1 // SPDX-License-Identifier: 0BSD
2 
3 /*
4  * LZMA2 decoder
5  *
6  * Authors: Lasse Collin <lasse.collin@tukaani.org>
7  *          Igor Pavlov <https://7-zip.org/>
8  */
9 
10 #include "xz_private.h"
11 #include "xz_lzma2.h"
12 
13 /*
14  * Range decoder initialization eats the first five bytes of each LZMA chunk.
15  */
16 #define RC_INIT_BYTES 5
17 
18 /*
19  * Minimum number of usable input buffer to safely decode one LZMA symbol.
20  * The worst case is that we decode 22 bits using probabilities and 26
21  * direct bits. This may decode at maximum of 20 bytes of input. However,
22  * lzma_main() does an extra normalization before returning, thus we
23  * need to put 21 here.
24  */
25 #define LZMA_IN_REQUIRED 21
26 
27 /*
28  * Dictionary (history buffer)
29  *
30  * These are always true:
31  *    start <= pos <= full <= end
32  *    pos <= limit <= end
33  *
34  * In multi-call mode, also these are true:
35  *    end == size
36  *    size <= size_max
37  *    allocated <= size
38  *
39  * Most of these variables are size_t to support single-call mode,
40  * in which the dictionary variables address the actual output
41  * buffer directly.
42  */
43 struct dictionary {
44 	/* Beginning of the history buffer */
45 	uint8_t *buf;
46 
47 	/* Old position in buf (before decoding more data) */
48 	size_t start;
49 
50 	/* Position in buf */
51 	size_t pos;
52 
53 	/*
54 	 * How full dictionary is. This is used to detect corrupt input that
55 	 * would read beyond the beginning of the uncompressed stream.
56 	 */
57 	size_t full;
58 
59 	/* Write limit; we don't write to buf[limit] or later bytes. */
60 	size_t limit;
61 
62 	/*
63 	 * End of the dictionary buffer. In multi-call mode, this is
64 	 * the same as the dictionary size. In single-call mode, this
65 	 * indicates the size of the output buffer.
66 	 */
67 	size_t end;
68 
69 	/*
70 	 * Size of the dictionary as specified in Block Header. This is used
71 	 * together with "full" to detect corrupt input that would make us
72 	 * read beyond the beginning of the uncompressed stream.
73 	 */
74 	uint32_t size;
75 
76 	/*
77 	 * Maximum allowed dictionary size in multi-call mode.
78 	 * This is ignored in single-call mode.
79 	 */
80 	uint32_t size_max;
81 
82 	/*
83 	 * Amount of memory currently allocated for the dictionary.
84 	 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
85 	 * size_max is always the same as the allocated size.)
86 	 */
87 	uint32_t allocated;
88 
89 	/* Operation mode */
90 	enum xz_mode mode;
91 };
92 
93 /* Range decoder */
94 struct rc_dec {
95 	uint32_t range;
96 	uint32_t code;
97 
98 	/*
99 	 * Number of initializing bytes remaining to be read
100 	 * by rc_read_init().
101 	 */
102 	uint32_t init_bytes_left;
103 
104 	/*
105 	 * Buffer from which we read our input. It can be either
106 	 * temp.buf or the caller-provided input buffer.
107 	 */
108 	const uint8_t *in;
109 	size_t in_pos;
110 	size_t in_limit;
111 };
112 
113 /* Probabilities for a length decoder. */
114 struct lzma_len_dec {
115 	/* Probability of match length being at least 10 */
116 	uint16_t choice;
117 
118 	/* Probability of match length being at least 18 */
119 	uint16_t choice2;
120 
121 	/* Probabilities for match lengths 2-9 */
122 	uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
123 
124 	/* Probabilities for match lengths 10-17 */
125 	uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
126 
127 	/* Probabilities for match lengths 18-273 */
128 	uint16_t high[LEN_HIGH_SYMBOLS];
129 };
130 
131 struct lzma_dec {
132 	/* Distances of latest four matches */
133 	uint32_t rep0;
134 	uint32_t rep1;
135 	uint32_t rep2;
136 	uint32_t rep3;
137 
138 	/* Types of the most recently seen LZMA symbols */
139 	enum lzma_state state;
140 
141 	/*
142 	 * Length of a match. This is updated so that dict_repeat can
143 	 * be called again to finish repeating the whole match.
144 	 */
145 	uint32_t len;
146 
147 	/*
148 	 * LZMA properties or related bit masks (number of literal
149 	 * context bits, a mask derived from the number of literal
150 	 * position bits, and a mask derived from the number
151 	 * position bits)
152 	 */
153 	uint32_t lc;
154 	uint32_t literal_pos_mask; /* (1 << lp) - 1 */
155 	uint32_t pos_mask;         /* (1 << pb) - 1 */
156 
157 	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
158 	uint16_t is_match[STATES][POS_STATES_MAX];
159 
160 	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
161 	uint16_t is_rep[STATES];
162 
163 	/*
164 	 * If 0, distance of a repeated match is rep0.
165 	 * Otherwise check is_rep1.
166 	 */
167 	uint16_t is_rep0[STATES];
168 
169 	/*
170 	 * If 0, distance of a repeated match is rep1.
171 	 * Otherwise check is_rep2.
172 	 */
173 	uint16_t is_rep1[STATES];
174 
175 	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
176 	uint16_t is_rep2[STATES];
177 
178 	/*
179 	 * If 1, the repeated match has length of one byte. Otherwise
180 	 * the length is decoded from rep_len_decoder.
181 	 */
182 	uint16_t is_rep0_long[STATES][POS_STATES_MAX];
183 
184 	/*
185 	 * Probability tree for the highest two bits of the match
186 	 * distance. There is a separate probability tree for match
187 	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
188 	 */
189 	uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
190 
191 	/*
192 	 * Probility trees for additional bits for match distance
193 	 * when the distance is in the range [4, 127].
194 	 */
195 	uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
196 
197 	/*
198 	 * Probability tree for the lowest four bits of a match
199 	 * distance that is equal to or greater than 128.
200 	 */
201 	uint16_t dist_align[ALIGN_SIZE];
202 
203 	/* Length of a normal match */
204 	struct lzma_len_dec match_len_dec;
205 
206 	/* Length of a repeated match */
207 	struct lzma_len_dec rep_len_dec;
208 
209 	/* Probabilities of literals */
210 	uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
211 };
212 
213 struct lzma2_dec {
214 	/* Position in xz_dec_lzma2_run(). */
215 	enum lzma2_seq {
216 		SEQ_CONTROL,
217 		SEQ_UNCOMPRESSED_1,
218 		SEQ_UNCOMPRESSED_2,
219 		SEQ_COMPRESSED_0,
220 		SEQ_COMPRESSED_1,
221 		SEQ_PROPERTIES,
222 		SEQ_LZMA_PREPARE,
223 		SEQ_LZMA_RUN,
224 		SEQ_COPY
225 	} sequence;
226 
227 	/* Next position after decoding the compressed size of the chunk. */
228 	enum lzma2_seq next_sequence;
229 
230 	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
231 	uint32_t uncompressed;
232 
233 	/*
234 	 * Compressed size of LZMA chunk or compressed/uncompressed
235 	 * size of uncompressed chunk (64 KiB at maximum)
236 	 */
237 	uint32_t compressed;
238 
239 	/*
240 	 * True if dictionary reset is needed. This is false before
241 	 * the first chunk (LZMA or uncompressed).
242 	 */
243 	bool need_dict_reset;
244 
245 	/*
246 	 * True if new LZMA properties are needed. This is false
247 	 * before the first LZMA chunk.
248 	 */
249 	bool need_props;
250 
251 #ifdef XZ_DEC_MICROLZMA
252 	bool pedantic_microlzma;
253 #endif
254 };
255 
256 struct xz_dec_lzma2 {
257 	/*
258 	 * The order below is important on x86 to reduce code size and
259 	 * it shouldn't hurt on other platforms. Everything up to and
260 	 * including lzma.pos_mask are in the first 128 bytes on x86-32,
261 	 * which allows using smaller instructions to access those
262 	 * variables. On x86-64, fewer variables fit into the first 128
263 	 * bytes, but this is still the best order without sacrificing
264 	 * the readability by splitting the structures.
265 	 */
266 	struct rc_dec rc;
267 	struct dictionary dict;
268 	struct lzma2_dec lzma2;
269 	struct lzma_dec lzma;
270 
271 	/*
272 	 * Temporary buffer which holds small number of input bytes between
273 	 * decoder calls. See lzma2_lzma() for details.
274 	 */
275 	struct {
276 		uint32_t size;
277 		uint8_t buf[3 * LZMA_IN_REQUIRED];
278 	} temp;
279 };
280 
281 /**************
282  * Dictionary *
283  **************/
284 
285 /*
286  * Reset the dictionary state. When in single-call mode, set up the beginning
287  * of the dictionary to point to the actual output buffer.
288  */
dict_reset(struct dictionary * dict,struct xz_buf * b)289 static void dict_reset(struct dictionary *dict, struct xz_buf *b)
290 {
291 	if (DEC_IS_SINGLE(dict->mode)) {
292 		dict->buf = b->out + b->out_pos;
293 		dict->end = b->out_size - b->out_pos;
294 	}
295 
296 	dict->start = 0;
297 	dict->pos = 0;
298 	dict->limit = 0;
299 	dict->full = 0;
300 }
301 
302 /* Set dictionary write limit */
dict_limit(struct dictionary * dict,size_t out_max)303 static void dict_limit(struct dictionary *dict, size_t out_max)
304 {
305 	if (dict->end - dict->pos <= out_max)
306 		dict->limit = dict->end;
307 	else
308 		dict->limit = dict->pos + out_max;
309 }
310 
311 /* Return true if at least one byte can be written into the dictionary. */
dict_has_space(const struct dictionary * dict)312 static inline bool dict_has_space(const struct dictionary *dict)
313 {
314 	return dict->pos < dict->limit;
315 }
316 
317 /*
318  * Get a byte from the dictionary at the given distance. The distance is
319  * assumed to valid, or as a special case, zero when the dictionary is
320  * still empty. This special case is needed for single-call decoding to
321  * avoid writing a '\0' to the end of the destination buffer.
322  */
dict_get(const struct dictionary * dict,uint32_t dist)323 static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
324 {
325 	size_t offset = dict->pos - dist - 1;
326 
327 	if (dist >= dict->pos)
328 		offset += dict->end;
329 
330 	return dict->full > 0 ? dict->buf[offset] : 0;
331 }
332 
333 /*
334  * Put one byte into the dictionary. It is assumed that there is space for it.
335  */
dict_put(struct dictionary * dict,uint8_t byte)336 static inline void dict_put(struct dictionary *dict, uint8_t byte)
337 {
338 	dict->buf[dict->pos++] = byte;
339 
340 	if (dict->full < dict->pos)
341 		dict->full = dict->pos;
342 }
343 
344 /*
345  * Repeat given number of bytes from the given distance. If the distance is
346  * invalid, false is returned. On success, true is returned and *len is
347  * updated to indicate how many bytes were left to be repeated.
348  */
dict_repeat(struct dictionary * dict,uint32_t * len,uint32_t dist)349 static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
350 {
351 	size_t back;
352 	uint32_t left;
353 
354 	if (dist >= dict->full || dist >= dict->size)
355 		return false;
356 
357 	left = min_t(size_t, dict->limit - dict->pos, *len);
358 	*len -= left;
359 
360 	back = dict->pos - dist - 1;
361 	if (dist >= dict->pos)
362 		back += dict->end;
363 
364 	do {
365 		dict->buf[dict->pos++] = dict->buf[back++];
366 		if (back == dict->end)
367 			back = 0;
368 	} while (--left > 0);
369 
370 	if (dict->full < dict->pos)
371 		dict->full = dict->pos;
372 
373 	return true;
374 }
375 
376 /* Copy uncompressed data as is from input to dictionary and output buffers. */
dict_uncompressed(struct dictionary * dict,struct xz_buf * b,uint32_t * left)377 static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
378 			      uint32_t *left)
379 {
380 	size_t copy_size;
381 
382 	while (*left > 0 && b->in_pos < b->in_size
383 			&& b->out_pos < b->out_size) {
384 		copy_size = min(b->in_size - b->in_pos,
385 				b->out_size - b->out_pos);
386 		if (copy_size > dict->end - dict->pos)
387 			copy_size = dict->end - dict->pos;
388 		if (copy_size > *left)
389 			copy_size = *left;
390 
391 		*left -= copy_size;
392 
393 		/*
394 		 * If doing in-place decompression in single-call mode and the
395 		 * uncompressed size of the file is larger than the caller
396 		 * thought (i.e. it is invalid input!), the buffers below may
397 		 * overlap and cause undefined behavior with memcpy().
398 		 * With valid inputs memcpy() would be fine here.
399 		 */
400 		memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
401 		dict->pos += copy_size;
402 
403 		if (dict->full < dict->pos)
404 			dict->full = dict->pos;
405 
406 		if (DEC_IS_MULTI(dict->mode)) {
407 			if (dict->pos == dict->end)
408 				dict->pos = 0;
409 
410 			/*
411 			 * Like above but for multi-call mode: use memmove()
412 			 * to avoid undefined behavior with invalid input.
413 			 */
414 			memmove(b->out + b->out_pos, b->in + b->in_pos,
415 					copy_size);
416 		}
417 
418 		dict->start = dict->pos;
419 
420 		b->out_pos += copy_size;
421 		b->in_pos += copy_size;
422 	}
423 }
424 
425 #ifdef XZ_DEC_MICROLZMA
426 #	define DICT_FLUSH_SUPPORTS_SKIPPING true
427 #else
428 #	define DICT_FLUSH_SUPPORTS_SKIPPING false
429 #endif
430 
431 /*
432  * Flush pending data from dictionary to b->out. It is assumed that there is
433  * enough space in b->out. This is guaranteed because caller uses dict_limit()
434  * before decoding data into the dictionary.
435  */
dict_flush(struct dictionary * dict,struct xz_buf * b)436 static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
437 {
438 	size_t copy_size = dict->pos - dict->start;
439 
440 	if (DEC_IS_MULTI(dict->mode)) {
441 		if (dict->pos == dict->end)
442 			dict->pos = 0;
443 
444 		/*
445 		 * These buffers cannot overlap even if doing in-place
446 		 * decompression because in multi-call mode dict->buf
447 		 * has been allocated by us in this file; it's not
448 		 * provided by the caller like in single-call mode.
449 		 *
450 		 * With MicroLZMA, b->out can be NULL to skip bytes that
451 		 * the caller doesn't need. This cannot be done with XZ
452 		 * because it would break BCJ filters.
453 		 */
454 		if (!DICT_FLUSH_SUPPORTS_SKIPPING || b->out != NULL)
455 			memcpy(b->out + b->out_pos, dict->buf + dict->start,
456 					copy_size);
457 	}
458 
459 	dict->start = dict->pos;
460 	b->out_pos += copy_size;
461 	return copy_size;
462 }
463 
464 /*****************
465  * Range decoder *
466  *****************/
467 
468 /* Reset the range decoder. */
rc_reset(struct rc_dec * rc)469 static void rc_reset(struct rc_dec *rc)
470 {
471 	rc->range = (uint32_t)-1;
472 	rc->code = 0;
473 	rc->init_bytes_left = RC_INIT_BYTES;
474 }
475 
476 /*
477  * Read the first five initial bytes into rc->code if they haven't been
478  * read already. (Yes, the first byte gets completely ignored.)
479  */
rc_read_init(struct rc_dec * rc,struct xz_buf * b)480 static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
481 {
482 	while (rc->init_bytes_left > 0) {
483 		if (b->in_pos == b->in_size)
484 			return false;
485 
486 		rc->code = (rc->code << 8) + b->in[b->in_pos++];
487 		--rc->init_bytes_left;
488 	}
489 
490 	return true;
491 }
492 
493 /* Return true if there may not be enough input for the next decoding loop. */
rc_limit_exceeded(const struct rc_dec * rc)494 static inline bool rc_limit_exceeded(const struct rc_dec *rc)
495 {
496 	return rc->in_pos > rc->in_limit;
497 }
498 
499 /*
500  * Return true if it is possible (from point of view of range decoder) that
501  * we have reached the end of the LZMA chunk.
502  */
rc_is_finished(const struct rc_dec * rc)503 static inline bool rc_is_finished(const struct rc_dec *rc)
504 {
505 	return rc->code == 0;
506 }
507 
508 /* Read the next input byte if needed. */
rc_normalize(struct rc_dec * rc)509 static __always_inline void rc_normalize(struct rc_dec *rc)
510 {
511 	if (rc->range < RC_TOP_VALUE) {
512 		rc->range <<= RC_SHIFT_BITS;
513 		rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
514 	}
515 }
516 
517 /*
518  * Decode one bit. In some versions, this function has been split in three
519  * functions so that the compiler is supposed to be able to more easily avoid
520  * an extra branch. In this particular version of the LZMA decoder, this
521  * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
522  * on x86). Using a non-split version results in nicer looking code too.
523  *
524  * NOTE: This must return an int. Do not make it return a bool or the speed
525  * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
526  * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
527  */
rc_bit(struct rc_dec * rc,uint16_t * prob)528 static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
529 {
530 	uint32_t bound;
531 	int bit;
532 
533 	rc_normalize(rc);
534 	bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
535 	if (rc->code < bound) {
536 		rc->range = bound;
537 		*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
538 		bit = 0;
539 	} else {
540 		rc->range -= bound;
541 		rc->code -= bound;
542 		*prob -= *prob >> RC_MOVE_BITS;
543 		bit = 1;
544 	}
545 
546 	return bit;
547 }
548 
549 /* Decode a bittree starting from the most significant bit. */
rc_bittree(struct rc_dec * rc,uint16_t * probs,uint32_t limit)550 static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
551 					   uint16_t *probs, uint32_t limit)
552 {
553 	uint32_t symbol = 1;
554 
555 	do {
556 		if (rc_bit(rc, &probs[symbol]))
557 			symbol = (symbol << 1) + 1;
558 		else
559 			symbol <<= 1;
560 	} while (symbol < limit);
561 
562 	return symbol;
563 }
564 
565 /* Decode a bittree starting from the least significant bit. */
rc_bittree_reverse(struct rc_dec * rc,uint16_t * probs,uint32_t * dest,uint32_t limit)566 static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
567 					       uint16_t *probs,
568 					       uint32_t *dest, uint32_t limit)
569 {
570 	uint32_t symbol = 1;
571 	uint32_t i = 0;
572 
573 	do {
574 		if (rc_bit(rc, &probs[symbol])) {
575 			symbol = (symbol << 1) + 1;
576 			*dest += 1 << i;
577 		} else {
578 			symbol <<= 1;
579 		}
580 	} while (++i < limit);
581 }
582 
583 /* Decode direct bits (fixed fifty-fifty probability) */
rc_direct(struct rc_dec * rc,uint32_t * dest,uint32_t limit)584 static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
585 {
586 	uint32_t mask;
587 
588 	do {
589 		rc_normalize(rc);
590 		rc->range >>= 1;
591 		rc->code -= rc->range;
592 		mask = (uint32_t)0 - (rc->code >> 31);
593 		rc->code += rc->range & mask;
594 		*dest = (*dest << 1) + (mask + 1);
595 	} while (--limit > 0);
596 }
597 
598 /********
599  * LZMA *
600  ********/
601 
602 /* Get pointer to literal coder probability array. */
lzma_literal_probs(struct xz_dec_lzma2 * s)603 static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
604 {
605 	uint32_t prev_byte = dict_get(&s->dict, 0);
606 	uint32_t low = prev_byte >> (8 - s->lzma.lc);
607 	uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
608 	return s->lzma.literal[low + high];
609 }
610 
611 /* Decode a literal (one 8-bit byte) */
lzma_literal(struct xz_dec_lzma2 * s)612 static void lzma_literal(struct xz_dec_lzma2 *s)
613 {
614 	uint16_t *probs;
615 	uint32_t symbol;
616 	uint32_t match_byte;
617 	uint32_t match_bit;
618 	uint32_t offset;
619 	uint32_t i;
620 
621 	probs = lzma_literal_probs(s);
622 
623 	if (lzma_state_is_literal(s->lzma.state)) {
624 		symbol = rc_bittree(&s->rc, probs, 0x100);
625 	} else {
626 		symbol = 1;
627 		match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
628 		offset = 0x100;
629 
630 		do {
631 			match_bit = match_byte & offset;
632 			match_byte <<= 1;
633 			i = offset + match_bit + symbol;
634 
635 			if (rc_bit(&s->rc, &probs[i])) {
636 				symbol = (symbol << 1) + 1;
637 				offset &= match_bit;
638 			} else {
639 				symbol <<= 1;
640 				offset &= ~match_bit;
641 			}
642 		} while (symbol < 0x100);
643 	}
644 
645 	dict_put(&s->dict, (uint8_t)symbol);
646 	lzma_state_literal(&s->lzma.state);
647 }
648 
649 /* Decode the length of the match into s->lzma.len. */
lzma_len(struct xz_dec_lzma2 * s,struct lzma_len_dec * l,uint32_t pos_state)650 static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
651 		     uint32_t pos_state)
652 {
653 	uint16_t *probs;
654 	uint32_t limit;
655 
656 	if (!rc_bit(&s->rc, &l->choice)) {
657 		probs = l->low[pos_state];
658 		limit = LEN_LOW_SYMBOLS;
659 		s->lzma.len = MATCH_LEN_MIN;
660 	} else {
661 		if (!rc_bit(&s->rc, &l->choice2)) {
662 			probs = l->mid[pos_state];
663 			limit = LEN_MID_SYMBOLS;
664 			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
665 		} else {
666 			probs = l->high;
667 			limit = LEN_HIGH_SYMBOLS;
668 			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
669 					+ LEN_MID_SYMBOLS;
670 		}
671 	}
672 
673 	s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
674 }
675 
676 /* Decode a match. The distance will be stored in s->lzma.rep0. */
lzma_match(struct xz_dec_lzma2 * s,uint32_t pos_state)677 static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
678 {
679 	uint16_t *probs;
680 	uint32_t dist_slot;
681 	uint32_t limit;
682 
683 	lzma_state_match(&s->lzma.state);
684 
685 	s->lzma.rep3 = s->lzma.rep2;
686 	s->lzma.rep2 = s->lzma.rep1;
687 	s->lzma.rep1 = s->lzma.rep0;
688 
689 	lzma_len(s, &s->lzma.match_len_dec, pos_state);
690 
691 	probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
692 	dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
693 
694 	if (dist_slot < DIST_MODEL_START) {
695 		s->lzma.rep0 = dist_slot;
696 	} else {
697 		limit = (dist_slot >> 1) - 1;
698 		s->lzma.rep0 = 2 + (dist_slot & 1);
699 
700 		if (dist_slot < DIST_MODEL_END) {
701 			s->lzma.rep0 <<= limit;
702 			probs = s->lzma.dist_special + s->lzma.rep0
703 					- dist_slot - 1;
704 			rc_bittree_reverse(&s->rc, probs,
705 					&s->lzma.rep0, limit);
706 		} else {
707 			rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
708 			s->lzma.rep0 <<= ALIGN_BITS;
709 			rc_bittree_reverse(&s->rc, s->lzma.dist_align,
710 					&s->lzma.rep0, ALIGN_BITS);
711 		}
712 	}
713 }
714 
715 /*
716  * Decode a repeated match. The distance is one of the four most recently
717  * seen matches. The distance will be stored in s->lzma.rep0.
718  */
lzma_rep_match(struct xz_dec_lzma2 * s,uint32_t pos_state)719 static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
720 {
721 	uint32_t tmp;
722 
723 	if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
724 		if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
725 				s->lzma.state][pos_state])) {
726 			lzma_state_short_rep(&s->lzma.state);
727 			s->lzma.len = 1;
728 			return;
729 		}
730 	} else {
731 		if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
732 			tmp = s->lzma.rep1;
733 		} else {
734 			if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
735 				tmp = s->lzma.rep2;
736 			} else {
737 				tmp = s->lzma.rep3;
738 				s->lzma.rep3 = s->lzma.rep2;
739 			}
740 
741 			s->lzma.rep2 = s->lzma.rep1;
742 		}
743 
744 		s->lzma.rep1 = s->lzma.rep0;
745 		s->lzma.rep0 = tmp;
746 	}
747 
748 	lzma_state_long_rep(&s->lzma.state);
749 	lzma_len(s, &s->lzma.rep_len_dec, pos_state);
750 }
751 
752 /* LZMA decoder core */
lzma_main(struct xz_dec_lzma2 * s)753 static bool lzma_main(struct xz_dec_lzma2 *s)
754 {
755 	uint32_t pos_state;
756 
757 	/*
758 	 * If the dictionary was reached during the previous call, try to
759 	 * finish the possibly pending repeat in the dictionary.
760 	 */
761 	if (dict_has_space(&s->dict) && s->lzma.len > 0)
762 		dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
763 
764 	/*
765 	 * Decode more LZMA symbols. One iteration may consume up to
766 	 * LZMA_IN_REQUIRED - 1 bytes.
767 	 */
768 	while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
769 		pos_state = s->dict.pos & s->lzma.pos_mask;
770 
771 		if (!rc_bit(&s->rc, &s->lzma.is_match[
772 				s->lzma.state][pos_state])) {
773 			lzma_literal(s);
774 		} else {
775 			if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
776 				lzma_rep_match(s, pos_state);
777 			else
778 				lzma_match(s, pos_state);
779 
780 			if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
781 				return false;
782 		}
783 	}
784 
785 	/*
786 	 * Having the range decoder always normalized when we are outside
787 	 * this function makes it easier to correctly handle end of the chunk.
788 	 */
789 	rc_normalize(&s->rc);
790 
791 	return true;
792 }
793 
794 /*
795  * Reset the LZMA decoder and range decoder state. Dictionary is not reset
796  * here, because LZMA state may be reset without resetting the dictionary.
797  */
lzma_reset(struct xz_dec_lzma2 * s)798 static void lzma_reset(struct xz_dec_lzma2 *s)
799 {
800 	uint16_t *probs;
801 	size_t i;
802 
803 	s->lzma.state = STATE_LIT_LIT;
804 	s->lzma.rep0 = 0;
805 	s->lzma.rep1 = 0;
806 	s->lzma.rep2 = 0;
807 	s->lzma.rep3 = 0;
808 	s->lzma.len = 0;
809 
810 	/*
811 	 * All probabilities are initialized to the same value. This hack
812 	 * makes the code smaller by avoiding a separate loop for each
813 	 * probability array.
814 	 *
815 	 * This could be optimized so that only that part of literal
816 	 * probabilities that are actually required. In the common case
817 	 * we would write 12 KiB less.
818 	 */
819 	probs = s->lzma.is_match[0];
820 	for (i = 0; i < PROBS_TOTAL; ++i)
821 		probs[i] = RC_BIT_MODEL_TOTAL / 2;
822 
823 	rc_reset(&s->rc);
824 }
825 
826 /*
827  * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
828  * from the decoded lp and pb values. On success, the LZMA decoder state is
829  * reset and true is returned.
830  */
lzma_props(struct xz_dec_lzma2 * s,uint8_t props)831 static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
832 {
833 	if (props > (4 * 5 + 4) * 9 + 8)
834 		return false;
835 
836 	s->lzma.pos_mask = 0;
837 	while (props >= 9 * 5) {
838 		props -= 9 * 5;
839 		++s->lzma.pos_mask;
840 	}
841 
842 	s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
843 
844 	s->lzma.literal_pos_mask = 0;
845 	while (props >= 9) {
846 		props -= 9;
847 		++s->lzma.literal_pos_mask;
848 	}
849 
850 	s->lzma.lc = props;
851 
852 	if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
853 		return false;
854 
855 	s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
856 
857 	lzma_reset(s);
858 
859 	return true;
860 }
861 
862 /*********
863  * LZMA2 *
864  *********/
865 
866 /*
867  * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
868  * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
869  * wrapper function takes care of making the LZMA decoder's assumption safe.
870  *
871  * As long as there is plenty of input left to be decoded in the current LZMA
872  * chunk, we decode directly from the caller-supplied input buffer until
873  * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
874  * s->temp.buf, which (hopefully) gets filled on the next call to this
875  * function. We decode a few bytes from the temporary buffer so that we can
876  * continue decoding from the caller-supplied input buffer again.
877  */
lzma2_lzma(struct xz_dec_lzma2 * s,struct xz_buf * b)878 static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
879 {
880 	size_t in_avail;
881 	uint32_t tmp;
882 
883 	in_avail = b->in_size - b->in_pos;
884 	if (s->temp.size > 0 || s->lzma2.compressed == 0) {
885 		tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
886 		if (tmp > s->lzma2.compressed - s->temp.size)
887 			tmp = s->lzma2.compressed - s->temp.size;
888 		if (tmp > in_avail)
889 			tmp = in_avail;
890 
891 		memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
892 
893 		if (s->temp.size + tmp == s->lzma2.compressed) {
894 			memzero(s->temp.buf + s->temp.size + tmp,
895 					sizeof(s->temp.buf)
896 						- s->temp.size - tmp);
897 			s->rc.in_limit = s->temp.size + tmp;
898 		} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
899 			s->temp.size += tmp;
900 			b->in_pos += tmp;
901 			return true;
902 		} else {
903 			s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
904 		}
905 
906 		s->rc.in = s->temp.buf;
907 		s->rc.in_pos = 0;
908 
909 		if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
910 			return false;
911 
912 		s->lzma2.compressed -= s->rc.in_pos;
913 
914 		if (s->rc.in_pos < s->temp.size) {
915 			s->temp.size -= s->rc.in_pos;
916 			memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
917 					s->temp.size);
918 			return true;
919 		}
920 
921 		b->in_pos += s->rc.in_pos - s->temp.size;
922 		s->temp.size = 0;
923 	}
924 
925 	in_avail = b->in_size - b->in_pos;
926 	if (in_avail >= LZMA_IN_REQUIRED) {
927 		s->rc.in = b->in;
928 		s->rc.in_pos = b->in_pos;
929 
930 		if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
931 			s->rc.in_limit = b->in_pos + s->lzma2.compressed;
932 		else
933 			s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
934 
935 		if (!lzma_main(s))
936 			return false;
937 
938 		in_avail = s->rc.in_pos - b->in_pos;
939 		if (in_avail > s->lzma2.compressed)
940 			return false;
941 
942 		s->lzma2.compressed -= in_avail;
943 		b->in_pos = s->rc.in_pos;
944 	}
945 
946 	in_avail = b->in_size - b->in_pos;
947 	if (in_avail < LZMA_IN_REQUIRED) {
948 		if (in_avail > s->lzma2.compressed)
949 			in_avail = s->lzma2.compressed;
950 
951 		memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
952 		s->temp.size = in_avail;
953 		b->in_pos += in_avail;
954 	}
955 
956 	return true;
957 }
958 
959 /*
960  * Take care of the LZMA2 control layer, and forward the job of actual LZMA
961  * decoding or copying of uncompressed chunks to other functions.
962  */
xz_dec_lzma2_run(struct xz_dec_lzma2 * s,struct xz_buf * b)963 enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, struct xz_buf *b)
964 {
965 	uint32_t tmp;
966 
967 	while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
968 		switch (s->lzma2.sequence) {
969 		case SEQ_CONTROL:
970 			/*
971 			 * LZMA2 control byte
972 			 *
973 			 * Exact values:
974 			 *   0x00   End marker
975 			 *   0x01   Dictionary reset followed by
976 			 *          an uncompressed chunk
977 			 *   0x02   Uncompressed chunk (no dictionary reset)
978 			 *
979 			 * Highest three bits (s->control & 0xE0):
980 			 *   0xE0   Dictionary reset, new properties and state
981 			 *          reset, followed by LZMA compressed chunk
982 			 *   0xC0   New properties and state reset, followed
983 			 *          by LZMA compressed chunk (no dictionary
984 			 *          reset)
985 			 *   0xA0   State reset using old properties,
986 			 *          followed by LZMA compressed chunk (no
987 			 *          dictionary reset)
988 			 *   0x80   LZMA chunk (no dictionary or state reset)
989 			 *
990 			 * For LZMA compressed chunks, the lowest five bits
991 			 * (s->control & 1F) are the highest bits of the
992 			 * uncompressed size (bits 16-20).
993 			 *
994 			 * A new LZMA2 stream must begin with a dictionary
995 			 * reset. The first LZMA chunk must set new
996 			 * properties and reset the LZMA state.
997 			 *
998 			 * Values that don't match anything described above
999 			 * are invalid and we return XZ_DATA_ERROR.
1000 			 */
1001 			tmp = b->in[b->in_pos++];
1002 
1003 			if (tmp == 0x00)
1004 				return XZ_STREAM_END;
1005 
1006 			if (tmp >= 0xE0 || tmp == 0x01) {
1007 				s->lzma2.need_props = true;
1008 				s->lzma2.need_dict_reset = false;
1009 				dict_reset(&s->dict, b);
1010 			} else if (s->lzma2.need_dict_reset) {
1011 				return XZ_DATA_ERROR;
1012 			}
1013 
1014 			if (tmp >= 0x80) {
1015 				s->lzma2.uncompressed = (tmp & 0x1F) << 16;
1016 				s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
1017 
1018 				if (tmp >= 0xC0) {
1019 					/*
1020 					 * When there are new properties,
1021 					 * state reset is done at
1022 					 * SEQ_PROPERTIES.
1023 					 */
1024 					s->lzma2.need_props = false;
1025 					s->lzma2.next_sequence
1026 							= SEQ_PROPERTIES;
1027 
1028 				} else if (s->lzma2.need_props) {
1029 					return XZ_DATA_ERROR;
1030 
1031 				} else {
1032 					s->lzma2.next_sequence
1033 							= SEQ_LZMA_PREPARE;
1034 					if (tmp >= 0xA0)
1035 						lzma_reset(s);
1036 				}
1037 			} else {
1038 				if (tmp > 0x02)
1039 					return XZ_DATA_ERROR;
1040 
1041 				s->lzma2.sequence = SEQ_COMPRESSED_0;
1042 				s->lzma2.next_sequence = SEQ_COPY;
1043 			}
1044 
1045 			break;
1046 
1047 		case SEQ_UNCOMPRESSED_1:
1048 			s->lzma2.uncompressed
1049 					+= (uint32_t)b->in[b->in_pos++] << 8;
1050 			s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1051 			break;
1052 
1053 		case SEQ_UNCOMPRESSED_2:
1054 			s->lzma2.uncompressed
1055 					+= (uint32_t)b->in[b->in_pos++] + 1;
1056 			s->lzma2.sequence = SEQ_COMPRESSED_0;
1057 			break;
1058 
1059 		case SEQ_COMPRESSED_0:
1060 			s->lzma2.compressed
1061 					= (uint32_t)b->in[b->in_pos++] << 8;
1062 			s->lzma2.sequence = SEQ_COMPRESSED_1;
1063 			break;
1064 
1065 		case SEQ_COMPRESSED_1:
1066 			s->lzma2.compressed
1067 					+= (uint32_t)b->in[b->in_pos++] + 1;
1068 			s->lzma2.sequence = s->lzma2.next_sequence;
1069 			break;
1070 
1071 		case SEQ_PROPERTIES:
1072 			if (!lzma_props(s, b->in[b->in_pos++]))
1073 				return XZ_DATA_ERROR;
1074 
1075 			s->lzma2.sequence = SEQ_LZMA_PREPARE;
1076 
1077 			fallthrough;
1078 
1079 		case SEQ_LZMA_PREPARE:
1080 			if (s->lzma2.compressed < RC_INIT_BYTES)
1081 				return XZ_DATA_ERROR;
1082 
1083 			if (!rc_read_init(&s->rc, b))
1084 				return XZ_OK;
1085 
1086 			s->lzma2.compressed -= RC_INIT_BYTES;
1087 			s->lzma2.sequence = SEQ_LZMA_RUN;
1088 
1089 			fallthrough;
1090 
1091 		case SEQ_LZMA_RUN:
1092 			/*
1093 			 * Set dictionary limit to indicate how much we want
1094 			 * to be encoded at maximum. Decode new data into the
1095 			 * dictionary. Flush the new data from dictionary to
1096 			 * b->out. Check if we finished decoding this chunk.
1097 			 * In case the dictionary got full but we didn't fill
1098 			 * the output buffer yet, we may run this loop
1099 			 * multiple times without changing s->lzma2.sequence.
1100 			 */
1101 			dict_limit(&s->dict, min_t(size_t,
1102 					b->out_size - b->out_pos,
1103 					s->lzma2.uncompressed));
1104 			if (!lzma2_lzma(s, b))
1105 				return XZ_DATA_ERROR;
1106 
1107 			s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1108 
1109 			if (s->lzma2.uncompressed == 0) {
1110 				if (s->lzma2.compressed > 0 || s->lzma.len > 0
1111 						|| !rc_is_finished(&s->rc))
1112 					return XZ_DATA_ERROR;
1113 
1114 				rc_reset(&s->rc);
1115 				s->lzma2.sequence = SEQ_CONTROL;
1116 
1117 			} else if (b->out_pos == b->out_size
1118 					|| (b->in_pos == b->in_size
1119 						&& s->temp.size
1120 						< s->lzma2.compressed)) {
1121 				return XZ_OK;
1122 			}
1123 
1124 			break;
1125 
1126 		case SEQ_COPY:
1127 			dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1128 			if (s->lzma2.compressed > 0)
1129 				return XZ_OK;
1130 
1131 			s->lzma2.sequence = SEQ_CONTROL;
1132 			break;
1133 		}
1134 	}
1135 
1136 	return XZ_OK;
1137 }
1138 
xz_dec_lzma2_create(enum xz_mode mode,uint32_t dict_max)1139 struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, uint32_t dict_max)
1140 {
1141 	struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1142 	if (s == NULL)
1143 		return NULL;
1144 
1145 	s->dict.mode = mode;
1146 	s->dict.size_max = dict_max;
1147 
1148 	if (DEC_IS_PREALLOC(mode)) {
1149 		s->dict.buf = vmalloc(dict_max);
1150 		if (s->dict.buf == NULL) {
1151 			kfree(s);
1152 			return NULL;
1153 		}
1154 	} else if (DEC_IS_DYNALLOC(mode)) {
1155 		s->dict.buf = NULL;
1156 		s->dict.allocated = 0;
1157 	}
1158 
1159 	return s;
1160 }
1161 
xz_dec_lzma2_reset(struct xz_dec_lzma2 * s,uint8_t props)1162 enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
1163 {
1164 	/* This limits dictionary size to 3 GiB to keep parsing simpler. */
1165 	if (props > 39)
1166 		return XZ_OPTIONS_ERROR;
1167 
1168 	s->dict.size = 2 + (props & 1);
1169 	s->dict.size <<= (props >> 1) + 11;
1170 
1171 	if (DEC_IS_MULTI(s->dict.mode)) {
1172 		if (s->dict.size > s->dict.size_max)
1173 			return XZ_MEMLIMIT_ERROR;
1174 
1175 		s->dict.end = s->dict.size;
1176 
1177 		if (DEC_IS_DYNALLOC(s->dict.mode)) {
1178 			if (s->dict.allocated < s->dict.size) {
1179 				s->dict.allocated = s->dict.size;
1180 				vfree(s->dict.buf);
1181 				s->dict.buf = vmalloc(s->dict.size);
1182 				if (s->dict.buf == NULL) {
1183 					s->dict.allocated = 0;
1184 					return XZ_MEM_ERROR;
1185 				}
1186 			}
1187 		}
1188 	}
1189 
1190 	s->lzma2.sequence = SEQ_CONTROL;
1191 	s->lzma2.need_dict_reset = true;
1192 
1193 	s->temp.size = 0;
1194 
1195 	return XZ_OK;
1196 }
1197 
xz_dec_lzma2_end(struct xz_dec_lzma2 * s)1198 void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1199 {
1200 	if (DEC_IS_MULTI(s->dict.mode))
1201 		vfree(s->dict.buf);
1202 
1203 	kfree(s);
1204 }
1205 
1206 #ifdef XZ_DEC_MICROLZMA
1207 /* This is a wrapper struct to have a nice struct name in the public API. */
1208 struct xz_dec_microlzma {
1209 	struct xz_dec_lzma2 s;
1210 };
1211 
xz_dec_microlzma_run(struct xz_dec_microlzma * s_ptr,struct xz_buf * b)1212 enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s_ptr,
1213 				 struct xz_buf *b)
1214 {
1215 	struct xz_dec_lzma2 *s = &s_ptr->s;
1216 
1217 	/*
1218 	 * sequence is SEQ_PROPERTIES before the first input byte,
1219 	 * SEQ_LZMA_PREPARE until a total of five bytes have been read,
1220 	 * and SEQ_LZMA_RUN for the rest of the input stream.
1221 	 */
1222 	if (s->lzma2.sequence != SEQ_LZMA_RUN) {
1223 		if (s->lzma2.sequence == SEQ_PROPERTIES) {
1224 			/* One byte is needed for the props. */
1225 			if (b->in_pos >= b->in_size)
1226 				return XZ_OK;
1227 
1228 			/*
1229 			 * Don't increment b->in_pos here. The same byte is
1230 			 * also passed to rc_read_init() which will ignore it.
1231 			 */
1232 			if (!lzma_props(s, ~b->in[b->in_pos]))
1233 				return XZ_DATA_ERROR;
1234 
1235 			s->lzma2.sequence = SEQ_LZMA_PREPARE;
1236 		}
1237 
1238 		/*
1239 		 * xz_dec_microlzma_reset() doesn't validate the compressed
1240 		 * size so we do it here. We have to limit the maximum size
1241 		 * to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice
1242 		 * round number and much more than users of this code should
1243 		 * ever need.
1244 		 */
1245 		if (s->lzma2.compressed < RC_INIT_BYTES
1246 				|| s->lzma2.compressed > (3U << 30))
1247 			return XZ_DATA_ERROR;
1248 
1249 		if (!rc_read_init(&s->rc, b))
1250 			return XZ_OK;
1251 
1252 		s->lzma2.compressed -= RC_INIT_BYTES;
1253 		s->lzma2.sequence = SEQ_LZMA_RUN;
1254 
1255 		dict_reset(&s->dict, b);
1256 	}
1257 
1258 	/* This is to allow increasing b->out_size between calls. */
1259 	if (DEC_IS_SINGLE(s->dict.mode))
1260 		s->dict.end = b->out_size - b->out_pos;
1261 
1262 	while (true) {
1263 		dict_limit(&s->dict, min_t(size_t, b->out_size - b->out_pos,
1264 					   s->lzma2.uncompressed));
1265 
1266 		if (!lzma2_lzma(s, b))
1267 			return XZ_DATA_ERROR;
1268 
1269 		s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1270 
1271 		if (s->lzma2.uncompressed == 0) {
1272 			if (s->lzma2.pedantic_microlzma) {
1273 				if (s->lzma2.compressed > 0 || s->lzma.len > 0
1274 						|| !rc_is_finished(&s->rc))
1275 					return XZ_DATA_ERROR;
1276 			}
1277 
1278 			return XZ_STREAM_END;
1279 		}
1280 
1281 		if (b->out_pos == b->out_size)
1282 			return XZ_OK;
1283 
1284 		if (b->in_pos == b->in_size
1285 				&& s->temp.size < s->lzma2.compressed)
1286 			return XZ_OK;
1287 	}
1288 }
1289 
xz_dec_microlzma_alloc(enum xz_mode mode,uint32_t dict_size)1290 struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode,
1291 						uint32_t dict_size)
1292 {
1293 	struct xz_dec_microlzma *s;
1294 
1295 	/* Restrict dict_size to the same range as in the LZMA2 code. */
1296 	if (dict_size < 4096 || dict_size > (3U << 30))
1297 		return NULL;
1298 
1299 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1300 	if (s == NULL)
1301 		return NULL;
1302 
1303 	s->s.dict.mode = mode;
1304 	s->s.dict.size = dict_size;
1305 
1306 	if (DEC_IS_MULTI(mode)) {
1307 		s->s.dict.end = dict_size;
1308 
1309 		s->s.dict.buf = vmalloc(dict_size);
1310 		if (s->s.dict.buf == NULL) {
1311 			kfree(s);
1312 			return NULL;
1313 		}
1314 	}
1315 
1316 	return s;
1317 }
1318 
xz_dec_microlzma_reset(struct xz_dec_microlzma * s,uint32_t comp_size,uint32_t uncomp_size,int uncomp_size_is_exact)1319 void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size,
1320 			    uint32_t uncomp_size, int uncomp_size_is_exact)
1321 {
1322 	/*
1323 	 * comp_size is validated in xz_dec_microlzma_run().
1324 	 * uncomp_size can safely be anything.
1325 	 */
1326 	s->s.lzma2.compressed = comp_size;
1327 	s->s.lzma2.uncompressed = uncomp_size;
1328 	s->s.lzma2.pedantic_microlzma = uncomp_size_is_exact;
1329 
1330 	s->s.lzma2.sequence = SEQ_PROPERTIES;
1331 	s->s.temp.size = 0;
1332 }
1333 
xz_dec_microlzma_end(struct xz_dec_microlzma * s)1334 void xz_dec_microlzma_end(struct xz_dec_microlzma *s)
1335 {
1336 	if (DEC_IS_MULTI(s->s.dict.mode))
1337 		vfree(s->s.dict.buf);
1338 
1339 	kfree(s);
1340 }
1341 #endif
1342