1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_trace.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_error.h"
22 #include "xfs_inode.h"
23 #include "xfs_dir2.h"
24 #include "xfs_quota.h"
25 #include "xfs_alloc.h"
26 #include "xfs_ag.h"
27 #include "xfs_sb.h"
28 
29 /*
30  * This is the number of entries in the l_buf_cancel_table used during
31  * recovery.
32  */
33 #define	XLOG_BC_TABLE_SIZE	64
34 
35 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
36 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
37 
38 /*
39  * This structure is used during recovery to record the buf log items which
40  * have been canceled and should not be replayed.
41  */
42 struct xfs_buf_cancel {
43 	xfs_daddr_t		bc_blkno;
44 	uint			bc_len;
45 	int			bc_refcount;
46 	struct list_head	bc_list;
47 };
48 
49 static struct xfs_buf_cancel *
xlog_find_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len)50 xlog_find_buffer_cancelled(
51 	struct xlog		*log,
52 	xfs_daddr_t		blkno,
53 	uint			len)
54 {
55 	struct list_head	*bucket;
56 	struct xfs_buf_cancel	*bcp;
57 
58 	if (!log->l_buf_cancel_table)
59 		return NULL;
60 
61 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
62 	list_for_each_entry(bcp, bucket, bc_list) {
63 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
64 			return bcp;
65 	}
66 
67 	return NULL;
68 }
69 
70 static bool
xlog_add_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len)71 xlog_add_buffer_cancelled(
72 	struct xlog		*log,
73 	xfs_daddr_t		blkno,
74 	uint			len)
75 {
76 	struct xfs_buf_cancel	*bcp;
77 
78 	/*
79 	 * If we find an existing cancel record, this indicates that the buffer
80 	 * was cancelled multiple times.  To ensure that during pass 2 we keep
81 	 * the record in the table until we reach its last occurrence in the
82 	 * log, a reference count is kept to tell how many times we expect to
83 	 * see this record during the second pass.
84 	 */
85 	bcp = xlog_find_buffer_cancelled(log, blkno, len);
86 	if (bcp) {
87 		bcp->bc_refcount++;
88 		return false;
89 	}
90 
91 	bcp = kmalloc(sizeof(struct xfs_buf_cancel), GFP_KERNEL | __GFP_NOFAIL);
92 	bcp->bc_blkno = blkno;
93 	bcp->bc_len = len;
94 	bcp->bc_refcount = 1;
95 	list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
96 	return true;
97 }
98 
99 /*
100  * Check if there is and entry for blkno, len in the buffer cancel record table.
101  */
102 bool
xlog_is_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len)103 xlog_is_buffer_cancelled(
104 	struct xlog		*log,
105 	xfs_daddr_t		blkno,
106 	uint			len)
107 {
108 	return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
109 }
110 
111 /*
112  * Check if there is and entry for blkno, len in the buffer cancel record table,
113  * and decremented the reference count on it if there is one.
114  *
115  * Remove the cancel record once the refcount hits zero, so that if the same
116  * buffer is re-used again after its last cancellation we actually replay the
117  * changes made at that point.
118  */
119 static bool
xlog_put_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len)120 xlog_put_buffer_cancelled(
121 	struct xlog		*log,
122 	xfs_daddr_t		blkno,
123 	uint			len)
124 {
125 	struct xfs_buf_cancel	*bcp;
126 
127 	bcp = xlog_find_buffer_cancelled(log, blkno, len);
128 	if (!bcp) {
129 		ASSERT(0);
130 		return false;
131 	}
132 
133 	if (--bcp->bc_refcount == 0) {
134 		list_del(&bcp->bc_list);
135 		kfree(bcp);
136 	}
137 	return true;
138 }
139 
140 /* log buffer item recovery */
141 
142 /*
143  * Sort buffer items for log recovery.  Most buffer items should end up on the
144  * buffer list and are recovered first, with the following exceptions:
145  *
146  * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
147  *    might depend on the incor ecancellation record, and replaying a cancelled
148  *    buffer item can remove the incore record.
149  *
150  * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
151  *    we replay di_next_unlinked only after flushing the inode 'free' state
152  *    to the inode buffer.
153  *
154  * See xlog_recover_reorder_trans for more details.
155  */
156 STATIC enum xlog_recover_reorder
xlog_recover_buf_reorder(struct xlog_recover_item * item)157 xlog_recover_buf_reorder(
158 	struct xlog_recover_item	*item)
159 {
160 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
161 
162 	if (buf_f->blf_flags & XFS_BLF_CANCEL)
163 		return XLOG_REORDER_CANCEL_LIST;
164 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
165 		return XLOG_REORDER_INODE_BUFFER_LIST;
166 	return XLOG_REORDER_BUFFER_LIST;
167 }
168 
169 STATIC void
xlog_recover_buf_ra_pass2(struct xlog * log,struct xlog_recover_item * item)170 xlog_recover_buf_ra_pass2(
171 	struct xlog                     *log,
172 	struct xlog_recover_item        *item)
173 {
174 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
175 
176 	xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
177 }
178 
179 /*
180  * Build up the table of buf cancel records so that we don't replay cancelled
181  * data in the second pass.
182  */
183 static int
xlog_recover_buf_commit_pass1(struct xlog * log,struct xlog_recover_item * item)184 xlog_recover_buf_commit_pass1(
185 	struct xlog			*log,
186 	struct xlog_recover_item	*item)
187 {
188 	struct xfs_buf_log_format	*bf = item->ri_buf[0].i_addr;
189 
190 	if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
191 		xfs_err(log->l_mp, "bad buffer log item size (%d)",
192 				item->ri_buf[0].i_len);
193 		return -EFSCORRUPTED;
194 	}
195 
196 	if (!(bf->blf_flags & XFS_BLF_CANCEL))
197 		trace_xfs_log_recover_buf_not_cancel(log, bf);
198 	else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
199 		trace_xfs_log_recover_buf_cancel_add(log, bf);
200 	else
201 		trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
202 	return 0;
203 }
204 
205 /*
206  * Validate the recovered buffer is of the correct type and attach the
207  * appropriate buffer operations to them for writeback. Magic numbers are in a
208  * few places:
209  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
210  *	the first 32 bits of the buffer (most blocks),
211  *	inside a struct xfs_da_blkinfo at the start of the buffer.
212  */
213 static void
xlog_recover_validate_buf_type(struct xfs_mount * mp,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f,xfs_lsn_t current_lsn)214 xlog_recover_validate_buf_type(
215 	struct xfs_mount		*mp,
216 	struct xfs_buf			*bp,
217 	struct xfs_buf_log_format	*buf_f,
218 	xfs_lsn_t			current_lsn)
219 {
220 	struct xfs_da_blkinfo		*info = bp->b_addr;
221 	uint32_t			magic32;
222 	uint16_t			magic16;
223 	uint16_t			magicda;
224 	char				*warnmsg = NULL;
225 
226 	/*
227 	 * We can only do post recovery validation on items on CRC enabled
228 	 * fielsystems as we need to know when the buffer was written to be able
229 	 * to determine if we should have replayed the item. If we replay old
230 	 * metadata over a newer buffer, then it will enter a temporarily
231 	 * inconsistent state resulting in verification failures. Hence for now
232 	 * just avoid the verification stage for non-crc filesystems
233 	 */
234 	if (!xfs_has_crc(mp))
235 		return;
236 
237 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
238 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
239 	magicda = be16_to_cpu(info->magic);
240 	switch (xfs_blft_from_flags(buf_f)) {
241 	case XFS_BLFT_BTREE_BUF:
242 		switch (magic32) {
243 		case XFS_ABTB_CRC_MAGIC:
244 		case XFS_ABTB_MAGIC:
245 			bp->b_ops = &xfs_bnobt_buf_ops;
246 			break;
247 		case XFS_ABTC_CRC_MAGIC:
248 		case XFS_ABTC_MAGIC:
249 			bp->b_ops = &xfs_cntbt_buf_ops;
250 			break;
251 		case XFS_IBT_CRC_MAGIC:
252 		case XFS_IBT_MAGIC:
253 			bp->b_ops = &xfs_inobt_buf_ops;
254 			break;
255 		case XFS_FIBT_CRC_MAGIC:
256 		case XFS_FIBT_MAGIC:
257 			bp->b_ops = &xfs_finobt_buf_ops;
258 			break;
259 		case XFS_BMAP_CRC_MAGIC:
260 		case XFS_BMAP_MAGIC:
261 			bp->b_ops = &xfs_bmbt_buf_ops;
262 			break;
263 		case XFS_RMAP_CRC_MAGIC:
264 			bp->b_ops = &xfs_rmapbt_buf_ops;
265 			break;
266 		case XFS_REFC_CRC_MAGIC:
267 			bp->b_ops = &xfs_refcountbt_buf_ops;
268 			break;
269 		default:
270 			warnmsg = "Bad btree block magic!";
271 			break;
272 		}
273 		break;
274 	case XFS_BLFT_AGF_BUF:
275 		if (magic32 != XFS_AGF_MAGIC) {
276 			warnmsg = "Bad AGF block magic!";
277 			break;
278 		}
279 		bp->b_ops = &xfs_agf_buf_ops;
280 		break;
281 	case XFS_BLFT_AGFL_BUF:
282 		if (magic32 != XFS_AGFL_MAGIC) {
283 			warnmsg = "Bad AGFL block magic!";
284 			break;
285 		}
286 		bp->b_ops = &xfs_agfl_buf_ops;
287 		break;
288 	case XFS_BLFT_AGI_BUF:
289 		if (magic32 != XFS_AGI_MAGIC) {
290 			warnmsg = "Bad AGI block magic!";
291 			break;
292 		}
293 		bp->b_ops = &xfs_agi_buf_ops;
294 		break;
295 	case XFS_BLFT_UDQUOT_BUF:
296 	case XFS_BLFT_PDQUOT_BUF:
297 	case XFS_BLFT_GDQUOT_BUF:
298 #ifdef CONFIG_XFS_QUOTA
299 		if (magic16 != XFS_DQUOT_MAGIC) {
300 			warnmsg = "Bad DQUOT block magic!";
301 			break;
302 		}
303 		bp->b_ops = &xfs_dquot_buf_ops;
304 #else
305 		xfs_alert(mp,
306 	"Trying to recover dquots without QUOTA support built in!");
307 		ASSERT(0);
308 #endif
309 		break;
310 	case XFS_BLFT_DINO_BUF:
311 		if (magic16 != XFS_DINODE_MAGIC) {
312 			warnmsg = "Bad INODE block magic!";
313 			break;
314 		}
315 		bp->b_ops = &xfs_inode_buf_ops;
316 		break;
317 	case XFS_BLFT_SYMLINK_BUF:
318 		if (magic32 != XFS_SYMLINK_MAGIC) {
319 			warnmsg = "Bad symlink block magic!";
320 			break;
321 		}
322 		bp->b_ops = &xfs_symlink_buf_ops;
323 		break;
324 	case XFS_BLFT_DIR_BLOCK_BUF:
325 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
326 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
327 			warnmsg = "Bad dir block magic!";
328 			break;
329 		}
330 		bp->b_ops = &xfs_dir3_block_buf_ops;
331 		break;
332 	case XFS_BLFT_DIR_DATA_BUF:
333 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
334 		    magic32 != XFS_DIR3_DATA_MAGIC) {
335 			warnmsg = "Bad dir data magic!";
336 			break;
337 		}
338 		bp->b_ops = &xfs_dir3_data_buf_ops;
339 		break;
340 	case XFS_BLFT_DIR_FREE_BUF:
341 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
342 		    magic32 != XFS_DIR3_FREE_MAGIC) {
343 			warnmsg = "Bad dir3 free magic!";
344 			break;
345 		}
346 		bp->b_ops = &xfs_dir3_free_buf_ops;
347 		break;
348 	case XFS_BLFT_DIR_LEAF1_BUF:
349 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
350 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
351 			warnmsg = "Bad dir leaf1 magic!";
352 			break;
353 		}
354 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
355 		break;
356 	case XFS_BLFT_DIR_LEAFN_BUF:
357 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
358 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
359 			warnmsg = "Bad dir leafn magic!";
360 			break;
361 		}
362 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
363 		break;
364 	case XFS_BLFT_DA_NODE_BUF:
365 		if (magicda != XFS_DA_NODE_MAGIC &&
366 		    magicda != XFS_DA3_NODE_MAGIC) {
367 			warnmsg = "Bad da node magic!";
368 			break;
369 		}
370 		bp->b_ops = &xfs_da3_node_buf_ops;
371 		break;
372 	case XFS_BLFT_ATTR_LEAF_BUF:
373 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
374 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
375 			warnmsg = "Bad attr leaf magic!";
376 			break;
377 		}
378 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
379 		break;
380 	case XFS_BLFT_ATTR_RMT_BUF:
381 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
382 			warnmsg = "Bad attr remote magic!";
383 			break;
384 		}
385 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
386 		break;
387 	case XFS_BLFT_SB_BUF:
388 		if (magic32 != XFS_SB_MAGIC) {
389 			warnmsg = "Bad SB block magic!";
390 			break;
391 		}
392 		bp->b_ops = &xfs_sb_buf_ops;
393 		break;
394 #ifdef CONFIG_XFS_RT
395 	case XFS_BLFT_RTBITMAP_BUF:
396 	case XFS_BLFT_RTSUMMARY_BUF:
397 		/* no magic numbers for verification of RT buffers */
398 		bp->b_ops = &xfs_rtbuf_ops;
399 		break;
400 #endif /* CONFIG_XFS_RT */
401 	default:
402 		xfs_warn(mp, "Unknown buffer type %d!",
403 			 xfs_blft_from_flags(buf_f));
404 		break;
405 	}
406 
407 	/*
408 	 * Nothing else to do in the case of a NULL current LSN as this means
409 	 * the buffer is more recent than the change in the log and will be
410 	 * skipped.
411 	 */
412 	if (current_lsn == NULLCOMMITLSN)
413 		return;
414 
415 	if (warnmsg) {
416 		xfs_warn(mp, warnmsg);
417 		ASSERT(0);
418 	}
419 
420 	/*
421 	 * We must update the metadata LSN of the buffer as it is written out to
422 	 * ensure that older transactions never replay over this one and corrupt
423 	 * the buffer. This can occur if log recovery is interrupted at some
424 	 * point after the current transaction completes, at which point a
425 	 * subsequent mount starts recovery from the beginning.
426 	 *
427 	 * Write verifiers update the metadata LSN from log items attached to
428 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
429 	 * the verifier.
430 	 */
431 	if (bp->b_ops) {
432 		struct xfs_buf_log_item	*bip;
433 
434 		bp->b_flags |= _XBF_LOGRECOVERY;
435 		xfs_buf_item_init(bp, mp);
436 		bip = bp->b_log_item;
437 		bip->bli_item.li_lsn = current_lsn;
438 	}
439 }
440 
441 /*
442  * Perform a 'normal' buffer recovery.  Each logged region of the
443  * buffer should be copied over the corresponding region in the
444  * given buffer.  The bitmap in the buf log format structure indicates
445  * where to place the logged data.
446  */
447 STATIC void
xlog_recover_do_reg_buffer(struct xfs_mount * mp,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f,xfs_lsn_t current_lsn)448 xlog_recover_do_reg_buffer(
449 	struct xfs_mount		*mp,
450 	struct xlog_recover_item	*item,
451 	struct xfs_buf			*bp,
452 	struct xfs_buf_log_format	*buf_f,
453 	xfs_lsn_t			current_lsn)
454 {
455 	int			i;
456 	int			bit;
457 	int			nbits;
458 	xfs_failaddr_t		fa;
459 	const size_t		size_disk_dquot = sizeof(struct xfs_disk_dquot);
460 
461 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
462 
463 	bit = 0;
464 	i = 1;  /* 0 is the buf format structure */
465 	while (1) {
466 		bit = xfs_next_bit(buf_f->blf_data_map,
467 				   buf_f->blf_map_size, bit);
468 		if (bit == -1)
469 			break;
470 		nbits = xfs_contig_bits(buf_f->blf_data_map,
471 					buf_f->blf_map_size, bit);
472 		ASSERT(nbits > 0);
473 		ASSERT(item->ri_buf[i].i_addr != NULL);
474 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
475 		ASSERT(BBTOB(bp->b_length) >=
476 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
477 
478 		/*
479 		 * The dirty regions logged in the buffer, even though
480 		 * contiguous, may span multiple chunks. This is because the
481 		 * dirty region may span a physical page boundary in a buffer
482 		 * and hence be split into two separate vectors for writing into
483 		 * the log. Hence we need to trim nbits back to the length of
484 		 * the current region being copied out of the log.
485 		 */
486 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
487 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
488 
489 		/*
490 		 * Do a sanity check if this is a dquot buffer. Just checking
491 		 * the first dquot in the buffer should do. XXXThis is
492 		 * probably a good thing to do for other buf types also.
493 		 */
494 		fa = NULL;
495 		if (buf_f->blf_flags &
496 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
497 			if (item->ri_buf[i].i_addr == NULL) {
498 				xfs_alert(mp,
499 					"XFS: NULL dquot in %s.", __func__);
500 				goto next;
501 			}
502 			if (item->ri_buf[i].i_len < size_disk_dquot) {
503 				xfs_alert(mp,
504 					"XFS: dquot too small (%d) in %s.",
505 					item->ri_buf[i].i_len, __func__);
506 				goto next;
507 			}
508 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
509 			if (fa) {
510 				xfs_alert(mp,
511 	"dquot corrupt at %pS trying to replay into block 0x%llx",
512 					fa, xfs_buf_daddr(bp));
513 				goto next;
514 			}
515 		}
516 
517 		memcpy(xfs_buf_offset(bp,
518 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
519 			item->ri_buf[i].i_addr,		/* source */
520 			nbits<<XFS_BLF_SHIFT);		/* length */
521  next:
522 		i++;
523 		bit += nbits;
524 	}
525 
526 	/* Shouldn't be any more regions */
527 	ASSERT(i == item->ri_total);
528 
529 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
530 }
531 
532 /*
533  * Perform a dquot buffer recovery.
534  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
535  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
536  * Else, treat it as a regular buffer and do recovery.
537  *
538  * Return false if the buffer was tossed and true if we recovered the buffer to
539  * indicate to the caller if the buffer needs writing.
540  */
541 STATIC bool
xlog_recover_do_dquot_buffer(struct xfs_mount * mp,struct xlog * log,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f)542 xlog_recover_do_dquot_buffer(
543 	struct xfs_mount		*mp,
544 	struct xlog			*log,
545 	struct xlog_recover_item	*item,
546 	struct xfs_buf			*bp,
547 	struct xfs_buf_log_format	*buf_f)
548 {
549 	uint			type;
550 
551 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
552 
553 	/*
554 	 * Filesystems are required to send in quota flags at mount time.
555 	 */
556 	if (!mp->m_qflags)
557 		return false;
558 
559 	type = 0;
560 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
561 		type |= XFS_DQTYPE_USER;
562 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
563 		type |= XFS_DQTYPE_PROJ;
564 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
565 		type |= XFS_DQTYPE_GROUP;
566 	/*
567 	 * This type of quotas was turned off, so ignore this buffer
568 	 */
569 	if (log->l_quotaoffs_flag & type)
570 		return false;
571 
572 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
573 	return true;
574 }
575 
576 /*
577  * Perform recovery for a buffer full of inodes.  In these buffers, the only
578  * data which should be recovered is that which corresponds to the
579  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
580  * data for the inodes is always logged through the inodes themselves rather
581  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
582  *
583  * The only time when buffers full of inodes are fully recovered is when the
584  * buffer is full of newly allocated inodes.  In this case the buffer will
585  * not be marked as an inode buffer and so will be sent to
586  * xlog_recover_do_reg_buffer() below during recovery.
587  */
588 STATIC int
xlog_recover_do_inode_buffer(struct xfs_mount * mp,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f)589 xlog_recover_do_inode_buffer(
590 	struct xfs_mount		*mp,
591 	struct xlog_recover_item	*item,
592 	struct xfs_buf			*bp,
593 	struct xfs_buf_log_format	*buf_f)
594 {
595 	int				i;
596 	int				item_index = 0;
597 	int				bit = 0;
598 	int				nbits = 0;
599 	int				reg_buf_offset = 0;
600 	int				reg_buf_bytes = 0;
601 	int				next_unlinked_offset;
602 	int				inodes_per_buf;
603 	xfs_agino_t			*logged_nextp;
604 	xfs_agino_t			*buffer_nextp;
605 
606 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
607 
608 	/*
609 	 * Post recovery validation only works properly on CRC enabled
610 	 * filesystems.
611 	 */
612 	if (xfs_has_crc(mp))
613 		bp->b_ops = &xfs_inode_buf_ops;
614 
615 	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
616 	for (i = 0; i < inodes_per_buf; i++) {
617 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
618 			offsetof(struct xfs_dinode, di_next_unlinked);
619 
620 		while (next_unlinked_offset >=
621 		       (reg_buf_offset + reg_buf_bytes)) {
622 			/*
623 			 * The next di_next_unlinked field is beyond
624 			 * the current logged region.  Find the next
625 			 * logged region that contains or is beyond
626 			 * the current di_next_unlinked field.
627 			 */
628 			bit += nbits;
629 			bit = xfs_next_bit(buf_f->blf_data_map,
630 					   buf_f->blf_map_size, bit);
631 
632 			/*
633 			 * If there are no more logged regions in the
634 			 * buffer, then we're done.
635 			 */
636 			if (bit == -1)
637 				return 0;
638 
639 			nbits = xfs_contig_bits(buf_f->blf_data_map,
640 						buf_f->blf_map_size, bit);
641 			ASSERT(nbits > 0);
642 			reg_buf_offset = bit << XFS_BLF_SHIFT;
643 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
644 			item_index++;
645 		}
646 
647 		/*
648 		 * If the current logged region starts after the current
649 		 * di_next_unlinked field, then move on to the next
650 		 * di_next_unlinked field.
651 		 */
652 		if (next_unlinked_offset < reg_buf_offset)
653 			continue;
654 
655 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
656 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
657 		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
658 
659 		/*
660 		 * The current logged region contains a copy of the
661 		 * current di_next_unlinked field.  Extract its value
662 		 * and copy it to the buffer copy.
663 		 */
664 		logged_nextp = item->ri_buf[item_index].i_addr +
665 				next_unlinked_offset - reg_buf_offset;
666 		if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
667 			xfs_alert(mp,
668 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
669 		"Trying to replay bad (0) inode di_next_unlinked field.",
670 				item, bp);
671 			return -EFSCORRUPTED;
672 		}
673 
674 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
675 		*buffer_nextp = *logged_nextp;
676 
677 		/*
678 		 * If necessary, recalculate the CRC in the on-disk inode. We
679 		 * have to leave the inode in a consistent state for whoever
680 		 * reads it next....
681 		 */
682 		xfs_dinode_calc_crc(mp,
683 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
684 
685 	}
686 
687 	return 0;
688 }
689 
690 /*
691  * Update the in-memory superblock and perag structures from the primary SB
692  * buffer.
693  *
694  * This is required because transactions running after growfs may require the
695  * updated values to be set in a previous fully commit transaction.
696  */
697 static int
xlog_recover_do_primary_sb_buffer(struct xfs_mount * mp,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f,xfs_lsn_t current_lsn)698 xlog_recover_do_primary_sb_buffer(
699 	struct xfs_mount		*mp,
700 	struct xlog_recover_item	*item,
701 	struct xfs_buf			*bp,
702 	struct xfs_buf_log_format	*buf_f,
703 	xfs_lsn_t			current_lsn)
704 {
705 	struct xfs_dsb			*dsb = bp->b_addr;
706 	xfs_agnumber_t			orig_agcount = mp->m_sb.sb_agcount;
707 	int				error;
708 
709 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
710 
711 	if (orig_agcount == 0) {
712 		xfs_alert(mp, "Trying to grow file system without AGs");
713 		return -EFSCORRUPTED;
714 	}
715 
716 	/*
717 	 * Update the in-core super block from the freshly recovered on-disk one.
718 	 */
719 	xfs_sb_from_disk(&mp->m_sb, dsb);
720 
721 	if (mp->m_sb.sb_agcount < orig_agcount) {
722 		xfs_alert(mp, "Shrinking AG count in log recovery not supported");
723 		return -EFSCORRUPTED;
724 	}
725 
726 	/*
727 	 * Growfs can also grow the last existing AG.  In this case we also need
728 	 * to update the length in the in-core perag structure and values
729 	 * depending on it.
730 	 */
731 	error = xfs_update_last_ag_size(mp, orig_agcount);
732 	if (error)
733 		return error;
734 
735 	/*
736 	 * Initialize the new perags, and also update various block and inode
737 	 * allocator setting based off the number of AGs or total blocks.
738 	 * Because of the latter this also needs to happen if the agcount did
739 	 * not change.
740 	 */
741 	error = xfs_initialize_perag(mp, orig_agcount, mp->m_sb.sb_agcount,
742 			mp->m_sb.sb_dblocks, &mp->m_maxagi);
743 	if (error) {
744 		xfs_warn(mp, "Failed recovery per-ag init: %d", error);
745 		return error;
746 	}
747 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
748 	return 0;
749 }
750 
751 /*
752  * V5 filesystems know the age of the buffer on disk being recovered. We can
753  * have newer objects on disk than we are replaying, and so for these cases we
754  * don't want to replay the current change as that will make the buffer contents
755  * temporarily invalid on disk.
756  *
757  * The magic number might not match the buffer type we are going to recover
758  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
759  * extract the LSN of the existing object in the buffer based on it's current
760  * magic number.  If we don't recognise the magic number in the buffer, then
761  * return a LSN of -1 so that the caller knows it was an unrecognised block and
762  * so can recover the buffer.
763  *
764  * Note: we cannot rely solely on magic number matches to determine that the
765  * buffer has a valid LSN - we also need to verify that it belongs to this
766  * filesystem, so we need to extract the object's LSN and compare it to that
767  * which we read from the superblock. If the UUIDs don't match, then we've got a
768  * stale metadata block from an old filesystem instance that we need to recover
769  * over the top of.
770  */
771 static xfs_lsn_t
xlog_recover_get_buf_lsn(struct xfs_mount * mp,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f)772 xlog_recover_get_buf_lsn(
773 	struct xfs_mount	*mp,
774 	struct xfs_buf		*bp,
775 	struct xfs_buf_log_format *buf_f)
776 {
777 	uint32_t		magic32;
778 	uint16_t		magic16;
779 	uint16_t		magicda;
780 	void			*blk = bp->b_addr;
781 	uuid_t			*uuid;
782 	xfs_lsn_t		lsn = -1;
783 	uint16_t		blft;
784 
785 	/* v4 filesystems always recover immediately */
786 	if (!xfs_has_crc(mp))
787 		goto recover_immediately;
788 
789 	/*
790 	 * realtime bitmap and summary file blocks do not have magic numbers or
791 	 * UUIDs, so we must recover them immediately.
792 	 */
793 	blft = xfs_blft_from_flags(buf_f);
794 	if (blft == XFS_BLFT_RTBITMAP_BUF || blft == XFS_BLFT_RTSUMMARY_BUF)
795 		goto recover_immediately;
796 
797 	magic32 = be32_to_cpu(*(__be32 *)blk);
798 	switch (magic32) {
799 	case XFS_ABTB_CRC_MAGIC:
800 	case XFS_ABTC_CRC_MAGIC:
801 	case XFS_ABTB_MAGIC:
802 	case XFS_ABTC_MAGIC:
803 	case XFS_RMAP_CRC_MAGIC:
804 	case XFS_REFC_CRC_MAGIC:
805 	case XFS_FIBT_CRC_MAGIC:
806 	case XFS_FIBT_MAGIC:
807 	case XFS_IBT_CRC_MAGIC:
808 	case XFS_IBT_MAGIC: {
809 		struct xfs_btree_block *btb = blk;
810 
811 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
812 		uuid = &btb->bb_u.s.bb_uuid;
813 		break;
814 	}
815 	case XFS_BMAP_CRC_MAGIC:
816 	case XFS_BMAP_MAGIC: {
817 		struct xfs_btree_block *btb = blk;
818 
819 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
820 		uuid = &btb->bb_u.l.bb_uuid;
821 		break;
822 	}
823 	case XFS_AGF_MAGIC:
824 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
825 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
826 		break;
827 	case XFS_AGFL_MAGIC:
828 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
829 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
830 		break;
831 	case XFS_AGI_MAGIC:
832 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
833 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
834 		break;
835 	case XFS_SYMLINK_MAGIC:
836 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
837 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
838 		break;
839 	case XFS_DIR3_BLOCK_MAGIC:
840 	case XFS_DIR3_DATA_MAGIC:
841 	case XFS_DIR3_FREE_MAGIC:
842 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
843 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
844 		break;
845 	case XFS_ATTR3_RMT_MAGIC:
846 		/*
847 		 * Remote attr blocks are written synchronously, rather than
848 		 * being logged. That means they do not contain a valid LSN
849 		 * (i.e. transactionally ordered) in them, and hence any time we
850 		 * see a buffer to replay over the top of a remote attribute
851 		 * block we should simply do so.
852 		 */
853 		goto recover_immediately;
854 	case XFS_SB_MAGIC:
855 		/*
856 		 * superblock uuids are magic. We may or may not have a
857 		 * sb_meta_uuid on disk, but it will be set in the in-core
858 		 * superblock. We set the uuid pointer for verification
859 		 * according to the superblock feature mask to ensure we check
860 		 * the relevant UUID in the superblock.
861 		 */
862 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
863 		if (xfs_has_metauuid(mp))
864 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
865 		else
866 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
867 		break;
868 	default:
869 		break;
870 	}
871 
872 	if (lsn != (xfs_lsn_t)-1) {
873 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
874 			goto recover_immediately;
875 		return lsn;
876 	}
877 
878 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
879 	switch (magicda) {
880 	case XFS_DIR3_LEAF1_MAGIC:
881 	case XFS_DIR3_LEAFN_MAGIC:
882 	case XFS_ATTR3_LEAF_MAGIC:
883 	case XFS_DA3_NODE_MAGIC:
884 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
885 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
886 		break;
887 	default:
888 		break;
889 	}
890 
891 	if (lsn != (xfs_lsn_t)-1) {
892 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
893 			goto recover_immediately;
894 		return lsn;
895 	}
896 
897 	/*
898 	 * We do individual object checks on dquot and inode buffers as they
899 	 * have their own individual LSN records. Also, we could have a stale
900 	 * buffer here, so we have to at least recognise these buffer types.
901 	 *
902 	 * A notd complexity here is inode unlinked list processing - it logs
903 	 * the inode directly in the buffer, but we don't know which inodes have
904 	 * been modified, and there is no global buffer LSN. Hence we need to
905 	 * recover all inode buffer types immediately. This problem will be
906 	 * fixed by logical logging of the unlinked list modifications.
907 	 */
908 	magic16 = be16_to_cpu(*(__be16 *)blk);
909 	switch (magic16) {
910 	case XFS_DQUOT_MAGIC:
911 	case XFS_DINODE_MAGIC:
912 		goto recover_immediately;
913 	default:
914 		break;
915 	}
916 
917 	/* unknown buffer contents, recover immediately */
918 
919 recover_immediately:
920 	return (xfs_lsn_t)-1;
921 
922 }
923 
924 /*
925  * This routine replays a modification made to a buffer at runtime.
926  * There are actually two types of buffer, regular and inode, which
927  * are handled differently.  Inode buffers are handled differently
928  * in that we only recover a specific set of data from them, namely
929  * the inode di_next_unlinked fields.  This is because all other inode
930  * data is actually logged via inode records and any data we replay
931  * here which overlaps that may be stale.
932  *
933  * When meta-data buffers are freed at run time we log a buffer item
934  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
935  * of the buffer in the log should not be replayed at recovery time.
936  * This is so that if the blocks covered by the buffer are reused for
937  * file data before we crash we don't end up replaying old, freed
938  * meta-data into a user's file.
939  *
940  * To handle the cancellation of buffer log items, we make two passes
941  * over the log during recovery.  During the first we build a table of
942  * those buffers which have been cancelled, and during the second we
943  * only replay those buffers which do not have corresponding cancel
944  * records in the table.  See xlog_recover_buf_pass[1,2] above
945  * for more details on the implementation of the table of cancel records.
946  */
947 STATIC int
xlog_recover_buf_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)948 xlog_recover_buf_commit_pass2(
949 	struct xlog			*log,
950 	struct list_head		*buffer_list,
951 	struct xlog_recover_item	*item,
952 	xfs_lsn_t			current_lsn)
953 {
954 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
955 	struct xfs_mount		*mp = log->l_mp;
956 	struct xfs_buf			*bp;
957 	int				error;
958 	uint				buf_flags;
959 	xfs_lsn_t			lsn;
960 
961 	/*
962 	 * In this pass we only want to recover all the buffers which have
963 	 * not been cancelled and are not cancellation buffers themselves.
964 	 */
965 	if (buf_f->blf_flags & XFS_BLF_CANCEL) {
966 		if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
967 				buf_f->blf_len))
968 			goto cancelled;
969 	} else {
970 
971 		if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
972 				buf_f->blf_len))
973 			goto cancelled;
974 	}
975 
976 	trace_xfs_log_recover_buf_recover(log, buf_f);
977 
978 	buf_flags = 0;
979 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
980 		buf_flags |= XBF_UNMAPPED;
981 
982 	error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
983 			  buf_flags, &bp, NULL);
984 	if (error)
985 		return error;
986 
987 	/*
988 	 * Recover the buffer only if we get an LSN from it and it's less than
989 	 * the lsn of the transaction we are replaying.
990 	 *
991 	 * Note that we have to be extremely careful of readahead here.
992 	 * Readahead does not attach verfiers to the buffers so if we don't
993 	 * actually do any replay after readahead because of the LSN we found
994 	 * in the buffer if more recent than that current transaction then we
995 	 * need to attach the verifier directly. Failure to do so can lead to
996 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
997 	 * operate on the buffers and they won't get the verifier attached. This
998 	 * can lead to blocks on disk having the correct content but a stale
999 	 * CRC.
1000 	 *
1001 	 * It is safe to assume these clean buffers are currently up to date.
1002 	 * If the buffer is dirtied by a later transaction being replayed, then
1003 	 * the verifier will be reset to match whatever recover turns that
1004 	 * buffer into.
1005 	 */
1006 	lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
1007 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
1008 		trace_xfs_log_recover_buf_skip(log, buf_f);
1009 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
1010 
1011 		/*
1012 		 * We're skipping replay of this buffer log item due to the log
1013 		 * item LSN being behind the ondisk buffer.  Verify the buffer
1014 		 * contents since we aren't going to run the write verifier.
1015 		 */
1016 		if (bp->b_ops) {
1017 			bp->b_ops->verify_read(bp);
1018 			error = bp->b_error;
1019 		}
1020 		goto out_release;
1021 	}
1022 
1023 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1024 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
1025 		if (error)
1026 			goto out_release;
1027 	} else if (buf_f->blf_flags &
1028 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1029 		bool	dirty;
1030 
1031 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
1032 		if (!dirty)
1033 			goto out_release;
1034 	} else if ((xfs_blft_from_flags(buf_f) & XFS_BLFT_SB_BUF) &&
1035 			xfs_buf_daddr(bp) == 0) {
1036 		error = xlog_recover_do_primary_sb_buffer(mp, item, bp, buf_f,
1037 				current_lsn);
1038 		if (error)
1039 			goto out_release;
1040 	} else {
1041 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
1042 	}
1043 
1044 	/*
1045 	 * Perform delayed write on the buffer.  Asynchronous writes will be
1046 	 * slower when taking into account all the buffers to be flushed.
1047 	 *
1048 	 * Also make sure that only inode buffers with good sizes stay in
1049 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
1050 	 * or inode_cluster_size bytes, whichever is bigger.  The inode
1051 	 * buffers in the log can be a different size if the log was generated
1052 	 * by an older kernel using unclustered inode buffers or a newer kernel
1053 	 * running with a different inode cluster size.  Regardless, if
1054 	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
1055 	 * for *our* value of inode_cluster_size, then we need to keep
1056 	 * the buffer out of the buffer cache so that the buffer won't
1057 	 * overlap with future reads of those inodes.
1058 	 */
1059 	if (XFS_DINODE_MAGIC ==
1060 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1061 	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
1062 		xfs_buf_stale(bp);
1063 		error = xfs_bwrite(bp);
1064 	} else {
1065 		ASSERT(bp->b_mount == mp);
1066 		bp->b_flags |= _XBF_LOGRECOVERY;
1067 		xfs_buf_delwri_queue(bp, buffer_list);
1068 	}
1069 
1070 out_release:
1071 	xfs_buf_relse(bp);
1072 	return error;
1073 cancelled:
1074 	trace_xfs_log_recover_buf_cancel(log, buf_f);
1075 	return 0;
1076 }
1077 
1078 const struct xlog_recover_item_ops xlog_buf_item_ops = {
1079 	.item_type		= XFS_LI_BUF,
1080 	.reorder		= xlog_recover_buf_reorder,
1081 	.ra_pass2		= xlog_recover_buf_ra_pass2,
1082 	.commit_pass1		= xlog_recover_buf_commit_pass1,
1083 	.commit_pass2		= xlog_recover_buf_commit_pass2,
1084 };
1085 
1086 #ifdef DEBUG
1087 void
xlog_check_buf_cancel_table(struct xlog * log)1088 xlog_check_buf_cancel_table(
1089 	struct xlog	*log)
1090 {
1091 	int		i;
1092 
1093 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
1094 		ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1095 }
1096 #endif
1097 
1098 int
xlog_alloc_buf_cancel_table(struct xlog * log)1099 xlog_alloc_buf_cancel_table(
1100 	struct xlog	*log)
1101 {
1102 	void		*p;
1103 	int		i;
1104 
1105 	ASSERT(log->l_buf_cancel_table == NULL);
1106 
1107 	p = kmalloc_array(XLOG_BC_TABLE_SIZE, sizeof(struct list_head),
1108 			  GFP_KERNEL);
1109 	if (!p)
1110 		return -ENOMEM;
1111 
1112 	log->l_buf_cancel_table = p;
1113 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
1114 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
1115 
1116 	return 0;
1117 }
1118 
1119 void
xlog_free_buf_cancel_table(struct xlog * log)1120 xlog_free_buf_cancel_table(
1121 	struct xlog	*log)
1122 {
1123 	int		i;
1124 
1125 	if (!log->l_buf_cancel_table)
1126 		return;
1127 
1128 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) {
1129 		struct xfs_buf_cancel	*bc;
1130 
1131 		while ((bc = list_first_entry_or_null(
1132 				&log->l_buf_cancel_table[i],
1133 				struct xfs_buf_cancel, bc_list))) {
1134 			list_del(&bc->bc_list);
1135 			kfree(bc);
1136 		}
1137 	}
1138 
1139 	kfree(log->l_buf_cancel_table);
1140 	log->l_buf_cancel_table = NULL;
1141 }
1142