1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4   * All Rights Reserved.
5   */
6  #include "xfs.h"
7  #include "xfs_fs.h"
8  #include "xfs_shared.h"
9  #include "xfs_format.h"
10  #include "xfs_log_format.h"
11  #include "xfs_trans_resv.h"
12  #include "xfs_bit.h"
13  #include "xfs_sb.h"
14  #include "xfs_mount.h"
15  #include "xfs_inode.h"
16  #include "xfs_dir2.h"
17  #include "xfs_ialloc.h"
18  #include "xfs_alloc.h"
19  #include "xfs_rtalloc.h"
20  #include "xfs_bmap.h"
21  #include "xfs_trans.h"
22  #include "xfs_trans_priv.h"
23  #include "xfs_log.h"
24  #include "xfs_log_priv.h"
25  #include "xfs_error.h"
26  #include "xfs_quota.h"
27  #include "xfs_fsops.h"
28  #include "xfs_icache.h"
29  #include "xfs_sysfs.h"
30  #include "xfs_rmap_btree.h"
31  #include "xfs_refcount_btree.h"
32  #include "xfs_reflink.h"
33  #include "xfs_extent_busy.h"
34  #include "xfs_health.h"
35  #include "xfs_trace.h"
36  #include "xfs_ag.h"
37  #include "xfs_rtbitmap.h"
38  #include "scrub/stats.h"
39  
40  static DEFINE_MUTEX(xfs_uuid_table_mutex);
41  static int xfs_uuid_table_size;
42  static uuid_t *xfs_uuid_table;
43  
44  void
xfs_uuid_table_free(void)45  xfs_uuid_table_free(void)
46  {
47  	if (xfs_uuid_table_size == 0)
48  		return;
49  	kfree(xfs_uuid_table);
50  	xfs_uuid_table = NULL;
51  	xfs_uuid_table_size = 0;
52  }
53  
54  /*
55   * See if the UUID is unique among mounted XFS filesystems.
56   * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
57   */
58  STATIC int
xfs_uuid_mount(struct xfs_mount * mp)59  xfs_uuid_mount(
60  	struct xfs_mount	*mp)
61  {
62  	uuid_t			*uuid = &mp->m_sb.sb_uuid;
63  	int			hole, i;
64  
65  	/* Publish UUID in struct super_block */
66  	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
67  
68  	if (xfs_has_nouuid(mp))
69  		return 0;
70  
71  	if (uuid_is_null(uuid)) {
72  		xfs_warn(mp, "Filesystem has null UUID - can't mount");
73  		return -EINVAL;
74  	}
75  
76  	mutex_lock(&xfs_uuid_table_mutex);
77  	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
78  		if (uuid_is_null(&xfs_uuid_table[i])) {
79  			hole = i;
80  			continue;
81  		}
82  		if (uuid_equal(uuid, &xfs_uuid_table[i]))
83  			goto out_duplicate;
84  	}
85  
86  	if (hole < 0) {
87  		xfs_uuid_table = krealloc(xfs_uuid_table,
88  			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
89  			GFP_KERNEL | __GFP_NOFAIL);
90  		hole = xfs_uuid_table_size++;
91  	}
92  	xfs_uuid_table[hole] = *uuid;
93  	mutex_unlock(&xfs_uuid_table_mutex);
94  
95  	return 0;
96  
97   out_duplicate:
98  	mutex_unlock(&xfs_uuid_table_mutex);
99  	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
100  	return -EINVAL;
101  }
102  
103  STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)104  xfs_uuid_unmount(
105  	struct xfs_mount	*mp)
106  {
107  	uuid_t			*uuid = &mp->m_sb.sb_uuid;
108  	int			i;
109  
110  	if (xfs_has_nouuid(mp))
111  		return;
112  
113  	mutex_lock(&xfs_uuid_table_mutex);
114  	for (i = 0; i < xfs_uuid_table_size; i++) {
115  		if (uuid_is_null(&xfs_uuid_table[i]))
116  			continue;
117  		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
118  			continue;
119  		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
120  		break;
121  	}
122  	ASSERT(i < xfs_uuid_table_size);
123  	mutex_unlock(&xfs_uuid_table_mutex);
124  }
125  
126  /*
127   * Check size of device based on the (data/realtime) block count.
128   * Note: this check is used by the growfs code as well as mount.
129   */
130  int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)131  xfs_sb_validate_fsb_count(
132  	xfs_sb_t	*sbp,
133  	uint64_t	nblocks)
134  {
135  	uint64_t		max_bytes;
136  
137  	ASSERT(sbp->sb_blocklog >= BBSHIFT);
138  
139  	if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
140  		return -EFBIG;
141  
142  	/* Limited by ULONG_MAX of page cache index */
143  	if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
144  		return -EFBIG;
145  	return 0;
146  }
147  
148  /*
149   * xfs_readsb
150   *
151   * Does the initial read of the superblock.
152   */
153  int
xfs_readsb(struct xfs_mount * mp,int flags)154  xfs_readsb(
155  	struct xfs_mount *mp,
156  	int		flags)
157  {
158  	unsigned int	sector_size;
159  	struct xfs_buf	*bp;
160  	struct xfs_sb	*sbp = &mp->m_sb;
161  	int		error;
162  	int		loud = !(flags & XFS_MFSI_QUIET);
163  	const struct xfs_buf_ops *buf_ops;
164  
165  	ASSERT(mp->m_sb_bp == NULL);
166  	ASSERT(mp->m_ddev_targp != NULL);
167  
168  	/*
169  	 * For the initial read, we must guess at the sector
170  	 * size based on the block device.  It's enough to
171  	 * get the sb_sectsize out of the superblock and
172  	 * then reread with the proper length.
173  	 * We don't verify it yet, because it may not be complete.
174  	 */
175  	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
176  	buf_ops = NULL;
177  
178  	/*
179  	 * Allocate a (locked) buffer to hold the superblock. This will be kept
180  	 * around at all times to optimize access to the superblock. Therefore,
181  	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
182  	 * elevated.
183  	 */
184  reread:
185  	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
186  				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
187  				      buf_ops);
188  	if (error) {
189  		if (loud)
190  			xfs_warn(mp, "SB validate failed with error %d.", error);
191  		/* bad CRC means corrupted metadata */
192  		if (error == -EFSBADCRC)
193  			error = -EFSCORRUPTED;
194  		return error;
195  	}
196  
197  	/*
198  	 * Initialize the mount structure from the superblock.
199  	 */
200  	xfs_sb_from_disk(sbp, bp->b_addr);
201  
202  	/*
203  	 * If we haven't validated the superblock, do so now before we try
204  	 * to check the sector size and reread the superblock appropriately.
205  	 */
206  	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
207  		if (loud)
208  			xfs_warn(mp, "Invalid superblock magic number");
209  		error = -EINVAL;
210  		goto release_buf;
211  	}
212  
213  	/*
214  	 * We must be able to do sector-sized and sector-aligned IO.
215  	 */
216  	if (sector_size > sbp->sb_sectsize) {
217  		if (loud)
218  			xfs_warn(mp, "device supports %u byte sectors (not %u)",
219  				sector_size, sbp->sb_sectsize);
220  		error = -ENOSYS;
221  		goto release_buf;
222  	}
223  
224  	if (buf_ops == NULL) {
225  		/*
226  		 * Re-read the superblock so the buffer is correctly sized,
227  		 * and properly verified.
228  		 */
229  		xfs_buf_relse(bp);
230  		sector_size = sbp->sb_sectsize;
231  		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
232  		goto reread;
233  	}
234  
235  	mp->m_features |= xfs_sb_version_to_features(sbp);
236  	xfs_reinit_percpu_counters(mp);
237  
238  	/*
239  	 * If logged xattrs are enabled after log recovery finishes, then set
240  	 * the opstate so that log recovery will work properly.
241  	 */
242  	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
243  		xfs_set_using_logged_xattrs(mp);
244  
245  	/* no need to be quiet anymore, so reset the buf ops */
246  	bp->b_ops = &xfs_sb_buf_ops;
247  
248  	mp->m_sb_bp = bp;
249  	xfs_buf_unlock(bp);
250  	return 0;
251  
252  release_buf:
253  	xfs_buf_relse(bp);
254  	return error;
255  }
256  
257  /*
258   * If the sunit/swidth change would move the precomputed root inode value, we
259   * must reject the ondisk change because repair will stumble over that.
260   * However, we allow the mount to proceed because we never rejected this
261   * combination before.  Returns true to update the sb, false otherwise.
262   */
263  static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)264  xfs_check_new_dalign(
265  	struct xfs_mount	*mp,
266  	int			new_dalign,
267  	bool			*update_sb)
268  {
269  	struct xfs_sb		*sbp = &mp->m_sb;
270  	xfs_ino_t		calc_ino;
271  
272  	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
273  	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
274  
275  	if (sbp->sb_rootino == calc_ino) {
276  		*update_sb = true;
277  		return 0;
278  	}
279  
280  	xfs_warn(mp,
281  "Cannot change stripe alignment; would require moving root inode.");
282  
283  	/*
284  	 * XXX: Next time we add a new incompat feature, this should start
285  	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
286  	 * that we're ignoring the administrator's instructions.
287  	 */
288  	xfs_warn(mp, "Skipping superblock stripe alignment update.");
289  	*update_sb = false;
290  	return 0;
291  }
292  
293  /*
294   * If we were provided with new sunit/swidth values as mount options, make sure
295   * that they pass basic alignment and superblock feature checks, and convert
296   * them into the same units (FSB) that everything else expects.  This step
297   * /must/ be done before computing the inode geometry.
298   */
299  STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)300  xfs_validate_new_dalign(
301  	struct xfs_mount	*mp)
302  {
303  	if (mp->m_dalign == 0)
304  		return 0;
305  
306  	/*
307  	 * If stripe unit and stripe width are not multiples
308  	 * of the fs blocksize turn off alignment.
309  	 */
310  	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
311  	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
312  		xfs_warn(mp,
313  	"alignment check failed: sunit/swidth vs. blocksize(%d)",
314  			mp->m_sb.sb_blocksize);
315  		return -EINVAL;
316  	}
317  
318  	/*
319  	 * Convert the stripe unit and width to FSBs.
320  	 */
321  	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
322  	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
323  		xfs_warn(mp,
324  	"alignment check failed: sunit/swidth vs. agsize(%d)",
325  			mp->m_sb.sb_agblocks);
326  		return -EINVAL;
327  	}
328  
329  	if (!mp->m_dalign) {
330  		xfs_warn(mp,
331  	"alignment check failed: sunit(%d) less than bsize(%d)",
332  			mp->m_dalign, mp->m_sb.sb_blocksize);
333  		return -EINVAL;
334  	}
335  
336  	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
337  
338  	if (!xfs_has_dalign(mp)) {
339  		xfs_warn(mp,
340  "cannot change alignment: superblock does not support data alignment");
341  		return -EINVAL;
342  	}
343  
344  	return 0;
345  }
346  
347  /* Update alignment values based on mount options and sb values. */
348  STATIC int
xfs_update_alignment(struct xfs_mount * mp)349  xfs_update_alignment(
350  	struct xfs_mount	*mp)
351  {
352  	struct xfs_sb		*sbp = &mp->m_sb;
353  
354  	if (mp->m_dalign) {
355  		bool		update_sb;
356  		int		error;
357  
358  		if (sbp->sb_unit == mp->m_dalign &&
359  		    sbp->sb_width == mp->m_swidth)
360  			return 0;
361  
362  		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
363  		if (error || !update_sb)
364  			return error;
365  
366  		sbp->sb_unit = mp->m_dalign;
367  		sbp->sb_width = mp->m_swidth;
368  		mp->m_update_sb = true;
369  	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
370  		mp->m_dalign = sbp->sb_unit;
371  		mp->m_swidth = sbp->sb_width;
372  	}
373  
374  	return 0;
375  }
376  
377  /*
378   * precalculate the low space thresholds for dynamic speculative preallocation.
379   */
380  void
xfs_set_low_space_thresholds(struct xfs_mount * mp)381  xfs_set_low_space_thresholds(
382  	struct xfs_mount	*mp)
383  {
384  	uint64_t		dblocks = mp->m_sb.sb_dblocks;
385  	uint64_t		rtexts = mp->m_sb.sb_rextents;
386  	int			i;
387  
388  	do_div(dblocks, 100);
389  	do_div(rtexts, 100);
390  
391  	for (i = 0; i < XFS_LOWSP_MAX; i++) {
392  		mp->m_low_space[i] = dblocks * (i + 1);
393  		mp->m_low_rtexts[i] = rtexts * (i + 1);
394  	}
395  }
396  
397  /*
398   * Check that the data (and log if separate) is an ok size.
399   */
400  STATIC int
xfs_check_sizes(struct xfs_mount * mp)401  xfs_check_sizes(
402  	struct xfs_mount *mp)
403  {
404  	struct xfs_buf	*bp;
405  	xfs_daddr_t	d;
406  	int		error;
407  
408  	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
409  	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
410  		xfs_warn(mp, "filesystem size mismatch detected");
411  		return -EFBIG;
412  	}
413  	error = xfs_buf_read_uncached(mp->m_ddev_targp,
414  					d - XFS_FSS_TO_BB(mp, 1),
415  					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
416  	if (error) {
417  		xfs_warn(mp, "last sector read failed");
418  		return error;
419  	}
420  	xfs_buf_relse(bp);
421  
422  	if (mp->m_logdev_targp == mp->m_ddev_targp)
423  		return 0;
424  
425  	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
426  	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
427  		xfs_warn(mp, "log size mismatch detected");
428  		return -EFBIG;
429  	}
430  	error = xfs_buf_read_uncached(mp->m_logdev_targp,
431  					d - XFS_FSB_TO_BB(mp, 1),
432  					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
433  	if (error) {
434  		xfs_warn(mp, "log device read failed");
435  		return error;
436  	}
437  	xfs_buf_relse(bp);
438  	return 0;
439  }
440  
441  /*
442   * Clear the quotaflags in memory and in the superblock.
443   */
444  int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)445  xfs_mount_reset_sbqflags(
446  	struct xfs_mount	*mp)
447  {
448  	mp->m_qflags = 0;
449  
450  	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
451  	if (mp->m_sb.sb_qflags == 0)
452  		return 0;
453  	spin_lock(&mp->m_sb_lock);
454  	mp->m_sb.sb_qflags = 0;
455  	spin_unlock(&mp->m_sb_lock);
456  
457  	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
458  		return 0;
459  
460  	return xfs_sync_sb(mp, false);
461  }
462  
463  uint64_t
xfs_default_resblks(xfs_mount_t * mp)464  xfs_default_resblks(xfs_mount_t *mp)
465  {
466  	uint64_t resblks;
467  
468  	/*
469  	 * We default to 5% or 8192 fsbs of space reserved, whichever is
470  	 * smaller.  This is intended to cover concurrent allocation
471  	 * transactions when we initially hit enospc. These each require a 4
472  	 * block reservation. Hence by default we cover roughly 2000 concurrent
473  	 * allocation reservations.
474  	 */
475  	resblks = mp->m_sb.sb_dblocks;
476  	do_div(resblks, 20);
477  	resblks = min_t(uint64_t, resblks, 8192);
478  	return resblks;
479  }
480  
481  /* Ensure the summary counts are correct. */
482  STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)483  xfs_check_summary_counts(
484  	struct xfs_mount	*mp)
485  {
486  	int			error = 0;
487  
488  	/*
489  	 * The AG0 superblock verifier rejects in-progress filesystems,
490  	 * so we should never see the flag set this far into mounting.
491  	 */
492  	if (mp->m_sb.sb_inprogress) {
493  		xfs_err(mp, "sb_inprogress set after log recovery??");
494  		WARN_ON(1);
495  		return -EFSCORRUPTED;
496  	}
497  
498  	/*
499  	 * Now the log is mounted, we know if it was an unclean shutdown or
500  	 * not. If it was, with the first phase of recovery has completed, we
501  	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
502  	 * but they are recovered transactionally in the second recovery phase
503  	 * later.
504  	 *
505  	 * If the log was clean when we mounted, we can check the summary
506  	 * counters.  If any of them are obviously incorrect, we can recompute
507  	 * them from the AGF headers in the next step.
508  	 */
509  	if (xfs_is_clean(mp) &&
510  	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
511  	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
512  	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
513  		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
514  
515  	/*
516  	 * We can safely re-initialise incore superblock counters from the
517  	 * per-ag data. These may not be correct if the filesystem was not
518  	 * cleanly unmounted, so we waited for recovery to finish before doing
519  	 * this.
520  	 *
521  	 * If the filesystem was cleanly unmounted or the previous check did
522  	 * not flag anything weird, then we can trust the values in the
523  	 * superblock to be correct and we don't need to do anything here.
524  	 * Otherwise, recalculate the summary counters.
525  	 */
526  	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
527  	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
528  		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
529  		if (error)
530  			return error;
531  	}
532  
533  	/*
534  	 * Older kernels misused sb_frextents to reflect both incore
535  	 * reservations made by running transactions and the actual count of
536  	 * free rt extents in the ondisk metadata.  Transactions committed
537  	 * during runtime can therefore contain a superblock update that
538  	 * undercounts the number of free rt extents tracked in the rt bitmap.
539  	 * A clean unmount record will have the correct frextents value since
540  	 * there can be no other transactions running at that point.
541  	 *
542  	 * If we're mounting the rt volume after recovering the log, recompute
543  	 * frextents from the rtbitmap file to fix the inconsistency.
544  	 */
545  	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
546  		error = xfs_rtalloc_reinit_frextents(mp);
547  		if (error)
548  			return error;
549  	}
550  
551  	return 0;
552  }
553  
554  static void
xfs_unmount_check(struct xfs_mount * mp)555  xfs_unmount_check(
556  	struct xfs_mount	*mp)
557  {
558  	if (xfs_is_shutdown(mp))
559  		return;
560  
561  	if (percpu_counter_sum(&mp->m_ifree) >
562  			percpu_counter_sum(&mp->m_icount)) {
563  		xfs_alert(mp, "ifree/icount mismatch at unmount");
564  		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
565  	}
566  }
567  
568  /*
569   * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
570   * internal inode structures can be sitting in the CIL and AIL at this point,
571   * so we need to unpin them, write them back and/or reclaim them before unmount
572   * can proceed.  In other words, callers are required to have inactivated all
573   * inodes.
574   *
575   * An inode cluster that has been freed can have its buffer still pinned in
576   * memory because the transaction is still sitting in a iclog. The stale inodes
577   * on that buffer will be pinned to the buffer until the transaction hits the
578   * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
579   * may never see the pinned buffer, so nothing will push out the iclog and
580   * unpin the buffer.
581   *
582   * Hence we need to force the log to unpin everything first. However, log
583   * forces don't wait for the discards they issue to complete, so we have to
584   * explicitly wait for them to complete here as well.
585   *
586   * Then we can tell the world we are unmounting so that error handling knows
587   * that the filesystem is going away and we should error out anything that we
588   * have been retrying in the background.  This will prevent never-ending
589   * retries in AIL pushing from hanging the unmount.
590   *
591   * Finally, we can push the AIL to clean all the remaining dirty objects, then
592   * reclaim the remaining inodes that are still in memory at this point in time.
593   */
594  static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)595  xfs_unmount_flush_inodes(
596  	struct xfs_mount	*mp)
597  {
598  	xfs_log_force(mp, XFS_LOG_SYNC);
599  	xfs_extent_busy_wait_all(mp);
600  	flush_workqueue(xfs_discard_wq);
601  
602  	xfs_set_unmounting(mp);
603  
604  	xfs_ail_push_all_sync(mp->m_ail);
605  	xfs_inodegc_stop(mp);
606  	cancel_delayed_work_sync(&mp->m_reclaim_work);
607  	xfs_reclaim_inodes(mp);
608  	xfs_health_unmount(mp);
609  }
610  
611  static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)612  xfs_mount_setup_inode_geom(
613  	struct xfs_mount	*mp)
614  {
615  	struct xfs_ino_geometry *igeo = M_IGEO(mp);
616  
617  	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
618  	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
619  
620  	xfs_ialloc_setup_geometry(mp);
621  }
622  
623  /* Compute maximum possible height for per-AG btree types for this fs. */
624  static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)625  xfs_agbtree_compute_maxlevels(
626  	struct xfs_mount	*mp)
627  {
628  	unsigned int		levels;
629  
630  	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
631  	levels = max(levels, mp->m_rmap_maxlevels);
632  	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
633  }
634  
635  /*
636   * This function does the following on an initial mount of a file system:
637   *	- reads the superblock from disk and init the mount struct
638   *	- if we're a 32-bit kernel, do a size check on the superblock
639   *		so we don't mount terabyte filesystems
640   *	- init mount struct realtime fields
641   *	- allocate inode hash table for fs
642   *	- init directory manager
643   *	- perform recovery and init the log manager
644   */
645  int
xfs_mountfs(struct xfs_mount * mp)646  xfs_mountfs(
647  	struct xfs_mount	*mp)
648  {
649  	struct xfs_sb		*sbp = &(mp->m_sb);
650  	struct xfs_inode	*rip;
651  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
652  	uint			quotamount = 0;
653  	uint			quotaflags = 0;
654  	int			error = 0;
655  
656  	xfs_sb_mount_common(mp, sbp);
657  
658  	/*
659  	 * Check for a mismatched features2 values.  Older kernels read & wrote
660  	 * into the wrong sb offset for sb_features2 on some platforms due to
661  	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
662  	 * which made older superblock reading/writing routines swap it as a
663  	 * 64-bit value.
664  	 *
665  	 * For backwards compatibility, we make both slots equal.
666  	 *
667  	 * If we detect a mismatched field, we OR the set bits into the existing
668  	 * features2 field in case it has already been modified; we don't want
669  	 * to lose any features.  We then update the bad location with the ORed
670  	 * value so that older kernels will see any features2 flags. The
671  	 * superblock writeback code ensures the new sb_features2 is copied to
672  	 * sb_bad_features2 before it is logged or written to disk.
673  	 */
674  	if (xfs_sb_has_mismatched_features2(sbp)) {
675  		xfs_warn(mp, "correcting sb_features alignment problem");
676  		sbp->sb_features2 |= sbp->sb_bad_features2;
677  		mp->m_update_sb = true;
678  	}
679  
680  
681  	/* always use v2 inodes by default now */
682  	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
683  		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
684  		mp->m_features |= XFS_FEAT_NLINK;
685  		mp->m_update_sb = true;
686  	}
687  
688  	/*
689  	 * If we were given new sunit/swidth options, do some basic validation
690  	 * checks and convert the incore dalign and swidth values to the
691  	 * same units (FSB) that everything else uses.  This /must/ happen
692  	 * before computing the inode geometry.
693  	 */
694  	error = xfs_validate_new_dalign(mp);
695  	if (error)
696  		goto out;
697  
698  	xfs_alloc_compute_maxlevels(mp);
699  	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700  	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701  	xfs_mount_setup_inode_geom(mp);
702  	xfs_rmapbt_compute_maxlevels(mp);
703  	xfs_refcountbt_compute_maxlevels(mp);
704  
705  	xfs_agbtree_compute_maxlevels(mp);
706  
707  	/*
708  	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
709  	 * is NOT aligned turn off m_dalign since allocator alignment is within
710  	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
711  	 * we must compute the free space and rmap btree geometry before doing
712  	 * this.
713  	 */
714  	error = xfs_update_alignment(mp);
715  	if (error)
716  		goto out;
717  
718  	/* enable fail_at_unmount as default */
719  	mp->m_fail_unmount = true;
720  
721  	super_set_sysfs_name_id(mp->m_super);
722  
723  	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
724  			       NULL, mp->m_super->s_id);
725  	if (error)
726  		goto out;
727  
728  	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
729  			       &mp->m_kobj, "stats");
730  	if (error)
731  		goto out_remove_sysfs;
732  
733  	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
734  
735  	error = xfs_error_sysfs_init(mp);
736  	if (error)
737  		goto out_remove_scrub_stats;
738  
739  	error = xfs_errortag_init(mp);
740  	if (error)
741  		goto out_remove_error_sysfs;
742  
743  	error = xfs_uuid_mount(mp);
744  	if (error)
745  		goto out_remove_errortag;
746  
747  	/*
748  	 * Update the preferred write size based on the information from the
749  	 * on-disk superblock.
750  	 */
751  	mp->m_allocsize_log =
752  		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
753  	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
754  
755  	/* set the low space thresholds for dynamic preallocation */
756  	xfs_set_low_space_thresholds(mp);
757  
758  	/*
759  	 * If enabled, sparse inode chunk alignment is expected to match the
760  	 * cluster size. Full inode chunk alignment must match the chunk size,
761  	 * but that is checked on sb read verification...
762  	 */
763  	if (xfs_has_sparseinodes(mp) &&
764  	    mp->m_sb.sb_spino_align !=
765  			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
766  		xfs_warn(mp,
767  	"Sparse inode block alignment (%u) must match cluster size (%llu).",
768  			 mp->m_sb.sb_spino_align,
769  			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
770  		error = -EINVAL;
771  		goto out_remove_uuid;
772  	}
773  
774  	/*
775  	 * Check that the data (and log if separate) is an ok size.
776  	 */
777  	error = xfs_check_sizes(mp);
778  	if (error)
779  		goto out_remove_uuid;
780  
781  	/*
782  	 * Initialize realtime fields in the mount structure
783  	 */
784  	error = xfs_rtmount_init(mp);
785  	if (error) {
786  		xfs_warn(mp, "RT mount failed");
787  		goto out_remove_uuid;
788  	}
789  
790  	/*
791  	 *  Copies the low order bits of the timestamp and the randomly
792  	 *  set "sequence" number out of a UUID.
793  	 */
794  	mp->m_fixedfsid[0] =
795  		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
796  		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
797  	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
798  
799  	error = xfs_da_mount(mp);
800  	if (error) {
801  		xfs_warn(mp, "Failed dir/attr init: %d", error);
802  		goto out_remove_uuid;
803  	}
804  
805  	/*
806  	 * Initialize the precomputed transaction reservations values.
807  	 */
808  	xfs_trans_init(mp);
809  
810  	/*
811  	 * Allocate and initialize the per-ag data.
812  	 */
813  	error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
814  			mp->m_sb.sb_dblocks, &mp->m_maxagi);
815  	if (error) {
816  		xfs_warn(mp, "Failed per-ag init: %d", error);
817  		goto out_free_dir;
818  	}
819  
820  	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
821  		xfs_warn(mp, "no log defined");
822  		error = -EFSCORRUPTED;
823  		goto out_free_perag;
824  	}
825  
826  	error = xfs_inodegc_register_shrinker(mp);
827  	if (error)
828  		goto out_fail_wait;
829  
830  	/*
831  	 * Log's mount-time initialization. The first part of recovery can place
832  	 * some items on the AIL, to be handled when recovery is finished or
833  	 * cancelled.
834  	 */
835  	error = xfs_log_mount(mp, mp->m_logdev_targp,
836  			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
837  			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
838  	if (error) {
839  		xfs_warn(mp, "log mount failed");
840  		goto out_inodegc_shrinker;
841  	}
842  
843  	/*
844  	 * If logged xattrs are still enabled after log recovery finishes, then
845  	 * they'll be available until unmount.  Otherwise, turn them off.
846  	 */
847  	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
848  		xfs_set_using_logged_xattrs(mp);
849  	else
850  		xfs_clear_using_logged_xattrs(mp);
851  
852  	/* Enable background inode inactivation workers. */
853  	xfs_inodegc_start(mp);
854  	xfs_blockgc_start(mp);
855  
856  	/*
857  	 * Now that we've recovered any pending superblock feature bit
858  	 * additions, we can finish setting up the attr2 behaviour for the
859  	 * mount. The noattr2 option overrides the superblock flag, so only
860  	 * check the superblock feature flag if the mount option is not set.
861  	 */
862  	if (xfs_has_noattr2(mp)) {
863  		mp->m_features &= ~XFS_FEAT_ATTR2;
864  	} else if (!xfs_has_attr2(mp) &&
865  		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
866  		mp->m_features |= XFS_FEAT_ATTR2;
867  	}
868  
869  	/*
870  	 * Get and sanity-check the root inode.
871  	 * Save the pointer to it in the mount structure.
872  	 */
873  	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
874  			 XFS_ILOCK_EXCL, &rip);
875  	if (error) {
876  		xfs_warn(mp,
877  			"Failed to read root inode 0x%llx, error %d",
878  			sbp->sb_rootino, -error);
879  		goto out_log_dealloc;
880  	}
881  
882  	ASSERT(rip != NULL);
883  
884  	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
885  		xfs_warn(mp, "corrupted root inode %llu: not a directory",
886  			(unsigned long long)rip->i_ino);
887  		xfs_iunlock(rip, XFS_ILOCK_EXCL);
888  		error = -EFSCORRUPTED;
889  		goto out_rele_rip;
890  	}
891  	mp->m_rootip = rip;	/* save it */
892  
893  	xfs_iunlock(rip, XFS_ILOCK_EXCL);
894  
895  	/*
896  	 * Initialize realtime inode pointers in the mount structure
897  	 */
898  	error = xfs_rtmount_inodes(mp);
899  	if (error) {
900  		/*
901  		 * Free up the root inode.
902  		 */
903  		xfs_warn(mp, "failed to read RT inodes");
904  		goto out_rele_rip;
905  	}
906  
907  	/* Make sure the summary counts are ok. */
908  	error = xfs_check_summary_counts(mp);
909  	if (error)
910  		goto out_rtunmount;
911  
912  	/*
913  	 * If this is a read-only mount defer the superblock updates until
914  	 * the next remount into writeable mode.  Otherwise we would never
915  	 * perform the update e.g. for the root filesystem.
916  	 */
917  	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
918  		error = xfs_sync_sb(mp, false);
919  		if (error) {
920  			xfs_warn(mp, "failed to write sb changes");
921  			goto out_rtunmount;
922  		}
923  	}
924  
925  	/*
926  	 * Initialise the XFS quota management subsystem for this mount
927  	 */
928  	if (XFS_IS_QUOTA_ON(mp)) {
929  		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
930  		if (error)
931  			goto out_rtunmount;
932  	} else {
933  		/*
934  		 * If a file system had quotas running earlier, but decided to
935  		 * mount without -o uquota/pquota/gquota options, revoke the
936  		 * quotachecked license.
937  		 */
938  		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
939  			xfs_notice(mp, "resetting quota flags");
940  			error = xfs_mount_reset_sbqflags(mp);
941  			if (error)
942  				goto out_rtunmount;
943  		}
944  	}
945  
946  	/*
947  	 * Finish recovering the file system.  This part needed to be delayed
948  	 * until after the root and real-time bitmap inodes were consistently
949  	 * read in.  Temporarily create per-AG space reservations for metadata
950  	 * btree shape changes because space freeing transactions (for inode
951  	 * inactivation) require the per-AG reservation in lieu of reserving
952  	 * blocks.
953  	 */
954  	error = xfs_fs_reserve_ag_blocks(mp);
955  	if (error && error == -ENOSPC)
956  		xfs_warn(mp,
957  	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
958  	error = xfs_log_mount_finish(mp);
959  	xfs_fs_unreserve_ag_blocks(mp);
960  	if (error) {
961  		xfs_warn(mp, "log mount finish failed");
962  		goto out_rtunmount;
963  	}
964  
965  	/*
966  	 * Now the log is fully replayed, we can transition to full read-only
967  	 * mode for read-only mounts. This will sync all the metadata and clean
968  	 * the log so that the recovery we just performed does not have to be
969  	 * replayed again on the next mount.
970  	 *
971  	 * We use the same quiesce mechanism as the rw->ro remount, as they are
972  	 * semantically identical operations.
973  	 */
974  	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
975  		xfs_log_clean(mp);
976  
977  	/*
978  	 * Complete the quota initialisation, post-log-replay component.
979  	 */
980  	if (quotamount) {
981  		ASSERT(mp->m_qflags == 0);
982  		mp->m_qflags = quotaflags;
983  
984  		xfs_qm_mount_quotas(mp);
985  	}
986  
987  	/*
988  	 * Now we are mounted, reserve a small amount of unused space for
989  	 * privileged transactions. This is needed so that transaction
990  	 * space required for critical operations can dip into this pool
991  	 * when at ENOSPC. This is needed for operations like create with
992  	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
993  	 * are not allowed to use this reserved space.
994  	 *
995  	 * This may drive us straight to ENOSPC on mount, but that implies
996  	 * we were already there on the last unmount. Warn if this occurs.
997  	 */
998  	if (!xfs_is_readonly(mp)) {
999  		error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1000  		if (error)
1001  			xfs_warn(mp,
1002  	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1003  
1004  		/* Reserve AG blocks for future btree expansion. */
1005  		error = xfs_fs_reserve_ag_blocks(mp);
1006  		if (error && error != -ENOSPC)
1007  			goto out_agresv;
1008  	}
1009  
1010  	return 0;
1011  
1012   out_agresv:
1013  	xfs_fs_unreserve_ag_blocks(mp);
1014  	xfs_qm_unmount_quotas(mp);
1015   out_rtunmount:
1016  	xfs_rtunmount_inodes(mp);
1017   out_rele_rip:
1018  	xfs_irele(rip);
1019  	/* Clean out dquots that might be in memory after quotacheck. */
1020  	xfs_qm_unmount(mp);
1021  
1022  	/*
1023  	 * Inactivate all inodes that might still be in memory after a log
1024  	 * intent recovery failure so that reclaim can free them.  Metadata
1025  	 * inodes and the root directory shouldn't need inactivation, but the
1026  	 * mount failed for some reason, so pull down all the state and flee.
1027  	 */
1028  	xfs_inodegc_flush(mp);
1029  
1030  	/*
1031  	 * Flush all inode reclamation work and flush the log.
1032  	 * We have to do this /after/ rtunmount and qm_unmount because those
1033  	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1034  	 *
1035  	 * This is slightly different from the unmountfs call sequence
1036  	 * because we could be tearing down a partially set up mount.  In
1037  	 * particular, if log_mount_finish fails we bail out without calling
1038  	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1039  	 * quota inodes.
1040  	 */
1041  	xfs_unmount_flush_inodes(mp);
1042   out_log_dealloc:
1043  	xfs_log_mount_cancel(mp);
1044   out_inodegc_shrinker:
1045  	shrinker_free(mp->m_inodegc_shrinker);
1046   out_fail_wait:
1047  	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1048  		xfs_buftarg_drain(mp->m_logdev_targp);
1049  	xfs_buftarg_drain(mp->m_ddev_targp);
1050   out_free_perag:
1051  	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1052   out_free_dir:
1053  	xfs_da_unmount(mp);
1054   out_remove_uuid:
1055  	xfs_uuid_unmount(mp);
1056   out_remove_errortag:
1057  	xfs_errortag_del(mp);
1058   out_remove_error_sysfs:
1059  	xfs_error_sysfs_del(mp);
1060   out_remove_scrub_stats:
1061  	xchk_stats_unregister(mp->m_scrub_stats);
1062  	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1063   out_remove_sysfs:
1064  	xfs_sysfs_del(&mp->m_kobj);
1065   out:
1066  	return error;
1067  }
1068  
1069  /*
1070   * This flushes out the inodes,dquots and the superblock, unmounts the
1071   * log and makes sure that incore structures are freed.
1072   */
1073  void
xfs_unmountfs(struct xfs_mount * mp)1074  xfs_unmountfs(
1075  	struct xfs_mount	*mp)
1076  {
1077  	int			error;
1078  
1079  	/*
1080  	 * Perform all on-disk metadata updates required to inactivate inodes
1081  	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1082  	 * and discarding CoW fork preallocations can cause shape changes to
1083  	 * the free inode and refcount btrees, respectively, so we must finish
1084  	 * this before we discard the metadata space reservations.  Metadata
1085  	 * inodes and the root directory do not require inactivation.
1086  	 */
1087  	xfs_inodegc_flush(mp);
1088  
1089  	xfs_blockgc_stop(mp);
1090  	xfs_fs_unreserve_ag_blocks(mp);
1091  	xfs_qm_unmount_quotas(mp);
1092  	xfs_rtunmount_inodes(mp);
1093  	xfs_irele(mp->m_rootip);
1094  
1095  	xfs_unmount_flush_inodes(mp);
1096  
1097  	xfs_qm_unmount(mp);
1098  
1099  	/*
1100  	 * Unreserve any blocks we have so that when we unmount we don't account
1101  	 * the reserved free space as used. This is really only necessary for
1102  	 * lazy superblock counting because it trusts the incore superblock
1103  	 * counters to be absolutely correct on clean unmount.
1104  	 *
1105  	 * We don't bother correcting this elsewhere for lazy superblock
1106  	 * counting because on mount of an unclean filesystem we reconstruct the
1107  	 * correct counter value and this is irrelevant.
1108  	 *
1109  	 * For non-lazy counter filesystems, this doesn't matter at all because
1110  	 * we only every apply deltas to the superblock and hence the incore
1111  	 * value does not matter....
1112  	 */
1113  	error = xfs_reserve_blocks(mp, 0);
1114  	if (error)
1115  		xfs_warn(mp, "Unable to free reserved block pool. "
1116  				"Freespace may not be correct on next mount.");
1117  	xfs_unmount_check(mp);
1118  
1119  	/*
1120  	 * Indicate that it's ok to clear log incompat bits before cleaning
1121  	 * the log and writing the unmount record.
1122  	 */
1123  	xfs_set_done_with_log_incompat(mp);
1124  	xfs_log_unmount(mp);
1125  	xfs_da_unmount(mp);
1126  	xfs_uuid_unmount(mp);
1127  
1128  #if defined(DEBUG)
1129  	xfs_errortag_clearall(mp);
1130  #endif
1131  	shrinker_free(mp->m_inodegc_shrinker);
1132  	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1133  	xfs_errortag_del(mp);
1134  	xfs_error_sysfs_del(mp);
1135  	xchk_stats_unregister(mp->m_scrub_stats);
1136  	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1137  	xfs_sysfs_del(&mp->m_kobj);
1138  }
1139  
1140  /*
1141   * Determine whether modifications can proceed. The caller specifies the minimum
1142   * freeze level for which modifications should not be allowed. This allows
1143   * certain operations to proceed while the freeze sequence is in progress, if
1144   * necessary.
1145   */
1146  bool
xfs_fs_writable(struct xfs_mount * mp,int level)1147  xfs_fs_writable(
1148  	struct xfs_mount	*mp,
1149  	int			level)
1150  {
1151  	ASSERT(level > SB_UNFROZEN);
1152  	if ((mp->m_super->s_writers.frozen >= level) ||
1153  	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1154  		return false;
1155  
1156  	return true;
1157  }
1158  
1159  void
xfs_add_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,uint64_t delta)1160  xfs_add_freecounter(
1161  	struct xfs_mount	*mp,
1162  	struct percpu_counter	*counter,
1163  	uint64_t		delta)
1164  {
1165  	bool			has_resv_pool = (counter == &mp->m_fdblocks);
1166  	uint64_t		res_used;
1167  
1168  	/*
1169  	 * If the reserve pool is depleted, put blocks back into it first.
1170  	 * Most of the time the pool is full.
1171  	 */
1172  	if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1173  		percpu_counter_add(counter, delta);
1174  		return;
1175  	}
1176  
1177  	spin_lock(&mp->m_sb_lock);
1178  	res_used = mp->m_resblks - mp->m_resblks_avail;
1179  	if (res_used > delta) {
1180  		mp->m_resblks_avail += delta;
1181  	} else {
1182  		delta -= res_used;
1183  		mp->m_resblks_avail = mp->m_resblks;
1184  		percpu_counter_add(counter, delta);
1185  	}
1186  	spin_unlock(&mp->m_sb_lock);
1187  }
1188  
1189  int
xfs_dec_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,uint64_t delta,bool rsvd)1190  xfs_dec_freecounter(
1191  	struct xfs_mount	*mp,
1192  	struct percpu_counter	*counter,
1193  	uint64_t		delta,
1194  	bool			rsvd)
1195  {
1196  	int64_t			lcounter;
1197  	uint64_t		set_aside = 0;
1198  	s32			batch;
1199  	bool			has_resv_pool;
1200  
1201  	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1202  	has_resv_pool = (counter == &mp->m_fdblocks);
1203  	if (rsvd)
1204  		ASSERT(has_resv_pool);
1205  
1206  	/*
1207  	 * Taking blocks away, need to be more accurate the closer we
1208  	 * are to zero.
1209  	 *
1210  	 * If the counter has a value of less than 2 * max batch size,
1211  	 * then make everything serialise as we are real close to
1212  	 * ENOSPC.
1213  	 */
1214  	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1215  				     XFS_FDBLOCKS_BATCH) < 0)
1216  		batch = 1;
1217  	else
1218  		batch = XFS_FDBLOCKS_BATCH;
1219  
1220  	/*
1221  	 * Set aside allocbt blocks because these blocks are tracked as free
1222  	 * space but not available for allocation. Technically this means that a
1223  	 * single reservation cannot consume all remaining free space, but the
1224  	 * ratio of allocbt blocks to usable free blocks should be rather small.
1225  	 * The tradeoff without this is that filesystems that maintain high
1226  	 * perag block reservations can over reserve physical block availability
1227  	 * and fail physical allocation, which leads to much more serious
1228  	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1229  	 * slightly premature -ENOSPC.
1230  	 */
1231  	if (has_resv_pool)
1232  		set_aside = xfs_fdblocks_unavailable(mp);
1233  	percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1234  	if (__percpu_counter_compare(counter, set_aside,
1235  				     XFS_FDBLOCKS_BATCH) >= 0) {
1236  		/* we had space! */
1237  		return 0;
1238  	}
1239  
1240  	/*
1241  	 * lock up the sb for dipping into reserves before releasing the space
1242  	 * that took us to ENOSPC.
1243  	 */
1244  	spin_lock(&mp->m_sb_lock);
1245  	percpu_counter_add(counter, delta);
1246  	if (!has_resv_pool || !rsvd)
1247  		goto fdblocks_enospc;
1248  
1249  	lcounter = (long long)mp->m_resblks_avail - delta;
1250  	if (lcounter >= 0) {
1251  		mp->m_resblks_avail = lcounter;
1252  		spin_unlock(&mp->m_sb_lock);
1253  		return 0;
1254  	}
1255  	xfs_warn_once(mp,
1256  "Reserve blocks depleted! Consider increasing reserve pool size.");
1257  
1258  fdblocks_enospc:
1259  	spin_unlock(&mp->m_sb_lock);
1260  	return -ENOSPC;
1261  }
1262  
1263  /*
1264   * Used to free the superblock along various error paths.
1265   */
1266  void
xfs_freesb(struct xfs_mount * mp)1267  xfs_freesb(
1268  	struct xfs_mount	*mp)
1269  {
1270  	struct xfs_buf		*bp = mp->m_sb_bp;
1271  
1272  	xfs_buf_lock(bp);
1273  	mp->m_sb_bp = NULL;
1274  	xfs_buf_relse(bp);
1275  }
1276  
1277  /*
1278   * If the underlying (data/log/rt) device is readonly, there are some
1279   * operations that cannot proceed.
1280   */
1281  int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1282  xfs_dev_is_read_only(
1283  	struct xfs_mount	*mp,
1284  	char			*message)
1285  {
1286  	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1287  	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1288  	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1289  		xfs_notice(mp, "%s required on read-only device.", message);
1290  		xfs_notice(mp, "write access unavailable, cannot proceed.");
1291  		return -EROFS;
1292  	}
1293  	return 0;
1294  }
1295  
1296  /* Force the summary counters to be recalculated at next mount. */
1297  void
xfs_force_summary_recalc(struct xfs_mount * mp)1298  xfs_force_summary_recalc(
1299  	struct xfs_mount	*mp)
1300  {
1301  	if (!xfs_has_lazysbcount(mp))
1302  		return;
1303  
1304  	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1305  }
1306  
1307  /*
1308   * Enable a log incompat feature flag in the primary superblock.  The caller
1309   * cannot have any other transactions in progress.
1310   */
1311  int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1312  xfs_add_incompat_log_feature(
1313  	struct xfs_mount	*mp,
1314  	uint32_t		feature)
1315  {
1316  	struct xfs_dsb		*dsb;
1317  	int			error;
1318  
1319  	ASSERT(hweight32(feature) == 1);
1320  	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1321  
1322  	/*
1323  	 * Force the log to disk and kick the background AIL thread to reduce
1324  	 * the chances that the bwrite will stall waiting for the AIL to unpin
1325  	 * the primary superblock buffer.  This isn't a data integrity
1326  	 * operation, so we don't need a synchronous push.
1327  	 */
1328  	error = xfs_log_force(mp, XFS_LOG_SYNC);
1329  	if (error)
1330  		return error;
1331  	xfs_ail_push_all(mp->m_ail);
1332  
1333  	/*
1334  	 * Lock the primary superblock buffer to serialize all callers that
1335  	 * are trying to set feature bits.
1336  	 */
1337  	xfs_buf_lock(mp->m_sb_bp);
1338  	xfs_buf_hold(mp->m_sb_bp);
1339  
1340  	if (xfs_is_shutdown(mp)) {
1341  		error = -EIO;
1342  		goto rele;
1343  	}
1344  
1345  	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1346  		goto rele;
1347  
1348  	/*
1349  	 * Write the primary superblock to disk immediately, because we need
1350  	 * the log_incompat bit to be set in the primary super now to protect
1351  	 * the log items that we're going to commit later.
1352  	 */
1353  	dsb = mp->m_sb_bp->b_addr;
1354  	xfs_sb_to_disk(dsb, &mp->m_sb);
1355  	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1356  	error = xfs_bwrite(mp->m_sb_bp);
1357  	if (error)
1358  		goto shutdown;
1359  
1360  	/*
1361  	 * Add the feature bits to the incore superblock before we unlock the
1362  	 * buffer.
1363  	 */
1364  	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1365  	xfs_buf_relse(mp->m_sb_bp);
1366  
1367  	/* Log the superblock to disk. */
1368  	return xfs_sync_sb(mp, false);
1369  shutdown:
1370  	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1371  rele:
1372  	xfs_buf_relse(mp->m_sb_bp);
1373  	return error;
1374  }
1375  
1376  /*
1377   * Clear all the log incompat flags from the superblock.
1378   *
1379   * The caller cannot be in a transaction, must ensure that the log does not
1380   * contain any log items protected by any log incompat bit, and must ensure
1381   * that there are no other threads that depend on the state of the log incompat
1382   * feature flags in the primary super.
1383   *
1384   * Returns true if the superblock is dirty.
1385   */
1386  bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1387  xfs_clear_incompat_log_features(
1388  	struct xfs_mount	*mp)
1389  {
1390  	bool			ret = false;
1391  
1392  	if (!xfs_has_crc(mp) ||
1393  	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1394  				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1395  	    xfs_is_shutdown(mp) ||
1396  	    !xfs_is_done_with_log_incompat(mp))
1397  		return false;
1398  
1399  	/*
1400  	 * Update the incore superblock.  We synchronize on the primary super
1401  	 * buffer lock to be consistent with the add function, though at least
1402  	 * in theory this shouldn't be necessary.
1403  	 */
1404  	xfs_buf_lock(mp->m_sb_bp);
1405  	xfs_buf_hold(mp->m_sb_bp);
1406  
1407  	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1408  				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1409  		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1410  		ret = true;
1411  	}
1412  
1413  	xfs_buf_relse(mp->m_sb_bp);
1414  	return ret;
1415  }
1416  
1417  /*
1418   * Update the in-core delayed block counter.
1419   *
1420   * We prefer to update the counter without having to take a spinlock for every
1421   * counter update (i.e. batching).  Each change to delayed allocation
1422   * reservations can change can easily exceed the default percpu counter
1423   * batching, so we use a larger batch factor here.
1424   *
1425   * Note that we don't currently have any callers requiring fast summation
1426   * (e.g. percpu_counter_read) so we can use a big batch value here.
1427   */
1428  #define XFS_DELALLOC_BATCH	(4096)
1429  void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1430  xfs_mod_delalloc(
1431  	struct xfs_inode	*ip,
1432  	int64_t			data_delta,
1433  	int64_t			ind_delta)
1434  {
1435  	struct xfs_mount	*mp = ip->i_mount;
1436  
1437  	if (XFS_IS_REALTIME_INODE(ip)) {
1438  		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1439  				xfs_rtb_to_rtx(mp, data_delta),
1440  				XFS_DELALLOC_BATCH);
1441  		if (!ind_delta)
1442  			return;
1443  		data_delta = 0;
1444  	}
1445  	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1446  			XFS_DELALLOC_BATCH);
1447  }
1448