;
769
770 parser->end = parser->range + rlen / sizeof(__be32);
771
772 return 0;
773 }
774
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)775 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
776 struct device_node *node)
777 {
778 return parser_init(parser, node, "ranges");
779 }
780 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
781
of_pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)782 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
783 struct device_node *node)
784 {
785 return parser_init(parser, node, "dma-ranges");
786 }
787 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
788 #define of_dma_range_parser_init of_pci_dma_range_parser_init
789
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)790 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
791 struct of_pci_range *range)
792 {
793 int na = parser->na;
794 int ns = parser->ns;
795 int np = parser->pna + na + ns;
796 int busflag_na = parser->bus->flag_cells;
797
798 if (!range)
799 return NULL;
800
801 if (!parser->range || parser->range + np > parser->end)
802 return NULL;
803
804 range->flags = parser->bus->get_flags(parser->range);
805
806 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
807
808 if (parser->dma)
809 range->cpu_addr = of_translate_dma_address(parser->node,
810 parser->range + na);
811 else
812 range->cpu_addr = of_translate_address(parser->node,
813 parser->range + na);
814 range->size = of_read_number(parser->range + parser->pna + na, ns);
815
816 parser->range += np;
817
818 /* Now consume following elements while they are contiguous */
819 while (parser->range + np <= parser->end) {
820 u32 flags = 0;
821 u64 bus_addr, cpu_addr, size;
822
823 flags = parser->bus->get_flags(parser->range);
824 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
825 if (parser->dma)
826 cpu_addr = of_translate_dma_address(parser->node,
827 parser->range + na);
828 else
829 cpu_addr = of_translate_address(parser->node,
830 parser->range + na);
831 size = of_read_number(parser->range + parser->pna + na, ns);
832
833 if (flags != range->flags)
834 break;
835 if (bus_addr != range->bus_addr + range->size ||
836 cpu_addr != range->cpu_addr + range->size)
837 break;
838
839 range->size += size;
840 parser->range += np;
841 }
842
843 return range;
844 }
845 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
846
of_translate_ioport(struct device_node * dev,const __be32 * in_addr,u64 size)847 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
848 u64 size)
849 {
850 u64 taddr;
851 unsigned long port;
852 struct device_node *host;
853
854 taddr = __of_translate_address(dev, of_get_parent,
855 in_addr, "ranges", &host);
856 if (host) {
857 /* host-specific port access */
858 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
859 of_node_put(host);
860 } else {
861 /* memory-mapped I/O range */
862 port = pci_address_to_pio(taddr);
863 }
864
865 if (port == (unsigned long)-1)
866 return OF_BAD_ADDR;
867
868 return port;
869 }
870
871 #ifdef CONFIG_HAS_DMA
872 /**
873 * of_dma_get_range - Get DMA range info and put it into a map array
874 * @np: device node to get DMA range info
875 * @map: dma range structure to return
876 *
877 * Look in bottom up direction for the first "dma-ranges" property
878 * and parse it. Put the information into a DMA offset map array.
879 *
880 * dma-ranges format:
881 * DMA addr (dma_addr) : naddr cells
882 * CPU addr (phys_addr_t) : pna cells
883 * size : nsize cells
884 *
885 * It returns -ENODEV if "dma-ranges" property was not found for this
886 * device in the DT.
887 */
of_dma_get_range(struct device_node * np,const struct bus_dma_region ** map)888 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
889 {
890 struct device_node *node __free(device_node) = of_node_get(np);
891 const __be32 *ranges = NULL;
892 bool found_dma_ranges = false;
893 struct of_range_parser parser;
894 struct of_range range;
895 struct bus_dma_region *r;
896 int len, num_ranges = 0;
897
898 while (node) {
899 ranges = of_get_property(node, "dma-ranges", &len);
900
901 /* Ignore empty ranges, they imply no translation required */
902 if (ranges && len > 0)
903 break;
904
905 /* Once we find 'dma-ranges', then a missing one is an error */
906 if (found_dma_ranges && !ranges)
907 return -ENODEV;
908
909 found_dma_ranges = true;
910
911 node = of_get_next_dma_parent(node);
912 }
913
914 if (!node || !ranges) {
915 pr_debug("no dma-ranges found for node(%pOF)\n", np);
916 return -ENODEV;
917 }
918 of_dma_range_parser_init(&parser, node);
919 for_each_of_range(&parser, &range) {
920 if (range.cpu_addr == OF_BAD_ADDR) {
921 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
922 range.bus_addr, node);
923 continue;
924 }
925 num_ranges++;
926 }
927
928 if (!num_ranges)
929 return -EINVAL;
930
931 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
932 if (!r)
933 return -ENOMEM;
934
935 /*
936 * Record all info in the generic DMA ranges array for struct device,
937 * returning an error if we don't find any parsable ranges.
938 */
939 *map = r;
940 of_dma_range_parser_init(&parser, node);
941 for_each_of_range(&parser, &range) {
942 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
943 range.bus_addr, range.cpu_addr, range.size);
944 if (range.cpu_addr == OF_BAD_ADDR)
945 continue;
946 r->cpu_start = range.cpu_addr;
947 r->dma_start = range.bus_addr;
948 r->size = range.size;
949 r++;
950 }
951 return 0;
952 }
953 #endif /* CONFIG_HAS_DMA */
954
955 /**
956 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
957 * @np: The node to start searching from or NULL to start from the root
958 *
959 * Gets the highest CPU physical address that is addressable by all DMA masters
960 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
961 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
962 */
of_dma_get_max_cpu_address(struct device_node * np)963 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
964 {
965 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
966 struct of_range_parser parser;
967 phys_addr_t subtree_max_addr;
968 struct device_node *child;
969 struct of_range range;
970 const __be32 *ranges;
971 u64 cpu_end = 0;
972 int len;
973
974 if (!np)
975 np = of_root;
976
977 ranges = of_get_property(np, "dma-ranges", &len);
978 if (ranges && len) {
979 of_dma_range_parser_init(&parser, np);
980 for_each_of_range(&parser, &range)
981 if (range.cpu_addr + range.size > cpu_end)
982 cpu_end = range.cpu_addr + range.size - 1;
983
984 if (max_cpu_addr > cpu_end)
985 max_cpu_addr = cpu_end;
986 }
987
988 for_each_available_child_of_node(np, child) {
989 subtree_max_addr = of_dma_get_max_cpu_address(child);
990 if (max_cpu_addr > subtree_max_addr)
991 max_cpu_addr = subtree_max_addr;
992 }
993
994 return max_cpu_addr;
995 }
996
997 /**
998 * of_dma_is_coherent - Check if device is coherent
999 * @np: device node
1000 *
1001 * It returns true if "dma-coherent" property was found
1002 * for this device in the DT, or if DMA is coherent by
1003 * default for OF devices on the current platform and no
1004 * "dma-noncoherent" property was found for this device.
1005 */
of_dma_is_coherent(struct device_node * np)1006 bool of_dma_is_coherent(struct device_node *np)
1007 {
1008 struct device_node *node __free(device_node) = of_node_get(np);
1009
1010 while (node) {
1011 if (of_property_read_bool(node, "dma-coherent"))
1012 return true;
1013
1014 if (of_property_read_bool(node, "dma-noncoherent"))
1015 return false;
1016
1017 node = of_get_next_dma_parent(node);
1018 }
1019 return dma_default_coherent;
1020 }
1021 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1022
1023 /**
1024 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1025 * @np: device node
1026 *
1027 * Returns true if the "nonposted-mmio" property was found for
1028 * the device's bus.
1029 *
1030 * This is currently only enabled on builds that support Apple ARM devices, as
1031 * an optimization.
1032 */
of_mmio_is_nonposted(struct device_node * np)1033 static bool of_mmio_is_nonposted(struct device_node *np)
1034 {
1035 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1036 return false;
1037
1038 struct device_node *parent __free(device_node) = of_get_parent(np);
1039 if (!parent)
1040 return false;
1041
1042 return of_property_read_bool(parent, "nonposted-mmio");
1043 }
1044
__of_address_to_resource(struct device_node * dev,int index,int bar_no,struct resource * r)1045 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1046 struct resource *r)
1047 {
1048 u64 taddr;
1049 const __be32 *addrp;
1050 u64 size;
1051 unsigned int flags;
1052 const char *name = NULL;
1053
1054 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1055 if (addrp == NULL)
1056 return -EINVAL;
1057
1058 /* Get optional "reg-names" property to add a name to a resource */
1059 if (index >= 0)
1060 of_property_read_string_index(dev, "reg-names", index, &name);
1061
1062 if (flags & IORESOURCE_MEM)
1063 taddr = of_translate_address(dev, addrp);
1064 else if (flags & IORESOURCE_IO)
1065 taddr = of_translate_ioport(dev, addrp, size);
1066 else
1067 return -EINVAL;
1068
1069 if (taddr == OF_BAD_ADDR)
1070 return -EINVAL;
1071 memset(r, 0, sizeof(struct resource));
1072
1073 if (of_mmio_is_nonposted(dev))
1074 flags |= IORESOURCE_MEM_NONPOSTED;
1075
1076 r->flags = flags;
1077 r->name = name ? name : dev->full_name;
1078
1079 return __of_address_resource_bounds(r, taddr, size);
1080 }
1081
1082 /**
1083 * of_address_to_resource - Translate device tree address and return as resource
1084 * @dev: Caller's Device Node
1085 * @index: Index into the array
1086 * @r: Pointer to resource array
1087 *
1088 * Returns -EINVAL if the range cannot be converted to resource.
1089 *
1090 * Note that if your address is a PIO address, the conversion will fail if
1091 * the physical address can't be internally converted to an IO token with
1092 * pci_address_to_pio(), that is because it's either called too early or it
1093 * can't be matched to any host bridge IO space
1094 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)1095 int of_address_to_resource(struct device_node *dev, int index,
1096 struct resource *r)
1097 {
1098 return __of_address_to_resource(dev, index, -1, r);
1099 }
1100 EXPORT_SYMBOL_GPL(of_address_to_resource);
1101
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)1102 int of_pci_address_to_resource(struct device_node *dev, int bar,
1103 struct resource *r)
1104 {
1105
1106 if (!IS_ENABLED(CONFIG_PCI))
1107 return -ENOSYS;
1108
1109 return __of_address_to_resource(dev, -1, bar, r);
1110 }
1111 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1112
1113 /**
1114 * of_iomap - Maps the memory mapped IO for a given device_node
1115 * @np: the device whose io range will be mapped
1116 * @index: index of the io range
1117 *
1118 * Returns a pointer to the mapped memory
1119 */
of_iomap(struct device_node * np,int index)1120 void __iomem *of_iomap(struct device_node *np, int index)
1121 {
1122 struct resource res;
1123
1124 if (of_address_to_resource(np, index, &res))
1125 return NULL;
1126
1127 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1128 return ioremap_np(res.start, resource_size(&res));
1129 else
1130 return ioremap(res.start, resource_size(&res));
1131 }
1132 EXPORT_SYMBOL(of_iomap);
1133
1134 /*
1135 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1136 * for a given device_node
1137 * @device: the device whose io range will be mapped
1138 * @index: index of the io range
1139 * @name: name "override" for the memory region request or NULL
1140 *
1141 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1142 * error code on failure. Usage example:
1143 *
1144 * base = of_io_request_and_map(node, 0, "foo");
1145 * if (IS_ERR(base))
1146 * return PTR_ERR(base);
1147 */
of_io_request_and_map(struct device_node * np,int index,const char * name)1148 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1149 const char *name)
1150 {
1151 struct resource res;
1152 void __iomem *mem;
1153
1154 if (of_address_to_resource(np, index, &res))
1155 return IOMEM_ERR_PTR(-EINVAL);
1156
1157 if (!name)
1158 name = res.name;
1159 if (!request_mem_region(res.start, resource_size(&res), name))
1160 return IOMEM_ERR_PTR(-EBUSY);
1161
1162 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1163 mem = ioremap_np(res.start, resource_size(&res));
1164 else
1165 mem = ioremap(res.start, resource_size(&res));
1166
1167 if (!mem) {
1168 release_mem_region(res.start, resource_size(&res));
1169 return IOMEM_ERR_PTR(-ENOMEM);
1170 }
1171
1172 return mem;
1173 }
1174 EXPORT_SYMBOL(of_io_request_and_map);
1175