1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4   * All Rights Reserved.
5   */
6  #include "xfs.h"
7  #include "xfs_fs.h"
8  #include "xfs_shared.h"
9  #include "xfs_format.h"
10  #include "xfs_log_format.h"
11  #include "xfs_trans_resv.h"
12  #include "xfs_bit.h"
13  #include "xfs_sb.h"
14  #include "xfs_mount.h"
15  #include "xfs_defer.h"
16  #include "xfs_inode.h"
17  #include "xfs_trans.h"
18  #include "xfs_log.h"
19  #include "xfs_log_priv.h"
20  #include "xfs_log_recover.h"
21  #include "xfs_trans_priv.h"
22  #include "xfs_alloc.h"
23  #include "xfs_ialloc.h"
24  #include "xfs_trace.h"
25  #include "xfs_icache.h"
26  #include "xfs_error.h"
27  #include "xfs_buf_item.h"
28  #include "xfs_ag.h"
29  #include "xfs_quota.h"
30  #include "xfs_reflink.h"
31  
32  #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
33  
34  STATIC int
35  xlog_find_zeroed(
36  	struct xlog	*,
37  	xfs_daddr_t	*);
38  STATIC int
39  xlog_clear_stale_blocks(
40  	struct xlog	*,
41  	xfs_lsn_t);
42  STATIC int
43  xlog_do_recovery_pass(
44          struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
45  
46  /*
47   * Sector aligned buffer routines for buffer create/read/write/access
48   */
49  
50  /*
51   * Verify the log-relative block number and length in basic blocks are valid for
52   * an operation involving the given XFS log buffer. Returns true if the fields
53   * are valid, false otherwise.
54   */
55  static inline bool
xlog_verify_bno(struct xlog * log,xfs_daddr_t blk_no,int bbcount)56  xlog_verify_bno(
57  	struct xlog	*log,
58  	xfs_daddr_t	blk_no,
59  	int		bbcount)
60  {
61  	if (blk_no < 0 || blk_no >= log->l_logBBsize)
62  		return false;
63  	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
64  		return false;
65  	return true;
66  }
67  
68  /*
69   * Allocate a buffer to hold log data.  The buffer needs to be able to map to
70   * a range of nbblks basic blocks at any valid offset within the log.
71   */
72  static char *
xlog_alloc_buffer(struct xlog * log,int nbblks)73  xlog_alloc_buffer(
74  	struct xlog	*log,
75  	int		nbblks)
76  {
77  	/*
78  	 * Pass log block 0 since we don't have an addr yet, buffer will be
79  	 * verified on read.
80  	 */
81  	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
82  		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
83  			nbblks);
84  		return NULL;
85  	}
86  
87  	/*
88  	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
89  	 * basic block size), so we round up the requested size to accommodate
90  	 * the basic blocks required for complete log sectors.
91  	 *
92  	 * In addition, the buffer may be used for a non-sector-aligned block
93  	 * offset, in which case an I/O of the requested size could extend
94  	 * beyond the end of the buffer.  If the requested size is only 1 basic
95  	 * block it will never straddle a sector boundary, so this won't be an
96  	 * issue.  Nor will this be a problem if the log I/O is done in basic
97  	 * blocks (sector size 1).  But otherwise we extend the buffer by one
98  	 * extra log sector to ensure there's space to accommodate this
99  	 * possibility.
100  	 */
101  	if (nbblks > 1 && log->l_sectBBsize > 1)
102  		nbblks += log->l_sectBBsize;
103  	nbblks = round_up(nbblks, log->l_sectBBsize);
104  	return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
105  }
106  
107  /*
108   * Return the address of the start of the given block number's data
109   * in a log buffer.  The buffer covers a log sector-aligned region.
110   */
111  static inline unsigned int
xlog_align(struct xlog * log,xfs_daddr_t blk_no)112  xlog_align(
113  	struct xlog	*log,
114  	xfs_daddr_t	blk_no)
115  {
116  	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
117  }
118  
119  static int
xlog_do_io(struct xlog * log,xfs_daddr_t blk_no,unsigned int nbblks,char * data,enum req_op op)120  xlog_do_io(
121  	struct xlog		*log,
122  	xfs_daddr_t		blk_no,
123  	unsigned int		nbblks,
124  	char			*data,
125  	enum req_op		op)
126  {
127  	int			error;
128  
129  	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
130  		xfs_warn(log->l_mp,
131  			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
132  			 blk_no, nbblks);
133  		return -EFSCORRUPTED;
134  	}
135  
136  	blk_no = round_down(blk_no, log->l_sectBBsize);
137  	nbblks = round_up(nbblks, log->l_sectBBsize);
138  	ASSERT(nbblks > 0);
139  
140  	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
141  			BBTOB(nbblks), data, op);
142  	if (error && !xlog_is_shutdown(log)) {
143  		xfs_alert(log->l_mp,
144  			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
145  			  op == REQ_OP_WRITE ? "write" : "read",
146  			  blk_no, nbblks, error);
147  	}
148  	return error;
149  }
150  
151  STATIC int
xlog_bread_noalign(struct xlog * log,xfs_daddr_t blk_no,int nbblks,char * data)152  xlog_bread_noalign(
153  	struct xlog	*log,
154  	xfs_daddr_t	blk_no,
155  	int		nbblks,
156  	char		*data)
157  {
158  	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
159  }
160  
161  STATIC int
xlog_bread(struct xlog * log,xfs_daddr_t blk_no,int nbblks,char * data,char ** offset)162  xlog_bread(
163  	struct xlog	*log,
164  	xfs_daddr_t	blk_no,
165  	int		nbblks,
166  	char		*data,
167  	char		**offset)
168  {
169  	int		error;
170  
171  	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
172  	if (!error)
173  		*offset = data + xlog_align(log, blk_no);
174  	return error;
175  }
176  
177  STATIC int
xlog_bwrite(struct xlog * log,xfs_daddr_t blk_no,int nbblks,char * data)178  xlog_bwrite(
179  	struct xlog	*log,
180  	xfs_daddr_t	blk_no,
181  	int		nbblks,
182  	char		*data)
183  {
184  	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
185  }
186  
187  #ifdef DEBUG
188  /*
189   * dump debug superblock and log record information
190   */
191  STATIC void
xlog_header_check_dump(xfs_mount_t * mp,xlog_rec_header_t * head)192  xlog_header_check_dump(
193  	xfs_mount_t		*mp,
194  	xlog_rec_header_t	*head)
195  {
196  	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
197  		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
198  	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
199  		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
200  }
201  #else
202  #define xlog_header_check_dump(mp, head)
203  #endif
204  
205  /*
206   * check log record header for recovery
207   */
208  STATIC int
xlog_header_check_recover(xfs_mount_t * mp,xlog_rec_header_t * head)209  xlog_header_check_recover(
210  	xfs_mount_t		*mp,
211  	xlog_rec_header_t	*head)
212  {
213  	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
214  
215  	/*
216  	 * IRIX doesn't write the h_fmt field and leaves it zeroed
217  	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
218  	 * a dirty log created in IRIX.
219  	 */
220  	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
221  		xfs_warn(mp,
222  	"dirty log written in incompatible format - can't recover");
223  		xlog_header_check_dump(mp, head);
224  		return -EFSCORRUPTED;
225  	}
226  	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
227  					   &head->h_fs_uuid))) {
228  		xfs_warn(mp,
229  	"dirty log entry has mismatched uuid - can't recover");
230  		xlog_header_check_dump(mp, head);
231  		return -EFSCORRUPTED;
232  	}
233  	return 0;
234  }
235  
236  /*
237   * read the head block of the log and check the header
238   */
239  STATIC int
xlog_header_check_mount(xfs_mount_t * mp,xlog_rec_header_t * head)240  xlog_header_check_mount(
241  	xfs_mount_t		*mp,
242  	xlog_rec_header_t	*head)
243  {
244  	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
245  
246  	if (uuid_is_null(&head->h_fs_uuid)) {
247  		/*
248  		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
249  		 * h_fs_uuid is null, we assume this log was last mounted
250  		 * by IRIX and continue.
251  		 */
252  		xfs_warn(mp, "null uuid in log - IRIX style log");
253  	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
254  						  &head->h_fs_uuid))) {
255  		xfs_warn(mp, "log has mismatched uuid - can't recover");
256  		xlog_header_check_dump(mp, head);
257  		return -EFSCORRUPTED;
258  	}
259  	return 0;
260  }
261  
262  /*
263   * This routine finds (to an approximation) the first block in the physical
264   * log which contains the given cycle.  It uses a binary search algorithm.
265   * Note that the algorithm can not be perfect because the disk will not
266   * necessarily be perfect.
267   */
268  STATIC int
xlog_find_cycle_start(struct xlog * log,char * buffer,xfs_daddr_t first_blk,xfs_daddr_t * last_blk,uint cycle)269  xlog_find_cycle_start(
270  	struct xlog	*log,
271  	char		*buffer,
272  	xfs_daddr_t	first_blk,
273  	xfs_daddr_t	*last_blk,
274  	uint		cycle)
275  {
276  	char		*offset;
277  	xfs_daddr_t	mid_blk;
278  	xfs_daddr_t	end_blk;
279  	uint		mid_cycle;
280  	int		error;
281  
282  	end_blk = *last_blk;
283  	mid_blk = BLK_AVG(first_blk, end_blk);
284  	while (mid_blk != first_blk && mid_blk != end_blk) {
285  		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
286  		if (error)
287  			return error;
288  		mid_cycle = xlog_get_cycle(offset);
289  		if (mid_cycle == cycle)
290  			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
291  		else
292  			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
293  		mid_blk = BLK_AVG(first_blk, end_blk);
294  	}
295  	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
296  	       (mid_blk == end_blk && mid_blk-1 == first_blk));
297  
298  	*last_blk = end_blk;
299  
300  	return 0;
301  }
302  
303  /*
304   * Check that a range of blocks does not contain stop_on_cycle_no.
305   * Fill in *new_blk with the block offset where such a block is
306   * found, or with -1 (an invalid block number) if there is no such
307   * block in the range.  The scan needs to occur from front to back
308   * and the pointer into the region must be updated since a later
309   * routine will need to perform another test.
310   */
311  STATIC int
xlog_find_verify_cycle(struct xlog * log,xfs_daddr_t start_blk,int nbblks,uint stop_on_cycle_no,xfs_daddr_t * new_blk)312  xlog_find_verify_cycle(
313  	struct xlog	*log,
314  	xfs_daddr_t	start_blk,
315  	int		nbblks,
316  	uint		stop_on_cycle_no,
317  	xfs_daddr_t	*new_blk)
318  {
319  	xfs_daddr_t	i, j;
320  	uint		cycle;
321  	char		*buffer;
322  	xfs_daddr_t	bufblks;
323  	char		*buf = NULL;
324  	int		error = 0;
325  
326  	/*
327  	 * Greedily allocate a buffer big enough to handle the full
328  	 * range of basic blocks we'll be examining.  If that fails,
329  	 * try a smaller size.  We need to be able to read at least
330  	 * a log sector, or we're out of luck.
331  	 */
332  	bufblks = roundup_pow_of_two(nbblks);
333  	while (bufblks > log->l_logBBsize)
334  		bufblks >>= 1;
335  	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
336  		bufblks >>= 1;
337  		if (bufblks < log->l_sectBBsize)
338  			return -ENOMEM;
339  	}
340  
341  	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
342  		int	bcount;
343  
344  		bcount = min(bufblks, (start_blk + nbblks - i));
345  
346  		error = xlog_bread(log, i, bcount, buffer, &buf);
347  		if (error)
348  			goto out;
349  
350  		for (j = 0; j < bcount; j++) {
351  			cycle = xlog_get_cycle(buf);
352  			if (cycle == stop_on_cycle_no) {
353  				*new_blk = i+j;
354  				goto out;
355  			}
356  
357  			buf += BBSIZE;
358  		}
359  	}
360  
361  	*new_blk = -1;
362  
363  out:
364  	kvfree(buffer);
365  	return error;
366  }
367  
368  static inline int
xlog_logrec_hblks(struct xlog * log,struct xlog_rec_header * rh)369  xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
370  {
371  	if (xfs_has_logv2(log->l_mp)) {
372  		int	h_size = be32_to_cpu(rh->h_size);
373  
374  		if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
375  		    h_size > XLOG_HEADER_CYCLE_SIZE)
376  			return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
377  	}
378  	return 1;
379  }
380  
381  /*
382   * Potentially backup over partial log record write.
383   *
384   * In the typical case, last_blk is the number of the block directly after
385   * a good log record.  Therefore, we subtract one to get the block number
386   * of the last block in the given buffer.  extra_bblks contains the number
387   * of blocks we would have read on a previous read.  This happens when the
388   * last log record is split over the end of the physical log.
389   *
390   * extra_bblks is the number of blocks potentially verified on a previous
391   * call to this routine.
392   */
393  STATIC int
xlog_find_verify_log_record(struct xlog * log,xfs_daddr_t start_blk,xfs_daddr_t * last_blk,int extra_bblks)394  xlog_find_verify_log_record(
395  	struct xlog		*log,
396  	xfs_daddr_t		start_blk,
397  	xfs_daddr_t		*last_blk,
398  	int			extra_bblks)
399  {
400  	xfs_daddr_t		i;
401  	char			*buffer;
402  	char			*offset = NULL;
403  	xlog_rec_header_t	*head = NULL;
404  	int			error = 0;
405  	int			smallmem = 0;
406  	int			num_blks = *last_blk - start_blk;
407  	int			xhdrs;
408  
409  	ASSERT(start_blk != 0 || *last_blk != start_blk);
410  
411  	buffer = xlog_alloc_buffer(log, num_blks);
412  	if (!buffer) {
413  		buffer = xlog_alloc_buffer(log, 1);
414  		if (!buffer)
415  			return -ENOMEM;
416  		smallmem = 1;
417  	} else {
418  		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
419  		if (error)
420  			goto out;
421  		offset += ((num_blks - 1) << BBSHIFT);
422  	}
423  
424  	for (i = (*last_blk) - 1; i >= 0; i--) {
425  		if (i < start_blk) {
426  			/* valid log record not found */
427  			xfs_warn(log->l_mp,
428  		"Log inconsistent (didn't find previous header)");
429  			ASSERT(0);
430  			error = -EFSCORRUPTED;
431  			goto out;
432  		}
433  
434  		if (smallmem) {
435  			error = xlog_bread(log, i, 1, buffer, &offset);
436  			if (error)
437  				goto out;
438  		}
439  
440  		head = (xlog_rec_header_t *)offset;
441  
442  		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
443  			break;
444  
445  		if (!smallmem)
446  			offset -= BBSIZE;
447  	}
448  
449  	/*
450  	 * We hit the beginning of the physical log & still no header.  Return
451  	 * to caller.  If caller can handle a return of -1, then this routine
452  	 * will be called again for the end of the physical log.
453  	 */
454  	if (i == -1) {
455  		error = 1;
456  		goto out;
457  	}
458  
459  	/*
460  	 * We have the final block of the good log (the first block
461  	 * of the log record _before_ the head. So we check the uuid.
462  	 */
463  	if ((error = xlog_header_check_mount(log->l_mp, head)))
464  		goto out;
465  
466  	/*
467  	 * We may have found a log record header before we expected one.
468  	 * last_blk will be the 1st block # with a given cycle #.  We may end
469  	 * up reading an entire log record.  In this case, we don't want to
470  	 * reset last_blk.  Only when last_blk points in the middle of a log
471  	 * record do we update last_blk.
472  	 */
473  	xhdrs = xlog_logrec_hblks(log, head);
474  
475  	if (*last_blk - i + extra_bblks !=
476  	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
477  		*last_blk = i;
478  
479  out:
480  	kvfree(buffer);
481  	return error;
482  }
483  
484  /*
485   * Head is defined to be the point of the log where the next log write
486   * could go.  This means that incomplete LR writes at the end are
487   * eliminated when calculating the head.  We aren't guaranteed that previous
488   * LR have complete transactions.  We only know that a cycle number of
489   * current cycle number -1 won't be present in the log if we start writing
490   * from our current block number.
491   *
492   * last_blk contains the block number of the first block with a given
493   * cycle number.
494   *
495   * Return: zero if normal, non-zero if error.
496   */
497  STATIC int
xlog_find_head(struct xlog * log,xfs_daddr_t * return_head_blk)498  xlog_find_head(
499  	struct xlog	*log,
500  	xfs_daddr_t	*return_head_blk)
501  {
502  	char		*buffer;
503  	char		*offset;
504  	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
505  	int		num_scan_bblks;
506  	uint		first_half_cycle, last_half_cycle;
507  	uint		stop_on_cycle;
508  	int		error, log_bbnum = log->l_logBBsize;
509  
510  	/* Is the end of the log device zeroed? */
511  	error = xlog_find_zeroed(log, &first_blk);
512  	if (error < 0) {
513  		xfs_warn(log->l_mp, "empty log check failed");
514  		return error;
515  	}
516  	if (error == 1) {
517  		*return_head_blk = first_blk;
518  
519  		/* Is the whole lot zeroed? */
520  		if (!first_blk) {
521  			/* Linux XFS shouldn't generate totally zeroed logs -
522  			 * mkfs etc write a dummy unmount record to a fresh
523  			 * log so we can store the uuid in there
524  			 */
525  			xfs_warn(log->l_mp, "totally zeroed log");
526  		}
527  
528  		return 0;
529  	}
530  
531  	first_blk = 0;			/* get cycle # of 1st block */
532  	buffer = xlog_alloc_buffer(log, 1);
533  	if (!buffer)
534  		return -ENOMEM;
535  
536  	error = xlog_bread(log, 0, 1, buffer, &offset);
537  	if (error)
538  		goto out_free_buffer;
539  
540  	first_half_cycle = xlog_get_cycle(offset);
541  
542  	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
543  	error = xlog_bread(log, last_blk, 1, buffer, &offset);
544  	if (error)
545  		goto out_free_buffer;
546  
547  	last_half_cycle = xlog_get_cycle(offset);
548  	ASSERT(last_half_cycle != 0);
549  
550  	/*
551  	 * If the 1st half cycle number is equal to the last half cycle number,
552  	 * then the entire log is stamped with the same cycle number.  In this
553  	 * case, head_blk can't be set to zero (which makes sense).  The below
554  	 * math doesn't work out properly with head_blk equal to zero.  Instead,
555  	 * we set it to log_bbnum which is an invalid block number, but this
556  	 * value makes the math correct.  If head_blk doesn't changed through
557  	 * all the tests below, *head_blk is set to zero at the very end rather
558  	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
559  	 * in a circular file.
560  	 */
561  	if (first_half_cycle == last_half_cycle) {
562  		/*
563  		 * In this case we believe that the entire log should have
564  		 * cycle number last_half_cycle.  We need to scan backwards
565  		 * from the end verifying that there are no holes still
566  		 * containing last_half_cycle - 1.  If we find such a hole,
567  		 * then the start of that hole will be the new head.  The
568  		 * simple case looks like
569  		 *        x | x ... | x - 1 | x
570  		 * Another case that fits this picture would be
571  		 *        x | x + 1 | x ... | x
572  		 * In this case the head really is somewhere at the end of the
573  		 * log, as one of the latest writes at the beginning was
574  		 * incomplete.
575  		 * One more case is
576  		 *        x | x + 1 | x ... | x - 1 | x
577  		 * This is really the combination of the above two cases, and
578  		 * the head has to end up at the start of the x-1 hole at the
579  		 * end of the log.
580  		 *
581  		 * In the 256k log case, we will read from the beginning to the
582  		 * end of the log and search for cycle numbers equal to x-1.
583  		 * We don't worry about the x+1 blocks that we encounter,
584  		 * because we know that they cannot be the head since the log
585  		 * started with x.
586  		 */
587  		head_blk = log_bbnum;
588  		stop_on_cycle = last_half_cycle - 1;
589  	} else {
590  		/*
591  		 * In this case we want to find the first block with cycle
592  		 * number matching last_half_cycle.  We expect the log to be
593  		 * some variation on
594  		 *        x + 1 ... | x ... | x
595  		 * The first block with cycle number x (last_half_cycle) will
596  		 * be where the new head belongs.  First we do a binary search
597  		 * for the first occurrence of last_half_cycle.  The binary
598  		 * search may not be totally accurate, so then we scan back
599  		 * from there looking for occurrences of last_half_cycle before
600  		 * us.  If that backwards scan wraps around the beginning of
601  		 * the log, then we look for occurrences of last_half_cycle - 1
602  		 * at the end of the log.  The cases we're looking for look
603  		 * like
604  		 *                               v binary search stopped here
605  		 *        x + 1 ... | x | x + 1 | x ... | x
606  		 *                   ^ but we want to locate this spot
607  		 * or
608  		 *        <---------> less than scan distance
609  		 *        x + 1 ... | x ... | x - 1 | x
610  		 *                           ^ we want to locate this spot
611  		 */
612  		stop_on_cycle = last_half_cycle;
613  		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
614  				last_half_cycle);
615  		if (error)
616  			goto out_free_buffer;
617  	}
618  
619  	/*
620  	 * Now validate the answer.  Scan back some number of maximum possible
621  	 * blocks and make sure each one has the expected cycle number.  The
622  	 * maximum is determined by the total possible amount of buffering
623  	 * in the in-core log.  The following number can be made tighter if
624  	 * we actually look at the block size of the filesystem.
625  	 */
626  	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
627  	if (head_blk >= num_scan_bblks) {
628  		/*
629  		 * We are guaranteed that the entire check can be performed
630  		 * in one buffer.
631  		 */
632  		start_blk = head_blk - num_scan_bblks;
633  		if ((error = xlog_find_verify_cycle(log,
634  						start_blk, num_scan_bblks,
635  						stop_on_cycle, &new_blk)))
636  			goto out_free_buffer;
637  		if (new_blk != -1)
638  			head_blk = new_blk;
639  	} else {		/* need to read 2 parts of log */
640  		/*
641  		 * We are going to scan backwards in the log in two parts.
642  		 * First we scan the physical end of the log.  In this part
643  		 * of the log, we are looking for blocks with cycle number
644  		 * last_half_cycle - 1.
645  		 * If we find one, then we know that the log starts there, as
646  		 * we've found a hole that didn't get written in going around
647  		 * the end of the physical log.  The simple case for this is
648  		 *        x + 1 ... | x ... | x - 1 | x
649  		 *        <---------> less than scan distance
650  		 * If all of the blocks at the end of the log have cycle number
651  		 * last_half_cycle, then we check the blocks at the start of
652  		 * the log looking for occurrences of last_half_cycle.  If we
653  		 * find one, then our current estimate for the location of the
654  		 * first occurrence of last_half_cycle is wrong and we move
655  		 * back to the hole we've found.  This case looks like
656  		 *        x + 1 ... | x | x + 1 | x ...
657  		 *                               ^ binary search stopped here
658  		 * Another case we need to handle that only occurs in 256k
659  		 * logs is
660  		 *        x + 1 ... | x ... | x+1 | x ...
661  		 *                   ^ binary search stops here
662  		 * In a 256k log, the scan at the end of the log will see the
663  		 * x + 1 blocks.  We need to skip past those since that is
664  		 * certainly not the head of the log.  By searching for
665  		 * last_half_cycle-1 we accomplish that.
666  		 */
667  		ASSERT(head_blk <= INT_MAX &&
668  			(xfs_daddr_t) num_scan_bblks >= head_blk);
669  		start_blk = log_bbnum - (num_scan_bblks - head_blk);
670  		if ((error = xlog_find_verify_cycle(log, start_blk,
671  					num_scan_bblks - (int)head_blk,
672  					(stop_on_cycle - 1), &new_blk)))
673  			goto out_free_buffer;
674  		if (new_blk != -1) {
675  			head_blk = new_blk;
676  			goto validate_head;
677  		}
678  
679  		/*
680  		 * Scan beginning of log now.  The last part of the physical
681  		 * log is good.  This scan needs to verify that it doesn't find
682  		 * the last_half_cycle.
683  		 */
684  		start_blk = 0;
685  		ASSERT(head_blk <= INT_MAX);
686  		if ((error = xlog_find_verify_cycle(log,
687  					start_blk, (int)head_blk,
688  					stop_on_cycle, &new_blk)))
689  			goto out_free_buffer;
690  		if (new_blk != -1)
691  			head_blk = new_blk;
692  	}
693  
694  validate_head:
695  	/*
696  	 * Now we need to make sure head_blk is not pointing to a block in
697  	 * the middle of a log record.
698  	 */
699  	num_scan_bblks = XLOG_REC_SHIFT(log);
700  	if (head_blk >= num_scan_bblks) {
701  		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
702  
703  		/* start ptr at last block ptr before head_blk */
704  		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
705  		if (error == 1)
706  			error = -EIO;
707  		if (error)
708  			goto out_free_buffer;
709  	} else {
710  		start_blk = 0;
711  		ASSERT(head_blk <= INT_MAX);
712  		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
713  		if (error < 0)
714  			goto out_free_buffer;
715  		if (error == 1) {
716  			/* We hit the beginning of the log during our search */
717  			start_blk = log_bbnum - (num_scan_bblks - head_blk);
718  			new_blk = log_bbnum;
719  			ASSERT(start_blk <= INT_MAX &&
720  				(xfs_daddr_t) log_bbnum-start_blk >= 0);
721  			ASSERT(head_blk <= INT_MAX);
722  			error = xlog_find_verify_log_record(log, start_blk,
723  							&new_blk, (int)head_blk);
724  			if (error == 1)
725  				error = -EIO;
726  			if (error)
727  				goto out_free_buffer;
728  			if (new_blk != log_bbnum)
729  				head_blk = new_blk;
730  		} else if (error)
731  			goto out_free_buffer;
732  	}
733  
734  	kvfree(buffer);
735  	if (head_blk == log_bbnum)
736  		*return_head_blk = 0;
737  	else
738  		*return_head_blk = head_blk;
739  	/*
740  	 * When returning here, we have a good block number.  Bad block
741  	 * means that during a previous crash, we didn't have a clean break
742  	 * from cycle number N to cycle number N-1.  In this case, we need
743  	 * to find the first block with cycle number N-1.
744  	 */
745  	return 0;
746  
747  out_free_buffer:
748  	kvfree(buffer);
749  	if (error)
750  		xfs_warn(log->l_mp, "failed to find log head");
751  	return error;
752  }
753  
754  /*
755   * Seek backwards in the log for log record headers.
756   *
757   * Given a starting log block, walk backwards until we find the provided number
758   * of records or hit the provided tail block. The return value is the number of
759   * records encountered or a negative error code. The log block and buffer
760   * pointer of the last record seen are returned in rblk and rhead respectively.
761   */
762  STATIC int
xlog_rseek_logrec_hdr(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int count,char * buffer,xfs_daddr_t * rblk,struct xlog_rec_header ** rhead,bool * wrapped)763  xlog_rseek_logrec_hdr(
764  	struct xlog		*log,
765  	xfs_daddr_t		head_blk,
766  	xfs_daddr_t		tail_blk,
767  	int			count,
768  	char			*buffer,
769  	xfs_daddr_t		*rblk,
770  	struct xlog_rec_header	**rhead,
771  	bool			*wrapped)
772  {
773  	int			i;
774  	int			error;
775  	int			found = 0;
776  	char			*offset = NULL;
777  	xfs_daddr_t		end_blk;
778  
779  	*wrapped = false;
780  
781  	/*
782  	 * Walk backwards from the head block until we hit the tail or the first
783  	 * block in the log.
784  	 */
785  	end_blk = head_blk > tail_blk ? tail_blk : 0;
786  	for (i = (int) head_blk - 1; i >= end_blk; i--) {
787  		error = xlog_bread(log, i, 1, buffer, &offset);
788  		if (error)
789  			goto out_error;
790  
791  		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
792  			*rblk = i;
793  			*rhead = (struct xlog_rec_header *) offset;
794  			if (++found == count)
795  				break;
796  		}
797  	}
798  
799  	/*
800  	 * If we haven't hit the tail block or the log record header count,
801  	 * start looking again from the end of the physical log. Note that
802  	 * callers can pass head == tail if the tail is not yet known.
803  	 */
804  	if (tail_blk >= head_blk && found != count) {
805  		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
806  			error = xlog_bread(log, i, 1, buffer, &offset);
807  			if (error)
808  				goto out_error;
809  
810  			if (*(__be32 *)offset ==
811  			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
812  				*wrapped = true;
813  				*rblk = i;
814  				*rhead = (struct xlog_rec_header *) offset;
815  				if (++found == count)
816  					break;
817  			}
818  		}
819  	}
820  
821  	return found;
822  
823  out_error:
824  	return error;
825  }
826  
827  /*
828   * Seek forward in the log for log record headers.
829   *
830   * Given head and tail blocks, walk forward from the tail block until we find
831   * the provided number of records or hit the head block. The return value is the
832   * number of records encountered or a negative error code. The log block and
833   * buffer pointer of the last record seen are returned in rblk and rhead
834   * respectively.
835   */
836  STATIC int
xlog_seek_logrec_hdr(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int count,char * buffer,xfs_daddr_t * rblk,struct xlog_rec_header ** rhead,bool * wrapped)837  xlog_seek_logrec_hdr(
838  	struct xlog		*log,
839  	xfs_daddr_t		head_blk,
840  	xfs_daddr_t		tail_blk,
841  	int			count,
842  	char			*buffer,
843  	xfs_daddr_t		*rblk,
844  	struct xlog_rec_header	**rhead,
845  	bool			*wrapped)
846  {
847  	int			i;
848  	int			error;
849  	int			found = 0;
850  	char			*offset = NULL;
851  	xfs_daddr_t		end_blk;
852  
853  	*wrapped = false;
854  
855  	/*
856  	 * Walk forward from the tail block until we hit the head or the last
857  	 * block in the log.
858  	 */
859  	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
860  	for (i = (int) tail_blk; i <= end_blk; i++) {
861  		error = xlog_bread(log, i, 1, buffer, &offset);
862  		if (error)
863  			goto out_error;
864  
865  		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
866  			*rblk = i;
867  			*rhead = (struct xlog_rec_header *) offset;
868  			if (++found == count)
869  				break;
870  		}
871  	}
872  
873  	/*
874  	 * If we haven't hit the head block or the log record header count,
875  	 * start looking again from the start of the physical log.
876  	 */
877  	if (tail_blk > head_blk && found != count) {
878  		for (i = 0; i < (int) head_blk; i++) {
879  			error = xlog_bread(log, i, 1, buffer, &offset);
880  			if (error)
881  				goto out_error;
882  
883  			if (*(__be32 *)offset ==
884  			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
885  				*wrapped = true;
886  				*rblk = i;
887  				*rhead = (struct xlog_rec_header *) offset;
888  				if (++found == count)
889  					break;
890  			}
891  		}
892  	}
893  
894  	return found;
895  
896  out_error:
897  	return error;
898  }
899  
900  /*
901   * Calculate distance from head to tail (i.e., unused space in the log).
902   */
903  static inline int
xlog_tail_distance(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)904  xlog_tail_distance(
905  	struct xlog	*log,
906  	xfs_daddr_t	head_blk,
907  	xfs_daddr_t	tail_blk)
908  {
909  	if (head_blk < tail_blk)
910  		return tail_blk - head_blk;
911  
912  	return tail_blk + (log->l_logBBsize - head_blk);
913  }
914  
915  /*
916   * Verify the log tail. This is particularly important when torn or incomplete
917   * writes have been detected near the front of the log and the head has been
918   * walked back accordingly.
919   *
920   * We also have to handle the case where the tail was pinned and the head
921   * blocked behind the tail right before a crash. If the tail had been pushed
922   * immediately prior to the crash and the subsequent checkpoint was only
923   * partially written, it's possible it overwrote the last referenced tail in the
924   * log with garbage. This is not a coherency problem because the tail must have
925   * been pushed before it can be overwritten, but appears as log corruption to
926   * recovery because we have no way to know the tail was updated if the
927   * subsequent checkpoint didn't write successfully.
928   *
929   * Therefore, CRC check the log from tail to head. If a failure occurs and the
930   * offending record is within max iclog bufs from the head, walk the tail
931   * forward and retry until a valid tail is found or corruption is detected out
932   * of the range of a possible overwrite.
933   */
934  STATIC int
xlog_verify_tail(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t * tail_blk,int hsize)935  xlog_verify_tail(
936  	struct xlog		*log,
937  	xfs_daddr_t		head_blk,
938  	xfs_daddr_t		*tail_blk,
939  	int			hsize)
940  {
941  	struct xlog_rec_header	*thead;
942  	char			*buffer;
943  	xfs_daddr_t		first_bad;
944  	int			error = 0;
945  	bool			wrapped;
946  	xfs_daddr_t		tmp_tail;
947  	xfs_daddr_t		orig_tail = *tail_blk;
948  
949  	buffer = xlog_alloc_buffer(log, 1);
950  	if (!buffer)
951  		return -ENOMEM;
952  
953  	/*
954  	 * Make sure the tail points to a record (returns positive count on
955  	 * success).
956  	 */
957  	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
958  			&tmp_tail, &thead, &wrapped);
959  	if (error < 0)
960  		goto out;
961  	if (*tail_blk != tmp_tail)
962  		*tail_blk = tmp_tail;
963  
964  	/*
965  	 * Run a CRC check from the tail to the head. We can't just check
966  	 * MAX_ICLOGS records past the tail because the tail may point to stale
967  	 * blocks cleared during the search for the head/tail. These blocks are
968  	 * overwritten with zero-length records and thus record count is not a
969  	 * reliable indicator of the iclog state before a crash.
970  	 */
971  	first_bad = 0;
972  	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
973  				      XLOG_RECOVER_CRCPASS, &first_bad);
974  	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
975  		int	tail_distance;
976  
977  		/*
978  		 * Is corruption within range of the head? If so, retry from
979  		 * the next record. Otherwise return an error.
980  		 */
981  		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
982  		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
983  			break;
984  
985  		/* skip to the next record; returns positive count on success */
986  		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
987  				buffer, &tmp_tail, &thead, &wrapped);
988  		if (error < 0)
989  			goto out;
990  
991  		*tail_blk = tmp_tail;
992  		first_bad = 0;
993  		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
994  					      XLOG_RECOVER_CRCPASS, &first_bad);
995  	}
996  
997  	if (!error && *tail_blk != orig_tail)
998  		xfs_warn(log->l_mp,
999  		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1000  			 orig_tail, *tail_blk);
1001  out:
1002  	kvfree(buffer);
1003  	return error;
1004  }
1005  
1006  /*
1007   * Detect and trim torn writes from the head of the log.
1008   *
1009   * Storage without sector atomicity guarantees can result in torn writes in the
1010   * log in the event of a crash. Our only means to detect this scenario is via
1011   * CRC verification. While we can't always be certain that CRC verification
1012   * failure is due to a torn write vs. an unrelated corruption, we do know that
1013   * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1014   * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1015   * the log and treat failures in this range as torn writes as a matter of
1016   * policy. In the event of CRC failure, the head is walked back to the last good
1017   * record in the log and the tail is updated from that record and verified.
1018   */
1019  STATIC int
xlog_verify_head(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk,char * buffer,xfs_daddr_t * rhead_blk,struct xlog_rec_header ** rhead,bool * wrapped)1020  xlog_verify_head(
1021  	struct xlog		*log,
1022  	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1023  	xfs_daddr_t		*tail_blk,	/* out: tail block */
1024  	char			*buffer,
1025  	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1026  	struct xlog_rec_header	**rhead,	/* ptr to last record */
1027  	bool			*wrapped)	/* last rec. wraps phys. log */
1028  {
1029  	struct xlog_rec_header	*tmp_rhead;
1030  	char			*tmp_buffer;
1031  	xfs_daddr_t		first_bad;
1032  	xfs_daddr_t		tmp_rhead_blk;
1033  	int			found;
1034  	int			error;
1035  	bool			tmp_wrapped;
1036  
1037  	/*
1038  	 * Check the head of the log for torn writes. Search backwards from the
1039  	 * head until we hit the tail or the maximum number of log record I/Os
1040  	 * that could have been in flight at one time. Use a temporary buffer so
1041  	 * we don't trash the rhead/buffer pointers from the caller.
1042  	 */
1043  	tmp_buffer = xlog_alloc_buffer(log, 1);
1044  	if (!tmp_buffer)
1045  		return -ENOMEM;
1046  	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1047  				      XLOG_MAX_ICLOGS, tmp_buffer,
1048  				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1049  	kvfree(tmp_buffer);
1050  	if (error < 0)
1051  		return error;
1052  
1053  	/*
1054  	 * Now run a CRC verification pass over the records starting at the
1055  	 * block found above to the current head. If a CRC failure occurs, the
1056  	 * log block of the first bad record is saved in first_bad.
1057  	 */
1058  	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1059  				      XLOG_RECOVER_CRCPASS, &first_bad);
1060  	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1061  		/*
1062  		 * We've hit a potential torn write. Reset the error and warn
1063  		 * about it.
1064  		 */
1065  		error = 0;
1066  		xfs_warn(log->l_mp,
1067  "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1068  			 first_bad, *head_blk);
1069  
1070  		/*
1071  		 * Get the header block and buffer pointer for the last good
1072  		 * record before the bad record.
1073  		 *
1074  		 * Note that xlog_find_tail() clears the blocks at the new head
1075  		 * (i.e., the records with invalid CRC) if the cycle number
1076  		 * matches the current cycle.
1077  		 */
1078  		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1079  				buffer, rhead_blk, rhead, wrapped);
1080  		if (found < 0)
1081  			return found;
1082  		if (found == 0)		/* XXX: right thing to do here? */
1083  			return -EIO;
1084  
1085  		/*
1086  		 * Reset the head block to the starting block of the first bad
1087  		 * log record and set the tail block based on the last good
1088  		 * record.
1089  		 *
1090  		 * Bail out if the updated head/tail match as this indicates
1091  		 * possible corruption outside of the acceptable
1092  		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1093  		 */
1094  		*head_blk = first_bad;
1095  		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1096  		if (*head_blk == *tail_blk) {
1097  			ASSERT(0);
1098  			return 0;
1099  		}
1100  	}
1101  	if (error)
1102  		return error;
1103  
1104  	return xlog_verify_tail(log, *head_blk, tail_blk,
1105  				be32_to_cpu((*rhead)->h_size));
1106  }
1107  
1108  /*
1109   * We need to make sure we handle log wrapping properly, so we can't use the
1110   * calculated logbno directly. Make sure it wraps to the correct bno inside the
1111   * log.
1112   *
1113   * The log is limited to 32 bit sizes, so we use the appropriate modulus
1114   * operation here and cast it back to a 64 bit daddr on return.
1115   */
1116  static inline xfs_daddr_t
xlog_wrap_logbno(struct xlog * log,xfs_daddr_t bno)1117  xlog_wrap_logbno(
1118  	struct xlog		*log,
1119  	xfs_daddr_t		bno)
1120  {
1121  	int			mod;
1122  
1123  	div_s64_rem(bno, log->l_logBBsize, &mod);
1124  	return mod;
1125  }
1126  
1127  /*
1128   * Check whether the head of the log points to an unmount record. In other
1129   * words, determine whether the log is clean. If so, update the in-core state
1130   * appropriately.
1131   */
1132  static int
xlog_check_unmount_rec(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk,struct xlog_rec_header * rhead,xfs_daddr_t rhead_blk,char * buffer,bool * clean)1133  xlog_check_unmount_rec(
1134  	struct xlog		*log,
1135  	xfs_daddr_t		*head_blk,
1136  	xfs_daddr_t		*tail_blk,
1137  	struct xlog_rec_header	*rhead,
1138  	xfs_daddr_t		rhead_blk,
1139  	char			*buffer,
1140  	bool			*clean)
1141  {
1142  	struct xlog_op_header	*op_head;
1143  	xfs_daddr_t		umount_data_blk;
1144  	xfs_daddr_t		after_umount_blk;
1145  	int			hblks;
1146  	int			error;
1147  	char			*offset;
1148  
1149  	*clean = false;
1150  
1151  	/*
1152  	 * Look for unmount record. If we find it, then we know there was a
1153  	 * clean unmount. Since 'i' could be the last block in the physical
1154  	 * log, we convert to a log block before comparing to the head_blk.
1155  	 *
1156  	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1157  	 * below. We won't want to clear the unmount record if there is one, so
1158  	 * we pass the lsn of the unmount record rather than the block after it.
1159  	 */
1160  	hblks = xlog_logrec_hblks(log, rhead);
1161  	after_umount_blk = xlog_wrap_logbno(log,
1162  			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1163  
1164  	if (*head_blk == after_umount_blk &&
1165  	    be32_to_cpu(rhead->h_num_logops) == 1) {
1166  		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1167  		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1168  		if (error)
1169  			return error;
1170  
1171  		op_head = (struct xlog_op_header *)offset;
1172  		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1173  			/*
1174  			 * Set tail and last sync so that newly written log
1175  			 * records will point recovery to after the current
1176  			 * unmount record.
1177  			 */
1178  			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1179  					log->l_curr_cycle, after_umount_blk);
1180  			log->l_ailp->ail_head_lsn =
1181  					atomic64_read(&log->l_tail_lsn);
1182  			*tail_blk = after_umount_blk;
1183  
1184  			*clean = true;
1185  		}
1186  	}
1187  
1188  	return 0;
1189  }
1190  
1191  static void
xlog_set_state(struct xlog * log,xfs_daddr_t head_blk,struct xlog_rec_header * rhead,xfs_daddr_t rhead_blk,bool bump_cycle)1192  xlog_set_state(
1193  	struct xlog		*log,
1194  	xfs_daddr_t		head_blk,
1195  	struct xlog_rec_header	*rhead,
1196  	xfs_daddr_t		rhead_blk,
1197  	bool			bump_cycle)
1198  {
1199  	/*
1200  	 * Reset log values according to the state of the log when we
1201  	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1202  	 * one because the next write starts a new cycle rather than
1203  	 * continuing the cycle of the last good log record.  At this
1204  	 * point we have guaranteed that all partial log records have been
1205  	 * accounted for.  Therefore, we know that the last good log record
1206  	 * written was complete and ended exactly on the end boundary
1207  	 * of the physical log.
1208  	 */
1209  	log->l_prev_block = rhead_blk;
1210  	log->l_curr_block = (int)head_blk;
1211  	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1212  	if (bump_cycle)
1213  		log->l_curr_cycle++;
1214  	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1215  	log->l_ailp->ail_head_lsn = be64_to_cpu(rhead->h_lsn);
1216  }
1217  
1218  /*
1219   * Find the sync block number or the tail of the log.
1220   *
1221   * This will be the block number of the last record to have its
1222   * associated buffers synced to disk.  Every log record header has
1223   * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1224   * to get a sync block number.  The only concern is to figure out which
1225   * log record header to believe.
1226   *
1227   * The following algorithm uses the log record header with the largest
1228   * lsn.  The entire log record does not need to be valid.  We only care
1229   * that the header is valid.
1230   *
1231   * We could speed up search by using current head_blk buffer, but it is not
1232   * available.
1233   */
1234  STATIC int
xlog_find_tail(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk)1235  xlog_find_tail(
1236  	struct xlog		*log,
1237  	xfs_daddr_t		*head_blk,
1238  	xfs_daddr_t		*tail_blk)
1239  {
1240  	xlog_rec_header_t	*rhead;
1241  	char			*offset = NULL;
1242  	char			*buffer;
1243  	int			error;
1244  	xfs_daddr_t		rhead_blk;
1245  	xfs_lsn_t		tail_lsn;
1246  	bool			wrapped = false;
1247  	bool			clean = false;
1248  
1249  	/*
1250  	 * Find previous log record
1251  	 */
1252  	if ((error = xlog_find_head(log, head_blk)))
1253  		return error;
1254  	ASSERT(*head_blk < INT_MAX);
1255  
1256  	buffer = xlog_alloc_buffer(log, 1);
1257  	if (!buffer)
1258  		return -ENOMEM;
1259  	if (*head_blk == 0) {				/* special case */
1260  		error = xlog_bread(log, 0, 1, buffer, &offset);
1261  		if (error)
1262  			goto done;
1263  
1264  		if (xlog_get_cycle(offset) == 0) {
1265  			*tail_blk = 0;
1266  			/* leave all other log inited values alone */
1267  			goto done;
1268  		}
1269  	}
1270  
1271  	/*
1272  	 * Search backwards through the log looking for the log record header
1273  	 * block. This wraps all the way back around to the head so something is
1274  	 * seriously wrong if we can't find it.
1275  	 */
1276  	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1277  				      &rhead_blk, &rhead, &wrapped);
1278  	if (error < 0)
1279  		goto done;
1280  	if (!error) {
1281  		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1282  		error = -EFSCORRUPTED;
1283  		goto done;
1284  	}
1285  	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1286  
1287  	/*
1288  	 * Set the log state based on the current head record.
1289  	 */
1290  	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1291  	tail_lsn = atomic64_read(&log->l_tail_lsn);
1292  
1293  	/*
1294  	 * Look for an unmount record at the head of the log. This sets the log
1295  	 * state to determine whether recovery is necessary.
1296  	 */
1297  	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1298  				       rhead_blk, buffer, &clean);
1299  	if (error)
1300  		goto done;
1301  
1302  	/*
1303  	 * Verify the log head if the log is not clean (e.g., we have anything
1304  	 * but an unmount record at the head). This uses CRC verification to
1305  	 * detect and trim torn writes. If discovered, CRC failures are
1306  	 * considered torn writes and the log head is trimmed accordingly.
1307  	 *
1308  	 * Note that we can only run CRC verification when the log is dirty
1309  	 * because there's no guarantee that the log data behind an unmount
1310  	 * record is compatible with the current architecture.
1311  	 */
1312  	if (!clean) {
1313  		xfs_daddr_t	orig_head = *head_blk;
1314  
1315  		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1316  					 &rhead_blk, &rhead, &wrapped);
1317  		if (error)
1318  			goto done;
1319  
1320  		/* update in-core state again if the head changed */
1321  		if (*head_blk != orig_head) {
1322  			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1323  				       wrapped);
1324  			tail_lsn = atomic64_read(&log->l_tail_lsn);
1325  			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1326  						       rhead, rhead_blk, buffer,
1327  						       &clean);
1328  			if (error)
1329  				goto done;
1330  		}
1331  	}
1332  
1333  	/*
1334  	 * Note that the unmount was clean. If the unmount was not clean, we
1335  	 * need to know this to rebuild the superblock counters from the perag
1336  	 * headers if we have a filesystem using non-persistent counters.
1337  	 */
1338  	if (clean)
1339  		xfs_set_clean(log->l_mp);
1340  
1341  	/*
1342  	 * Make sure that there are no blocks in front of the head
1343  	 * with the same cycle number as the head.  This can happen
1344  	 * because we allow multiple outstanding log writes concurrently,
1345  	 * and the later writes might make it out before earlier ones.
1346  	 *
1347  	 * We use the lsn from before modifying it so that we'll never
1348  	 * overwrite the unmount record after a clean unmount.
1349  	 *
1350  	 * Do this only if we are going to recover the filesystem
1351  	 *
1352  	 * NOTE: This used to say "if (!readonly)"
1353  	 * However on Linux, we can & do recover a read-only filesystem.
1354  	 * We only skip recovery if NORECOVERY is specified on mount,
1355  	 * in which case we would not be here.
1356  	 *
1357  	 * But... if the -device- itself is readonly, just skip this.
1358  	 * We can't recover this device anyway, so it won't matter.
1359  	 */
1360  	if (!xfs_readonly_buftarg(log->l_targ))
1361  		error = xlog_clear_stale_blocks(log, tail_lsn);
1362  
1363  done:
1364  	kvfree(buffer);
1365  
1366  	if (error)
1367  		xfs_warn(log->l_mp, "failed to locate log tail");
1368  	return error;
1369  }
1370  
1371  /*
1372   * Is the log zeroed at all?
1373   *
1374   * The last binary search should be changed to perform an X block read
1375   * once X becomes small enough.  You can then search linearly through
1376   * the X blocks.  This will cut down on the number of reads we need to do.
1377   *
1378   * If the log is partially zeroed, this routine will pass back the blkno
1379   * of the first block with cycle number 0.  It won't have a complete LR
1380   * preceding it.
1381   *
1382   * Return:
1383   *	0  => the log is completely written to
1384   *	1 => use *blk_no as the first block of the log
1385   *	<0 => error has occurred
1386   */
1387  STATIC int
xlog_find_zeroed(struct xlog * log,xfs_daddr_t * blk_no)1388  xlog_find_zeroed(
1389  	struct xlog	*log,
1390  	xfs_daddr_t	*blk_no)
1391  {
1392  	char		*buffer;
1393  	char		*offset;
1394  	uint	        first_cycle, last_cycle;
1395  	xfs_daddr_t	new_blk, last_blk, start_blk;
1396  	xfs_daddr_t     num_scan_bblks;
1397  	int	        error, log_bbnum = log->l_logBBsize;
1398  	int		ret = 1;
1399  
1400  	*blk_no = 0;
1401  
1402  	/* check totally zeroed log */
1403  	buffer = xlog_alloc_buffer(log, 1);
1404  	if (!buffer)
1405  		return -ENOMEM;
1406  	error = xlog_bread(log, 0, 1, buffer, &offset);
1407  	if (error)
1408  		goto out_free_buffer;
1409  
1410  	first_cycle = xlog_get_cycle(offset);
1411  	if (first_cycle == 0) {		/* completely zeroed log */
1412  		*blk_no = 0;
1413  		goto out_free_buffer;
1414  	}
1415  
1416  	/* check partially zeroed log */
1417  	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1418  	if (error)
1419  		goto out_free_buffer;
1420  
1421  	last_cycle = xlog_get_cycle(offset);
1422  	if (last_cycle != 0) {		/* log completely written to */
1423  		ret = 0;
1424  		goto out_free_buffer;
1425  	}
1426  
1427  	/* we have a partially zeroed log */
1428  	last_blk = log_bbnum-1;
1429  	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1430  	if (error)
1431  		goto out_free_buffer;
1432  
1433  	/*
1434  	 * Validate the answer.  Because there is no way to guarantee that
1435  	 * the entire log is made up of log records which are the same size,
1436  	 * we scan over the defined maximum blocks.  At this point, the maximum
1437  	 * is not chosen to mean anything special.   XXXmiken
1438  	 */
1439  	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1440  	ASSERT(num_scan_bblks <= INT_MAX);
1441  
1442  	if (last_blk < num_scan_bblks)
1443  		num_scan_bblks = last_blk;
1444  	start_blk = last_blk - num_scan_bblks;
1445  
1446  	/*
1447  	 * We search for any instances of cycle number 0 that occur before
1448  	 * our current estimate of the head.  What we're trying to detect is
1449  	 *        1 ... | 0 | 1 | 0...
1450  	 *                       ^ binary search ends here
1451  	 */
1452  	if ((error = xlog_find_verify_cycle(log, start_blk,
1453  					 (int)num_scan_bblks, 0, &new_blk)))
1454  		goto out_free_buffer;
1455  	if (new_blk != -1)
1456  		last_blk = new_blk;
1457  
1458  	/*
1459  	 * Potentially backup over partial log record write.  We don't need
1460  	 * to search the end of the log because we know it is zero.
1461  	 */
1462  	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1463  	if (error == 1)
1464  		error = -EIO;
1465  	if (error)
1466  		goto out_free_buffer;
1467  
1468  	*blk_no = last_blk;
1469  out_free_buffer:
1470  	kvfree(buffer);
1471  	if (error)
1472  		return error;
1473  	return ret;
1474  }
1475  
1476  /*
1477   * These are simple subroutines used by xlog_clear_stale_blocks() below
1478   * to initialize a buffer full of empty log record headers and write
1479   * them into the log.
1480   */
1481  STATIC void
xlog_add_record(struct xlog * log,char * buf,int cycle,int block,int tail_cycle,int tail_block)1482  xlog_add_record(
1483  	struct xlog		*log,
1484  	char			*buf,
1485  	int			cycle,
1486  	int			block,
1487  	int			tail_cycle,
1488  	int			tail_block)
1489  {
1490  	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1491  
1492  	memset(buf, 0, BBSIZE);
1493  	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1494  	recp->h_cycle = cpu_to_be32(cycle);
1495  	recp->h_version = cpu_to_be32(
1496  			xfs_has_logv2(log->l_mp) ? 2 : 1);
1497  	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1498  	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1499  	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1500  	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1501  }
1502  
1503  STATIC int
xlog_write_log_records(struct xlog * log,int cycle,int start_block,int blocks,int tail_cycle,int tail_block)1504  xlog_write_log_records(
1505  	struct xlog	*log,
1506  	int		cycle,
1507  	int		start_block,
1508  	int		blocks,
1509  	int		tail_cycle,
1510  	int		tail_block)
1511  {
1512  	char		*offset;
1513  	char		*buffer;
1514  	int		balign, ealign;
1515  	int		sectbb = log->l_sectBBsize;
1516  	int		end_block = start_block + blocks;
1517  	int		bufblks;
1518  	int		error = 0;
1519  	int		i, j = 0;
1520  
1521  	/*
1522  	 * Greedily allocate a buffer big enough to handle the full
1523  	 * range of basic blocks to be written.  If that fails, try
1524  	 * a smaller size.  We need to be able to write at least a
1525  	 * log sector, or we're out of luck.
1526  	 */
1527  	bufblks = roundup_pow_of_two(blocks);
1528  	while (bufblks > log->l_logBBsize)
1529  		bufblks >>= 1;
1530  	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1531  		bufblks >>= 1;
1532  		if (bufblks < sectbb)
1533  			return -ENOMEM;
1534  	}
1535  
1536  	/* We may need to do a read at the start to fill in part of
1537  	 * the buffer in the starting sector not covered by the first
1538  	 * write below.
1539  	 */
1540  	balign = round_down(start_block, sectbb);
1541  	if (balign != start_block) {
1542  		error = xlog_bread_noalign(log, start_block, 1, buffer);
1543  		if (error)
1544  			goto out_free_buffer;
1545  
1546  		j = start_block - balign;
1547  	}
1548  
1549  	for (i = start_block; i < end_block; i += bufblks) {
1550  		int		bcount, endcount;
1551  
1552  		bcount = min(bufblks, end_block - start_block);
1553  		endcount = bcount - j;
1554  
1555  		/* We may need to do a read at the end to fill in part of
1556  		 * the buffer in the final sector not covered by the write.
1557  		 * If this is the same sector as the above read, skip it.
1558  		 */
1559  		ealign = round_down(end_block, sectbb);
1560  		if (j == 0 && (start_block + endcount > ealign)) {
1561  			error = xlog_bread_noalign(log, ealign, sectbb,
1562  					buffer + BBTOB(ealign - start_block));
1563  			if (error)
1564  				break;
1565  
1566  		}
1567  
1568  		offset = buffer + xlog_align(log, start_block);
1569  		for (; j < endcount; j++) {
1570  			xlog_add_record(log, offset, cycle, i+j,
1571  					tail_cycle, tail_block);
1572  			offset += BBSIZE;
1573  		}
1574  		error = xlog_bwrite(log, start_block, endcount, buffer);
1575  		if (error)
1576  			break;
1577  		start_block += endcount;
1578  		j = 0;
1579  	}
1580  
1581  out_free_buffer:
1582  	kvfree(buffer);
1583  	return error;
1584  }
1585  
1586  /*
1587   * This routine is called to blow away any incomplete log writes out
1588   * in front of the log head.  We do this so that we won't become confused
1589   * if we come up, write only a little bit more, and then crash again.
1590   * If we leave the partial log records out there, this situation could
1591   * cause us to think those partial writes are valid blocks since they
1592   * have the current cycle number.  We get rid of them by overwriting them
1593   * with empty log records with the old cycle number rather than the
1594   * current one.
1595   *
1596   * The tail lsn is passed in rather than taken from
1597   * the log so that we will not write over the unmount record after a
1598   * clean unmount in a 512 block log.  Doing so would leave the log without
1599   * any valid log records in it until a new one was written.  If we crashed
1600   * during that time we would not be able to recover.
1601   */
1602  STATIC int
xlog_clear_stale_blocks(struct xlog * log,xfs_lsn_t tail_lsn)1603  xlog_clear_stale_blocks(
1604  	struct xlog	*log,
1605  	xfs_lsn_t	tail_lsn)
1606  {
1607  	int		tail_cycle, head_cycle;
1608  	int		tail_block, head_block;
1609  	int		tail_distance, max_distance;
1610  	int		distance;
1611  	int		error;
1612  
1613  	tail_cycle = CYCLE_LSN(tail_lsn);
1614  	tail_block = BLOCK_LSN(tail_lsn);
1615  	head_cycle = log->l_curr_cycle;
1616  	head_block = log->l_curr_block;
1617  
1618  	/*
1619  	 * Figure out the distance between the new head of the log
1620  	 * and the tail.  We want to write over any blocks beyond the
1621  	 * head that we may have written just before the crash, but
1622  	 * we don't want to overwrite the tail of the log.
1623  	 */
1624  	if (head_cycle == tail_cycle) {
1625  		/*
1626  		 * The tail is behind the head in the physical log,
1627  		 * so the distance from the head to the tail is the
1628  		 * distance from the head to the end of the log plus
1629  		 * the distance from the beginning of the log to the
1630  		 * tail.
1631  		 */
1632  		if (XFS_IS_CORRUPT(log->l_mp,
1633  				   head_block < tail_block ||
1634  				   head_block >= log->l_logBBsize))
1635  			return -EFSCORRUPTED;
1636  		tail_distance = tail_block + (log->l_logBBsize - head_block);
1637  	} else {
1638  		/*
1639  		 * The head is behind the tail in the physical log,
1640  		 * so the distance from the head to the tail is just
1641  		 * the tail block minus the head block.
1642  		 */
1643  		if (XFS_IS_CORRUPT(log->l_mp,
1644  				   head_block >= tail_block ||
1645  				   head_cycle != tail_cycle + 1))
1646  			return -EFSCORRUPTED;
1647  		tail_distance = tail_block - head_block;
1648  	}
1649  
1650  	/*
1651  	 * If the head is right up against the tail, we can't clear
1652  	 * anything.
1653  	 */
1654  	if (tail_distance <= 0) {
1655  		ASSERT(tail_distance == 0);
1656  		return 0;
1657  	}
1658  
1659  	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1660  	/*
1661  	 * Take the smaller of the maximum amount of outstanding I/O
1662  	 * we could have and the distance to the tail to clear out.
1663  	 * We take the smaller so that we don't overwrite the tail and
1664  	 * we don't waste all day writing from the head to the tail
1665  	 * for no reason.
1666  	 */
1667  	max_distance = min(max_distance, tail_distance);
1668  
1669  	if ((head_block + max_distance) <= log->l_logBBsize) {
1670  		/*
1671  		 * We can stomp all the blocks we need to without
1672  		 * wrapping around the end of the log.  Just do it
1673  		 * in a single write.  Use the cycle number of the
1674  		 * current cycle minus one so that the log will look like:
1675  		 *     n ... | n - 1 ...
1676  		 */
1677  		error = xlog_write_log_records(log, (head_cycle - 1),
1678  				head_block, max_distance, tail_cycle,
1679  				tail_block);
1680  		if (error)
1681  			return error;
1682  	} else {
1683  		/*
1684  		 * We need to wrap around the end of the physical log in
1685  		 * order to clear all the blocks.  Do it in two separate
1686  		 * I/Os.  The first write should be from the head to the
1687  		 * end of the physical log, and it should use the current
1688  		 * cycle number minus one just like above.
1689  		 */
1690  		distance = log->l_logBBsize - head_block;
1691  		error = xlog_write_log_records(log, (head_cycle - 1),
1692  				head_block, distance, tail_cycle,
1693  				tail_block);
1694  
1695  		if (error)
1696  			return error;
1697  
1698  		/*
1699  		 * Now write the blocks at the start of the physical log.
1700  		 * This writes the remainder of the blocks we want to clear.
1701  		 * It uses the current cycle number since we're now on the
1702  		 * same cycle as the head so that we get:
1703  		 *    n ... n ... | n - 1 ...
1704  		 *    ^^^^^ blocks we're writing
1705  		 */
1706  		distance = max_distance - (log->l_logBBsize - head_block);
1707  		error = xlog_write_log_records(log, head_cycle, 0, distance,
1708  				tail_cycle, tail_block);
1709  		if (error)
1710  			return error;
1711  	}
1712  
1713  	return 0;
1714  }
1715  
1716  /*
1717   * Release the recovered intent item in the AIL that matches the given intent
1718   * type and intent id.
1719   */
1720  void
xlog_recover_release_intent(struct xlog * log,unsigned short intent_type,uint64_t intent_id)1721  xlog_recover_release_intent(
1722  	struct xlog			*log,
1723  	unsigned short			intent_type,
1724  	uint64_t			intent_id)
1725  {
1726  	struct xfs_defer_pending	*dfp, *n;
1727  
1728  	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
1729  		struct xfs_log_item	*lip = dfp->dfp_intent;
1730  
1731  		if (lip->li_type != intent_type)
1732  			continue;
1733  		if (!lip->li_ops->iop_match(lip, intent_id))
1734  			continue;
1735  
1736  		ASSERT(xlog_item_is_intent(lip));
1737  
1738  		xfs_defer_cancel_recovery(log->l_mp, dfp);
1739  	}
1740  }
1741  
1742  int
xlog_recover_iget(struct xfs_mount * mp,xfs_ino_t ino,struct xfs_inode ** ipp)1743  xlog_recover_iget(
1744  	struct xfs_mount	*mp,
1745  	xfs_ino_t		ino,
1746  	struct xfs_inode	**ipp)
1747  {
1748  	int			error;
1749  
1750  	error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
1751  	if (error)
1752  		return error;
1753  
1754  	error = xfs_qm_dqattach(*ipp);
1755  	if (error) {
1756  		xfs_irele(*ipp);
1757  		return error;
1758  	}
1759  
1760  	if (VFS_I(*ipp)->i_nlink == 0)
1761  		xfs_iflags_set(*ipp, XFS_IRECOVERY);
1762  
1763  	return 0;
1764  }
1765  
1766  /*
1767   * Get an inode so that we can recover a log operation.
1768   *
1769   * Log intent items that target inodes effectively contain a file handle.
1770   * Check that the generation number matches the intent item like we do for
1771   * other file handles.  Log intent items defined after this validation weakness
1772   * was identified must use this function.
1773   */
1774  int
xlog_recover_iget_handle(struct xfs_mount * mp,xfs_ino_t ino,uint32_t gen,struct xfs_inode ** ipp)1775  xlog_recover_iget_handle(
1776  	struct xfs_mount	*mp,
1777  	xfs_ino_t		ino,
1778  	uint32_t		gen,
1779  	struct xfs_inode	**ipp)
1780  {
1781  	struct xfs_inode	*ip;
1782  	int			error;
1783  
1784  	error = xlog_recover_iget(mp, ino, &ip);
1785  	if (error)
1786  		return error;
1787  
1788  	if (VFS_I(ip)->i_generation != gen) {
1789  		xfs_irele(ip);
1790  		return -EFSCORRUPTED;
1791  	}
1792  
1793  	*ipp = ip;
1794  	return 0;
1795  }
1796  
1797  /******************************************************************************
1798   *
1799   *		Log recover routines
1800   *
1801   ******************************************************************************
1802   */
1803  static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1804  	&xlog_buf_item_ops,
1805  	&xlog_inode_item_ops,
1806  	&xlog_dquot_item_ops,
1807  	&xlog_quotaoff_item_ops,
1808  	&xlog_icreate_item_ops,
1809  	&xlog_efi_item_ops,
1810  	&xlog_efd_item_ops,
1811  	&xlog_rui_item_ops,
1812  	&xlog_rud_item_ops,
1813  	&xlog_cui_item_ops,
1814  	&xlog_cud_item_ops,
1815  	&xlog_bui_item_ops,
1816  	&xlog_bud_item_ops,
1817  	&xlog_attri_item_ops,
1818  	&xlog_attrd_item_ops,
1819  	&xlog_xmi_item_ops,
1820  	&xlog_xmd_item_ops,
1821  };
1822  
1823  static const struct xlog_recover_item_ops *
xlog_find_item_ops(struct xlog_recover_item * item)1824  xlog_find_item_ops(
1825  	struct xlog_recover_item		*item)
1826  {
1827  	unsigned int				i;
1828  
1829  	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1830  		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1831  			return xlog_recover_item_ops[i];
1832  
1833  	return NULL;
1834  }
1835  
1836  /*
1837   * Sort the log items in the transaction.
1838   *
1839   * The ordering constraints are defined by the inode allocation and unlink
1840   * behaviour. The rules are:
1841   *
1842   *	1. Every item is only logged once in a given transaction. Hence it
1843   *	   represents the last logged state of the item. Hence ordering is
1844   *	   dependent on the order in which operations need to be performed so
1845   *	   required initial conditions are always met.
1846   *
1847   *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1848   *	   there's nothing to replay from them so we can simply cull them
1849   *	   from the transaction. However, we can't do that until after we've
1850   *	   replayed all the other items because they may be dependent on the
1851   *	   cancelled buffer and replaying the cancelled buffer can remove it
1852   *	   form the cancelled buffer table. Hence they have to be done last.
1853   *
1854   *	3. Inode allocation buffers must be replayed before inode items that
1855   *	   read the buffer and replay changes into it. For filesystems using the
1856   *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1857   *	   treated the same as inode allocation buffers as they create and
1858   *	   initialise the buffers directly.
1859   *
1860   *	4. Inode unlink buffers must be replayed after inode items are replayed.
1861   *	   This ensures that inodes are completely flushed to the inode buffer
1862   *	   in a "free" state before we remove the unlinked inode list pointer.
1863   *
1864   * Hence the ordering needs to be inode allocation buffers first, inode items
1865   * second, inode unlink buffers third and cancelled buffers last.
1866   *
1867   * But there's a problem with that - we can't tell an inode allocation buffer
1868   * apart from a regular buffer, so we can't separate them. We can, however,
1869   * tell an inode unlink buffer from the others, and so we can separate them out
1870   * from all the other buffers and move them to last.
1871   *
1872   * Hence, 4 lists, in order from head to tail:
1873   *	- buffer_list for all buffers except cancelled/inode unlink buffers
1874   *	- item_list for all non-buffer items
1875   *	- inode_buffer_list for inode unlink buffers
1876   *	- cancel_list for the cancelled buffers
1877   *
1878   * Note that we add objects to the tail of the lists so that first-to-last
1879   * ordering is preserved within the lists. Adding objects to the head of the
1880   * list means when we traverse from the head we walk them in last-to-first
1881   * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1882   * but for all other items there may be specific ordering that we need to
1883   * preserve.
1884   */
1885  STATIC int
xlog_recover_reorder_trans(struct xlog * log,struct xlog_recover * trans,int pass)1886  xlog_recover_reorder_trans(
1887  	struct xlog		*log,
1888  	struct xlog_recover	*trans,
1889  	int			pass)
1890  {
1891  	struct xlog_recover_item *item, *n;
1892  	int			error = 0;
1893  	LIST_HEAD(sort_list);
1894  	LIST_HEAD(cancel_list);
1895  	LIST_HEAD(buffer_list);
1896  	LIST_HEAD(inode_buffer_list);
1897  	LIST_HEAD(item_list);
1898  
1899  	list_splice_init(&trans->r_itemq, &sort_list);
1900  	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1901  		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;
1902  
1903  		item->ri_ops = xlog_find_item_ops(item);
1904  		if (!item->ri_ops) {
1905  			xfs_warn(log->l_mp,
1906  				"%s: unrecognized type of log operation (%d)",
1907  				__func__, ITEM_TYPE(item));
1908  			ASSERT(0);
1909  			/*
1910  			 * return the remaining items back to the transaction
1911  			 * item list so they can be freed in caller.
1912  			 */
1913  			if (!list_empty(&sort_list))
1914  				list_splice_init(&sort_list, &trans->r_itemq);
1915  			error = -EFSCORRUPTED;
1916  			break;
1917  		}
1918  
1919  		if (item->ri_ops->reorder)
1920  			fate = item->ri_ops->reorder(item);
1921  
1922  		switch (fate) {
1923  		case XLOG_REORDER_BUFFER_LIST:
1924  			list_move_tail(&item->ri_list, &buffer_list);
1925  			break;
1926  		case XLOG_REORDER_CANCEL_LIST:
1927  			trace_xfs_log_recover_item_reorder_head(log,
1928  					trans, item, pass);
1929  			list_move(&item->ri_list, &cancel_list);
1930  			break;
1931  		case XLOG_REORDER_INODE_BUFFER_LIST:
1932  			list_move(&item->ri_list, &inode_buffer_list);
1933  			break;
1934  		case XLOG_REORDER_ITEM_LIST:
1935  			trace_xfs_log_recover_item_reorder_tail(log,
1936  							trans, item, pass);
1937  			list_move_tail(&item->ri_list, &item_list);
1938  			break;
1939  		}
1940  	}
1941  
1942  	ASSERT(list_empty(&sort_list));
1943  	if (!list_empty(&buffer_list))
1944  		list_splice(&buffer_list, &trans->r_itemq);
1945  	if (!list_empty(&item_list))
1946  		list_splice_tail(&item_list, &trans->r_itemq);
1947  	if (!list_empty(&inode_buffer_list))
1948  		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1949  	if (!list_empty(&cancel_list))
1950  		list_splice_tail(&cancel_list, &trans->r_itemq);
1951  	return error;
1952  }
1953  
1954  void
xlog_buf_readahead(struct xlog * log,xfs_daddr_t blkno,uint len,const struct xfs_buf_ops * ops)1955  xlog_buf_readahead(
1956  	struct xlog		*log,
1957  	xfs_daddr_t		blkno,
1958  	uint			len,
1959  	const struct xfs_buf_ops *ops)
1960  {
1961  	if (!xlog_is_buffer_cancelled(log, blkno, len))
1962  		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1963  }
1964  
1965  /*
1966   * Create a deferred work structure for resuming and tracking the progress of a
1967   * log intent item that was found during recovery.
1968   */
1969  void
xlog_recover_intent_item(struct xlog * log,struct xfs_log_item * lip,xfs_lsn_t lsn,const struct xfs_defer_op_type * ops)1970  xlog_recover_intent_item(
1971  	struct xlog			*log,
1972  	struct xfs_log_item		*lip,
1973  	xfs_lsn_t			lsn,
1974  	const struct xfs_defer_op_type	*ops)
1975  {
1976  	ASSERT(xlog_item_is_intent(lip));
1977  
1978  	xfs_defer_start_recovery(lip, &log->r_dfops, ops);
1979  
1980  	/*
1981  	 * Insert the intent into the AIL directly and drop one reference so
1982  	 * that finishing or canceling the work will drop the other.
1983  	 */
1984  	xfs_trans_ail_insert(log->l_ailp, lip, lsn);
1985  	lip->li_ops->iop_unpin(lip, 0);
1986  }
1987  
1988  STATIC int
xlog_recover_items_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct list_head * item_list)1989  xlog_recover_items_pass2(
1990  	struct xlog                     *log,
1991  	struct xlog_recover             *trans,
1992  	struct list_head                *buffer_list,
1993  	struct list_head                *item_list)
1994  {
1995  	struct xlog_recover_item	*item;
1996  	int				error = 0;
1997  
1998  	list_for_each_entry(item, item_list, ri_list) {
1999  		trace_xfs_log_recover_item_recover(log, trans, item,
2000  				XLOG_RECOVER_PASS2);
2001  
2002  		if (item->ri_ops->commit_pass2)
2003  			error = item->ri_ops->commit_pass2(log, buffer_list,
2004  					item, trans->r_lsn);
2005  		if (error)
2006  			return error;
2007  	}
2008  
2009  	return error;
2010  }
2011  
2012  /*
2013   * Perform the transaction.
2014   *
2015   * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2016   * EFIs and EFDs get queued up by adding entries into the AIL for them.
2017   */
2018  STATIC int
xlog_recover_commit_trans(struct xlog * log,struct xlog_recover * trans,int pass,struct list_head * buffer_list)2019  xlog_recover_commit_trans(
2020  	struct xlog		*log,
2021  	struct xlog_recover	*trans,
2022  	int			pass,
2023  	struct list_head	*buffer_list)
2024  {
2025  	int				error = 0;
2026  	int				items_queued = 0;
2027  	struct xlog_recover_item	*item;
2028  	struct xlog_recover_item	*next;
2029  	LIST_HEAD			(ra_list);
2030  	LIST_HEAD			(done_list);
2031  
2032  	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
2033  
2034  	hlist_del_init(&trans->r_list);
2035  
2036  	error = xlog_recover_reorder_trans(log, trans, pass);
2037  	if (error)
2038  		return error;
2039  
2040  	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
2041  		trace_xfs_log_recover_item_recover(log, trans, item, pass);
2042  
2043  		switch (pass) {
2044  		case XLOG_RECOVER_PASS1:
2045  			if (item->ri_ops->commit_pass1)
2046  				error = item->ri_ops->commit_pass1(log, item);
2047  			break;
2048  		case XLOG_RECOVER_PASS2:
2049  			if (item->ri_ops->ra_pass2)
2050  				item->ri_ops->ra_pass2(log, item);
2051  			list_move_tail(&item->ri_list, &ra_list);
2052  			items_queued++;
2053  			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
2054  				error = xlog_recover_items_pass2(log, trans,
2055  						buffer_list, &ra_list);
2056  				list_splice_tail_init(&ra_list, &done_list);
2057  				items_queued = 0;
2058  			}
2059  
2060  			break;
2061  		default:
2062  			ASSERT(0);
2063  		}
2064  
2065  		if (error)
2066  			goto out;
2067  	}
2068  
2069  out:
2070  	if (!list_empty(&ra_list)) {
2071  		if (!error)
2072  			error = xlog_recover_items_pass2(log, trans,
2073  					buffer_list, &ra_list);
2074  		list_splice_tail_init(&ra_list, &done_list);
2075  	}
2076  
2077  	if (!list_empty(&done_list))
2078  		list_splice_init(&done_list, &trans->r_itemq);
2079  
2080  	return error;
2081  }
2082  
2083  STATIC void
xlog_recover_add_item(struct list_head * head)2084  xlog_recover_add_item(
2085  	struct list_head	*head)
2086  {
2087  	struct xlog_recover_item *item;
2088  
2089  	item = kzalloc(sizeof(struct xlog_recover_item),
2090  			GFP_KERNEL | __GFP_NOFAIL);
2091  	INIT_LIST_HEAD(&item->ri_list);
2092  	list_add_tail(&item->ri_list, head);
2093  }
2094  
2095  STATIC int
xlog_recover_add_to_cont_trans(struct xlog * log,struct xlog_recover * trans,char * dp,int len)2096  xlog_recover_add_to_cont_trans(
2097  	struct xlog		*log,
2098  	struct xlog_recover	*trans,
2099  	char			*dp,
2100  	int			len)
2101  {
2102  	struct xlog_recover_item *item;
2103  	char			*ptr, *old_ptr;
2104  	int			old_len;
2105  
2106  	/*
2107  	 * If the transaction is empty, the header was split across this and the
2108  	 * previous record. Copy the rest of the header.
2109  	 */
2110  	if (list_empty(&trans->r_itemq)) {
2111  		ASSERT(len <= sizeof(struct xfs_trans_header));
2112  		if (len > sizeof(struct xfs_trans_header)) {
2113  			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2114  			return -EFSCORRUPTED;
2115  		}
2116  
2117  		xlog_recover_add_item(&trans->r_itemq);
2118  		ptr = (char *)&trans->r_theader +
2119  				sizeof(struct xfs_trans_header) - len;
2120  		memcpy(ptr, dp, len);
2121  		return 0;
2122  	}
2123  
2124  	/* take the tail entry */
2125  	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2126  			  ri_list);
2127  
2128  	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2129  	old_len = item->ri_buf[item->ri_cnt-1].i_len;
2130  
2131  	ptr = kvrealloc(old_ptr, len + old_len, GFP_KERNEL);
2132  	if (!ptr)
2133  		return -ENOMEM;
2134  	memcpy(&ptr[old_len], dp, len);
2135  	item->ri_buf[item->ri_cnt-1].i_len += len;
2136  	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2137  	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2138  	return 0;
2139  }
2140  
2141  /*
2142   * The next region to add is the start of a new region.  It could be
2143   * a whole region or it could be the first part of a new region.  Because
2144   * of this, the assumption here is that the type and size fields of all
2145   * format structures fit into the first 32 bits of the structure.
2146   *
2147   * This works because all regions must be 32 bit aligned.  Therefore, we
2148   * either have both fields or we have neither field.  In the case we have
2149   * neither field, the data part of the region is zero length.  We only have
2150   * a log_op_header and can throw away the header since a new one will appear
2151   * later.  If we have at least 4 bytes, then we can determine how many regions
2152   * will appear in the current log item.
2153   */
2154  STATIC int
xlog_recover_add_to_trans(struct xlog * log,struct xlog_recover * trans,char * dp,int len)2155  xlog_recover_add_to_trans(
2156  	struct xlog		*log,
2157  	struct xlog_recover	*trans,
2158  	char			*dp,
2159  	int			len)
2160  {
2161  	struct xfs_inode_log_format	*in_f;			/* any will do */
2162  	struct xlog_recover_item *item;
2163  	char			*ptr;
2164  
2165  	if (!len)
2166  		return 0;
2167  	if (list_empty(&trans->r_itemq)) {
2168  		/* we need to catch log corruptions here */
2169  		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2170  			xfs_warn(log->l_mp, "%s: bad header magic number",
2171  				__func__);
2172  			ASSERT(0);
2173  			return -EFSCORRUPTED;
2174  		}
2175  
2176  		if (len > sizeof(struct xfs_trans_header)) {
2177  			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2178  			ASSERT(0);
2179  			return -EFSCORRUPTED;
2180  		}
2181  
2182  		/*
2183  		 * The transaction header can be arbitrarily split across op
2184  		 * records. If we don't have the whole thing here, copy what we
2185  		 * do have and handle the rest in the next record.
2186  		 */
2187  		if (len == sizeof(struct xfs_trans_header))
2188  			xlog_recover_add_item(&trans->r_itemq);
2189  		memcpy(&trans->r_theader, dp, len);
2190  		return 0;
2191  	}
2192  
2193  	ptr = xlog_kvmalloc(len);
2194  	memcpy(ptr, dp, len);
2195  	in_f = (struct xfs_inode_log_format *)ptr;
2196  
2197  	/* take the tail entry */
2198  	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2199  			  ri_list);
2200  	if (item->ri_total != 0 &&
2201  	     item->ri_total == item->ri_cnt) {
2202  		/* tail item is in use, get a new one */
2203  		xlog_recover_add_item(&trans->r_itemq);
2204  		item = list_entry(trans->r_itemq.prev,
2205  					struct xlog_recover_item, ri_list);
2206  	}
2207  
2208  	if (item->ri_total == 0) {		/* first region to be added */
2209  		if (in_f->ilf_size == 0 ||
2210  		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2211  			xfs_warn(log->l_mp,
2212  		"bad number of regions (%d) in inode log format",
2213  				  in_f->ilf_size);
2214  			ASSERT(0);
2215  			kvfree(ptr);
2216  			return -EFSCORRUPTED;
2217  		}
2218  
2219  		item->ri_total = in_f->ilf_size;
2220  		item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2221  				GFP_KERNEL | __GFP_NOFAIL);
2222  	}
2223  
2224  	if (item->ri_total <= item->ri_cnt) {
2225  		xfs_warn(log->l_mp,
2226  	"log item region count (%d) overflowed size (%d)",
2227  				item->ri_cnt, item->ri_total);
2228  		ASSERT(0);
2229  		kvfree(ptr);
2230  		return -EFSCORRUPTED;
2231  	}
2232  
2233  	/* Description region is ri_buf[0] */
2234  	item->ri_buf[item->ri_cnt].i_addr = ptr;
2235  	item->ri_buf[item->ri_cnt].i_len  = len;
2236  	item->ri_cnt++;
2237  	trace_xfs_log_recover_item_add(log, trans, item, 0);
2238  	return 0;
2239  }
2240  
2241  /*
2242   * Free up any resources allocated by the transaction
2243   *
2244   * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2245   */
2246  STATIC void
xlog_recover_free_trans(struct xlog_recover * trans)2247  xlog_recover_free_trans(
2248  	struct xlog_recover	*trans)
2249  {
2250  	struct xlog_recover_item *item, *n;
2251  	int			i;
2252  
2253  	hlist_del_init(&trans->r_list);
2254  
2255  	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2256  		/* Free the regions in the item. */
2257  		list_del(&item->ri_list);
2258  		for (i = 0; i < item->ri_cnt; i++)
2259  			kvfree(item->ri_buf[i].i_addr);
2260  		/* Free the item itself */
2261  		kfree(item->ri_buf);
2262  		kfree(item);
2263  	}
2264  	/* Free the transaction recover structure */
2265  	kfree(trans);
2266  }
2267  
2268  /*
2269   * On error or completion, trans is freed.
2270   */
2271  STATIC int
xlog_recovery_process_trans(struct xlog * log,struct xlog_recover * trans,char * dp,unsigned int len,unsigned int flags,int pass,struct list_head * buffer_list)2272  xlog_recovery_process_trans(
2273  	struct xlog		*log,
2274  	struct xlog_recover	*trans,
2275  	char			*dp,
2276  	unsigned int		len,
2277  	unsigned int		flags,
2278  	int			pass,
2279  	struct list_head	*buffer_list)
2280  {
2281  	int			error = 0;
2282  	bool			freeit = false;
2283  
2284  	/* mask off ophdr transaction container flags */
2285  	flags &= ~XLOG_END_TRANS;
2286  	if (flags & XLOG_WAS_CONT_TRANS)
2287  		flags &= ~XLOG_CONTINUE_TRANS;
2288  
2289  	/*
2290  	 * Callees must not free the trans structure. We'll decide if we need to
2291  	 * free it or not based on the operation being done and it's result.
2292  	 */
2293  	switch (flags) {
2294  	/* expected flag values */
2295  	case 0:
2296  	case XLOG_CONTINUE_TRANS:
2297  		error = xlog_recover_add_to_trans(log, trans, dp, len);
2298  		break;
2299  	case XLOG_WAS_CONT_TRANS:
2300  		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2301  		break;
2302  	case XLOG_COMMIT_TRANS:
2303  		error = xlog_recover_commit_trans(log, trans, pass,
2304  						  buffer_list);
2305  		/* success or fail, we are now done with this transaction. */
2306  		freeit = true;
2307  		break;
2308  
2309  	/* unexpected flag values */
2310  	case XLOG_UNMOUNT_TRANS:
2311  		/* just skip trans */
2312  		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2313  		freeit = true;
2314  		break;
2315  	case XLOG_START_TRANS:
2316  	default:
2317  		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2318  		ASSERT(0);
2319  		error = -EFSCORRUPTED;
2320  		break;
2321  	}
2322  	if (error || freeit)
2323  		xlog_recover_free_trans(trans);
2324  	return error;
2325  }
2326  
2327  /*
2328   * Lookup the transaction recovery structure associated with the ID in the
2329   * current ophdr. If the transaction doesn't exist and the start flag is set in
2330   * the ophdr, then allocate a new transaction for future ID matches to find.
2331   * Either way, return what we found during the lookup - an existing transaction
2332   * or nothing.
2333   */
2334  STATIC struct xlog_recover *
xlog_recover_ophdr_to_trans(struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead)2335  xlog_recover_ophdr_to_trans(
2336  	struct hlist_head	rhash[],
2337  	struct xlog_rec_header	*rhead,
2338  	struct xlog_op_header	*ohead)
2339  {
2340  	struct xlog_recover	*trans;
2341  	xlog_tid_t		tid;
2342  	struct hlist_head	*rhp;
2343  
2344  	tid = be32_to_cpu(ohead->oh_tid);
2345  	rhp = &rhash[XLOG_RHASH(tid)];
2346  	hlist_for_each_entry(trans, rhp, r_list) {
2347  		if (trans->r_log_tid == tid)
2348  			return trans;
2349  	}
2350  
2351  	/*
2352  	 * skip over non-start transaction headers - we could be
2353  	 * processing slack space before the next transaction starts
2354  	 */
2355  	if (!(ohead->oh_flags & XLOG_START_TRANS))
2356  		return NULL;
2357  
2358  	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2359  
2360  	/*
2361  	 * This is a new transaction so allocate a new recovery container to
2362  	 * hold the recovery ops that will follow.
2363  	 */
2364  	trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL);
2365  	trans->r_log_tid = tid;
2366  	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2367  	INIT_LIST_HEAD(&trans->r_itemq);
2368  	INIT_HLIST_NODE(&trans->r_list);
2369  	hlist_add_head(&trans->r_list, rhp);
2370  
2371  	/*
2372  	 * Nothing more to do for this ophdr. Items to be added to this new
2373  	 * transaction will be in subsequent ophdr containers.
2374  	 */
2375  	return NULL;
2376  }
2377  
2378  STATIC int
xlog_recover_process_ophdr(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead,char * dp,char * end,int pass,struct list_head * buffer_list)2379  xlog_recover_process_ophdr(
2380  	struct xlog		*log,
2381  	struct hlist_head	rhash[],
2382  	struct xlog_rec_header	*rhead,
2383  	struct xlog_op_header	*ohead,
2384  	char			*dp,
2385  	char			*end,
2386  	int			pass,
2387  	struct list_head	*buffer_list)
2388  {
2389  	struct xlog_recover	*trans;
2390  	unsigned int		len;
2391  	int			error;
2392  
2393  	/* Do we understand who wrote this op? */
2394  	if (ohead->oh_clientid != XFS_TRANSACTION &&
2395  	    ohead->oh_clientid != XFS_LOG) {
2396  		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2397  			__func__, ohead->oh_clientid);
2398  		ASSERT(0);
2399  		return -EFSCORRUPTED;
2400  	}
2401  
2402  	/*
2403  	 * Check the ophdr contains all the data it is supposed to contain.
2404  	 */
2405  	len = be32_to_cpu(ohead->oh_len);
2406  	if (dp + len > end) {
2407  		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2408  		WARN_ON(1);
2409  		return -EFSCORRUPTED;
2410  	}
2411  
2412  	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2413  	if (!trans) {
2414  		/* nothing to do, so skip over this ophdr */
2415  		return 0;
2416  	}
2417  
2418  	/*
2419  	 * The recovered buffer queue is drained only once we know that all
2420  	 * recovery items for the current LSN have been processed. This is
2421  	 * required because:
2422  	 *
2423  	 * - Buffer write submission updates the metadata LSN of the buffer.
2424  	 * - Log recovery skips items with a metadata LSN >= the current LSN of
2425  	 *   the recovery item.
2426  	 * - Separate recovery items against the same metadata buffer can share
2427  	 *   a current LSN. I.e., consider that the LSN of a recovery item is
2428  	 *   defined as the starting LSN of the first record in which its
2429  	 *   transaction appears, that a record can hold multiple transactions,
2430  	 *   and/or that a transaction can span multiple records.
2431  	 *
2432  	 * In other words, we are allowed to submit a buffer from log recovery
2433  	 * once per current LSN. Otherwise, we may incorrectly skip recovery
2434  	 * items and cause corruption.
2435  	 *
2436  	 * We don't know up front whether buffers are updated multiple times per
2437  	 * LSN. Therefore, track the current LSN of each commit log record as it
2438  	 * is processed and drain the queue when it changes. Use commit records
2439  	 * because they are ordered correctly by the logging code.
2440  	 */
2441  	if (log->l_recovery_lsn != trans->r_lsn &&
2442  	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
2443  		error = xfs_buf_delwri_submit(buffer_list);
2444  		if (error)
2445  			return error;
2446  		log->l_recovery_lsn = trans->r_lsn;
2447  	}
2448  
2449  	return xlog_recovery_process_trans(log, trans, dp, len,
2450  					   ohead->oh_flags, pass, buffer_list);
2451  }
2452  
2453  /*
2454   * There are two valid states of the r_state field.  0 indicates that the
2455   * transaction structure is in a normal state.  We have either seen the
2456   * start of the transaction or the last operation we added was not a partial
2457   * operation.  If the last operation we added to the transaction was a
2458   * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2459   *
2460   * NOTE: skip LRs with 0 data length.
2461   */
2462  STATIC int
xlog_recover_process_data(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,char * dp,int pass,struct list_head * buffer_list)2463  xlog_recover_process_data(
2464  	struct xlog		*log,
2465  	struct hlist_head	rhash[],
2466  	struct xlog_rec_header	*rhead,
2467  	char			*dp,
2468  	int			pass,
2469  	struct list_head	*buffer_list)
2470  {
2471  	struct xlog_op_header	*ohead;
2472  	char			*end;
2473  	int			num_logops;
2474  	int			error;
2475  
2476  	end = dp + be32_to_cpu(rhead->h_len);
2477  	num_logops = be32_to_cpu(rhead->h_num_logops);
2478  
2479  	/* check the log format matches our own - else we can't recover */
2480  	if (xlog_header_check_recover(log->l_mp, rhead))
2481  		return -EIO;
2482  
2483  	trace_xfs_log_recover_record(log, rhead, pass);
2484  	while ((dp < end) && num_logops) {
2485  
2486  		ohead = (struct xlog_op_header *)dp;
2487  		dp += sizeof(*ohead);
2488  		if (dp > end) {
2489  			xfs_warn(log->l_mp, "%s: op header overrun", __func__);
2490  			return -EFSCORRUPTED;
2491  		}
2492  
2493  		/* errors will abort recovery */
2494  		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2495  						   dp, end, pass, buffer_list);
2496  		if (error)
2497  			return error;
2498  
2499  		dp += be32_to_cpu(ohead->oh_len);
2500  		num_logops--;
2501  	}
2502  	return 0;
2503  }
2504  
2505  /* Take all the collected deferred ops and finish them in order. */
2506  static int
xlog_finish_defer_ops(struct xfs_mount * mp,struct list_head * capture_list)2507  xlog_finish_defer_ops(
2508  	struct xfs_mount	*mp,
2509  	struct list_head	*capture_list)
2510  {
2511  	struct xfs_defer_capture *dfc, *next;
2512  	struct xfs_trans	*tp;
2513  	int			error = 0;
2514  
2515  	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2516  		struct xfs_trans_res	resv;
2517  		struct xfs_defer_resources dres;
2518  
2519  		/*
2520  		 * Create a new transaction reservation from the captured
2521  		 * information.  Set logcount to 1 to force the new transaction
2522  		 * to regrant every roll so that we can make forward progress
2523  		 * in recovery no matter how full the log might be.
2524  		 */
2525  		resv.tr_logres = dfc->dfc_logres;
2526  		resv.tr_logcount = 1;
2527  		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2528  
2529  		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2530  				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2531  		if (error) {
2532  			xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR);
2533  			return error;
2534  		}
2535  
2536  		/*
2537  		 * Transfer to this new transaction all the dfops we captured
2538  		 * from recovering a single intent item.
2539  		 */
2540  		list_del_init(&dfc->dfc_list);
2541  		xfs_defer_ops_continue(dfc, tp, &dres);
2542  		error = xfs_trans_commit(tp);
2543  		xfs_defer_resources_rele(&dres);
2544  		if (error)
2545  			return error;
2546  	}
2547  
2548  	ASSERT(list_empty(capture_list));
2549  	return 0;
2550  }
2551  
2552  /* Release all the captured defer ops and capture structures in this list. */
2553  static void
xlog_abort_defer_ops(struct xfs_mount * mp,struct list_head * capture_list)2554  xlog_abort_defer_ops(
2555  	struct xfs_mount		*mp,
2556  	struct list_head		*capture_list)
2557  {
2558  	struct xfs_defer_capture	*dfc;
2559  	struct xfs_defer_capture	*next;
2560  
2561  	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2562  		list_del_init(&dfc->dfc_list);
2563  		xfs_defer_ops_capture_abort(mp, dfc);
2564  	}
2565  }
2566  
2567  /*
2568   * When this is called, all of the log intent items which did not have
2569   * corresponding log done items should be in the AIL.  What we do now is update
2570   * the data structures associated with each one.
2571   *
2572   * Since we process the log intent items in normal transactions, they will be
2573   * removed at some point after the commit.  This prevents us from just walking
2574   * down the list processing each one.  We'll use a flag in the intent item to
2575   * skip those that we've already processed and use the AIL iteration mechanism's
2576   * generation count to try to speed this up at least a bit.
2577   *
2578   * When we start, we know that the intents are the only things in the AIL. As we
2579   * process them, however, other items are added to the AIL. Hence we know we
2580   * have started recovery on all the pending intents when we find an non-intent
2581   * item in the AIL.
2582   */
2583  STATIC int
xlog_recover_process_intents(struct xlog * log)2584  xlog_recover_process_intents(
2585  	struct xlog			*log)
2586  {
2587  	LIST_HEAD(capture_list);
2588  	struct xfs_defer_pending	*dfp, *n;
2589  	int				error = 0;
2590  #if defined(DEBUG) || defined(XFS_WARN)
2591  	xfs_lsn_t			last_lsn;
2592  
2593  	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2594  #endif
2595  
2596  	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2597  		ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2598  
2599  		/*
2600  		 * We should never see a redo item with a LSN higher than
2601  		 * the last transaction we found in the log at the start
2602  		 * of recovery.
2603  		 */
2604  		ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0);
2605  
2606  		/*
2607  		 * NOTE: If your intent processing routine can create more
2608  		 * deferred ops, you /must/ attach them to the capture list in
2609  		 * the recover routine or else those subsequent intents will be
2610  		 * replayed in the wrong order!
2611  		 *
2612  		 * The recovery function can free the log item, so we must not
2613  		 * access dfp->dfp_intent after it returns.  It must dispose of
2614  		 * @dfp if it returns 0.
2615  		 */
2616  		error = xfs_defer_finish_recovery(log->l_mp, dfp,
2617  				&capture_list);
2618  		if (error)
2619  			break;
2620  	}
2621  	if (error)
2622  		goto err;
2623  
2624  	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2625  	if (error)
2626  		goto err;
2627  
2628  	return 0;
2629  err:
2630  	xlog_abort_defer_ops(log->l_mp, &capture_list);
2631  	return error;
2632  }
2633  
2634  /*
2635   * A cancel occurs when the mount has failed and we're bailing out.  Release all
2636   * pending log intent items that we haven't started recovery on so they don't
2637   * pin the AIL.
2638   */
2639  STATIC void
xlog_recover_cancel_intents(struct xlog * log)2640  xlog_recover_cancel_intents(
2641  	struct xlog			*log)
2642  {
2643  	struct xfs_defer_pending	*dfp, *n;
2644  
2645  	list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2646  		ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2647  
2648  		xfs_defer_cancel_recovery(log->l_mp, dfp);
2649  	}
2650  }
2651  
2652  /*
2653   * Transfer ownership of the recovered pending work to the recovery transaction
2654   * and try to finish the work.  If there is more work to be done, the dfp will
2655   * remain attached to the transaction.  If not, the dfp is freed.
2656   */
2657  int
xlog_recover_finish_intent(struct xfs_trans * tp,struct xfs_defer_pending * dfp)2658  xlog_recover_finish_intent(
2659  	struct xfs_trans		*tp,
2660  	struct xfs_defer_pending	*dfp)
2661  {
2662  	int				error;
2663  
2664  	list_move(&dfp->dfp_list, &tp->t_dfops);
2665  	error = xfs_defer_finish_one(tp, dfp);
2666  	if (error == -EAGAIN)
2667  		return 0;
2668  	return error;
2669  }
2670  
2671  /*
2672   * This routine performs a transaction to null out a bad inode pointer
2673   * in an agi unlinked inode hash bucket.
2674   */
2675  STATIC void
xlog_recover_clear_agi_bucket(struct xfs_perag * pag,int bucket)2676  xlog_recover_clear_agi_bucket(
2677  	struct xfs_perag	*pag,
2678  	int			bucket)
2679  {
2680  	struct xfs_mount	*mp = pag->pag_mount;
2681  	struct xfs_trans	*tp;
2682  	struct xfs_agi		*agi;
2683  	struct xfs_buf		*agibp;
2684  	int			offset;
2685  	int			error;
2686  
2687  	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2688  	if (error)
2689  		goto out_error;
2690  
2691  	error = xfs_read_agi(pag, tp, 0, &agibp);
2692  	if (error)
2693  		goto out_abort;
2694  
2695  	agi = agibp->b_addr;
2696  	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2697  	offset = offsetof(xfs_agi_t, agi_unlinked) +
2698  		 (sizeof(xfs_agino_t) * bucket);
2699  	xfs_trans_log_buf(tp, agibp, offset,
2700  			  (offset + sizeof(xfs_agino_t) - 1));
2701  
2702  	error = xfs_trans_commit(tp);
2703  	if (error)
2704  		goto out_error;
2705  	return;
2706  
2707  out_abort:
2708  	xfs_trans_cancel(tp);
2709  out_error:
2710  	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__,
2711  			pag->pag_agno);
2712  	return;
2713  }
2714  
2715  static int
xlog_recover_iunlink_bucket(struct xfs_perag * pag,struct xfs_agi * agi,int bucket)2716  xlog_recover_iunlink_bucket(
2717  	struct xfs_perag	*pag,
2718  	struct xfs_agi		*agi,
2719  	int			bucket)
2720  {
2721  	struct xfs_mount	*mp = pag->pag_mount;
2722  	struct xfs_inode	*prev_ip = NULL;
2723  	struct xfs_inode	*ip;
2724  	xfs_agino_t		prev_agino, agino;
2725  	int			error = 0;
2726  
2727  	agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2728  	while (agino != NULLAGINO) {
2729  		error = xfs_iget(mp, NULL,
2730  				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino),
2731  				0, 0, &ip);
2732  		if (error)
2733  			break;
2734  
2735  		ASSERT(VFS_I(ip)->i_nlink == 0);
2736  		ASSERT(VFS_I(ip)->i_mode != 0);
2737  		xfs_iflags_clear(ip, XFS_IRECOVERY);
2738  		agino = ip->i_next_unlinked;
2739  
2740  		if (prev_ip) {
2741  			ip->i_prev_unlinked = prev_agino;
2742  			xfs_irele(prev_ip);
2743  
2744  			/*
2745  			 * Ensure the inode is removed from the unlinked list
2746  			 * before we continue so that it won't race with
2747  			 * building the in-memory list here. This could be
2748  			 * serialised with the agibp lock, but that just
2749  			 * serialises via lockstepping and it's much simpler
2750  			 * just to flush the inodegc queue and wait for it to
2751  			 * complete.
2752  			 */
2753  			error = xfs_inodegc_flush(mp);
2754  			if (error)
2755  				break;
2756  		}
2757  
2758  		prev_agino = agino;
2759  		prev_ip = ip;
2760  	}
2761  
2762  	if (prev_ip) {
2763  		int	error2;
2764  
2765  		ip->i_prev_unlinked = prev_agino;
2766  		xfs_irele(prev_ip);
2767  
2768  		error2 = xfs_inodegc_flush(mp);
2769  		if (error2 && !error)
2770  			return error2;
2771  	}
2772  	return error;
2773  }
2774  
2775  /*
2776   * Recover AGI unlinked lists
2777   *
2778   * This is called during recovery to process any inodes which we unlinked but
2779   * not freed when the system crashed.  These inodes will be on the lists in the
2780   * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2781   * any inodes found on the lists. Each inode is removed from the lists when it
2782   * has been fully truncated and is freed. The freeing of the inode and its
2783   * removal from the list must be atomic.
2784   *
2785   * If everything we touch in the agi processing loop is already in memory, this
2786   * loop can hold the cpu for a long time. It runs without lock contention,
2787   * memory allocation contention, the need wait for IO, etc, and so will run
2788   * until we either run out of inodes to process, run low on memory or we run out
2789   * of log space.
2790   *
2791   * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2792   * and can prevent other filesystem work (such as CIL pushes) from running. This
2793   * can lead to deadlocks if the recovery process runs out of log reservation
2794   * space. Hence we need to yield the CPU when there is other kernel work
2795   * scheduled on this CPU to ensure other scheduled work can run without undue
2796   * latency.
2797   */
2798  static void
xlog_recover_iunlink_ag(struct xfs_perag * pag)2799  xlog_recover_iunlink_ag(
2800  	struct xfs_perag	*pag)
2801  {
2802  	struct xfs_agi		*agi;
2803  	struct xfs_buf		*agibp;
2804  	int			bucket;
2805  	int			error;
2806  
2807  	error = xfs_read_agi(pag, NULL, 0, &agibp);
2808  	if (error) {
2809  		/*
2810  		 * AGI is b0rked. Don't process it.
2811  		 *
2812  		 * We should probably mark the filesystem as corrupt after we've
2813  		 * recovered all the ag's we can....
2814  		 */
2815  		return;
2816  	}
2817  
2818  	/*
2819  	 * Unlock the buffer so that it can be acquired in the normal course of
2820  	 * the transaction to truncate and free each inode.  Because we are not
2821  	 * racing with anyone else here for the AGI buffer, we don't even need
2822  	 * to hold it locked to read the initial unlinked bucket entries out of
2823  	 * the buffer. We keep buffer reference though, so that it stays pinned
2824  	 * in memory while we need the buffer.
2825  	 */
2826  	agi = agibp->b_addr;
2827  	xfs_buf_unlock(agibp);
2828  
2829  	for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2830  		error = xlog_recover_iunlink_bucket(pag, agi, bucket);
2831  		if (error) {
2832  			/*
2833  			 * Bucket is unrecoverable, so only a repair scan can
2834  			 * free the remaining unlinked inodes. Just empty the
2835  			 * bucket and remaining inodes on it unreferenced and
2836  			 * unfreeable.
2837  			 */
2838  			xlog_recover_clear_agi_bucket(pag, bucket);
2839  		}
2840  	}
2841  
2842  	xfs_buf_rele(agibp);
2843  }
2844  
2845  static void
xlog_recover_process_iunlinks(struct xlog * log)2846  xlog_recover_process_iunlinks(
2847  	struct xlog	*log)
2848  {
2849  	struct xfs_perag	*pag;
2850  	xfs_agnumber_t		agno;
2851  
2852  	for_each_perag(log->l_mp, agno, pag)
2853  		xlog_recover_iunlink_ag(pag);
2854  }
2855  
2856  STATIC void
xlog_unpack_data(struct xlog_rec_header * rhead,char * dp,struct xlog * log)2857  xlog_unpack_data(
2858  	struct xlog_rec_header	*rhead,
2859  	char			*dp,
2860  	struct xlog		*log)
2861  {
2862  	int			i, j, k;
2863  
2864  	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2865  		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2866  		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2867  		dp += BBSIZE;
2868  	}
2869  
2870  	if (xfs_has_logv2(log->l_mp)) {
2871  		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2872  		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2873  			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2874  			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2875  			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2876  			dp += BBSIZE;
2877  		}
2878  	}
2879  }
2880  
2881  /*
2882   * CRC check, unpack and process a log record.
2883   */
2884  STATIC int
xlog_recover_process(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,char * dp,int pass,struct list_head * buffer_list)2885  xlog_recover_process(
2886  	struct xlog		*log,
2887  	struct hlist_head	rhash[],
2888  	struct xlog_rec_header	*rhead,
2889  	char			*dp,
2890  	int			pass,
2891  	struct list_head	*buffer_list)
2892  {
2893  	__le32			old_crc = rhead->h_crc;
2894  	__le32			crc;
2895  
2896  	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2897  
2898  	/*
2899  	 * Nothing else to do if this is a CRC verification pass. Just return
2900  	 * if this a record with a non-zero crc. Unfortunately, mkfs always
2901  	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2902  	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2903  	 * know precisely what failed.
2904  	 */
2905  	if (pass == XLOG_RECOVER_CRCPASS) {
2906  		if (old_crc && crc != old_crc)
2907  			return -EFSBADCRC;
2908  		return 0;
2909  	}
2910  
2911  	/*
2912  	 * We're in the normal recovery path. Issue a warning if and only if the
2913  	 * CRC in the header is non-zero. This is an advisory warning and the
2914  	 * zero CRC check prevents warnings from being emitted when upgrading
2915  	 * the kernel from one that does not add CRCs by default.
2916  	 */
2917  	if (crc != old_crc) {
2918  		if (old_crc || xfs_has_crc(log->l_mp)) {
2919  			xfs_alert(log->l_mp,
2920  		"log record CRC mismatch: found 0x%x, expected 0x%x.",
2921  					le32_to_cpu(old_crc),
2922  					le32_to_cpu(crc));
2923  			xfs_hex_dump(dp, 32);
2924  		}
2925  
2926  		/*
2927  		 * If the filesystem is CRC enabled, this mismatch becomes a
2928  		 * fatal log corruption failure.
2929  		 */
2930  		if (xfs_has_crc(log->l_mp)) {
2931  			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2932  			return -EFSCORRUPTED;
2933  		}
2934  	}
2935  
2936  	xlog_unpack_data(rhead, dp, log);
2937  
2938  	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2939  					 buffer_list);
2940  }
2941  
2942  STATIC int
xlog_valid_rec_header(struct xlog * log,struct xlog_rec_header * rhead,xfs_daddr_t blkno,int bufsize)2943  xlog_valid_rec_header(
2944  	struct xlog		*log,
2945  	struct xlog_rec_header	*rhead,
2946  	xfs_daddr_t		blkno,
2947  	int			bufsize)
2948  {
2949  	int			hlen;
2950  
2951  	if (XFS_IS_CORRUPT(log->l_mp,
2952  			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2953  		return -EFSCORRUPTED;
2954  	if (XFS_IS_CORRUPT(log->l_mp,
2955  			   (!rhead->h_version ||
2956  			   (be32_to_cpu(rhead->h_version) &
2957  			    (~XLOG_VERSION_OKBITS))))) {
2958  		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2959  			__func__, be32_to_cpu(rhead->h_version));
2960  		return -EFSCORRUPTED;
2961  	}
2962  
2963  	/*
2964  	 * LR body must have data (or it wouldn't have been written)
2965  	 * and h_len must not be greater than LR buffer size.
2966  	 */
2967  	hlen = be32_to_cpu(rhead->h_len);
2968  	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2969  		return -EFSCORRUPTED;
2970  
2971  	if (XFS_IS_CORRUPT(log->l_mp,
2972  			   blkno > log->l_logBBsize || blkno > INT_MAX))
2973  		return -EFSCORRUPTED;
2974  	return 0;
2975  }
2976  
2977  /*
2978   * Read the log from tail to head and process the log records found.
2979   * Handle the two cases where the tail and head are in the same cycle
2980   * and where the active portion of the log wraps around the end of
2981   * the physical log separately.  The pass parameter is passed through
2982   * to the routines called to process the data and is not looked at
2983   * here.
2984   */
2985  STATIC int
xlog_do_recovery_pass(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int pass,xfs_daddr_t * first_bad)2986  xlog_do_recovery_pass(
2987  	struct xlog		*log,
2988  	xfs_daddr_t		head_blk,
2989  	xfs_daddr_t		tail_blk,
2990  	int			pass,
2991  	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
2992  {
2993  	xlog_rec_header_t	*rhead;
2994  	xfs_daddr_t		blk_no, rblk_no;
2995  	xfs_daddr_t		rhead_blk;
2996  	char			*offset;
2997  	char			*hbp, *dbp;
2998  	int			error = 0, h_size, h_len;
2999  	int			error2 = 0;
3000  	int			bblks, split_bblks;
3001  	int			hblks = 1, split_hblks, wrapped_hblks;
3002  	int			i;
3003  	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3004  	LIST_HEAD		(buffer_list);
3005  
3006  	ASSERT(head_blk != tail_blk);
3007  	blk_no = rhead_blk = tail_blk;
3008  
3009  	for (i = 0; i < XLOG_RHASH_SIZE; i++)
3010  		INIT_HLIST_HEAD(&rhash[i]);
3011  
3012  	hbp = xlog_alloc_buffer(log, hblks);
3013  	if (!hbp)
3014  		return -ENOMEM;
3015  
3016  	/*
3017  	 * Read the header of the tail block and get the iclog buffer size from
3018  	 * h_size.  Use this to tell how many sectors make up the log header.
3019  	 */
3020  	if (xfs_has_logv2(log->l_mp)) {
3021  		/*
3022  		 * When using variable length iclogs, read first sector of
3023  		 * iclog header and extract the header size from it.  Get a
3024  		 * new hbp that is the correct size.
3025  		 */
3026  		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3027  		if (error)
3028  			goto bread_err1;
3029  
3030  		rhead = (xlog_rec_header_t *)offset;
3031  
3032  		/*
3033  		 * xfsprogs has a bug where record length is based on lsunit but
3034  		 * h_size (iclog size) is hardcoded to 32k. Now that we
3035  		 * unconditionally CRC verify the unmount record, this means the
3036  		 * log buffer can be too small for the record and cause an
3037  		 * overrun.
3038  		 *
3039  		 * Detect this condition here. Use lsunit for the buffer size as
3040  		 * long as this looks like the mkfs case. Otherwise, return an
3041  		 * error to avoid a buffer overrun.
3042  		 */
3043  		h_size = be32_to_cpu(rhead->h_size);
3044  		h_len = be32_to_cpu(rhead->h_len);
3045  		if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
3046  		    rhead->h_num_logops == cpu_to_be32(1)) {
3047  			xfs_warn(log->l_mp,
3048  		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
3049  				 h_size, log->l_mp->m_logbsize);
3050  			h_size = log->l_mp->m_logbsize;
3051  		}
3052  
3053  		error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
3054  		if (error)
3055  			goto bread_err1;
3056  
3057  		/*
3058  		 * This open codes xlog_logrec_hblks so that we can reuse the
3059  		 * fixed up h_size value calculated above.  Without that we'd
3060  		 * still allocate the buffer based on the incorrect on-disk
3061  		 * size.
3062  		 */
3063  		if (h_size > XLOG_HEADER_CYCLE_SIZE &&
3064  		    (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) {
3065  			hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
3066  			if (hblks > 1) {
3067  				kvfree(hbp);
3068  				hbp = xlog_alloc_buffer(log, hblks);
3069  				if (!hbp)
3070  					return -ENOMEM;
3071  			}
3072  		}
3073  	} else {
3074  		ASSERT(log->l_sectBBsize == 1);
3075  		h_size = XLOG_BIG_RECORD_BSIZE;
3076  	}
3077  
3078  	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3079  	if (!dbp) {
3080  		kvfree(hbp);
3081  		return -ENOMEM;
3082  	}
3083  
3084  	memset(rhash, 0, sizeof(rhash));
3085  	if (tail_blk > head_blk) {
3086  		/*
3087  		 * Perform recovery around the end of the physical log.
3088  		 * When the head is not on the same cycle number as the tail,
3089  		 * we can't do a sequential recovery.
3090  		 */
3091  		while (blk_no < log->l_logBBsize) {
3092  			/*
3093  			 * Check for header wrapping around physical end-of-log
3094  			 */
3095  			offset = hbp;
3096  			split_hblks = 0;
3097  			wrapped_hblks = 0;
3098  			if (blk_no + hblks <= log->l_logBBsize) {
3099  				/* Read header in one read */
3100  				error = xlog_bread(log, blk_no, hblks, hbp,
3101  						   &offset);
3102  				if (error)
3103  					goto bread_err2;
3104  			} else {
3105  				/* This LR is split across physical log end */
3106  				if (blk_no != log->l_logBBsize) {
3107  					/* some data before physical log end */
3108  					ASSERT(blk_no <= INT_MAX);
3109  					split_hblks = log->l_logBBsize - (int)blk_no;
3110  					ASSERT(split_hblks > 0);
3111  					error = xlog_bread(log, blk_no,
3112  							   split_hblks, hbp,
3113  							   &offset);
3114  					if (error)
3115  						goto bread_err2;
3116  				}
3117  
3118  				/*
3119  				 * Note: this black magic still works with
3120  				 * large sector sizes (non-512) only because:
3121  				 * - we increased the buffer size originally
3122  				 *   by 1 sector giving us enough extra space
3123  				 *   for the second read;
3124  				 * - the log start is guaranteed to be sector
3125  				 *   aligned;
3126  				 * - we read the log end (LR header start)
3127  				 *   _first_, then the log start (LR header end)
3128  				 *   - order is important.
3129  				 */
3130  				wrapped_hblks = hblks - split_hblks;
3131  				error = xlog_bread_noalign(log, 0,
3132  						wrapped_hblks,
3133  						offset + BBTOB(split_hblks));
3134  				if (error)
3135  					goto bread_err2;
3136  			}
3137  			rhead = (xlog_rec_header_t *)offset;
3138  			error = xlog_valid_rec_header(log, rhead,
3139  					split_hblks ? blk_no : 0, h_size);
3140  			if (error)
3141  				goto bread_err2;
3142  
3143  			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3144  			blk_no += hblks;
3145  
3146  			/*
3147  			 * Read the log record data in multiple reads if it
3148  			 * wraps around the end of the log. Note that if the
3149  			 * header already wrapped, blk_no could point past the
3150  			 * end of the log. The record data is contiguous in
3151  			 * that case.
3152  			 */
3153  			if (blk_no + bblks <= log->l_logBBsize ||
3154  			    blk_no >= log->l_logBBsize) {
3155  				rblk_no = xlog_wrap_logbno(log, blk_no);
3156  				error = xlog_bread(log, rblk_no, bblks, dbp,
3157  						   &offset);
3158  				if (error)
3159  					goto bread_err2;
3160  			} else {
3161  				/* This log record is split across the
3162  				 * physical end of log */
3163  				offset = dbp;
3164  				split_bblks = 0;
3165  				if (blk_no != log->l_logBBsize) {
3166  					/* some data is before the physical
3167  					 * end of log */
3168  					ASSERT(!wrapped_hblks);
3169  					ASSERT(blk_no <= INT_MAX);
3170  					split_bblks =
3171  						log->l_logBBsize - (int)blk_no;
3172  					ASSERT(split_bblks > 0);
3173  					error = xlog_bread(log, blk_no,
3174  							split_bblks, dbp,
3175  							&offset);
3176  					if (error)
3177  						goto bread_err2;
3178  				}
3179  
3180  				/*
3181  				 * Note: this black magic still works with
3182  				 * large sector sizes (non-512) only because:
3183  				 * - we increased the buffer size originally
3184  				 *   by 1 sector giving us enough extra space
3185  				 *   for the second read;
3186  				 * - the log start is guaranteed to be sector
3187  				 *   aligned;
3188  				 * - we read the log end (LR header start)
3189  				 *   _first_, then the log start (LR header end)
3190  				 *   - order is important.
3191  				 */
3192  				error = xlog_bread_noalign(log, 0,
3193  						bblks - split_bblks,
3194  						offset + BBTOB(split_bblks));
3195  				if (error)
3196  					goto bread_err2;
3197  			}
3198  
3199  			error = xlog_recover_process(log, rhash, rhead, offset,
3200  						     pass, &buffer_list);
3201  			if (error)
3202  				goto bread_err2;
3203  
3204  			blk_no += bblks;
3205  			rhead_blk = blk_no;
3206  		}
3207  
3208  		ASSERT(blk_no >= log->l_logBBsize);
3209  		blk_no -= log->l_logBBsize;
3210  		rhead_blk = blk_no;
3211  	}
3212  
3213  	/* read first part of physical log */
3214  	while (blk_no < head_blk) {
3215  		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3216  		if (error)
3217  			goto bread_err2;
3218  
3219  		rhead = (xlog_rec_header_t *)offset;
3220  		error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3221  		if (error)
3222  			goto bread_err2;
3223  
3224  		/* blocks in data section */
3225  		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3226  		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3227  				   &offset);
3228  		if (error)
3229  			goto bread_err2;
3230  
3231  		error = xlog_recover_process(log, rhash, rhead, offset, pass,
3232  					     &buffer_list);
3233  		if (error)
3234  			goto bread_err2;
3235  
3236  		blk_no += bblks + hblks;
3237  		rhead_blk = blk_no;
3238  	}
3239  
3240   bread_err2:
3241  	kvfree(dbp);
3242   bread_err1:
3243  	kvfree(hbp);
3244  
3245  	/*
3246  	 * Submit buffers that have been dirtied by the last record recovered.
3247  	 */
3248  	if (!list_empty(&buffer_list)) {
3249  		if (error) {
3250  			/*
3251  			 * If there has been an item recovery error then we
3252  			 * cannot allow partial checkpoint writeback to
3253  			 * occur.  We might have multiple checkpoints with the
3254  			 * same start LSN in this buffer list, and partial
3255  			 * writeback of a checkpoint in this situation can
3256  			 * prevent future recovery of all the changes in the
3257  			 * checkpoints at this start LSN.
3258  			 *
3259  			 * Note: Shutting down the filesystem will result in the
3260  			 * delwri submission marking all the buffers stale,
3261  			 * completing them and cleaning up _XBF_LOGRECOVERY
3262  			 * state without doing any IO.
3263  			 */
3264  			xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3265  		}
3266  		error2 = xfs_buf_delwri_submit(&buffer_list);
3267  	}
3268  
3269  	if (error && first_bad)
3270  		*first_bad = rhead_blk;
3271  
3272  	/*
3273  	 * Transactions are freed at commit time but transactions without commit
3274  	 * records on disk are never committed. Free any that may be left in the
3275  	 * hash table.
3276  	 */
3277  	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3278  		struct hlist_node	*tmp;
3279  		struct xlog_recover	*trans;
3280  
3281  		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3282  			xlog_recover_free_trans(trans);
3283  	}
3284  
3285  	return error ? error : error2;
3286  }
3287  
3288  /*
3289   * Do the recovery of the log.  We actually do this in two phases.
3290   * The two passes are necessary in order to implement the function
3291   * of cancelling a record written into the log.  The first pass
3292   * determines those things which have been cancelled, and the
3293   * second pass replays log items normally except for those which
3294   * have been cancelled.  The handling of the replay and cancellations
3295   * takes place in the log item type specific routines.
3296   *
3297   * The table of items which have cancel records in the log is allocated
3298   * and freed at this level, since only here do we know when all of
3299   * the log recovery has been completed.
3300   */
3301  STATIC int
xlog_do_log_recovery(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)3302  xlog_do_log_recovery(
3303  	struct xlog	*log,
3304  	xfs_daddr_t	head_blk,
3305  	xfs_daddr_t	tail_blk)
3306  {
3307  	int		error;
3308  
3309  	ASSERT(head_blk != tail_blk);
3310  
3311  	/*
3312  	 * First do a pass to find all of the cancelled buf log items.
3313  	 * Store them in the buf_cancel_table for use in the second pass.
3314  	 */
3315  	error = xlog_alloc_buf_cancel_table(log);
3316  	if (error)
3317  		return error;
3318  
3319  	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3320  				      XLOG_RECOVER_PASS1, NULL);
3321  	if (error != 0)
3322  		goto out_cancel;
3323  
3324  	/*
3325  	 * Then do a second pass to actually recover the items in the log.
3326  	 * When it is complete free the table of buf cancel items.
3327  	 */
3328  	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3329  				      XLOG_RECOVER_PASS2, NULL);
3330  	if (!error)
3331  		xlog_check_buf_cancel_table(log);
3332  out_cancel:
3333  	xlog_free_buf_cancel_table(log);
3334  	return error;
3335  }
3336  
3337  /*
3338   * Do the actual recovery
3339   */
3340  STATIC int
xlog_do_recover(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)3341  xlog_do_recover(
3342  	struct xlog		*log,
3343  	xfs_daddr_t		head_blk,
3344  	xfs_daddr_t		tail_blk)
3345  {
3346  	struct xfs_mount	*mp = log->l_mp;
3347  	struct xfs_buf		*bp = mp->m_sb_bp;
3348  	struct xfs_sb		*sbp = &mp->m_sb;
3349  	int			error;
3350  
3351  	trace_xfs_log_recover(log, head_blk, tail_blk);
3352  
3353  	/*
3354  	 * First replay the images in the log.
3355  	 */
3356  	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3357  	if (error)
3358  		return error;
3359  
3360  	if (xlog_is_shutdown(log))
3361  		return -EIO;
3362  
3363  	/*
3364  	 * We now update the tail_lsn since much of the recovery has completed
3365  	 * and there may be space available to use.  If there were no extent or
3366  	 * iunlinks, we can free up the entire log.  This was set in
3367  	 * xlog_find_tail to be the lsn of the last known good LR on disk.  If
3368  	 * there are extent frees or iunlinks they will have some entries in the
3369  	 * AIL; so we look at the AIL to determine how to set the tail_lsn.
3370  	 */
3371  	xfs_ail_assign_tail_lsn(log->l_ailp);
3372  
3373  	/*
3374  	 * Now that we've finished replaying all buffer and inode updates,
3375  	 * re-read the superblock and reverify it.
3376  	 */
3377  	xfs_buf_lock(bp);
3378  	xfs_buf_hold(bp);
3379  	error = _xfs_buf_read(bp, XBF_READ);
3380  	if (error) {
3381  		if (!xlog_is_shutdown(log)) {
3382  			xfs_buf_ioerror_alert(bp, __this_address);
3383  			ASSERT(0);
3384  		}
3385  		xfs_buf_relse(bp);
3386  		return error;
3387  	}
3388  
3389  	/* Convert superblock from on-disk format */
3390  	xfs_sb_from_disk(sbp, bp->b_addr);
3391  	xfs_buf_relse(bp);
3392  
3393  	/* re-initialise in-core superblock and geometry structures */
3394  	mp->m_features |= xfs_sb_version_to_features(sbp);
3395  	xfs_reinit_percpu_counters(mp);
3396  
3397  	/* Normal transactions can now occur */
3398  	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
3399  	return 0;
3400  }
3401  
3402  /*
3403   * Perform recovery and re-initialize some log variables in xlog_find_tail.
3404   *
3405   * Return error or zero.
3406   */
3407  int
xlog_recover(struct xlog * log)3408  xlog_recover(
3409  	struct xlog	*log)
3410  {
3411  	xfs_daddr_t	head_blk, tail_blk;
3412  	int		error;
3413  
3414  	/* find the tail of the log */
3415  	error = xlog_find_tail(log, &head_blk, &tail_blk);
3416  	if (error)
3417  		return error;
3418  
3419  	/*
3420  	 * The superblock was read before the log was available and thus the LSN
3421  	 * could not be verified. Check the superblock LSN against the current
3422  	 * LSN now that it's known.
3423  	 */
3424  	if (xfs_has_crc(log->l_mp) &&
3425  	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3426  		return -EINVAL;
3427  
3428  	if (tail_blk != head_blk) {
3429  		/* There used to be a comment here:
3430  		 *
3431  		 * disallow recovery on read-only mounts.  note -- mount
3432  		 * checks for ENOSPC and turns it into an intelligent
3433  		 * error message.
3434  		 * ...but this is no longer true.  Now, unless you specify
3435  		 * NORECOVERY (in which case this function would never be
3436  		 * called), we just go ahead and recover.  We do this all
3437  		 * under the vfs layer, so we can get away with it unless
3438  		 * the device itself is read-only, in which case we fail.
3439  		 */
3440  		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3441  			return error;
3442  		}
3443  
3444  		/*
3445  		 * Version 5 superblock log feature mask validation. We know the
3446  		 * log is dirty so check if there are any unknown log features
3447  		 * in what we need to recover. If there are unknown features
3448  		 * (e.g. unsupported transactions, then simply reject the
3449  		 * attempt at recovery before touching anything.
3450  		 */
3451  		if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
3452  		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3453  					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3454  			xfs_warn(log->l_mp,
3455  "Superblock has unknown incompatible log features (0x%x) enabled.",
3456  				(log->l_mp->m_sb.sb_features_log_incompat &
3457  					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3458  			xfs_warn(log->l_mp,
3459  "The log can not be fully and/or safely recovered by this kernel.");
3460  			xfs_warn(log->l_mp,
3461  "Please recover the log on a kernel that supports the unknown features.");
3462  			return -EINVAL;
3463  		}
3464  
3465  		/*
3466  		 * Delay log recovery if the debug hook is set. This is debug
3467  		 * instrumentation to coordinate simulation of I/O failures with
3468  		 * log recovery.
3469  		 */
3470  		if (xfs_globals.log_recovery_delay) {
3471  			xfs_notice(log->l_mp,
3472  				"Delaying log recovery for %d seconds.",
3473  				xfs_globals.log_recovery_delay);
3474  			msleep(xfs_globals.log_recovery_delay * 1000);
3475  		}
3476  
3477  		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3478  				log->l_mp->m_logname ? log->l_mp->m_logname
3479  						     : "internal");
3480  
3481  		error = xlog_do_recover(log, head_blk, tail_blk);
3482  		set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
3483  	}
3484  	return error;
3485  }
3486  
3487  /*
3488   * In the first part of recovery we replay inodes and buffers and build up the
3489   * list of intents which need to be processed. Here we process the intents and
3490   * clean up the on disk unlinked inode lists. This is separated from the first
3491   * part of recovery so that the root and real-time bitmap inodes can be read in
3492   * from disk in between the two stages.  This is necessary so that we can free
3493   * space in the real-time portion of the file system.
3494   *
3495   * We run this whole process under GFP_NOFS allocation context. We do a
3496   * combination of non-transactional and transactional work, yet we really don't
3497   * want to recurse into the filesystem from direct reclaim during any of this
3498   * processing. This allows all the recovery code run here not to care about the
3499   * memory allocation context it is running in.
3500   */
3501  int
xlog_recover_finish(struct xlog * log)3502  xlog_recover_finish(
3503  	struct xlog	*log)
3504  {
3505  	unsigned int	nofs_flags = memalloc_nofs_save();
3506  	int		error;
3507  
3508  	error = xlog_recover_process_intents(log);
3509  	if (error) {
3510  		/*
3511  		 * Cancel all the unprocessed intent items now so that we don't
3512  		 * leave them pinned in the AIL.  This can cause the AIL to
3513  		 * livelock on the pinned item if anyone tries to push the AIL
3514  		 * (inode reclaim does this) before we get around to
3515  		 * xfs_log_mount_cancel.
3516  		 */
3517  		xlog_recover_cancel_intents(log);
3518  		xfs_alert(log->l_mp, "Failed to recover intents");
3519  		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3520  		goto out_error;
3521  	}
3522  
3523  	/*
3524  	 * Sync the log to get all the intents out of the AIL.  This isn't
3525  	 * absolutely necessary, but it helps in case the unlink transactions
3526  	 * would have problems pushing the intents out of the way.
3527  	 */
3528  	xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3529  
3530  	xlog_recover_process_iunlinks(log);
3531  
3532  	/*
3533  	 * Recover any CoW staging blocks that are still referenced by the
3534  	 * ondisk refcount metadata.  During mount there cannot be any live
3535  	 * staging extents as we have not permitted any user modifications.
3536  	 * Therefore, it is safe to free them all right now, even on a
3537  	 * read-only mount.
3538  	 */
3539  	error = xfs_reflink_recover_cow(log->l_mp);
3540  	if (error) {
3541  		xfs_alert(log->l_mp,
3542  	"Failed to recover leftover CoW staging extents, err %d.",
3543  				error);
3544  		/*
3545  		 * If we get an error here, make sure the log is shut down
3546  		 * but return zero so that any log items committed since the
3547  		 * end of intents processing can be pushed through the CIL
3548  		 * and AIL.
3549  		 */
3550  		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3551  		error = 0;
3552  		goto out_error;
3553  	}
3554  
3555  out_error:
3556  	memalloc_nofs_restore(nofs_flags);
3557  	return error;
3558  }
3559  
3560  void
xlog_recover_cancel(struct xlog * log)3561  xlog_recover_cancel(
3562  	struct xlog	*log)
3563  {
3564  	if (xlog_recovery_needed(log))
3565  		xlog_recover_cancel_intents(log);
3566  }
3567  
3568