1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3 *
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/firmware.h>
12 #include <linux/device.h>
13 #include <linux/errno.h>
14 #include <linux/slab.h>
15 #include <linux/skbuff.h>
16 #include <linux/usb.h>
17 #include <linux/workqueue.h>
18 #include <linux/module.h>
19 #include <net/mac80211.h>
20 #include <linux/unaligned.h>
21
22 #include "zd_def.h"
23 #include "zd_mac.h"
24 #include "zd_usb.h"
25
26 static const struct usb_device_id usb_ids[] = {
27 /* ZD1211 */
28 { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
29 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
30 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
31 { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
32 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
33 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
34 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
35 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
36 { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
37 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
38 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
54 /* ZD1211B */
55 { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
56 { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
57 { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
58 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
59 { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
60 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
61 { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
62 { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
63 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
65 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
66 { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
67 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
69 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
70 { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
71 { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
72 { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
73 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
74 { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
75 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
76 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
77 { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
78 { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
79 { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
80 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
81 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
82 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
83 { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
84 { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
85 /* "Driverless" devices that need ejecting */
86 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
87 { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
88 {}
89 };
90
91 MODULE_LICENSE("GPL");
92 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
93 MODULE_AUTHOR("Ulrich Kunitz");
94 MODULE_AUTHOR("Daniel Drake");
95 MODULE_VERSION("1.0");
96 MODULE_DEVICE_TABLE(usb, usb_ids);
97
98 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
99 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
100
101 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
102 unsigned int count);
103
104 /* USB device initialization */
105 static void int_urb_complete(struct urb *urb);
106
request_fw_file(const struct firmware ** fw,const char * name,struct device * device)107 static int request_fw_file(
108 const struct firmware **fw, const char *name, struct device *device)
109 {
110 int r;
111
112 dev_dbg_f(device, "fw name %s\n", name);
113
114 r = request_firmware(fw, name, device);
115 if (r)
116 dev_err(device,
117 "Could not load firmware file %s. Error number %d\n",
118 name, r);
119 return r;
120 }
121
get_bcdDevice(const struct usb_device * udev)122 static inline u16 get_bcdDevice(const struct usb_device *udev)
123 {
124 return le16_to_cpu(udev->descriptor.bcdDevice);
125 }
126
127 enum upload_code_flags {
128 REBOOT = 1,
129 };
130
131 /* Ensures that MAX_TRANSFER_SIZE is even. */
132 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
133
upload_code(struct usb_device * udev,const u8 * data,size_t size,u16 code_offset,int flags)134 static int upload_code(struct usb_device *udev,
135 const u8 *data, size_t size, u16 code_offset, int flags)
136 {
137 u8 *p;
138 int r;
139
140 /* USB request blocks need "kmalloced" buffers.
141 */
142 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
143 if (!p) {
144 r = -ENOMEM;
145 goto error;
146 }
147
148 size &= ~1;
149 while (size > 0) {
150 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
151 size : MAX_TRANSFER_SIZE;
152
153 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
154
155 memcpy(p, data, transfer_size);
156 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
157 USB_REQ_FIRMWARE_DOWNLOAD,
158 USB_DIR_OUT | USB_TYPE_VENDOR,
159 code_offset, 0, p, transfer_size, 1000 /* ms */);
160 if (r < 0) {
161 dev_err(&udev->dev,
162 "USB control request for firmware upload"
163 " failed. Error number %d\n", r);
164 goto error;
165 }
166 transfer_size = r & ~1;
167
168 size -= transfer_size;
169 data += transfer_size;
170 code_offset += transfer_size/sizeof(u16);
171 }
172
173 if (flags & REBOOT) {
174 u8 ret;
175
176 /* Use "DMA-aware" buffer. */
177 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
178 USB_REQ_FIRMWARE_CONFIRM,
179 USB_DIR_IN | USB_TYPE_VENDOR,
180 0, 0, p, sizeof(ret), 5000 /* ms */);
181 if (r != sizeof(ret)) {
182 dev_err(&udev->dev,
183 "control request firmware confirmation failed."
184 " Return value %d\n", r);
185 if (r >= 0)
186 r = -ENODEV;
187 goto error;
188 }
189 ret = p[0];
190 if (ret & 0x80) {
191 dev_err(&udev->dev,
192 "Internal error while downloading."
193 " Firmware confirm return value %#04x\n",
194 (unsigned int)ret);
195 r = -ENODEV;
196 goto error;
197 }
198 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
199 (unsigned int)ret);
200 }
201
202 r = 0;
203 error:
204 kfree(p);
205 return r;
206 }
207
get_word(const void * data,u16 offset)208 static u16 get_word(const void *data, u16 offset)
209 {
210 const __le16 *p = data;
211 return le16_to_cpu(p[offset]);
212 }
213
get_fw_name(struct zd_usb * usb,char * buffer,size_t size,const char * postfix)214 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
215 const char* postfix)
216 {
217 scnprintf(buffer, size, "%s%s",
218 usb->is_zd1211b ?
219 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
220 postfix);
221 return buffer;
222 }
223
handle_version_mismatch(struct zd_usb * usb,const struct firmware * ub_fw)224 static int handle_version_mismatch(struct zd_usb *usb,
225 const struct firmware *ub_fw)
226 {
227 struct usb_device *udev = zd_usb_to_usbdev(usb);
228 const struct firmware *ur_fw = NULL;
229 int offset;
230 int r = 0;
231 char fw_name[128];
232
233 r = request_fw_file(&ur_fw,
234 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
235 &udev->dev);
236 if (r)
237 goto error;
238
239 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
240 if (r)
241 goto error;
242
243 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
244 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
245 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
246
247 /* At this point, the vendor driver downloads the whole firmware
248 * image, hacks around with version IDs, and uploads it again,
249 * completely overwriting the boot code. We do not do this here as
250 * it is not required on any tested devices, and it is suspected to
251 * cause problems. */
252 error:
253 release_firmware(ur_fw);
254 return r;
255 }
256
upload_firmware(struct zd_usb * usb)257 static int upload_firmware(struct zd_usb *usb)
258 {
259 int r;
260 u16 fw_bcdDevice;
261 u16 bcdDevice;
262 struct usb_device *udev = zd_usb_to_usbdev(usb);
263 const struct firmware *ub_fw = NULL;
264 const struct firmware *uph_fw = NULL;
265 char fw_name[128];
266
267 bcdDevice = get_bcdDevice(udev);
268
269 r = request_fw_file(&ub_fw,
270 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
271 &udev->dev);
272 if (r)
273 goto error;
274
275 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
276
277 if (fw_bcdDevice != bcdDevice) {
278 dev_info(&udev->dev,
279 "firmware version %#06x and device bootcode version "
280 "%#06x differ\n", fw_bcdDevice, bcdDevice);
281 if (bcdDevice <= 0x4313)
282 dev_warn(&udev->dev, "device has old bootcode, please "
283 "report success or failure\n");
284
285 r = handle_version_mismatch(usb, ub_fw);
286 if (r)
287 goto error;
288 } else {
289 dev_dbg_f(&udev->dev,
290 "firmware device id %#06x is equal to the "
291 "actual device id\n", fw_bcdDevice);
292 }
293
294
295 r = request_fw_file(&uph_fw,
296 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
297 &udev->dev);
298 if (r)
299 goto error;
300
301 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
302 if (r) {
303 dev_err(&udev->dev,
304 "Could not upload firmware code uph. Error number %d\n",
305 r);
306 }
307
308 /* FALL-THROUGH */
309 error:
310 release_firmware(ub_fw);
311 release_firmware(uph_fw);
312 return r;
313 }
314
315 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
316 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
317 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
318 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
319 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
320 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
321
322 /* Read data from device address space using "firmware interface" which does
323 * not require firmware to be loaded. */
zd_usb_read_fw(struct zd_usb * usb,zd_addr_t addr,u8 * data,u16 len)324 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
325 {
326 int r;
327 struct usb_device *udev = zd_usb_to_usbdev(usb);
328 u8 *buf;
329
330 /* Use "DMA-aware" buffer. */
331 buf = kmalloc(len, GFP_KERNEL);
332 if (!buf)
333 return -ENOMEM;
334 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
335 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
336 buf, len, 5000);
337 if (r < 0) {
338 dev_err(&udev->dev,
339 "read over firmware interface failed: %d\n", r);
340 goto exit;
341 } else if (r != len) {
342 dev_err(&udev->dev,
343 "incomplete read over firmware interface: %d/%d\n",
344 r, len);
345 r = -EIO;
346 goto exit;
347 }
348 r = 0;
349 memcpy(data, buf, len);
350 exit:
351 kfree(buf);
352 return r;
353 }
354
355 #define urb_dev(urb) (&(urb)->dev->dev)
356
handle_regs_int_override(struct urb * urb)357 static inline void handle_regs_int_override(struct urb *urb)
358 {
359 struct zd_usb *usb = urb->context;
360 struct zd_usb_interrupt *intr = &usb->intr;
361 unsigned long flags;
362
363 spin_lock_irqsave(&intr->lock, flags);
364 if (atomic_read(&intr->read_regs_enabled)) {
365 atomic_set(&intr->read_regs_enabled, 0);
366 intr->read_regs_int_overridden = 1;
367 complete(&intr->read_regs.completion);
368 }
369 spin_unlock_irqrestore(&intr->lock, flags);
370 }
371
handle_regs_int(struct urb * urb)372 static inline void handle_regs_int(struct urb *urb)
373 {
374 struct zd_usb *usb = urb->context;
375 struct zd_usb_interrupt *intr = &usb->intr;
376 unsigned long flags;
377 int len;
378 u16 int_num;
379
380 spin_lock_irqsave(&intr->lock, flags);
381
382 int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
383 if (int_num == (u16)CR_INTERRUPT) {
384 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
385 spin_lock(&mac->lock);
386 memcpy(&mac->intr_buffer, urb->transfer_buffer,
387 USB_MAX_EP_INT_BUFFER);
388 spin_unlock(&mac->lock);
389 schedule_work(&mac->process_intr);
390 } else if (atomic_read(&intr->read_regs_enabled)) {
391 len = urb->actual_length;
392 intr->read_regs.length = urb->actual_length;
393 if (len > sizeof(intr->read_regs.buffer))
394 len = sizeof(intr->read_regs.buffer);
395
396 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
397
398 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
399 * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
400 * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
401 * retry unhandled. Next read-reg command then might catch
402 * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
403 */
404 if (!check_read_regs(usb, intr->read_regs.req,
405 intr->read_regs.req_count))
406 goto out;
407
408 atomic_set(&intr->read_regs_enabled, 0);
409 intr->read_regs_int_overridden = 0;
410 complete(&intr->read_regs.completion);
411
412 goto out;
413 }
414
415 out:
416 spin_unlock_irqrestore(&intr->lock, flags);
417
418 /* CR_INTERRUPT might override read_reg too. */
419 if (int_num == (u16)CR_INTERRUPT &&
420 atomic_read(&intr->read_regs_enabled))
421 handle_regs_int_override(urb);
422 }
423
int_urb_complete(struct urb * urb)424 static void int_urb_complete(struct urb *urb)
425 {
426 int r;
427 struct usb_int_header *hdr;
428 struct zd_usb *usb;
429 struct zd_usb_interrupt *intr;
430
431 switch (urb->status) {
432 case 0:
433 break;
434 case -ESHUTDOWN:
435 case -EINVAL:
436 case -ENODEV:
437 case -ENOENT:
438 case -ECONNRESET:
439 case -EPIPE:
440 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
441 return;
442 default:
443 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
444 goto resubmit;
445 }
446
447 if (urb->actual_length < sizeof(hdr)) {
448 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
449 goto resubmit;
450 }
451
452 hdr = urb->transfer_buffer;
453 if (hdr->type != USB_INT_TYPE) {
454 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
455 goto resubmit;
456 }
457
458 /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
459 * pending USB_INT_ID_REGS causing read command timeout.
460 */
461 usb = urb->context;
462 intr = &usb->intr;
463 if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
464 handle_regs_int_override(urb);
465
466 switch (hdr->id) {
467 case USB_INT_ID_REGS:
468 handle_regs_int(urb);
469 break;
470 case USB_INT_ID_RETRY_FAILED:
471 zd_mac_tx_failed(urb);
472 break;
473 default:
474 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
475 (unsigned int)hdr->id);
476 goto resubmit;
477 }
478
479 resubmit:
480 r = usb_submit_urb(urb, GFP_ATOMIC);
481 if (r) {
482 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
483 urb, r);
484 /* TODO: add worker to reset intr->urb */
485 }
486 return;
487 }
488
int_urb_interval(struct usb_device * udev)489 static inline int int_urb_interval(struct usb_device *udev)
490 {
491 switch (udev->speed) {
492 case USB_SPEED_HIGH:
493 return 4;
494 case USB_SPEED_LOW:
495 return 10;
496 case USB_SPEED_FULL:
497 default:
498 return 1;
499 }
500 }
501
usb_int_enabled(struct zd_usb * usb)502 static inline int usb_int_enabled(struct zd_usb *usb)
503 {
504 unsigned long flags;
505 struct zd_usb_interrupt *intr = &usb->intr;
506 struct urb *urb;
507
508 spin_lock_irqsave(&intr->lock, flags);
509 urb = intr->urb;
510 spin_unlock_irqrestore(&intr->lock, flags);
511 return urb != NULL;
512 }
513
zd_usb_enable_int(struct zd_usb * usb)514 int zd_usb_enable_int(struct zd_usb *usb)
515 {
516 int r;
517 struct usb_device *udev = zd_usb_to_usbdev(usb);
518 struct zd_usb_interrupt *intr = &usb->intr;
519 struct urb *urb;
520
521 dev_dbg_f(zd_usb_dev(usb), "\n");
522
523 urb = usb_alloc_urb(0, GFP_KERNEL);
524 if (!urb) {
525 r = -ENOMEM;
526 goto out;
527 }
528
529 ZD_ASSERT(!irqs_disabled());
530 spin_lock_irq(&intr->lock);
531 if (intr->urb) {
532 spin_unlock_irq(&intr->lock);
533 r = 0;
534 goto error_free_urb;
535 }
536 intr->urb = urb;
537 spin_unlock_irq(&intr->lock);
538
539 r = -ENOMEM;
540 intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
541 GFP_KERNEL, &intr->buffer_dma);
542 if (!intr->buffer) {
543 dev_dbg_f(zd_usb_dev(usb),
544 "couldn't allocate transfer_buffer\n");
545 goto error_set_urb_null;
546 }
547
548 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
549 intr->buffer, USB_MAX_EP_INT_BUFFER,
550 int_urb_complete, usb,
551 intr->interval);
552 urb->transfer_dma = intr->buffer_dma;
553 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
554
555 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
556 r = usb_submit_urb(urb, GFP_KERNEL);
557 if (r) {
558 dev_dbg_f(zd_usb_dev(usb),
559 "Couldn't submit urb. Error number %d\n", r);
560 goto error;
561 }
562
563 return 0;
564 error:
565 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
566 intr->buffer, intr->buffer_dma);
567 error_set_urb_null:
568 spin_lock_irq(&intr->lock);
569 intr->urb = NULL;
570 spin_unlock_irq(&intr->lock);
571 error_free_urb:
572 usb_free_urb(urb);
573 out:
574 return r;
575 }
576
zd_usb_disable_int(struct zd_usb * usb)577 void zd_usb_disable_int(struct zd_usb *usb)
578 {
579 unsigned long flags;
580 struct usb_device *udev = zd_usb_to_usbdev(usb);
581 struct zd_usb_interrupt *intr = &usb->intr;
582 struct urb *urb;
583 void *buffer;
584 dma_addr_t buffer_dma;
585
586 spin_lock_irqsave(&intr->lock, flags);
587 urb = intr->urb;
588 if (!urb) {
589 spin_unlock_irqrestore(&intr->lock, flags);
590 return;
591 }
592 intr->urb = NULL;
593 buffer = intr->buffer;
594 buffer_dma = intr->buffer_dma;
595 intr->buffer = NULL;
596 spin_unlock_irqrestore(&intr->lock, flags);
597
598 usb_kill_urb(urb);
599 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
600 usb_free_urb(urb);
601
602 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER, buffer, buffer_dma);
603 }
604
handle_rx_packet(struct zd_usb * usb,const u8 * buffer,unsigned int length)605 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
606 unsigned int length)
607 {
608 int i;
609 const struct rx_length_info *length_info;
610
611 if (length < sizeof(struct rx_length_info)) {
612 /* It's not a complete packet anyhow. */
613 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
614 length);
615 return;
616 }
617 length_info = (struct rx_length_info *)
618 (buffer + length - sizeof(struct rx_length_info));
619
620 /* It might be that three frames are merged into a single URB
621 * transaction. We have to check for the length info tag.
622 *
623 * While testing we discovered that length_info might be unaligned,
624 * because if USB transactions are merged, the last packet will not
625 * be padded. Unaligned access might also happen if the length_info
626 * structure is not present.
627 */
628 if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
629 {
630 unsigned int l, k, n;
631 for (i = 0, l = 0;; i++) {
632 k = get_unaligned_le16(&length_info->length[i]);
633 if (k == 0)
634 return;
635 n = l+k;
636 if (n > length)
637 return;
638 zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
639 if (i >= 2)
640 return;
641 l = (n+3) & ~3;
642 }
643 } else {
644 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
645 }
646 }
647
rx_urb_complete(struct urb * urb)648 static void rx_urb_complete(struct urb *urb)
649 {
650 int r;
651 struct zd_usb *usb;
652 struct zd_usb_rx *rx;
653 const u8 *buffer;
654 unsigned int length;
655 unsigned long flags;
656
657 switch (urb->status) {
658 case 0:
659 break;
660 case -ESHUTDOWN:
661 case -EINVAL:
662 case -ENODEV:
663 case -ENOENT:
664 case -ECONNRESET:
665 case -EPIPE:
666 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
667 return;
668 default:
669 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
670 goto resubmit;
671 }
672
673 buffer = urb->transfer_buffer;
674 length = urb->actual_length;
675 usb = urb->context;
676 rx = &usb->rx;
677
678 tasklet_schedule(&rx->reset_timer_tasklet);
679
680 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
681 /* If there is an old first fragment, we don't care. */
682 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
683 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
684 spin_lock_irqsave(&rx->lock, flags);
685 memcpy(rx->fragment, buffer, length);
686 rx->fragment_length = length;
687 spin_unlock_irqrestore(&rx->lock, flags);
688 goto resubmit;
689 }
690
691 spin_lock_irqsave(&rx->lock, flags);
692 if (rx->fragment_length > 0) {
693 /* We are on a second fragment, we believe */
694 ZD_ASSERT(length + rx->fragment_length <=
695 ARRAY_SIZE(rx->fragment));
696 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
697 memcpy(rx->fragment+rx->fragment_length, buffer, length);
698 handle_rx_packet(usb, rx->fragment,
699 rx->fragment_length + length);
700 rx->fragment_length = 0;
701 spin_unlock_irqrestore(&rx->lock, flags);
702 } else {
703 spin_unlock_irqrestore(&rx->lock, flags);
704 handle_rx_packet(usb, buffer, length);
705 }
706
707 resubmit:
708 r = usb_submit_urb(urb, GFP_ATOMIC);
709 if (r)
710 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
711 }
712
alloc_rx_urb(struct zd_usb * usb)713 static struct urb *alloc_rx_urb(struct zd_usb *usb)
714 {
715 struct usb_device *udev = zd_usb_to_usbdev(usb);
716 struct urb *urb;
717 void *buffer;
718
719 urb = usb_alloc_urb(0, GFP_KERNEL);
720 if (!urb)
721 return NULL;
722 buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
723 &urb->transfer_dma);
724 if (!buffer) {
725 usb_free_urb(urb);
726 return NULL;
727 }
728
729 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
730 buffer, USB_MAX_RX_SIZE,
731 rx_urb_complete, usb);
732 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
733
734 return urb;
735 }
736
free_rx_urb(struct urb * urb)737 static void free_rx_urb(struct urb *urb)
738 {
739 if (!urb)
740 return;
741 usb_free_coherent(urb->dev, urb->transfer_buffer_length,
742 urb->transfer_buffer, urb->transfer_dma);
743 usb_free_urb(urb);
744 }
745
__zd_usb_enable_rx(struct zd_usb * usb)746 static int __zd_usb_enable_rx(struct zd_usb *usb)
747 {
748 int i, r;
749 struct zd_usb_rx *rx = &usb->rx;
750 struct urb **urbs;
751
752 dev_dbg_f(zd_usb_dev(usb), "\n");
753
754 r = -ENOMEM;
755 urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
756 if (!urbs)
757 goto error;
758 for (i = 0; i < RX_URBS_COUNT; i++) {
759 urbs[i] = alloc_rx_urb(usb);
760 if (!urbs[i])
761 goto error;
762 }
763
764 ZD_ASSERT(!irqs_disabled());
765 spin_lock_irq(&rx->lock);
766 if (rx->urbs) {
767 spin_unlock_irq(&rx->lock);
768 r = 0;
769 goto error;
770 }
771 rx->urbs = urbs;
772 rx->urbs_count = RX_URBS_COUNT;
773 spin_unlock_irq(&rx->lock);
774
775 for (i = 0; i < RX_URBS_COUNT; i++) {
776 r = usb_submit_urb(urbs[i], GFP_KERNEL);
777 if (r)
778 goto error_submit;
779 }
780
781 return 0;
782 error_submit:
783 for (i = 0; i < RX_URBS_COUNT; i++) {
784 usb_kill_urb(urbs[i]);
785 }
786 spin_lock_irq(&rx->lock);
787 rx->urbs = NULL;
788 rx->urbs_count = 0;
789 spin_unlock_irq(&rx->lock);
790 error:
791 if (urbs) {
792 for (i = 0; i < RX_URBS_COUNT; i++)
793 free_rx_urb(urbs[i]);
794 }
795 return r;
796 }
797
zd_usb_enable_rx(struct zd_usb * usb)798 int zd_usb_enable_rx(struct zd_usb *usb)
799 {
800 int r;
801 struct zd_usb_rx *rx = &usb->rx;
802
803 mutex_lock(&rx->setup_mutex);
804 r = __zd_usb_enable_rx(usb);
805 mutex_unlock(&rx->setup_mutex);
806
807 zd_usb_reset_rx_idle_timer(usb);
808
809 return r;
810 }
811
__zd_usb_disable_rx(struct zd_usb * usb)812 static void __zd_usb_disable_rx(struct zd_usb *usb)
813 {
814 int i;
815 unsigned long flags;
816 struct urb **urbs;
817 unsigned int count;
818 struct zd_usb_rx *rx = &usb->rx;
819
820 spin_lock_irqsave(&rx->lock, flags);
821 urbs = rx->urbs;
822 count = rx->urbs_count;
823 spin_unlock_irqrestore(&rx->lock, flags);
824 if (!urbs)
825 return;
826
827 for (i = 0; i < count; i++) {
828 usb_kill_urb(urbs[i]);
829 free_rx_urb(urbs[i]);
830 }
831 kfree(urbs);
832
833 spin_lock_irqsave(&rx->lock, flags);
834 rx->urbs = NULL;
835 rx->urbs_count = 0;
836 spin_unlock_irqrestore(&rx->lock, flags);
837 }
838
zd_usb_disable_rx(struct zd_usb * usb)839 void zd_usb_disable_rx(struct zd_usb *usb)
840 {
841 struct zd_usb_rx *rx = &usb->rx;
842
843 mutex_lock(&rx->setup_mutex);
844 __zd_usb_disable_rx(usb);
845 mutex_unlock(&rx->setup_mutex);
846
847 tasklet_kill(&rx->reset_timer_tasklet);
848 cancel_delayed_work_sync(&rx->idle_work);
849 }
850
zd_usb_reset_rx(struct zd_usb * usb)851 static void zd_usb_reset_rx(struct zd_usb *usb)
852 {
853 bool do_reset;
854 struct zd_usb_rx *rx = &usb->rx;
855 unsigned long flags;
856
857 mutex_lock(&rx->setup_mutex);
858
859 spin_lock_irqsave(&rx->lock, flags);
860 do_reset = rx->urbs != NULL;
861 spin_unlock_irqrestore(&rx->lock, flags);
862
863 if (do_reset) {
864 __zd_usb_disable_rx(usb);
865 __zd_usb_enable_rx(usb);
866 }
867
868 mutex_unlock(&rx->setup_mutex);
869
870 if (do_reset)
871 zd_usb_reset_rx_idle_timer(usb);
872 }
873
874 /**
875 * zd_usb_disable_tx - disable transmission
876 * @usb: the zd1211rw-private USB structure
877 *
878 * Frees all URBs in the free list and marks the transmission as disabled.
879 */
zd_usb_disable_tx(struct zd_usb * usb)880 void zd_usb_disable_tx(struct zd_usb *usb)
881 {
882 struct zd_usb_tx *tx = &usb->tx;
883 unsigned long flags;
884
885 atomic_set(&tx->enabled, 0);
886
887 /* kill all submitted tx-urbs */
888 usb_kill_anchored_urbs(&tx->submitted);
889
890 spin_lock_irqsave(&tx->lock, flags);
891 WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
892 WARN_ON(tx->submitted_urbs != 0);
893 tx->submitted_urbs = 0;
894 spin_unlock_irqrestore(&tx->lock, flags);
895
896 /* The stopped state is ignored, relying on ieee80211_wake_queues()
897 * in a potentionally following zd_usb_enable_tx().
898 */
899 }
900
901 /**
902 * zd_usb_enable_tx - enables transmission
903 * @usb: a &struct zd_usb pointer
904 *
905 * This function enables transmission and prepares the &zd_usb_tx data
906 * structure.
907 */
zd_usb_enable_tx(struct zd_usb * usb)908 void zd_usb_enable_tx(struct zd_usb *usb)
909 {
910 unsigned long flags;
911 struct zd_usb_tx *tx = &usb->tx;
912
913 spin_lock_irqsave(&tx->lock, flags);
914 atomic_set(&tx->enabled, 1);
915 tx->submitted_urbs = 0;
916 ieee80211_wake_queues(zd_usb_to_hw(usb));
917 tx->stopped = 0;
918 spin_unlock_irqrestore(&tx->lock, flags);
919 }
920
tx_dec_submitted_urbs(struct zd_usb * usb)921 static void tx_dec_submitted_urbs(struct zd_usb *usb)
922 {
923 struct zd_usb_tx *tx = &usb->tx;
924 unsigned long flags;
925
926 spin_lock_irqsave(&tx->lock, flags);
927 --tx->submitted_urbs;
928 if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
929 ieee80211_wake_queues(zd_usb_to_hw(usb));
930 tx->stopped = 0;
931 }
932 spin_unlock_irqrestore(&tx->lock, flags);
933 }
934
tx_inc_submitted_urbs(struct zd_usb * usb)935 static void tx_inc_submitted_urbs(struct zd_usb *usb)
936 {
937 struct zd_usb_tx *tx = &usb->tx;
938 unsigned long flags;
939
940 spin_lock_irqsave(&tx->lock, flags);
941 ++tx->submitted_urbs;
942 if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
943 ieee80211_stop_queues(zd_usb_to_hw(usb));
944 tx->stopped = 1;
945 }
946 spin_unlock_irqrestore(&tx->lock, flags);
947 }
948
949 /**
950 * tx_urb_complete - completes the execution of an URB
951 * @urb: a URB
952 *
953 * This function is called if the URB has been transferred to a device or an
954 * error has happened.
955 */
tx_urb_complete(struct urb * urb)956 static void tx_urb_complete(struct urb *urb)
957 {
958 int r;
959 struct sk_buff *skb;
960 struct ieee80211_tx_info *info;
961 struct zd_usb *usb;
962 struct zd_usb_tx *tx;
963
964 skb = (struct sk_buff *)urb->context;
965 info = IEEE80211_SKB_CB(skb);
966 /*
967 * grab 'usb' pointer before handing off the skb (since
968 * it might be freed by zd_mac_tx_to_dev or mac80211)
969 */
970 usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
971 tx = &usb->tx;
972
973 switch (urb->status) {
974 case 0:
975 break;
976 case -ESHUTDOWN:
977 case -EINVAL:
978 case -ENODEV:
979 case -ENOENT:
980 case -ECONNRESET:
981 case -EPIPE:
982 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
983 break;
984 default:
985 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
986 goto resubmit;
987 }
988 free_urb:
989 skb_unlink(skb, &usb->tx.submitted_skbs);
990 zd_mac_tx_to_dev(skb, urb->status);
991 usb_free_urb(urb);
992 tx_dec_submitted_urbs(usb);
993 return;
994 resubmit:
995 usb_anchor_urb(urb, &tx->submitted);
996 r = usb_submit_urb(urb, GFP_ATOMIC);
997 if (r) {
998 usb_unanchor_urb(urb);
999 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1000 goto free_urb;
1001 }
1002 }
1003
1004 /**
1005 * zd_usb_tx: initiates transfer of a frame of the device
1006 *
1007 * @usb: the zd1211rw-private USB structure
1008 * @skb: a &struct sk_buff pointer
1009 *
1010 * This function transmits a frame to the device. It doesn't wait for
1011 * completion. The frame must contain the control set and have all the
1012 * control set information available.
1013 *
1014 * The function returns 0 if the transfer has been successfully initiated.
1015 */
zd_usb_tx(struct zd_usb * usb,struct sk_buff * skb)1016 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1017 {
1018 int r;
1019 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1020 struct usb_device *udev = zd_usb_to_usbdev(usb);
1021 struct urb *urb;
1022 struct zd_usb_tx *tx = &usb->tx;
1023
1024 if (!atomic_read(&tx->enabled)) {
1025 r = -ENOENT;
1026 goto out;
1027 }
1028
1029 urb = usb_alloc_urb(0, GFP_ATOMIC);
1030 if (!urb) {
1031 r = -ENOMEM;
1032 goto out;
1033 }
1034
1035 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1036 skb->data, skb->len, tx_urb_complete, skb);
1037
1038 info->rate_driver_data[1] = (void *)jiffies;
1039 skb_queue_tail(&tx->submitted_skbs, skb);
1040 usb_anchor_urb(urb, &tx->submitted);
1041
1042 r = usb_submit_urb(urb, GFP_ATOMIC);
1043 if (r) {
1044 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1045 usb_unanchor_urb(urb);
1046 skb_unlink(skb, &tx->submitted_skbs);
1047 goto error;
1048 }
1049 tx_inc_submitted_urbs(usb);
1050 return 0;
1051 error:
1052 usb_free_urb(urb);
1053 out:
1054 return r;
1055 }
1056
zd_tx_timeout(struct zd_usb * usb)1057 static bool zd_tx_timeout(struct zd_usb *usb)
1058 {
1059 struct zd_usb_tx *tx = &usb->tx;
1060 struct sk_buff_head *q = &tx->submitted_skbs;
1061 struct sk_buff *skb, *skbnext;
1062 struct ieee80211_tx_info *info;
1063 unsigned long flags, trans_start;
1064 bool have_timedout = false;
1065
1066 spin_lock_irqsave(&q->lock, flags);
1067 skb_queue_walk_safe(q, skb, skbnext) {
1068 info = IEEE80211_SKB_CB(skb);
1069 trans_start = (unsigned long)info->rate_driver_data[1];
1070
1071 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1072 have_timedout = true;
1073 break;
1074 }
1075 }
1076 spin_unlock_irqrestore(&q->lock, flags);
1077
1078 return have_timedout;
1079 }
1080
zd_tx_watchdog_handler(struct work_struct * work)1081 static void zd_tx_watchdog_handler(struct work_struct *work)
1082 {
1083 struct zd_usb *usb =
1084 container_of(work, struct zd_usb, tx.watchdog_work.work);
1085 struct zd_usb_tx *tx = &usb->tx;
1086
1087 if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1088 goto out;
1089 if (!zd_tx_timeout(usb))
1090 goto out;
1091
1092 /* TX halted, try reset */
1093 dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1094
1095 usb_queue_reset_device(usb->intf);
1096
1097 /* reset will stop this worker, don't rearm */
1098 return;
1099 out:
1100 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1101 ZD_TX_WATCHDOG_INTERVAL);
1102 }
1103
zd_tx_watchdog_enable(struct zd_usb * usb)1104 void zd_tx_watchdog_enable(struct zd_usb *usb)
1105 {
1106 struct zd_usb_tx *tx = &usb->tx;
1107
1108 if (!tx->watchdog_enabled) {
1109 dev_dbg_f(zd_usb_dev(usb), "\n");
1110 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1111 ZD_TX_WATCHDOG_INTERVAL);
1112 tx->watchdog_enabled = 1;
1113 }
1114 }
1115
zd_tx_watchdog_disable(struct zd_usb * usb)1116 void zd_tx_watchdog_disable(struct zd_usb *usb)
1117 {
1118 struct zd_usb_tx *tx = &usb->tx;
1119
1120 if (tx->watchdog_enabled) {
1121 dev_dbg_f(zd_usb_dev(usb), "\n");
1122 tx->watchdog_enabled = 0;
1123 cancel_delayed_work_sync(&tx->watchdog_work);
1124 }
1125 }
1126
zd_rx_idle_timer_handler(struct work_struct * work)1127 static void zd_rx_idle_timer_handler(struct work_struct *work)
1128 {
1129 struct zd_usb *usb =
1130 container_of(work, struct zd_usb, rx.idle_work.work);
1131 struct zd_mac *mac = zd_usb_to_mac(usb);
1132
1133 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1134 return;
1135
1136 dev_dbg_f(zd_usb_dev(usb), "\n");
1137
1138 /* 30 seconds since last rx, reset rx */
1139 zd_usb_reset_rx(usb);
1140 }
1141
zd_usb_reset_rx_idle_timer_tasklet(struct tasklet_struct * t)1142 static void zd_usb_reset_rx_idle_timer_tasklet(struct tasklet_struct *t)
1143 {
1144 struct zd_usb *usb = from_tasklet(usb, t, rx.reset_timer_tasklet);
1145
1146 zd_usb_reset_rx_idle_timer(usb);
1147 }
1148
zd_usb_reset_rx_idle_timer(struct zd_usb * usb)1149 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1150 {
1151 struct zd_usb_rx *rx = &usb->rx;
1152
1153 mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1154 }
1155
init_usb_interrupt(struct zd_usb * usb)1156 static inline void init_usb_interrupt(struct zd_usb *usb)
1157 {
1158 struct zd_usb_interrupt *intr = &usb->intr;
1159
1160 spin_lock_init(&intr->lock);
1161 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1162 init_completion(&intr->read_regs.completion);
1163 atomic_set(&intr->read_regs_enabled, 0);
1164 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1165 }
1166
init_usb_rx(struct zd_usb * usb)1167 static inline void init_usb_rx(struct zd_usb *usb)
1168 {
1169 struct zd_usb_rx *rx = &usb->rx;
1170
1171 spin_lock_init(&rx->lock);
1172 mutex_init(&rx->setup_mutex);
1173 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1174 rx->usb_packet_size = 512;
1175 } else {
1176 rx->usb_packet_size = 64;
1177 }
1178 ZD_ASSERT(rx->fragment_length == 0);
1179 INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1180 rx->reset_timer_tasklet.func = (void (*))
1181 zd_usb_reset_rx_idle_timer_tasklet;
1182 rx->reset_timer_tasklet.data = (unsigned long)&rx->reset_timer_tasklet;
1183 }
1184
init_usb_tx(struct zd_usb * usb)1185 static inline void init_usb_tx(struct zd_usb *usb)
1186 {
1187 struct zd_usb_tx *tx = &usb->tx;
1188
1189 spin_lock_init(&tx->lock);
1190 atomic_set(&tx->enabled, 0);
1191 tx->stopped = 0;
1192 skb_queue_head_init(&tx->submitted_skbs);
1193 init_usb_anchor(&tx->submitted);
1194 tx->submitted_urbs = 0;
1195 tx->watchdog_enabled = 0;
1196 INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1197 }
1198
zd_usb_init(struct zd_usb * usb,struct ieee80211_hw * hw,struct usb_interface * intf)1199 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1200 struct usb_interface *intf)
1201 {
1202 memset(usb, 0, sizeof(*usb));
1203 usb->intf = usb_get_intf(intf);
1204 usb_set_intfdata(usb->intf, hw);
1205 init_usb_anchor(&usb->submitted_cmds);
1206 init_usb_interrupt(usb);
1207 init_usb_tx(usb);
1208 init_usb_rx(usb);
1209 }
1210
zd_usb_clear(struct zd_usb * usb)1211 void zd_usb_clear(struct zd_usb *usb)
1212 {
1213 usb_set_intfdata(usb->intf, NULL);
1214 usb_put_intf(usb->intf);
1215 ZD_MEMCLEAR(usb, sizeof(*usb));
1216 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1217 }
1218
speed(enum usb_device_speed speed)1219 static const char *speed(enum usb_device_speed speed)
1220 {
1221 switch (speed) {
1222 case USB_SPEED_LOW:
1223 return "low";
1224 case USB_SPEED_FULL:
1225 return "full";
1226 case USB_SPEED_HIGH:
1227 return "high";
1228 default:
1229 return "unknown speed";
1230 }
1231 }
1232
scnprint_id(struct usb_device * udev,char * buffer,size_t size)1233 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1234 {
1235 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1236 le16_to_cpu(udev->descriptor.idVendor),
1237 le16_to_cpu(udev->descriptor.idProduct),
1238 get_bcdDevice(udev),
1239 speed(udev->speed));
1240 }
1241
zd_usb_scnprint_id(struct zd_usb * usb,char * buffer,size_t size)1242 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1243 {
1244 struct usb_device *udev = interface_to_usbdev(usb->intf);
1245 return scnprint_id(udev, buffer, size);
1246 }
1247
1248 #ifdef DEBUG
print_id(struct usb_device * udev)1249 static void print_id(struct usb_device *udev)
1250 {
1251 char buffer[40];
1252
1253 scnprint_id(udev, buffer, sizeof(buffer));
1254 buffer[sizeof(buffer)-1] = 0;
1255 dev_dbg_f(&udev->dev, "%s\n", buffer);
1256 }
1257 #else
1258 #define print_id(udev) do { } while (0)
1259 #endif
1260
eject_installer(struct usb_interface * intf)1261 static int eject_installer(struct usb_interface *intf)
1262 {
1263 struct usb_device *udev = interface_to_usbdev(intf);
1264 struct usb_host_interface *iface_desc = intf->cur_altsetting;
1265 struct usb_endpoint_descriptor *endpoint;
1266 unsigned char *cmd;
1267 u8 bulk_out_ep;
1268 int r;
1269
1270 if (iface_desc->desc.bNumEndpoints < 2)
1271 return -ENODEV;
1272
1273 /* Find bulk out endpoint */
1274 for (r = 1; r >= 0; r--) {
1275 endpoint = &iface_desc->endpoint[r].desc;
1276 if (usb_endpoint_dir_out(endpoint) &&
1277 usb_endpoint_xfer_bulk(endpoint)) {
1278 bulk_out_ep = endpoint->bEndpointAddress;
1279 break;
1280 }
1281 }
1282 if (r == -1) {
1283 dev_err(&udev->dev,
1284 "zd1211rw: Could not find bulk out endpoint\n");
1285 return -ENODEV;
1286 }
1287
1288 cmd = kzalloc(31, GFP_KERNEL);
1289 if (cmd == NULL)
1290 return -ENODEV;
1291
1292 /* USB bulk command block */
1293 cmd[0] = 0x55; /* bulk command signature */
1294 cmd[1] = 0x53; /* bulk command signature */
1295 cmd[2] = 0x42; /* bulk command signature */
1296 cmd[3] = 0x43; /* bulk command signature */
1297 cmd[14] = 6; /* command length */
1298
1299 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1300 cmd[19] = 0x2; /* eject disc */
1301
1302 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1303 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1304 cmd, 31, NULL, 2000);
1305 kfree(cmd);
1306 if (r)
1307 return r;
1308
1309 /* At this point, the device disconnects and reconnects with the real
1310 * ID numbers. */
1311
1312 usb_set_intfdata(intf, NULL);
1313 return 0;
1314 }
1315
zd_usb_init_hw(struct zd_usb * usb)1316 int zd_usb_init_hw(struct zd_usb *usb)
1317 {
1318 int r;
1319 struct zd_mac *mac = zd_usb_to_mac(usb);
1320
1321 dev_dbg_f(zd_usb_dev(usb), "\n");
1322
1323 r = upload_firmware(usb);
1324 if (r) {
1325 dev_err(zd_usb_dev(usb),
1326 "couldn't load firmware. Error number %d\n", r);
1327 return r;
1328 }
1329
1330 r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1331 if (r) {
1332 dev_dbg_f(zd_usb_dev(usb),
1333 "couldn't reset configuration. Error number %d\n", r);
1334 return r;
1335 }
1336
1337 r = zd_mac_init_hw(mac->hw);
1338 if (r) {
1339 dev_dbg_f(zd_usb_dev(usb),
1340 "couldn't initialize mac. Error number %d\n", r);
1341 return r;
1342 }
1343
1344 usb->initialized = 1;
1345 return 0;
1346 }
1347
probe(struct usb_interface * intf,const struct usb_device_id * id)1348 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1349 {
1350 int r;
1351 struct usb_device *udev = interface_to_usbdev(intf);
1352 struct zd_usb *usb;
1353 struct ieee80211_hw *hw = NULL;
1354
1355 print_id(udev);
1356
1357 if (id->driver_info & DEVICE_INSTALLER)
1358 return eject_installer(intf);
1359
1360 switch (udev->speed) {
1361 case USB_SPEED_LOW:
1362 case USB_SPEED_FULL:
1363 case USB_SPEED_HIGH:
1364 break;
1365 default:
1366 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1367 r = -ENODEV;
1368 goto error;
1369 }
1370
1371 r = usb_reset_device(udev);
1372 if (r) {
1373 dev_err(&intf->dev,
1374 "couldn't reset usb device. Error number %d\n", r);
1375 goto error;
1376 }
1377
1378 hw = zd_mac_alloc_hw(intf);
1379 if (hw == NULL) {
1380 r = -ENOMEM;
1381 goto error;
1382 }
1383
1384 usb = &zd_hw_mac(hw)->chip.usb;
1385 usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1386
1387 r = zd_mac_preinit_hw(hw);
1388 if (r) {
1389 dev_dbg_f(&intf->dev,
1390 "couldn't initialize mac. Error number %d\n", r);
1391 goto error;
1392 }
1393
1394 r = ieee80211_register_hw(hw);
1395 if (r) {
1396 dev_dbg_f(&intf->dev,
1397 "couldn't register device. Error number %d\n", r);
1398 goto error;
1399 }
1400
1401 dev_dbg_f(&intf->dev, "successful\n");
1402 dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1403 return 0;
1404 error:
1405 usb_reset_device(interface_to_usbdev(intf));
1406 if (hw) {
1407 zd_mac_clear(zd_hw_mac(hw));
1408 ieee80211_free_hw(hw);
1409 }
1410 return r;
1411 }
1412
disconnect(struct usb_interface * intf)1413 static void disconnect(struct usb_interface *intf)
1414 {
1415 struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1416 struct zd_mac *mac;
1417 struct zd_usb *usb;
1418
1419 /* Either something really bad happened, or we're just dealing with
1420 * a DEVICE_INSTALLER. */
1421 if (hw == NULL)
1422 return;
1423
1424 mac = zd_hw_mac(hw);
1425 usb = &mac->chip.usb;
1426
1427 dev_dbg_f(zd_usb_dev(usb), "\n");
1428
1429 ieee80211_unregister_hw(hw);
1430
1431 /* Just in case something has gone wrong! */
1432 zd_usb_disable_tx(usb);
1433 zd_usb_disable_rx(usb);
1434 zd_usb_disable_int(usb);
1435
1436 /* If the disconnect has been caused by a removal of the
1437 * driver module, the reset allows reloading of the driver. If the
1438 * reset will not be executed here, the upload of the firmware in the
1439 * probe function caused by the reloading of the driver will fail.
1440 */
1441 usb_reset_device(interface_to_usbdev(intf));
1442
1443 zd_mac_clear(mac);
1444 ieee80211_free_hw(hw);
1445 dev_dbg(&intf->dev, "disconnected\n");
1446 }
1447
zd_usb_resume(struct zd_usb * usb)1448 static void zd_usb_resume(struct zd_usb *usb)
1449 {
1450 struct zd_mac *mac = zd_usb_to_mac(usb);
1451 int r;
1452
1453 dev_dbg_f(zd_usb_dev(usb), "\n");
1454
1455 r = zd_op_start(zd_usb_to_hw(usb));
1456 if (r < 0) {
1457 dev_warn(zd_usb_dev(usb), "Device resume failed "
1458 "with error code %d. Retrying...\n", r);
1459 if (usb->was_running)
1460 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1461 usb_queue_reset_device(usb->intf);
1462 return;
1463 }
1464
1465 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1466 r = zd_restore_settings(mac);
1467 if (r < 0) {
1468 dev_dbg(zd_usb_dev(usb),
1469 "failed to restore settings, %d\n", r);
1470 return;
1471 }
1472 }
1473 }
1474
zd_usb_stop(struct zd_usb * usb)1475 static void zd_usb_stop(struct zd_usb *usb)
1476 {
1477 dev_dbg_f(zd_usb_dev(usb), "\n");
1478
1479 zd_op_stop(zd_usb_to_hw(usb), false);
1480
1481 zd_usb_disable_tx(usb);
1482 zd_usb_disable_rx(usb);
1483 zd_usb_disable_int(usb);
1484
1485 usb->initialized = 0;
1486 }
1487
pre_reset(struct usb_interface * intf)1488 static int pre_reset(struct usb_interface *intf)
1489 {
1490 struct ieee80211_hw *hw = usb_get_intfdata(intf);
1491 struct zd_mac *mac;
1492 struct zd_usb *usb;
1493
1494 if (!hw || intf->condition != USB_INTERFACE_BOUND)
1495 return 0;
1496
1497 mac = zd_hw_mac(hw);
1498 usb = &mac->chip.usb;
1499
1500 usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1501
1502 zd_usb_stop(usb);
1503
1504 mutex_lock(&mac->chip.mutex);
1505 return 0;
1506 }
1507
post_reset(struct usb_interface * intf)1508 static int post_reset(struct usb_interface *intf)
1509 {
1510 struct ieee80211_hw *hw = usb_get_intfdata(intf);
1511 struct zd_mac *mac;
1512 struct zd_usb *usb;
1513
1514 if (!hw || intf->condition != USB_INTERFACE_BOUND)
1515 return 0;
1516
1517 mac = zd_hw_mac(hw);
1518 usb = &mac->chip.usb;
1519
1520 mutex_unlock(&mac->chip.mutex);
1521
1522 if (usb->was_running)
1523 zd_usb_resume(usb);
1524 return 0;
1525 }
1526
1527 static struct usb_driver driver = {
1528 .name = KBUILD_MODNAME,
1529 .id_table = usb_ids,
1530 .probe = probe,
1531 .disconnect = disconnect,
1532 .pre_reset = pre_reset,
1533 .post_reset = post_reset,
1534 .disable_hub_initiated_lpm = 1,
1535 };
1536
1537 struct workqueue_struct *zd_workqueue;
1538
usb_init(void)1539 static int __init usb_init(void)
1540 {
1541 int r;
1542
1543 pr_debug("%s usb_init()\n", driver.name);
1544
1545 zd_workqueue = create_singlethread_workqueue(driver.name);
1546 if (zd_workqueue == NULL) {
1547 pr_err("%s couldn't create workqueue\n", driver.name);
1548 return -ENOMEM;
1549 }
1550
1551 r = usb_register(&driver);
1552 if (r) {
1553 destroy_workqueue(zd_workqueue);
1554 pr_err("%s usb_register() failed. Error number %d\n",
1555 driver.name, r);
1556 return r;
1557 }
1558
1559 pr_debug("%s initialized\n", driver.name);
1560 return 0;
1561 }
1562
usb_exit(void)1563 static void __exit usb_exit(void)
1564 {
1565 pr_debug("%s usb_exit()\n", driver.name);
1566 usb_deregister(&driver);
1567 destroy_workqueue(zd_workqueue);
1568 }
1569
1570 module_init(usb_init);
1571 module_exit(usb_exit);
1572
zd_ep_regs_out_msg(struct usb_device * udev,void * data,int len,int * actual_length,int timeout)1573 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1574 int *actual_length, int timeout)
1575 {
1576 /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1577 * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1578 * descriptor.
1579 */
1580 struct usb_host_endpoint *ep;
1581 unsigned int pipe;
1582
1583 pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1584 ep = usb_pipe_endpoint(udev, pipe);
1585 if (!ep)
1586 return -EINVAL;
1587
1588 if (usb_endpoint_xfer_int(&ep->desc)) {
1589 return usb_interrupt_msg(udev, pipe, data, len,
1590 actual_length, timeout);
1591 } else {
1592 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1593 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1594 timeout);
1595 }
1596 }
1597
prepare_read_regs_int(struct zd_usb * usb,struct usb_req_read_regs * req,unsigned int count)1598 static void prepare_read_regs_int(struct zd_usb *usb,
1599 struct usb_req_read_regs *req,
1600 unsigned int count)
1601 {
1602 struct zd_usb_interrupt *intr = &usb->intr;
1603
1604 spin_lock_irq(&intr->lock);
1605 atomic_set(&intr->read_regs_enabled, 1);
1606 intr->read_regs.req = req;
1607 intr->read_regs.req_count = count;
1608 reinit_completion(&intr->read_regs.completion);
1609 spin_unlock_irq(&intr->lock);
1610 }
1611
disable_read_regs_int(struct zd_usb * usb)1612 static void disable_read_regs_int(struct zd_usb *usb)
1613 {
1614 struct zd_usb_interrupt *intr = &usb->intr;
1615
1616 spin_lock_irq(&intr->lock);
1617 atomic_set(&intr->read_regs_enabled, 0);
1618 spin_unlock_irq(&intr->lock);
1619 }
1620
check_read_regs(struct zd_usb * usb,struct usb_req_read_regs * req,unsigned int count)1621 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1622 unsigned int count)
1623 {
1624 int i;
1625 struct zd_usb_interrupt *intr = &usb->intr;
1626 struct read_regs_int *rr = &intr->read_regs;
1627 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1628
1629 /* The created block size seems to be larger than expected.
1630 * However results appear to be correct.
1631 */
1632 if (rr->length < struct_size(regs, regs, count)) {
1633 dev_dbg_f(zd_usb_dev(usb),
1634 "error: actual length %d less than expected %zu\n",
1635 rr->length, struct_size(regs, regs, count));
1636 return false;
1637 }
1638
1639 if (rr->length > sizeof(rr->buffer)) {
1640 dev_dbg_f(zd_usb_dev(usb),
1641 "error: actual length %d exceeds buffer size %zu\n",
1642 rr->length, sizeof(rr->buffer));
1643 return false;
1644 }
1645
1646 for (i = 0; i < count; i++) {
1647 struct reg_data *rd = ®s->regs[i];
1648 if (rd->addr != req->addr[i]) {
1649 dev_dbg_f(zd_usb_dev(usb),
1650 "rd[%d] addr %#06hx expected %#06hx\n", i,
1651 le16_to_cpu(rd->addr),
1652 le16_to_cpu(req->addr[i]));
1653 return false;
1654 }
1655 }
1656
1657 return true;
1658 }
1659
get_results(struct zd_usb * usb,u16 * values,struct usb_req_read_regs * req,unsigned int count,bool * retry)1660 static int get_results(struct zd_usb *usb, u16 *values,
1661 struct usb_req_read_regs *req, unsigned int count,
1662 bool *retry)
1663 {
1664 int r;
1665 int i;
1666 struct zd_usb_interrupt *intr = &usb->intr;
1667 struct read_regs_int *rr = &intr->read_regs;
1668 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1669
1670 spin_lock_irq(&intr->lock);
1671
1672 r = -EIO;
1673
1674 /* Read failed because firmware bug? */
1675 *retry = !!intr->read_regs_int_overridden;
1676 if (*retry)
1677 goto error_unlock;
1678
1679 if (!check_read_regs(usb, req, count)) {
1680 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1681 goto error_unlock;
1682 }
1683
1684 for (i = 0; i < count; i++) {
1685 struct reg_data *rd = ®s->regs[i];
1686 values[i] = le16_to_cpu(rd->value);
1687 }
1688
1689 r = 0;
1690 error_unlock:
1691 spin_unlock_irq(&intr->lock);
1692 return r;
1693 }
1694
zd_usb_ioread16v(struct zd_usb * usb,u16 * values,const zd_addr_t * addresses,unsigned int count)1695 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1696 const zd_addr_t *addresses, unsigned int count)
1697 {
1698 int r, i, req_len, actual_req_len, try_count = 0;
1699 struct usb_device *udev;
1700 struct usb_req_read_regs *req = NULL;
1701 unsigned long time_left;
1702 bool retry = false;
1703
1704 if (count < 1) {
1705 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1706 return -EINVAL;
1707 }
1708 if (count > USB_MAX_IOREAD16_COUNT) {
1709 dev_dbg_f(zd_usb_dev(usb),
1710 "error: count %u exceeds possible max %u\n",
1711 count, USB_MAX_IOREAD16_COUNT);
1712 return -EINVAL;
1713 }
1714 if (!usb_int_enabled(usb)) {
1715 dev_dbg_f(zd_usb_dev(usb),
1716 "error: usb interrupt not enabled\n");
1717 return -EWOULDBLOCK;
1718 }
1719
1720 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1721 BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1722 sizeof(__le16) > sizeof(usb->req_buf));
1723 BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1724 sizeof(usb->req_buf));
1725
1726 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1727 req = (void *)usb->req_buf;
1728
1729 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1730 for (i = 0; i < count; i++)
1731 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1732
1733 retry_read:
1734 try_count++;
1735 udev = zd_usb_to_usbdev(usb);
1736 prepare_read_regs_int(usb, req, count);
1737 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1738 if (r) {
1739 dev_dbg_f(zd_usb_dev(usb),
1740 "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1741 goto error;
1742 }
1743 if (req_len != actual_req_len) {
1744 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1745 " req_len %d != actual_req_len %d\n",
1746 req_len, actual_req_len);
1747 r = -EIO;
1748 goto error;
1749 }
1750
1751 time_left = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1752 msecs_to_jiffies(50));
1753 if (!time_left) {
1754 disable_read_regs_int(usb);
1755 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1756 r = -ETIMEDOUT;
1757 goto error;
1758 }
1759
1760 r = get_results(usb, values, req, count, &retry);
1761 if (retry && try_count < 20) {
1762 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1763 try_count);
1764 goto retry_read;
1765 }
1766 error:
1767 return r;
1768 }
1769
iowrite16v_urb_complete(struct urb * urb)1770 static void iowrite16v_urb_complete(struct urb *urb)
1771 {
1772 struct zd_usb *usb = urb->context;
1773
1774 if (urb->status && !usb->cmd_error)
1775 usb->cmd_error = urb->status;
1776
1777 if (!usb->cmd_error &&
1778 urb->actual_length != urb->transfer_buffer_length)
1779 usb->cmd_error = -EIO;
1780 }
1781
zd_submit_waiting_urb(struct zd_usb * usb,bool last)1782 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1783 {
1784 int r = 0;
1785 struct urb *urb = usb->urb_async_waiting;
1786
1787 if (!urb)
1788 return 0;
1789
1790 usb->urb_async_waiting = NULL;
1791
1792 if (!last)
1793 urb->transfer_flags |= URB_NO_INTERRUPT;
1794
1795 usb_anchor_urb(urb, &usb->submitted_cmds);
1796 r = usb_submit_urb(urb, GFP_KERNEL);
1797 if (r) {
1798 usb_unanchor_urb(urb);
1799 dev_dbg_f(zd_usb_dev(usb),
1800 "error in usb_submit_urb(). Error number %d\n", r);
1801 goto error;
1802 }
1803
1804 /* fall-through with r == 0 */
1805 error:
1806 usb_free_urb(urb);
1807 return r;
1808 }
1809
zd_usb_iowrite16v_async_start(struct zd_usb * usb)1810 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1811 {
1812 ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1813 ZD_ASSERT(usb->urb_async_waiting == NULL);
1814 ZD_ASSERT(!usb->in_async);
1815
1816 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1817
1818 usb->in_async = 1;
1819 usb->cmd_error = 0;
1820 usb->urb_async_waiting = NULL;
1821 }
1822
zd_usb_iowrite16v_async_end(struct zd_usb * usb,unsigned int timeout)1823 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1824 {
1825 int r;
1826
1827 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1828 ZD_ASSERT(usb->in_async);
1829
1830 /* Submit last iowrite16v URB */
1831 r = zd_submit_waiting_urb(usb, true);
1832 if (r) {
1833 dev_dbg_f(zd_usb_dev(usb),
1834 "error in zd_submit_waiting_usb(). "
1835 "Error number %d\n", r);
1836
1837 usb_kill_anchored_urbs(&usb->submitted_cmds);
1838 goto error;
1839 }
1840
1841 if (timeout)
1842 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1843 timeout);
1844 if (!timeout) {
1845 usb_kill_anchored_urbs(&usb->submitted_cmds);
1846 if (usb->cmd_error == -ENOENT) {
1847 dev_dbg_f(zd_usb_dev(usb), "timed out");
1848 r = -ETIMEDOUT;
1849 goto error;
1850 }
1851 }
1852
1853 r = usb->cmd_error;
1854 error:
1855 usb->in_async = 0;
1856 return r;
1857 }
1858
zd_usb_iowrite16v_async(struct zd_usb * usb,const struct zd_ioreq16 * ioreqs,unsigned int count)1859 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1860 unsigned int count)
1861 {
1862 int r;
1863 struct usb_device *udev;
1864 struct usb_req_write_regs *req = NULL;
1865 int i, req_len;
1866 struct urb *urb;
1867 struct usb_host_endpoint *ep;
1868
1869 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1870 ZD_ASSERT(usb->in_async);
1871
1872 if (count == 0)
1873 return 0;
1874 if (count > USB_MAX_IOWRITE16_COUNT) {
1875 dev_dbg_f(zd_usb_dev(usb),
1876 "error: count %u exceeds possible max %u\n",
1877 count, USB_MAX_IOWRITE16_COUNT);
1878 return -EINVAL;
1879 }
1880
1881 udev = zd_usb_to_usbdev(usb);
1882
1883 ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1884 if (!ep)
1885 return -ENOENT;
1886
1887 urb = usb_alloc_urb(0, GFP_KERNEL);
1888 if (!urb)
1889 return -ENOMEM;
1890
1891 req_len = struct_size(req, reg_writes, count);
1892 req = kmalloc(req_len, GFP_KERNEL);
1893 if (!req) {
1894 r = -ENOMEM;
1895 goto error;
1896 }
1897
1898 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1899 for (i = 0; i < count; i++) {
1900 struct reg_data *rw = &req->reg_writes[i];
1901 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1902 rw->value = cpu_to_le16(ioreqs[i].value);
1903 }
1904
1905 /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1906 * endpoint is bulk. Select correct type URB by endpoint descriptor.
1907 */
1908 if (usb_endpoint_xfer_int(&ep->desc))
1909 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1910 req, req_len, iowrite16v_urb_complete, usb,
1911 ep->desc.bInterval);
1912 else
1913 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1914 req, req_len, iowrite16v_urb_complete, usb);
1915
1916 urb->transfer_flags |= URB_FREE_BUFFER;
1917
1918 /* Submit previous URB */
1919 r = zd_submit_waiting_urb(usb, false);
1920 if (r) {
1921 dev_dbg_f(zd_usb_dev(usb),
1922 "error in zd_submit_waiting_usb(). "
1923 "Error number %d\n", r);
1924 goto error;
1925 }
1926
1927 /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1928 * of currect batch except for very last.
1929 */
1930 usb->urb_async_waiting = urb;
1931 return 0;
1932 error:
1933 usb_free_urb(urb);
1934 return r;
1935 }
1936
zd_usb_iowrite16v(struct zd_usb * usb,const struct zd_ioreq16 * ioreqs,unsigned int count)1937 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1938 unsigned int count)
1939 {
1940 int r;
1941
1942 zd_usb_iowrite16v_async_start(usb);
1943 r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1944 if (r) {
1945 zd_usb_iowrite16v_async_end(usb, 0);
1946 return r;
1947 }
1948 return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1949 }
1950
zd_usb_rfwrite(struct zd_usb * usb,u32 value,u8 bits)1951 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1952 {
1953 int r;
1954 struct usb_device *udev;
1955 struct usb_req_rfwrite *req = NULL;
1956 int i, req_len, actual_req_len;
1957 u16 bit_value_template;
1958
1959 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1960 dev_dbg_f(zd_usb_dev(usb),
1961 "error: bits %d are smaller than"
1962 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1963 bits, USB_MIN_RFWRITE_BIT_COUNT);
1964 return -EINVAL;
1965 }
1966 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1967 dev_dbg_f(zd_usb_dev(usb),
1968 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1969 bits, USB_MAX_RFWRITE_BIT_COUNT);
1970 return -EINVAL;
1971 }
1972 #ifdef DEBUG
1973 if (value & (~0UL << bits)) {
1974 dev_dbg_f(zd_usb_dev(usb),
1975 "error: value %#09x has bits >= %d set\n",
1976 value, bits);
1977 return -EINVAL;
1978 }
1979 #endif /* DEBUG */
1980
1981 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1982
1983 r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
1984 if (r) {
1985 dev_dbg_f(zd_usb_dev(usb),
1986 "error %d: Couldn't read ZD_CR203\n", r);
1987 return r;
1988 }
1989 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1990
1991 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1992 BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
1993 USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
1994 sizeof(usb->req_buf));
1995 BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
1996 sizeof(usb->req_buf));
1997
1998 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1999 req = (void *)usb->req_buf;
2000
2001 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2002 /* 1: 3683a, but not used in ZYDAS driver */
2003 req->value = cpu_to_le16(2);
2004 req->bits = cpu_to_le16(bits);
2005
2006 for (i = 0; i < bits; i++) {
2007 u16 bv = bit_value_template;
2008 if (value & (1 << (bits-1-i)))
2009 bv |= RF_DATA;
2010 req->bit_values[i] = cpu_to_le16(bv);
2011 }
2012
2013 udev = zd_usb_to_usbdev(usb);
2014 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2015 if (r) {
2016 dev_dbg_f(zd_usb_dev(usb),
2017 "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2018 goto out;
2019 }
2020 if (req_len != actual_req_len) {
2021 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2022 " req_len %d != actual_req_len %d\n",
2023 req_len, actual_req_len);
2024 r = -EIO;
2025 goto out;
2026 }
2027
2028 /* FALL-THROUGH with r == 0 */
2029 out:
2030 return r;
2031 }
2032