1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4   * All Rights Reserved.
5   */
6  #include <linux/iversion.h>
7  
8  #include "xfs.h"
9  #include "xfs_fs.h"
10  #include "xfs_shared.h"
11  #include "xfs_format.h"
12  #include "xfs_log_format.h"
13  #include "xfs_trans_resv.h"
14  #include "xfs_mount.h"
15  #include "xfs_defer.h"
16  #include "xfs_inode.h"
17  #include "xfs_dir2.h"
18  #include "xfs_attr.h"
19  #include "xfs_bit.h"
20  #include "xfs_trans_space.h"
21  #include "xfs_trans.h"
22  #include "xfs_buf_item.h"
23  #include "xfs_inode_item.h"
24  #include "xfs_iunlink_item.h"
25  #include "xfs_ialloc.h"
26  #include "xfs_bmap.h"
27  #include "xfs_bmap_util.h"
28  #include "xfs_errortag.h"
29  #include "xfs_error.h"
30  #include "xfs_quota.h"
31  #include "xfs_filestream.h"
32  #include "xfs_trace.h"
33  #include "xfs_icache.h"
34  #include "xfs_symlink.h"
35  #include "xfs_trans_priv.h"
36  #include "xfs_log.h"
37  #include "xfs_bmap_btree.h"
38  #include "xfs_reflink.h"
39  #include "xfs_ag.h"
40  #include "xfs_log_priv.h"
41  #include "xfs_health.h"
42  #include "xfs_pnfs.h"
43  #include "xfs_parent.h"
44  #include "xfs_xattr.h"
45  #include "xfs_inode_util.h"
46  
47  struct kmem_cache *xfs_inode_cache;
48  
49  /*
50   * These two are wrapper routines around the xfs_ilock() routine used to
51   * centralize some grungy code.  They are used in places that wish to lock the
52   * inode solely for reading the extents.  The reason these places can't just
53   * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
54   * bringing in of the extents from disk for a file in b-tree format.  If the
55   * inode is in b-tree format, then we need to lock the inode exclusively until
56   * the extents are read in.  Locking it exclusively all the time would limit
57   * our parallelism unnecessarily, though.  What we do instead is check to see
58   * if the extents have been read in yet, and only lock the inode exclusively
59   * if they have not.
60   *
61   * The functions return a value which should be given to the corresponding
62   * xfs_iunlock() call.
63   */
64  uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)65  xfs_ilock_data_map_shared(
66  	struct xfs_inode	*ip)
67  {
68  	uint			lock_mode = XFS_ILOCK_SHARED;
69  
70  	if (xfs_need_iread_extents(&ip->i_df))
71  		lock_mode = XFS_ILOCK_EXCL;
72  	xfs_ilock(ip, lock_mode);
73  	return lock_mode;
74  }
75  
76  uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)77  xfs_ilock_attr_map_shared(
78  	struct xfs_inode	*ip)
79  {
80  	uint			lock_mode = XFS_ILOCK_SHARED;
81  
82  	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
83  		lock_mode = XFS_ILOCK_EXCL;
84  	xfs_ilock(ip, lock_mode);
85  	return lock_mode;
86  }
87  
88  /*
89   * You can't set both SHARED and EXCL for the same lock,
90   * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
91   * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
92   * to set in lock_flags.
93   */
94  static inline void
xfs_lock_flags_assert(uint lock_flags)95  xfs_lock_flags_assert(
96  	uint		lock_flags)
97  {
98  	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
99  		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
100  	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
101  		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
102  	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
103  		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
104  	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
105  	ASSERT(lock_flags != 0);
106  }
107  
108  /*
109   * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
110   * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
111   * various combinations of the locks to be obtained.
112   *
113   * The 3 locks should always be ordered so that the IO lock is obtained first,
114   * the mmap lock second and the ilock last in order to prevent deadlock.
115   *
116   * Basic locking order:
117   *
118   * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
119   *
120   * mmap_lock locking order:
121   *
122   * i_rwsem -> page lock -> mmap_lock
123   * mmap_lock -> invalidate_lock -> page_lock
124   *
125   * The difference in mmap_lock locking order mean that we cannot hold the
126   * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
127   * can fault in pages during copy in/out (for buffered IO) or require the
128   * mmap_lock in get_user_pages() to map the user pages into the kernel address
129   * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
130   * fault because page faults already hold the mmap_lock.
131   *
132   * Hence to serialise fully against both syscall and mmap based IO, we need to
133   * take both the i_rwsem and the invalidate_lock. These locks should *only* be
134   * both taken in places where we need to invalidate the page cache in a race
135   * free manner (e.g. truncate, hole punch and other extent manipulation
136   * functions).
137   */
138  void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)139  xfs_ilock(
140  	xfs_inode_t		*ip,
141  	uint			lock_flags)
142  {
143  	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
144  
145  	xfs_lock_flags_assert(lock_flags);
146  
147  	if (lock_flags & XFS_IOLOCK_EXCL) {
148  		down_write_nested(&VFS_I(ip)->i_rwsem,
149  				  XFS_IOLOCK_DEP(lock_flags));
150  	} else if (lock_flags & XFS_IOLOCK_SHARED) {
151  		down_read_nested(&VFS_I(ip)->i_rwsem,
152  				 XFS_IOLOCK_DEP(lock_flags));
153  	}
154  
155  	if (lock_flags & XFS_MMAPLOCK_EXCL) {
156  		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
157  				  XFS_MMAPLOCK_DEP(lock_flags));
158  	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
159  		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
160  				 XFS_MMAPLOCK_DEP(lock_flags));
161  	}
162  
163  	if (lock_flags & XFS_ILOCK_EXCL)
164  		down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
165  	else if (lock_flags & XFS_ILOCK_SHARED)
166  		down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
167  }
168  
169  /*
170   * This is just like xfs_ilock(), except that the caller
171   * is guaranteed not to sleep.  It returns 1 if it gets
172   * the requested locks and 0 otherwise.  If the IO lock is
173   * obtained but the inode lock cannot be, then the IO lock
174   * is dropped before returning.
175   *
176   * ip -- the inode being locked
177   * lock_flags -- this parameter indicates the inode's locks to be
178   *       to be locked.  See the comment for xfs_ilock() for a list
179   *	 of valid values.
180   */
181  int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)182  xfs_ilock_nowait(
183  	xfs_inode_t		*ip,
184  	uint			lock_flags)
185  {
186  	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
187  
188  	xfs_lock_flags_assert(lock_flags);
189  
190  	if (lock_flags & XFS_IOLOCK_EXCL) {
191  		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
192  			goto out;
193  	} else if (lock_flags & XFS_IOLOCK_SHARED) {
194  		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
195  			goto out;
196  	}
197  
198  	if (lock_flags & XFS_MMAPLOCK_EXCL) {
199  		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
200  			goto out_undo_iolock;
201  	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
202  		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
203  			goto out_undo_iolock;
204  	}
205  
206  	if (lock_flags & XFS_ILOCK_EXCL) {
207  		if (!down_write_trylock(&ip->i_lock))
208  			goto out_undo_mmaplock;
209  	} else if (lock_flags & XFS_ILOCK_SHARED) {
210  		if (!down_read_trylock(&ip->i_lock))
211  			goto out_undo_mmaplock;
212  	}
213  	return 1;
214  
215  out_undo_mmaplock:
216  	if (lock_flags & XFS_MMAPLOCK_EXCL)
217  		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
218  	else if (lock_flags & XFS_MMAPLOCK_SHARED)
219  		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
220  out_undo_iolock:
221  	if (lock_flags & XFS_IOLOCK_EXCL)
222  		up_write(&VFS_I(ip)->i_rwsem);
223  	else if (lock_flags & XFS_IOLOCK_SHARED)
224  		up_read(&VFS_I(ip)->i_rwsem);
225  out:
226  	return 0;
227  }
228  
229  /*
230   * xfs_iunlock() is used to drop the inode locks acquired with
231   * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
232   * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
233   * that we know which locks to drop.
234   *
235   * ip -- the inode being unlocked
236   * lock_flags -- this parameter indicates the inode's locks to be
237   *       to be unlocked.  See the comment for xfs_ilock() for a list
238   *	 of valid values for this parameter.
239   *
240   */
241  void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)242  xfs_iunlock(
243  	xfs_inode_t		*ip,
244  	uint			lock_flags)
245  {
246  	xfs_lock_flags_assert(lock_flags);
247  
248  	if (lock_flags & XFS_IOLOCK_EXCL)
249  		up_write(&VFS_I(ip)->i_rwsem);
250  	else if (lock_flags & XFS_IOLOCK_SHARED)
251  		up_read(&VFS_I(ip)->i_rwsem);
252  
253  	if (lock_flags & XFS_MMAPLOCK_EXCL)
254  		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
255  	else if (lock_flags & XFS_MMAPLOCK_SHARED)
256  		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
257  
258  	if (lock_flags & XFS_ILOCK_EXCL)
259  		up_write(&ip->i_lock);
260  	else if (lock_flags & XFS_ILOCK_SHARED)
261  		up_read(&ip->i_lock);
262  
263  	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
264  }
265  
266  /*
267   * give up write locks.  the i/o lock cannot be held nested
268   * if it is being demoted.
269   */
270  void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)271  xfs_ilock_demote(
272  	xfs_inode_t		*ip,
273  	uint			lock_flags)
274  {
275  	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
276  	ASSERT((lock_flags &
277  		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
278  
279  	if (lock_flags & XFS_ILOCK_EXCL)
280  		downgrade_write(&ip->i_lock);
281  	if (lock_flags & XFS_MMAPLOCK_EXCL)
282  		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
283  	if (lock_flags & XFS_IOLOCK_EXCL)
284  		downgrade_write(&VFS_I(ip)->i_rwsem);
285  
286  	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
287  }
288  
289  void
xfs_assert_ilocked(struct xfs_inode * ip,uint lock_flags)290  xfs_assert_ilocked(
291  	struct xfs_inode	*ip,
292  	uint			lock_flags)
293  {
294  	/*
295  	 * Sometimes we assert the ILOCK is held exclusively, but we're in
296  	 * a workqueue, so lockdep doesn't know we're the owner.
297  	 */
298  	if (lock_flags & XFS_ILOCK_SHARED)
299  		rwsem_assert_held(&ip->i_lock);
300  	else if (lock_flags & XFS_ILOCK_EXCL)
301  		rwsem_assert_held_write_nolockdep(&ip->i_lock);
302  
303  	if (lock_flags & XFS_MMAPLOCK_SHARED)
304  		rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
305  	else if (lock_flags & XFS_MMAPLOCK_EXCL)
306  		rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
307  
308  	if (lock_flags & XFS_IOLOCK_SHARED)
309  		rwsem_assert_held(&VFS_I(ip)->i_rwsem);
310  	else if (lock_flags & XFS_IOLOCK_EXCL)
311  		rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
312  }
313  
314  /*
315   * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
316   * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
317   * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
318   * errors and warnings.
319   */
320  #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
321  static bool
xfs_lockdep_subclass_ok(int subclass)322  xfs_lockdep_subclass_ok(
323  	int subclass)
324  {
325  	return subclass < MAX_LOCKDEP_SUBCLASSES;
326  }
327  #else
328  #define xfs_lockdep_subclass_ok(subclass)	(true)
329  #endif
330  
331  /*
332   * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
333   * value. This can be called for any type of inode lock combination, including
334   * parent locking. Care must be taken to ensure we don't overrun the subclass
335   * storage fields in the class mask we build.
336   */
337  static inline uint
xfs_lock_inumorder(uint lock_mode,uint subclass)338  xfs_lock_inumorder(
339  	uint	lock_mode,
340  	uint	subclass)
341  {
342  	uint	class = 0;
343  
344  	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
345  			      XFS_ILOCK_RTSUM)));
346  	ASSERT(xfs_lockdep_subclass_ok(subclass));
347  
348  	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
349  		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
350  		class += subclass << XFS_IOLOCK_SHIFT;
351  	}
352  
353  	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
354  		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
355  		class += subclass << XFS_MMAPLOCK_SHIFT;
356  	}
357  
358  	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
359  		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
360  		class += subclass << XFS_ILOCK_SHIFT;
361  	}
362  
363  	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
364  }
365  
366  /*
367   * The following routine will lock n inodes in exclusive mode.  We assume the
368   * caller calls us with the inodes in i_ino order.
369   *
370   * We need to detect deadlock where an inode that we lock is in the AIL and we
371   * start waiting for another inode that is locked by a thread in a long running
372   * transaction (such as truncate). This can result in deadlock since the long
373   * running trans might need to wait for the inode we just locked in order to
374   * push the tail and free space in the log.
375   *
376   * xfs_lock_inodes() can only be used to lock one type of lock at a time -
377   * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
378   * lock more than one at a time, lockdep will report false positives saying we
379   * have violated locking orders.
380   */
381  void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)382  xfs_lock_inodes(
383  	struct xfs_inode	**ips,
384  	int			inodes,
385  	uint			lock_mode)
386  {
387  	int			attempts = 0;
388  	uint			i;
389  	int			j;
390  	bool			try_lock;
391  	struct xfs_log_item	*lp;
392  
393  	/*
394  	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
395  	 * support an arbitrary depth of locking here, but absolute limits on
396  	 * inodes depend on the type of locking and the limits placed by
397  	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
398  	 * the asserts.
399  	 */
400  	ASSERT(ips && inodes >= 2 && inodes <= 5);
401  	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
402  			    XFS_ILOCK_EXCL));
403  	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
404  			      XFS_ILOCK_SHARED)));
405  	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
406  		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
407  	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
408  		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
409  
410  	if (lock_mode & XFS_IOLOCK_EXCL) {
411  		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
412  	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
413  		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
414  
415  again:
416  	try_lock = false;
417  	i = 0;
418  	for (; i < inodes; i++) {
419  		ASSERT(ips[i]);
420  
421  		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
422  			continue;
423  
424  		/*
425  		 * If try_lock is not set yet, make sure all locked inodes are
426  		 * not in the AIL.  If any are, set try_lock to be used later.
427  		 */
428  		if (!try_lock) {
429  			for (j = (i - 1); j >= 0 && !try_lock; j--) {
430  				lp = &ips[j]->i_itemp->ili_item;
431  				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
432  					try_lock = true;
433  			}
434  		}
435  
436  		/*
437  		 * If any of the previous locks we have locked is in the AIL,
438  		 * we must TRY to get the second and subsequent locks. If
439  		 * we can't get any, we must release all we have
440  		 * and try again.
441  		 */
442  		if (!try_lock) {
443  			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444  			continue;
445  		}
446  
447  		/* try_lock means we have an inode locked that is in the AIL. */
448  		ASSERT(i != 0);
449  		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450  			continue;
451  
452  		/*
453  		 * Unlock all previous guys and try again.  xfs_iunlock will try
454  		 * to push the tail if the inode is in the AIL.
455  		 */
456  		attempts++;
457  		for (j = i - 1; j >= 0; j--) {
458  			/*
459  			 * Check to see if we've already unlocked this one.  Not
460  			 * the first one going back, and the inode ptr is the
461  			 * same.
462  			 */
463  			if (j != (i - 1) && ips[j] == ips[j + 1])
464  				continue;
465  
466  			xfs_iunlock(ips[j], lock_mode);
467  		}
468  
469  		if ((attempts % 5) == 0) {
470  			delay(1); /* Don't just spin the CPU */
471  		}
472  		goto again;
473  	}
474  }
475  
476  /*
477   * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
478   * mmaplock must be double-locked separately since we use i_rwsem and
479   * invalidate_lock for that. We now support taking one lock EXCL and the
480   * other SHARED.
481   */
482  void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)483  xfs_lock_two_inodes(
484  	struct xfs_inode	*ip0,
485  	uint			ip0_mode,
486  	struct xfs_inode	*ip1,
487  	uint			ip1_mode)
488  {
489  	int			attempts = 0;
490  	struct xfs_log_item	*lp;
491  
492  	ASSERT(hweight32(ip0_mode) == 1);
493  	ASSERT(hweight32(ip1_mode) == 1);
494  	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
495  	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
496  	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
497  	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
498  	ASSERT(ip0->i_ino != ip1->i_ino);
499  
500  	if (ip0->i_ino > ip1->i_ino) {
501  		swap(ip0, ip1);
502  		swap(ip0_mode, ip1_mode);
503  	}
504  
505   again:
506  	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
507  
508  	/*
509  	 * If the first lock we have locked is in the AIL, we must TRY to get
510  	 * the second lock. If we can't get it, we must release the first one
511  	 * and try again.
512  	 */
513  	lp = &ip0->i_itemp->ili_item;
514  	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
515  		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
516  			xfs_iunlock(ip0, ip0_mode);
517  			if ((++attempts % 5) == 0)
518  				delay(1); /* Don't just spin the CPU */
519  			goto again;
520  		}
521  	} else {
522  		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
523  	}
524  }
525  
526  /*
527   * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
528   * is allowed, otherwise it has to be an exact match. If a CI match is found,
529   * ci_name->name will point to a the actual name (caller must free) or
530   * will be set to NULL if an exact match is found.
531   */
532  int
xfs_lookup(struct xfs_inode * dp,const struct xfs_name * name,struct xfs_inode ** ipp,struct xfs_name * ci_name)533  xfs_lookup(
534  	struct xfs_inode	*dp,
535  	const struct xfs_name	*name,
536  	struct xfs_inode	**ipp,
537  	struct xfs_name		*ci_name)
538  {
539  	xfs_ino_t		inum;
540  	int			error;
541  
542  	trace_xfs_lookup(dp, name);
543  
544  	if (xfs_is_shutdown(dp->i_mount))
545  		return -EIO;
546  	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
547  		return -EIO;
548  
549  	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
550  	if (error)
551  		goto out_unlock;
552  
553  	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
554  	if (error)
555  		goto out_free_name;
556  
557  	return 0;
558  
559  out_free_name:
560  	if (ci_name)
561  		kfree(ci_name->name);
562  out_unlock:
563  	*ipp = NULL;
564  	return error;
565  }
566  
567  /*
568   * Initialise a newly allocated inode and return the in-core inode to the
569   * caller locked exclusively.
570   *
571   * Caller is responsible for unlocking the inode manually upon return
572   */
573  int
xfs_icreate(struct xfs_trans * tp,xfs_ino_t ino,const struct xfs_icreate_args * args,struct xfs_inode ** ipp)574  xfs_icreate(
575  	struct xfs_trans	*tp,
576  	xfs_ino_t		ino,
577  	const struct xfs_icreate_args *args,
578  	struct xfs_inode	**ipp)
579  {
580  	struct xfs_mount	*mp = tp->t_mountp;
581  	struct xfs_inode	*ip = NULL;
582  	int			error;
583  
584  	/*
585  	 * Get the in-core inode with the lock held exclusively to prevent
586  	 * others from looking at until we're done.
587  	 */
588  	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
589  	if (error)
590  		return error;
591  
592  	ASSERT(ip != NULL);
593  	xfs_trans_ijoin(tp, ip, 0);
594  	xfs_inode_init(tp, args, ip);
595  
596  	/* now that we have an i_mode we can setup the inode structure */
597  	xfs_setup_inode(ip);
598  
599  	*ipp = ip;
600  	return 0;
601  }
602  
603  /* Return dquots for the ids that will be assigned to a new file. */
604  int
xfs_icreate_dqalloc(const struct xfs_icreate_args * args,struct xfs_dquot ** udqpp,struct xfs_dquot ** gdqpp,struct xfs_dquot ** pdqpp)605  xfs_icreate_dqalloc(
606  	const struct xfs_icreate_args	*args,
607  	struct xfs_dquot		**udqpp,
608  	struct xfs_dquot		**gdqpp,
609  	struct xfs_dquot		**pdqpp)
610  {
611  	struct inode			*dir = VFS_I(args->pip);
612  	kuid_t				uid = GLOBAL_ROOT_UID;
613  	kgid_t				gid = GLOBAL_ROOT_GID;
614  	prid_t				prid = 0;
615  	unsigned int			flags = XFS_QMOPT_QUOTALL;
616  
617  	if (args->idmap) {
618  		/*
619  		 * The uid/gid computation code must match what the VFS uses to
620  		 * assign i_[ug]id.  INHERIT adjusts the gid computation for
621  		 * setgid/grpid systems.
622  		 */
623  		uid = mapped_fsuid(args->idmap, i_user_ns(dir));
624  		gid = mapped_fsgid(args->idmap, i_user_ns(dir));
625  		prid = xfs_get_initial_prid(args->pip);
626  		flags |= XFS_QMOPT_INHERIT;
627  	}
628  
629  	*udqpp = *gdqpp = *pdqpp = NULL;
630  
631  	return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
632  			gdqpp, pdqpp);
633  }
634  
635  int
xfs_create(const struct xfs_icreate_args * args,struct xfs_name * name,struct xfs_inode ** ipp)636  xfs_create(
637  	const struct xfs_icreate_args *args,
638  	struct xfs_name		*name,
639  	struct xfs_inode	**ipp)
640  {
641  	struct xfs_inode	*dp = args->pip;
642  	struct xfs_dir_update	du = {
643  		.dp		= dp,
644  		.name		= name,
645  	};
646  	struct xfs_mount	*mp = dp->i_mount;
647  	struct xfs_trans	*tp = NULL;
648  	struct xfs_dquot	*udqp;
649  	struct xfs_dquot	*gdqp;
650  	struct xfs_dquot	*pdqp;
651  	struct xfs_trans_res	*tres;
652  	xfs_ino_t		ino;
653  	bool			unlock_dp_on_error = false;
654  	bool			is_dir = S_ISDIR(args->mode);
655  	uint			resblks;
656  	int			error;
657  
658  	trace_xfs_create(dp, name);
659  
660  	if (xfs_is_shutdown(mp))
661  		return -EIO;
662  	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
663  		return -EIO;
664  
665  	/* Make sure that we have allocated dquot(s) on disk. */
666  	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
667  	if (error)
668  		return error;
669  
670  	if (is_dir) {
671  		resblks = xfs_mkdir_space_res(mp, name->len);
672  		tres = &M_RES(mp)->tr_mkdir;
673  	} else {
674  		resblks = xfs_create_space_res(mp, name->len);
675  		tres = &M_RES(mp)->tr_create;
676  	}
677  
678  	error = xfs_parent_start(mp, &du.ppargs);
679  	if (error)
680  		goto out_release_dquots;
681  
682  	/*
683  	 * Initially assume that the file does not exist and
684  	 * reserve the resources for that case.  If that is not
685  	 * the case we'll drop the one we have and get a more
686  	 * appropriate transaction later.
687  	 */
688  	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
689  			&tp);
690  	if (error == -ENOSPC) {
691  		/* flush outstanding delalloc blocks and retry */
692  		xfs_flush_inodes(mp);
693  		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
694  				resblks, &tp);
695  	}
696  	if (error)
697  		goto out_parent;
698  
699  	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
700  	unlock_dp_on_error = true;
701  
702  	/*
703  	 * A newly created regular or special file just has one directory
704  	 * entry pointing to them, but a directory also the "." entry
705  	 * pointing to itself.
706  	 */
707  	error = xfs_dialloc(&tp, args, &ino);
708  	if (!error)
709  		error = xfs_icreate(tp, ino, args, &du.ip);
710  	if (error)
711  		goto out_trans_cancel;
712  
713  	/*
714  	 * Now we join the directory inode to the transaction.  We do not do it
715  	 * earlier because xfs_dialloc might commit the previous transaction
716  	 * (and release all the locks).  An error from here on will result in
717  	 * the transaction cancel unlocking dp so don't do it explicitly in the
718  	 * error path.
719  	 */
720  	xfs_trans_ijoin(tp, dp, 0);
721  
722  	error = xfs_dir_create_child(tp, resblks, &du);
723  	if (error)
724  		goto out_trans_cancel;
725  
726  	/*
727  	 * If this is a synchronous mount, make sure that the
728  	 * create transaction goes to disk before returning to
729  	 * the user.
730  	 */
731  	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
732  		xfs_trans_set_sync(tp);
733  
734  	/*
735  	 * Attach the dquot(s) to the inodes and modify them incore.
736  	 * These ids of the inode couldn't have changed since the new
737  	 * inode has been locked ever since it was created.
738  	 */
739  	xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
740  
741  	error = xfs_trans_commit(tp);
742  	if (error)
743  		goto out_release_inode;
744  
745  	xfs_qm_dqrele(udqp);
746  	xfs_qm_dqrele(gdqp);
747  	xfs_qm_dqrele(pdqp);
748  
749  	*ipp = du.ip;
750  	xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
751  	xfs_iunlock(dp, XFS_ILOCK_EXCL);
752  	xfs_parent_finish(mp, du.ppargs);
753  	return 0;
754  
755   out_trans_cancel:
756  	xfs_trans_cancel(tp);
757   out_release_inode:
758  	/*
759  	 * Wait until after the current transaction is aborted to finish the
760  	 * setup of the inode and release the inode.  This prevents recursive
761  	 * transactions and deadlocks from xfs_inactive.
762  	 */
763  	if (du.ip) {
764  		xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
765  		xfs_finish_inode_setup(du.ip);
766  		xfs_irele(du.ip);
767  	}
768   out_parent:
769  	xfs_parent_finish(mp, du.ppargs);
770   out_release_dquots:
771  	xfs_qm_dqrele(udqp);
772  	xfs_qm_dqrele(gdqp);
773  	xfs_qm_dqrele(pdqp);
774  
775  	if (unlock_dp_on_error)
776  		xfs_iunlock(dp, XFS_ILOCK_EXCL);
777  	return error;
778  }
779  
780  int
xfs_create_tmpfile(const struct xfs_icreate_args * args,struct xfs_inode ** ipp)781  xfs_create_tmpfile(
782  	const struct xfs_icreate_args *args,
783  	struct xfs_inode	**ipp)
784  {
785  	struct xfs_inode	*dp = args->pip;
786  	struct xfs_mount	*mp = dp->i_mount;
787  	struct xfs_inode	*ip = NULL;
788  	struct xfs_trans	*tp = NULL;
789  	struct xfs_dquot	*udqp;
790  	struct xfs_dquot	*gdqp;
791  	struct xfs_dquot	*pdqp;
792  	struct xfs_trans_res	*tres;
793  	xfs_ino_t		ino;
794  	uint			resblks;
795  	int			error;
796  
797  	ASSERT(args->flags & XFS_ICREATE_TMPFILE);
798  
799  	if (xfs_is_shutdown(mp))
800  		return -EIO;
801  
802  	/* Make sure that we have allocated dquot(s) on disk. */
803  	error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
804  	if (error)
805  		return error;
806  
807  	resblks = XFS_IALLOC_SPACE_RES(mp);
808  	tres = &M_RES(mp)->tr_create_tmpfile;
809  
810  	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
811  			&tp);
812  	if (error)
813  		goto out_release_dquots;
814  
815  	error = xfs_dialloc(&tp, args, &ino);
816  	if (!error)
817  		error = xfs_icreate(tp, ino, args, &ip);
818  	if (error)
819  		goto out_trans_cancel;
820  
821  	if (xfs_has_wsync(mp))
822  		xfs_trans_set_sync(tp);
823  
824  	/*
825  	 * Attach the dquot(s) to the inodes and modify them incore.
826  	 * These ids of the inode couldn't have changed since the new
827  	 * inode has been locked ever since it was created.
828  	 */
829  	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
830  
831  	error = xfs_iunlink(tp, ip);
832  	if (error)
833  		goto out_trans_cancel;
834  
835  	error = xfs_trans_commit(tp);
836  	if (error)
837  		goto out_release_inode;
838  
839  	xfs_qm_dqrele(udqp);
840  	xfs_qm_dqrele(gdqp);
841  	xfs_qm_dqrele(pdqp);
842  
843  	*ipp = ip;
844  	xfs_iunlock(ip, XFS_ILOCK_EXCL);
845  	return 0;
846  
847   out_trans_cancel:
848  	xfs_trans_cancel(tp);
849   out_release_inode:
850  	/*
851  	 * Wait until after the current transaction is aborted to finish the
852  	 * setup of the inode and release the inode.  This prevents recursive
853  	 * transactions and deadlocks from xfs_inactive.
854  	 */
855  	if (ip) {
856  		xfs_iunlock(ip, XFS_ILOCK_EXCL);
857  		xfs_finish_inode_setup(ip);
858  		xfs_irele(ip);
859  	}
860   out_release_dquots:
861  	xfs_qm_dqrele(udqp);
862  	xfs_qm_dqrele(gdqp);
863  	xfs_qm_dqrele(pdqp);
864  
865  	return error;
866  }
867  
868  int
xfs_link(struct xfs_inode * tdp,struct xfs_inode * sip,struct xfs_name * target_name)869  xfs_link(
870  	struct xfs_inode	*tdp,
871  	struct xfs_inode	*sip,
872  	struct xfs_name		*target_name)
873  {
874  	struct xfs_dir_update	du = {
875  		.dp		= tdp,
876  		.name		= target_name,
877  		.ip		= sip,
878  	};
879  	struct xfs_mount	*mp = tdp->i_mount;
880  	struct xfs_trans	*tp;
881  	int			error, nospace_error = 0;
882  	int			resblks;
883  
884  	trace_xfs_link(tdp, target_name);
885  
886  	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
887  
888  	if (xfs_is_shutdown(mp))
889  		return -EIO;
890  	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
891  		return -EIO;
892  
893  	error = xfs_qm_dqattach(sip);
894  	if (error)
895  		goto std_return;
896  
897  	error = xfs_qm_dqattach(tdp);
898  	if (error)
899  		goto std_return;
900  
901  	error = xfs_parent_start(mp, &du.ppargs);
902  	if (error)
903  		goto std_return;
904  
905  	resblks = xfs_link_space_res(mp, target_name->len);
906  	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
907  			&tp, &nospace_error);
908  	if (error)
909  		goto out_parent;
910  
911  	/*
912  	 * We don't allow reservationless or quotaless hardlinking when parent
913  	 * pointers are enabled because we can't back out if the xattrs must
914  	 * grow.
915  	 */
916  	if (du.ppargs && nospace_error) {
917  		error = nospace_error;
918  		goto error_return;
919  	}
920  
921  	/*
922  	 * If we are using project inheritance, we only allow hard link
923  	 * creation in our tree when the project IDs are the same; else
924  	 * the tree quota mechanism could be circumvented.
925  	 */
926  	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
927  		     tdp->i_projid != sip->i_projid)) {
928  		/*
929  		 * Project quota setup skips special files which can
930  		 * leave inodes in a PROJINHERIT directory without a
931  		 * project ID set. We need to allow links to be made
932  		 * to these "project-less" inodes because userspace
933  		 * expects them to succeed after project ID setup,
934  		 * but everything else should be rejected.
935  		 */
936  		if (!special_file(VFS_I(sip)->i_mode) ||
937  		    sip->i_projid != 0) {
938  			error = -EXDEV;
939  			goto error_return;
940  		}
941  	}
942  
943  	error = xfs_dir_add_child(tp, resblks, &du);
944  	if (error)
945  		goto error_return;
946  
947  	/*
948  	 * If this is a synchronous mount, make sure that the
949  	 * link transaction goes to disk before returning to
950  	 * the user.
951  	 */
952  	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
953  		xfs_trans_set_sync(tp);
954  
955  	error = xfs_trans_commit(tp);
956  	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
957  	xfs_iunlock(sip, XFS_ILOCK_EXCL);
958  	xfs_parent_finish(mp, du.ppargs);
959  	return error;
960  
961   error_return:
962  	xfs_trans_cancel(tp);
963  	xfs_iunlock(tdp, XFS_ILOCK_EXCL);
964  	xfs_iunlock(sip, XFS_ILOCK_EXCL);
965   out_parent:
966  	xfs_parent_finish(mp, du.ppargs);
967   std_return:
968  	if (error == -ENOSPC && nospace_error)
969  		error = nospace_error;
970  	return error;
971  }
972  
973  /* Clear the reflink flag and the cowblocks tag if possible. */
974  static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)975  xfs_itruncate_clear_reflink_flags(
976  	struct xfs_inode	*ip)
977  {
978  	struct xfs_ifork	*dfork;
979  	struct xfs_ifork	*cfork;
980  
981  	if (!xfs_is_reflink_inode(ip))
982  		return;
983  	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
984  	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
985  	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
986  		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
987  	if (cfork->if_bytes == 0)
988  		xfs_inode_clear_cowblocks_tag(ip);
989  }
990  
991  /*
992   * Free up the underlying blocks past new_size.  The new size must be smaller
993   * than the current size.  This routine can be used both for the attribute and
994   * data fork, and does not modify the inode size, which is left to the caller.
995   *
996   * The transaction passed to this routine must have made a permanent log
997   * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
998   * given transaction and start new ones, so make sure everything involved in
999   * the transaction is tidy before calling here.  Some transaction will be
1000   * returned to the caller to be committed.  The incoming transaction must
1001   * already include the inode, and both inode locks must be held exclusively.
1002   * The inode must also be "held" within the transaction.  On return the inode
1003   * will be "held" within the returned transaction.  This routine does NOT
1004   * require any disk space to be reserved for it within the transaction.
1005   *
1006   * If we get an error, we must return with the inode locked and linked into the
1007   * current transaction. This keeps things simple for the higher level code,
1008   * because it always knows that the inode is locked and held in the transaction
1009   * that returns to it whether errors occur or not.  We don't mark the inode
1010   * dirty on error so that transactions can be easily aborted if possible.
1011   */
1012  int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1013  xfs_itruncate_extents_flags(
1014  	struct xfs_trans	**tpp,
1015  	struct xfs_inode	*ip,
1016  	int			whichfork,
1017  	xfs_fsize_t		new_size,
1018  	int			flags)
1019  {
1020  	struct xfs_mount	*mp = ip->i_mount;
1021  	struct xfs_trans	*tp = *tpp;
1022  	xfs_fileoff_t		first_unmap_block;
1023  	int			error = 0;
1024  
1025  	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1026  	if (atomic_read(&VFS_I(ip)->i_count))
1027  		xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1028  	ASSERT(new_size <= XFS_ISIZE(ip));
1029  	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1030  	ASSERT(ip->i_itemp != NULL);
1031  	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1032  	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1033  
1034  	trace_xfs_itruncate_extents_start(ip, new_size);
1035  
1036  	flags |= xfs_bmapi_aflag(whichfork);
1037  
1038  	/*
1039  	 * Since it is possible for space to become allocated beyond
1040  	 * the end of the file (in a crash where the space is allocated
1041  	 * but the inode size is not yet updated), simply remove any
1042  	 * blocks which show up between the new EOF and the maximum
1043  	 * possible file size.
1044  	 *
1045  	 * We have to free all the blocks to the bmbt maximum offset, even if
1046  	 * the page cache can't scale that far.
1047  	 */
1048  	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1049  	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1050  		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1051  		return 0;
1052  	}
1053  
1054  	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1055  			XFS_MAX_FILEOFF);
1056  	if (error)
1057  		goto out;
1058  
1059  	if (whichfork == XFS_DATA_FORK) {
1060  		/* Remove all pending CoW reservations. */
1061  		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1062  				first_unmap_block, XFS_MAX_FILEOFF, true);
1063  		if (error)
1064  			goto out;
1065  
1066  		xfs_itruncate_clear_reflink_flags(ip);
1067  	}
1068  
1069  	/*
1070  	 * Always re-log the inode so that our permanent transaction can keep
1071  	 * on rolling it forward in the log.
1072  	 */
1073  	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1074  
1075  	trace_xfs_itruncate_extents_end(ip, new_size);
1076  
1077  out:
1078  	*tpp = tp;
1079  	return error;
1080  }
1081  
1082  /*
1083   * Mark all the buffers attached to this directory stale.  In theory we should
1084   * never be freeing a directory with any blocks at all, but this covers the
1085   * case where we've recovered a directory swap with a "temporary" directory
1086   * created by online repair and now need to dump it.
1087   */
1088  STATIC void
xfs_inactive_dir(struct xfs_inode * dp)1089  xfs_inactive_dir(
1090  	struct xfs_inode	*dp)
1091  {
1092  	struct xfs_iext_cursor	icur;
1093  	struct xfs_bmbt_irec	got;
1094  	struct xfs_mount	*mp = dp->i_mount;
1095  	struct xfs_da_geometry	*geo = mp->m_dir_geo;
1096  	struct xfs_ifork	*ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1097  	xfs_fileoff_t		off;
1098  
1099  	/*
1100  	 * Invalidate each directory block.  All directory blocks are of
1101  	 * fsbcount length and alignment, so we only need to walk those same
1102  	 * offsets.  We hold the only reference to this inode, so we must wait
1103  	 * for the buffer locks.
1104  	 */
1105  	for_each_xfs_iext(ifp, &icur, &got) {
1106  		for (off = round_up(got.br_startoff, geo->fsbcount);
1107  		     off < got.br_startoff + got.br_blockcount;
1108  		     off += geo->fsbcount) {
1109  			struct xfs_buf	*bp = NULL;
1110  			xfs_fsblock_t	fsbno;
1111  			int		error;
1112  
1113  			fsbno = (off - got.br_startoff) + got.br_startblock;
1114  			error = xfs_buf_incore(mp->m_ddev_targp,
1115  					XFS_FSB_TO_DADDR(mp, fsbno),
1116  					XFS_FSB_TO_BB(mp, geo->fsbcount),
1117  					XBF_LIVESCAN, &bp);
1118  			if (error)
1119  				continue;
1120  
1121  			xfs_buf_stale(bp);
1122  			xfs_buf_relse(bp);
1123  		}
1124  	}
1125  }
1126  
1127  /*
1128   * xfs_inactive_truncate
1129   *
1130   * Called to perform a truncate when an inode becomes unlinked.
1131   */
1132  STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1133  xfs_inactive_truncate(
1134  	struct xfs_inode *ip)
1135  {
1136  	struct xfs_mount	*mp = ip->i_mount;
1137  	struct xfs_trans	*tp;
1138  	int			error;
1139  
1140  	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1141  	if (error) {
1142  		ASSERT(xfs_is_shutdown(mp));
1143  		return error;
1144  	}
1145  	xfs_ilock(ip, XFS_ILOCK_EXCL);
1146  	xfs_trans_ijoin(tp, ip, 0);
1147  
1148  	/*
1149  	 * Log the inode size first to prevent stale data exposure in the event
1150  	 * of a system crash before the truncate completes. See the related
1151  	 * comment in xfs_vn_setattr_size() for details.
1152  	 */
1153  	ip->i_disk_size = 0;
1154  	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1155  
1156  	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1157  	if (error)
1158  		goto error_trans_cancel;
1159  
1160  	ASSERT(ip->i_df.if_nextents == 0);
1161  
1162  	error = xfs_trans_commit(tp);
1163  	if (error)
1164  		goto error_unlock;
1165  
1166  	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1167  	return 0;
1168  
1169  error_trans_cancel:
1170  	xfs_trans_cancel(tp);
1171  error_unlock:
1172  	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1173  	return error;
1174  }
1175  
1176  /*
1177   * xfs_inactive_ifree()
1178   *
1179   * Perform the inode free when an inode is unlinked.
1180   */
1181  STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1182  xfs_inactive_ifree(
1183  	struct xfs_inode *ip)
1184  {
1185  	struct xfs_mount	*mp = ip->i_mount;
1186  	struct xfs_trans	*tp;
1187  	int			error;
1188  
1189  	/*
1190  	 * We try to use a per-AG reservation for any block needed by the finobt
1191  	 * tree, but as the finobt feature predates the per-AG reservation
1192  	 * support a degraded file system might not have enough space for the
1193  	 * reservation at mount time.  In that case try to dip into the reserved
1194  	 * pool and pray.
1195  	 *
1196  	 * Send a warning if the reservation does happen to fail, as the inode
1197  	 * now remains allocated and sits on the unlinked list until the fs is
1198  	 * repaired.
1199  	 */
1200  	if (unlikely(mp->m_finobt_nores)) {
1201  		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1202  				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1203  				&tp);
1204  	} else {
1205  		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1206  	}
1207  	if (error) {
1208  		if (error == -ENOSPC) {
1209  			xfs_warn_ratelimited(mp,
1210  			"Failed to remove inode(s) from unlinked list. "
1211  			"Please free space, unmount and run xfs_repair.");
1212  		} else {
1213  			ASSERT(xfs_is_shutdown(mp));
1214  		}
1215  		return error;
1216  	}
1217  
1218  	/*
1219  	 * We do not hold the inode locked across the entire rolling transaction
1220  	 * here. We only need to hold it for the first transaction that
1221  	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1222  	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1223  	 * here breaks the relationship between cluster buffer invalidation and
1224  	 * stale inode invalidation on cluster buffer item journal commit
1225  	 * completion, and can result in leaving dirty stale inodes hanging
1226  	 * around in memory.
1227  	 *
1228  	 * We have no need for serialising this inode operation against other
1229  	 * operations - we freed the inode and hence reallocation is required
1230  	 * and that will serialise on reallocating the space the deferops need
1231  	 * to free. Hence we can unlock the inode on the first commit of
1232  	 * the transaction rather than roll it right through the deferops. This
1233  	 * avoids relogging the XFS_ISTALE inode.
1234  	 *
1235  	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1236  	 * by asserting that the inode is still locked when it returns.
1237  	 */
1238  	xfs_ilock(ip, XFS_ILOCK_EXCL);
1239  	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1240  
1241  	error = xfs_ifree(tp, ip);
1242  	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1243  	if (error) {
1244  		/*
1245  		 * If we fail to free the inode, shut down.  The cancel
1246  		 * might do that, we need to make sure.  Otherwise the
1247  		 * inode might be lost for a long time or forever.
1248  		 */
1249  		if (!xfs_is_shutdown(mp)) {
1250  			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1251  				__func__, error);
1252  			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1253  		}
1254  		xfs_trans_cancel(tp);
1255  		return error;
1256  	}
1257  
1258  	/*
1259  	 * Credit the quota account(s). The inode is gone.
1260  	 */
1261  	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1262  
1263  	return xfs_trans_commit(tp);
1264  }
1265  
1266  /*
1267   * Returns true if we need to update the on-disk metadata before we can free
1268   * the memory used by this inode.  Updates include freeing post-eof
1269   * preallocations; freeing COW staging extents; and marking the inode free in
1270   * the inobt if it is on the unlinked list.
1271   */
1272  bool
xfs_inode_needs_inactive(struct xfs_inode * ip)1273  xfs_inode_needs_inactive(
1274  	struct xfs_inode	*ip)
1275  {
1276  	struct xfs_mount	*mp = ip->i_mount;
1277  	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1278  
1279  	/*
1280  	 * If the inode is already free, then there can be nothing
1281  	 * to clean up here.
1282  	 */
1283  	if (VFS_I(ip)->i_mode == 0)
1284  		return false;
1285  
1286  	/*
1287  	 * If this is a read-only mount, don't do this (would generate I/O)
1288  	 * unless we're in log recovery and cleaning the iunlinked list.
1289  	 */
1290  	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1291  		return false;
1292  
1293  	/* If the log isn't running, push inodes straight to reclaim. */
1294  	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1295  		return false;
1296  
1297  	/* Metadata inodes require explicit resource cleanup. */
1298  	if (xfs_is_metadata_inode(ip))
1299  		return false;
1300  
1301  	/* Want to clean out the cow blocks if there are any. */
1302  	if (cow_ifp && cow_ifp->if_bytes > 0)
1303  		return true;
1304  
1305  	/* Unlinked files must be freed. */
1306  	if (VFS_I(ip)->i_nlink == 0)
1307  		return true;
1308  
1309  	/*
1310  	 * This file isn't being freed, so check if there are post-eof blocks
1311  	 * to free.
1312  	 *
1313  	 * Note: don't bother with iolock here since lockdep complains about
1314  	 * acquiring it in reclaim context. We have the only reference to the
1315  	 * inode at this point anyways.
1316  	 */
1317  	return xfs_can_free_eofblocks(ip);
1318  }
1319  
1320  /*
1321   * Save health status somewhere, if we're dumping an inode with uncorrected
1322   * errors and online repair isn't running.
1323   */
1324  static inline void
xfs_inactive_health(struct xfs_inode * ip)1325  xfs_inactive_health(
1326  	struct xfs_inode	*ip)
1327  {
1328  	struct xfs_mount	*mp = ip->i_mount;
1329  	struct xfs_perag	*pag;
1330  	unsigned int		sick;
1331  	unsigned int		checked;
1332  
1333  	xfs_inode_measure_sickness(ip, &sick, &checked);
1334  	if (!sick)
1335  		return;
1336  
1337  	trace_xfs_inode_unfixed_corruption(ip, sick);
1338  
1339  	if (sick & XFS_SICK_INO_FORGET)
1340  		return;
1341  
1342  	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1343  	if (!pag) {
1344  		/* There had better still be a perag structure! */
1345  		ASSERT(0);
1346  		return;
1347  	}
1348  
1349  	xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1350  	xfs_perag_put(pag);
1351  }
1352  
1353  /*
1354   * xfs_inactive
1355   *
1356   * This is called when the vnode reference count for the vnode
1357   * goes to zero.  If the file has been unlinked, then it must
1358   * now be truncated.  Also, we clear all of the read-ahead state
1359   * kept for the inode here since the file is now closed.
1360   */
1361  int
xfs_inactive(xfs_inode_t * ip)1362  xfs_inactive(
1363  	xfs_inode_t	*ip)
1364  {
1365  	struct xfs_mount	*mp;
1366  	int			error = 0;
1367  	int			truncate = 0;
1368  
1369  	/*
1370  	 * If the inode is already free, then there can be nothing
1371  	 * to clean up here.
1372  	 */
1373  	if (VFS_I(ip)->i_mode == 0) {
1374  		ASSERT(ip->i_df.if_broot_bytes == 0);
1375  		goto out;
1376  	}
1377  
1378  	mp = ip->i_mount;
1379  	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1380  
1381  	xfs_inactive_health(ip);
1382  
1383  	/*
1384  	 * If this is a read-only mount, don't do this (would generate I/O)
1385  	 * unless we're in log recovery and cleaning the iunlinked list.
1386  	 */
1387  	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1388  		goto out;
1389  
1390  	/* Metadata inodes require explicit resource cleanup. */
1391  	if (xfs_is_metadata_inode(ip))
1392  		goto out;
1393  
1394  	/* Try to clean out the cow blocks if there are any. */
1395  	if (xfs_inode_has_cow_data(ip))
1396  		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1397  
1398  	if (VFS_I(ip)->i_nlink != 0) {
1399  		/*
1400  		 * Note: don't bother with iolock here since lockdep complains
1401  		 * about acquiring it in reclaim context. We have the only
1402  		 * reference to the inode at this point anyways.
1403  		 */
1404  		if (xfs_can_free_eofblocks(ip))
1405  			error = xfs_free_eofblocks(ip);
1406  
1407  		goto out;
1408  	}
1409  
1410  	if (S_ISREG(VFS_I(ip)->i_mode) &&
1411  	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1412  	     xfs_inode_has_filedata(ip)))
1413  		truncate = 1;
1414  
1415  	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1416  		/*
1417  		 * If this inode is being inactivated during a quotacheck and
1418  		 * has not yet been scanned by quotacheck, we /must/ remove
1419  		 * the dquots from the inode before inactivation changes the
1420  		 * block and inode counts.  Most probably this is a result of
1421  		 * reloading the incore iunlinked list to purge unrecovered
1422  		 * unlinked inodes.
1423  		 */
1424  		xfs_qm_dqdetach(ip);
1425  	} else {
1426  		error = xfs_qm_dqattach(ip);
1427  		if (error)
1428  			goto out;
1429  	}
1430  
1431  	if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1432  		xfs_inactive_dir(ip);
1433  		truncate = 1;
1434  	}
1435  
1436  	if (S_ISLNK(VFS_I(ip)->i_mode))
1437  		error = xfs_inactive_symlink(ip);
1438  	else if (truncate)
1439  		error = xfs_inactive_truncate(ip);
1440  	if (error)
1441  		goto out;
1442  
1443  	/*
1444  	 * If there are attributes associated with the file then blow them away
1445  	 * now.  The code calls a routine that recursively deconstructs the
1446  	 * attribute fork. If also blows away the in-core attribute fork.
1447  	 */
1448  	if (xfs_inode_has_attr_fork(ip)) {
1449  		error = xfs_attr_inactive(ip);
1450  		if (error)
1451  			goto out;
1452  	}
1453  
1454  	ASSERT(ip->i_forkoff == 0);
1455  
1456  	/*
1457  	 * Free the inode.
1458  	 */
1459  	error = xfs_inactive_ifree(ip);
1460  
1461  out:
1462  	/*
1463  	 * We're done making metadata updates for this inode, so we can release
1464  	 * the attached dquots.
1465  	 */
1466  	xfs_qm_dqdetach(ip);
1467  	return error;
1468  }
1469  
1470  /*
1471   * Find an inode on the unlinked list. This does not take references to the
1472   * inode as we have existence guarantees by holding the AGI buffer lock and that
1473   * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1474   * don't find the inode in cache, then let the caller handle the situation.
1475   */
1476  struct xfs_inode *
xfs_iunlink_lookup(struct xfs_perag * pag,xfs_agino_t agino)1477  xfs_iunlink_lookup(
1478  	struct xfs_perag	*pag,
1479  	xfs_agino_t		agino)
1480  {
1481  	struct xfs_inode	*ip;
1482  
1483  	rcu_read_lock();
1484  	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1485  	if (!ip) {
1486  		/* Caller can handle inode not being in memory. */
1487  		rcu_read_unlock();
1488  		return NULL;
1489  	}
1490  
1491  	/*
1492  	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1493  	 * let the caller handle the failure.
1494  	 */
1495  	if (WARN_ON_ONCE(!ip->i_ino)) {
1496  		rcu_read_unlock();
1497  		return NULL;
1498  	}
1499  	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1500  	rcu_read_unlock();
1501  	return ip;
1502  }
1503  
1504  /*
1505   * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1506   * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1507   * to the unlinked list.
1508   */
1509  int
xfs_iunlink_reload_next(struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agino_t prev_agino,xfs_agino_t next_agino)1510  xfs_iunlink_reload_next(
1511  	struct xfs_trans	*tp,
1512  	struct xfs_buf		*agibp,
1513  	xfs_agino_t		prev_agino,
1514  	xfs_agino_t		next_agino)
1515  {
1516  	struct xfs_perag	*pag = agibp->b_pag;
1517  	struct xfs_mount	*mp = pag->pag_mount;
1518  	struct xfs_inode	*next_ip = NULL;
1519  	xfs_ino_t		ino;
1520  	int			error;
1521  
1522  	ASSERT(next_agino != NULLAGINO);
1523  
1524  #ifdef DEBUG
1525  	rcu_read_lock();
1526  	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1527  	ASSERT(next_ip == NULL);
1528  	rcu_read_unlock();
1529  #endif
1530  
1531  	xfs_info_ratelimited(mp,
1532   "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1533  			next_agino, pag->pag_agno);
1534  
1535  	/*
1536  	 * Use an untrusted lookup just to be cautious in case the AGI has been
1537  	 * corrupted and now points at a free inode.  That shouldn't happen,
1538  	 * but we'd rather shut down now since we're already running in a weird
1539  	 * situation.
1540  	 */
1541  	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
1542  	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
1543  	if (error) {
1544  		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1545  		return error;
1546  	}
1547  
1548  	/* If this is not an unlinked inode, something is very wrong. */
1549  	if (VFS_I(next_ip)->i_nlink != 0) {
1550  		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1551  		error = -EFSCORRUPTED;
1552  		goto rele;
1553  	}
1554  
1555  	next_ip->i_prev_unlinked = prev_agino;
1556  	trace_xfs_iunlink_reload_next(next_ip);
1557  rele:
1558  	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1559  	if (xfs_is_quotacheck_running(mp) && next_ip)
1560  		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1561  	xfs_irele(next_ip);
1562  	return error;
1563  }
1564  
1565  /*
1566   * Look up the inode number specified and if it is not already marked XFS_ISTALE
1567   * mark it stale. We should only find clean inodes in this lookup that aren't
1568   * already stale.
1569   */
1570  static void
xfs_ifree_mark_inode_stale(struct xfs_perag * pag,struct xfs_inode * free_ip,xfs_ino_t inum)1571  xfs_ifree_mark_inode_stale(
1572  	struct xfs_perag	*pag,
1573  	struct xfs_inode	*free_ip,
1574  	xfs_ino_t		inum)
1575  {
1576  	struct xfs_mount	*mp = pag->pag_mount;
1577  	struct xfs_inode_log_item *iip;
1578  	struct xfs_inode	*ip;
1579  
1580  retry:
1581  	rcu_read_lock();
1582  	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1583  
1584  	/* Inode not in memory, nothing to do */
1585  	if (!ip) {
1586  		rcu_read_unlock();
1587  		return;
1588  	}
1589  
1590  	/*
1591  	 * because this is an RCU protected lookup, we could find a recently
1592  	 * freed or even reallocated inode during the lookup. We need to check
1593  	 * under the i_flags_lock for a valid inode here. Skip it if it is not
1594  	 * valid, the wrong inode or stale.
1595  	 */
1596  	spin_lock(&ip->i_flags_lock);
1597  	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1598  		goto out_iflags_unlock;
1599  
1600  	/*
1601  	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1602  	 * other inodes that we did not find in the list attached to the buffer
1603  	 * and are not already marked stale. If we can't lock it, back off and
1604  	 * retry.
1605  	 */
1606  	if (ip != free_ip) {
1607  		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1608  			spin_unlock(&ip->i_flags_lock);
1609  			rcu_read_unlock();
1610  			delay(1);
1611  			goto retry;
1612  		}
1613  	}
1614  	ip->i_flags |= XFS_ISTALE;
1615  
1616  	/*
1617  	 * If the inode is flushing, it is already attached to the buffer.  All
1618  	 * we needed to do here is mark the inode stale so buffer IO completion
1619  	 * will remove it from the AIL.
1620  	 */
1621  	iip = ip->i_itemp;
1622  	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1623  		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1624  		ASSERT(iip->ili_last_fields);
1625  		goto out_iunlock;
1626  	}
1627  
1628  	/*
1629  	 * Inodes not attached to the buffer can be released immediately.
1630  	 * Everything else has to go through xfs_iflush_abort() on journal
1631  	 * commit as the flock synchronises removal of the inode from the
1632  	 * cluster buffer against inode reclaim.
1633  	 */
1634  	if (!iip || list_empty(&iip->ili_item.li_bio_list))
1635  		goto out_iunlock;
1636  
1637  	__xfs_iflags_set(ip, XFS_IFLUSHING);
1638  	spin_unlock(&ip->i_flags_lock);
1639  	rcu_read_unlock();
1640  
1641  	/* we have a dirty inode in memory that has not yet been flushed. */
1642  	spin_lock(&iip->ili_lock);
1643  	iip->ili_last_fields = iip->ili_fields;
1644  	iip->ili_fields = 0;
1645  	iip->ili_fsync_fields = 0;
1646  	spin_unlock(&iip->ili_lock);
1647  	ASSERT(iip->ili_last_fields);
1648  
1649  	if (ip != free_ip)
1650  		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1651  	return;
1652  
1653  out_iunlock:
1654  	if (ip != free_ip)
1655  		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1656  out_iflags_unlock:
1657  	spin_unlock(&ip->i_flags_lock);
1658  	rcu_read_unlock();
1659  }
1660  
1661  /*
1662   * A big issue when freeing the inode cluster is that we _cannot_ skip any
1663   * inodes that are in memory - they all must be marked stale and attached to
1664   * the cluster buffer.
1665   */
1666  static int
xfs_ifree_cluster(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_inode * free_ip,struct xfs_icluster * xic)1667  xfs_ifree_cluster(
1668  	struct xfs_trans	*tp,
1669  	struct xfs_perag	*pag,
1670  	struct xfs_inode	*free_ip,
1671  	struct xfs_icluster	*xic)
1672  {
1673  	struct xfs_mount	*mp = free_ip->i_mount;
1674  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1675  	struct xfs_buf		*bp;
1676  	xfs_daddr_t		blkno;
1677  	xfs_ino_t		inum = xic->first_ino;
1678  	int			nbufs;
1679  	int			i, j;
1680  	int			ioffset;
1681  	int			error;
1682  
1683  	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1684  
1685  	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1686  		/*
1687  		 * The allocation bitmap tells us which inodes of the chunk were
1688  		 * physically allocated. Skip the cluster if an inode falls into
1689  		 * a sparse region.
1690  		 */
1691  		ioffset = inum - xic->first_ino;
1692  		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1693  			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1694  			continue;
1695  		}
1696  
1697  		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1698  					 XFS_INO_TO_AGBNO(mp, inum));
1699  
1700  		/*
1701  		 * We obtain and lock the backing buffer first in the process
1702  		 * here to ensure dirty inodes attached to the buffer remain in
1703  		 * the flushing state while we mark them stale.
1704  		 *
1705  		 * If we scan the in-memory inodes first, then buffer IO can
1706  		 * complete before we get a lock on it, and hence we may fail
1707  		 * to mark all the active inodes on the buffer stale.
1708  		 */
1709  		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1710  				mp->m_bsize * igeo->blocks_per_cluster,
1711  				XBF_UNMAPPED, &bp);
1712  		if (error)
1713  			return error;
1714  
1715  		/*
1716  		 * This buffer may not have been correctly initialised as we
1717  		 * didn't read it from disk. That's not important because we are
1718  		 * only using to mark the buffer as stale in the log, and to
1719  		 * attach stale cached inodes on it.
1720  		 *
1721  		 * For the inode that triggered the cluster freeing, this
1722  		 * attachment may occur in xfs_inode_item_precommit() after we
1723  		 * have marked this buffer stale.  If this buffer was not in
1724  		 * memory before xfs_ifree_cluster() started, it will not be
1725  		 * marked XBF_DONE and this will cause problems later in
1726  		 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1727  		 * buffer to attached to the transaction.
1728  		 *
1729  		 * Hence we have to mark the buffer as XFS_DONE here. This is
1730  		 * safe because we are also marking the buffer as XBF_STALE and
1731  		 * XFS_BLI_STALE. That means it will never be dispatched for
1732  		 * IO and it won't be unlocked until the cluster freeing has
1733  		 * been committed to the journal and the buffer unpinned. If it
1734  		 * is written, we want to know about it, and we want it to
1735  		 * fail. We can acheive this by adding a write verifier to the
1736  		 * buffer.
1737  		 */
1738  		bp->b_flags |= XBF_DONE;
1739  		bp->b_ops = &xfs_inode_buf_ops;
1740  
1741  		/*
1742  		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1743  		 * too. This requires lookups, and will skip inodes that we've
1744  		 * already marked XFS_ISTALE.
1745  		 */
1746  		for (i = 0; i < igeo->inodes_per_cluster; i++)
1747  			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1748  
1749  		xfs_trans_stale_inode_buf(tp, bp);
1750  		xfs_trans_binval(tp, bp);
1751  	}
1752  	return 0;
1753  }
1754  
1755  /*
1756   * This is called to return an inode to the inode free list.  The inode should
1757   * already be truncated to 0 length and have no pages associated with it.  This
1758   * routine also assumes that the inode is already a part of the transaction.
1759   *
1760   * The on-disk copy of the inode will have been added to the list of unlinked
1761   * inodes in the AGI. We need to remove the inode from that list atomically with
1762   * respect to freeing it here.
1763   */
1764  int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)1765  xfs_ifree(
1766  	struct xfs_trans	*tp,
1767  	struct xfs_inode	*ip)
1768  {
1769  	struct xfs_mount	*mp = ip->i_mount;
1770  	struct xfs_perag	*pag;
1771  	struct xfs_icluster	xic = { 0 };
1772  	struct xfs_inode_log_item *iip = ip->i_itemp;
1773  	int			error;
1774  
1775  	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1776  	ASSERT(VFS_I(ip)->i_nlink == 0);
1777  	ASSERT(ip->i_df.if_nextents == 0);
1778  	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1779  	ASSERT(ip->i_nblocks == 0);
1780  
1781  	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1782  
1783  	error = xfs_inode_uninit(tp, pag, ip, &xic);
1784  	if (error)
1785  		goto out;
1786  
1787  	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1788  		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1789  
1790  	/* Don't attempt to replay owner changes for a deleted inode */
1791  	spin_lock(&iip->ili_lock);
1792  	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1793  	spin_unlock(&iip->ili_lock);
1794  
1795  	if (xic.deleted)
1796  		error = xfs_ifree_cluster(tp, pag, ip, &xic);
1797  out:
1798  	xfs_perag_put(pag);
1799  	return error;
1800  }
1801  
1802  /*
1803   * This is called to unpin an inode.  The caller must have the inode locked
1804   * in at least shared mode so that the buffer cannot be subsequently pinned
1805   * once someone is waiting for it to be unpinned.
1806   */
1807  static void
xfs_iunpin(struct xfs_inode * ip)1808  xfs_iunpin(
1809  	struct xfs_inode	*ip)
1810  {
1811  	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1812  
1813  	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1814  
1815  	/* Give the log a push to start the unpinning I/O */
1816  	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1817  
1818  }
1819  
1820  static void
__xfs_iunpin_wait(struct xfs_inode * ip)1821  __xfs_iunpin_wait(
1822  	struct xfs_inode	*ip)
1823  {
1824  	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1825  	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1826  
1827  	xfs_iunpin(ip);
1828  
1829  	do {
1830  		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1831  		if (xfs_ipincount(ip))
1832  			io_schedule();
1833  	} while (xfs_ipincount(ip));
1834  	finish_wait(wq, &wait.wq_entry);
1835  }
1836  
1837  void
xfs_iunpin_wait(struct xfs_inode * ip)1838  xfs_iunpin_wait(
1839  	struct xfs_inode	*ip)
1840  {
1841  	if (xfs_ipincount(ip))
1842  		__xfs_iunpin_wait(ip);
1843  }
1844  
1845  /*
1846   * Removing an inode from the namespace involves removing the directory entry
1847   * and dropping the link count on the inode. Removing the directory entry can
1848   * result in locking an AGF (directory blocks were freed) and removing a link
1849   * count can result in placing the inode on an unlinked list which results in
1850   * locking an AGI.
1851   *
1852   * The big problem here is that we have an ordering constraint on AGF and AGI
1853   * locking - inode allocation locks the AGI, then can allocate a new extent for
1854   * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1855   * removes the inode from the unlinked list, requiring that we lock the AGI
1856   * first, and then freeing the inode can result in an inode chunk being freed
1857   * and hence freeing disk space requiring that we lock an AGF.
1858   *
1859   * Hence the ordering that is imposed by other parts of the code is AGI before
1860   * AGF. This means we cannot remove the directory entry before we drop the inode
1861   * reference count and put it on the unlinked list as this results in a lock
1862   * order of AGF then AGI, and this can deadlock against inode allocation and
1863   * freeing. Therefore we must drop the link counts before we remove the
1864   * directory entry.
1865   *
1866   * This is still safe from a transactional point of view - it is not until we
1867   * get to xfs_defer_finish() that we have the possibility of multiple
1868   * transactions in this operation. Hence as long as we remove the directory
1869   * entry and drop the link count in the first transaction of the remove
1870   * operation, there are no transactional constraints on the ordering here.
1871   */
1872  int
xfs_remove(struct xfs_inode * dp,struct xfs_name * name,struct xfs_inode * ip)1873  xfs_remove(
1874  	struct xfs_inode	*dp,
1875  	struct xfs_name		*name,
1876  	struct xfs_inode	*ip)
1877  {
1878  	struct xfs_dir_update	du = {
1879  		.dp		= dp,
1880  		.name		= name,
1881  		.ip		= ip,
1882  	};
1883  	struct xfs_mount	*mp = dp->i_mount;
1884  	struct xfs_trans	*tp = NULL;
1885  	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1886  	int			dontcare;
1887  	int                     error = 0;
1888  	uint			resblks;
1889  
1890  	trace_xfs_remove(dp, name);
1891  
1892  	if (xfs_is_shutdown(mp))
1893  		return -EIO;
1894  	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1895  		return -EIO;
1896  
1897  	error = xfs_qm_dqattach(dp);
1898  	if (error)
1899  		goto std_return;
1900  
1901  	error = xfs_qm_dqattach(ip);
1902  	if (error)
1903  		goto std_return;
1904  
1905  	error = xfs_parent_start(mp, &du.ppargs);
1906  	if (error)
1907  		goto std_return;
1908  
1909  	/*
1910  	 * We try to get the real space reservation first, allowing for
1911  	 * directory btree deletion(s) implying possible bmap insert(s).  If we
1912  	 * can't get the space reservation then we use 0 instead, and avoid the
1913  	 * bmap btree insert(s) in the directory code by, if the bmap insert
1914  	 * tries to happen, instead trimming the LAST block from the directory.
1915  	 *
1916  	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1917  	 * the directory code can handle a reservationless update and we don't
1918  	 * want to prevent a user from trying to free space by deleting things.
1919  	 */
1920  	resblks = xfs_remove_space_res(mp, name->len);
1921  	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1922  			&tp, &dontcare);
1923  	if (error) {
1924  		ASSERT(error != -ENOSPC);
1925  		goto out_parent;
1926  	}
1927  
1928  	error = xfs_dir_remove_child(tp, resblks, &du);
1929  	if (error)
1930  		goto out_trans_cancel;
1931  
1932  	/*
1933  	 * If this is a synchronous mount, make sure that the
1934  	 * remove transaction goes to disk before returning to
1935  	 * the user.
1936  	 */
1937  	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1938  		xfs_trans_set_sync(tp);
1939  
1940  	error = xfs_trans_commit(tp);
1941  	if (error)
1942  		goto out_unlock;
1943  
1944  	if (is_dir && xfs_inode_is_filestream(ip))
1945  		xfs_filestream_deassociate(ip);
1946  
1947  	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1948  	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1949  	xfs_parent_finish(mp, du.ppargs);
1950  	return 0;
1951  
1952   out_trans_cancel:
1953  	xfs_trans_cancel(tp);
1954   out_unlock:
1955  	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1956  	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1957   out_parent:
1958  	xfs_parent_finish(mp, du.ppargs);
1959   std_return:
1960  	return error;
1961  }
1962  
1963  static inline void
xfs_iunlock_rename(struct xfs_inode ** i_tab,int num_inodes)1964  xfs_iunlock_rename(
1965  	struct xfs_inode	**i_tab,
1966  	int			num_inodes)
1967  {
1968  	int			i;
1969  
1970  	for (i = num_inodes - 1; i >= 0; i--) {
1971  		/* Skip duplicate inodes if src and target dps are the same */
1972  		if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1973  			continue;
1974  		xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
1975  	}
1976  }
1977  
1978  /*
1979   * Enter all inodes for a rename transaction into a sorted array.
1980   */
1981  #define __XFS_SORT_INODES	5
1982  STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)1983  xfs_sort_for_rename(
1984  	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
1985  	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
1986  	struct xfs_inode	*ip1,	/* in: inode of old entry */
1987  	struct xfs_inode	*ip2,	/* in: inode of new entry */
1988  	struct xfs_inode	*wip,	/* in: whiteout inode */
1989  	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
1990  	int			*num_inodes)  /* in/out: inodes in array */
1991  {
1992  	int			i;
1993  
1994  	ASSERT(*num_inodes == __XFS_SORT_INODES);
1995  	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
1996  
1997  	/*
1998  	 * i_tab contains a list of pointers to inodes.  We initialize
1999  	 * the table here & we'll sort it.  We will then use it to
2000  	 * order the acquisition of the inode locks.
2001  	 *
2002  	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2003  	 */
2004  	i = 0;
2005  	i_tab[i++] = dp1;
2006  	i_tab[i++] = dp2;
2007  	i_tab[i++] = ip1;
2008  	if (ip2)
2009  		i_tab[i++] = ip2;
2010  	if (wip)
2011  		i_tab[i++] = wip;
2012  	*num_inodes = i;
2013  
2014  	xfs_sort_inodes(i_tab, *num_inodes);
2015  }
2016  
2017  void
xfs_sort_inodes(struct xfs_inode ** i_tab,unsigned int num_inodes)2018  xfs_sort_inodes(
2019  	struct xfs_inode	**i_tab,
2020  	unsigned int		num_inodes)
2021  {
2022  	int			i, j;
2023  
2024  	ASSERT(num_inodes <= __XFS_SORT_INODES);
2025  
2026  	/*
2027  	 * Sort the elements via bubble sort.  (Remember, there are at
2028  	 * most 5 elements to sort, so this is adequate.)
2029  	 */
2030  	for (i = 0; i < num_inodes; i++) {
2031  		for (j = 1; j < num_inodes; j++) {
2032  			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2033  				swap(i_tab[j], i_tab[j - 1]);
2034  		}
2035  	}
2036  }
2037  
2038  /*
2039   * xfs_rename_alloc_whiteout()
2040   *
2041   * Return a referenced, unlinked, unlocked inode that can be used as a
2042   * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2043   * crash between allocating the inode and linking it into the rename transaction
2044   * recovery will free the inode and we won't leak it.
2045   */
2046  static int
xfs_rename_alloc_whiteout(struct mnt_idmap * idmap,struct xfs_name * src_name,struct xfs_inode * dp,struct xfs_inode ** wip)2047  xfs_rename_alloc_whiteout(
2048  	struct mnt_idmap	*idmap,
2049  	struct xfs_name		*src_name,
2050  	struct xfs_inode	*dp,
2051  	struct xfs_inode	**wip)
2052  {
2053  	struct xfs_icreate_args	args = {
2054  		.idmap		= idmap,
2055  		.pip		= dp,
2056  		.mode		= S_IFCHR | WHITEOUT_MODE,
2057  		.flags		= XFS_ICREATE_TMPFILE,
2058  	};
2059  	struct xfs_inode	*tmpfile;
2060  	struct qstr		name;
2061  	int			error;
2062  
2063  	error = xfs_create_tmpfile(&args, &tmpfile);
2064  	if (error)
2065  		return error;
2066  
2067  	name.name = src_name->name;
2068  	name.len = src_name->len;
2069  	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2070  	if (error) {
2071  		xfs_finish_inode_setup(tmpfile);
2072  		xfs_irele(tmpfile);
2073  		return error;
2074  	}
2075  
2076  	/*
2077  	 * Prepare the tmpfile inode as if it were created through the VFS.
2078  	 * Complete the inode setup and flag it as linkable.  nlink is already
2079  	 * zero, so we can skip the drop_nlink.
2080  	 */
2081  	xfs_setup_iops(tmpfile);
2082  	xfs_finish_inode_setup(tmpfile);
2083  	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2084  
2085  	*wip = tmpfile;
2086  	return 0;
2087  }
2088  
2089  /*
2090   * xfs_rename
2091   */
2092  int
xfs_rename(struct mnt_idmap * idmap,struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)2093  xfs_rename(
2094  	struct mnt_idmap	*idmap,
2095  	struct xfs_inode	*src_dp,
2096  	struct xfs_name		*src_name,
2097  	struct xfs_inode	*src_ip,
2098  	struct xfs_inode	*target_dp,
2099  	struct xfs_name		*target_name,
2100  	struct xfs_inode	*target_ip,
2101  	unsigned int		flags)
2102  {
2103  	struct xfs_dir_update	du_src = {
2104  		.dp		= src_dp,
2105  		.name		= src_name,
2106  		.ip		= src_ip,
2107  	};
2108  	struct xfs_dir_update	du_tgt = {
2109  		.dp		= target_dp,
2110  		.name		= target_name,
2111  		.ip		= target_ip,
2112  	};
2113  	struct xfs_dir_update	du_wip = { };
2114  	struct xfs_mount	*mp = src_dp->i_mount;
2115  	struct xfs_trans	*tp;
2116  	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2117  	int			i;
2118  	int			num_inodes = __XFS_SORT_INODES;
2119  	bool			new_parent = (src_dp != target_dp);
2120  	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2121  	int			spaceres;
2122  	bool			retried = false;
2123  	int			error, nospace_error = 0;
2124  
2125  	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2126  
2127  	if ((flags & RENAME_EXCHANGE) && !target_ip)
2128  		return -EINVAL;
2129  
2130  	/*
2131  	 * If we are doing a whiteout operation, allocate the whiteout inode
2132  	 * we will be placing at the target and ensure the type is set
2133  	 * appropriately.
2134  	 */
2135  	if (flags & RENAME_WHITEOUT) {
2136  		error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2137  				&du_wip.ip);
2138  		if (error)
2139  			return error;
2140  
2141  		/* setup target dirent info as whiteout */
2142  		src_name->type = XFS_DIR3_FT_CHRDEV;
2143  	}
2144  
2145  	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2146  			inodes, &num_inodes);
2147  
2148  	error = xfs_parent_start(mp, &du_src.ppargs);
2149  	if (error)
2150  		goto out_release_wip;
2151  
2152  	if (du_wip.ip) {
2153  		error = xfs_parent_start(mp, &du_wip.ppargs);
2154  		if (error)
2155  			goto out_src_ppargs;
2156  	}
2157  
2158  	if (target_ip) {
2159  		error = xfs_parent_start(mp, &du_tgt.ppargs);
2160  		if (error)
2161  			goto out_wip_ppargs;
2162  	}
2163  
2164  retry:
2165  	nospace_error = 0;
2166  	spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2167  			target_name->len, du_wip.ip != NULL);
2168  	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2169  	if (error == -ENOSPC) {
2170  		nospace_error = error;
2171  		spaceres = 0;
2172  		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2173  				&tp);
2174  	}
2175  	if (error)
2176  		goto out_tgt_ppargs;
2177  
2178  	/*
2179  	 * We don't allow reservationless renaming when parent pointers are
2180  	 * enabled because we can't back out if the xattrs must grow.
2181  	 */
2182  	if (du_src.ppargs && nospace_error) {
2183  		error = nospace_error;
2184  		xfs_trans_cancel(tp);
2185  		goto out_tgt_ppargs;
2186  	}
2187  
2188  	/*
2189  	 * Attach the dquots to the inodes
2190  	 */
2191  	error = xfs_qm_vop_rename_dqattach(inodes);
2192  	if (error) {
2193  		xfs_trans_cancel(tp);
2194  		goto out_tgt_ppargs;
2195  	}
2196  
2197  	/*
2198  	 * Lock all the participating inodes. Depending upon whether
2199  	 * the target_name exists in the target directory, and
2200  	 * whether the target directory is the same as the source
2201  	 * directory, we can lock from 2 to 5 inodes.
2202  	 */
2203  	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2204  
2205  	/*
2206  	 * Join all the inodes to the transaction.
2207  	 */
2208  	xfs_trans_ijoin(tp, src_dp, 0);
2209  	if (new_parent)
2210  		xfs_trans_ijoin(tp, target_dp, 0);
2211  	xfs_trans_ijoin(tp, src_ip, 0);
2212  	if (target_ip)
2213  		xfs_trans_ijoin(tp, target_ip, 0);
2214  	if (du_wip.ip)
2215  		xfs_trans_ijoin(tp, du_wip.ip, 0);
2216  
2217  	/*
2218  	 * If we are using project inheritance, we only allow renames
2219  	 * into our tree when the project IDs are the same; else the
2220  	 * tree quota mechanism would be circumvented.
2221  	 */
2222  	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2223  		     target_dp->i_projid != src_ip->i_projid)) {
2224  		error = -EXDEV;
2225  		goto out_trans_cancel;
2226  	}
2227  
2228  	/* RENAME_EXCHANGE is unique from here on. */
2229  	if (flags & RENAME_EXCHANGE) {
2230  		error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2231  				spaceres);
2232  		if (error)
2233  			goto out_trans_cancel;
2234  		goto out_commit;
2235  	}
2236  
2237  	/*
2238  	 * Try to reserve quota to handle an expansion of the target directory.
2239  	 * We'll allow the rename to continue in reservationless mode if we hit
2240  	 * a space usage constraint.  If we trigger reservationless mode, save
2241  	 * the errno if there isn't any free space in the target directory.
2242  	 */
2243  	if (spaceres != 0) {
2244  		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2245  				0, false);
2246  		if (error == -EDQUOT || error == -ENOSPC) {
2247  			if (!retried) {
2248  				xfs_trans_cancel(tp);
2249  				xfs_iunlock_rename(inodes, num_inodes);
2250  				xfs_blockgc_free_quota(target_dp, 0);
2251  				retried = true;
2252  				goto retry;
2253  			}
2254  
2255  			nospace_error = error;
2256  			spaceres = 0;
2257  			error = 0;
2258  		}
2259  		if (error)
2260  			goto out_trans_cancel;
2261  	}
2262  
2263  	/*
2264  	 * We don't allow quotaless renaming when parent pointers are enabled
2265  	 * because we can't back out if the xattrs must grow.
2266  	 */
2267  	if (du_src.ppargs && nospace_error) {
2268  		error = nospace_error;
2269  		goto out_trans_cancel;
2270  	}
2271  
2272  	/*
2273  	 * Lock the AGI buffers we need to handle bumping the nlink of the
2274  	 * whiteout inode off the unlinked list and to handle dropping the
2275  	 * nlink of the target inode.  Per locking order rules, do this in
2276  	 * increasing AG order and before directory block allocation tries to
2277  	 * grab AGFs because we grab AGIs before AGFs.
2278  	 *
2279  	 * The (vfs) caller must ensure that if src is a directory then
2280  	 * target_ip is either null or an empty directory.
2281  	 */
2282  	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2283  		if (inodes[i] == du_wip.ip ||
2284  		    (inodes[i] == target_ip &&
2285  		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2286  			struct xfs_perag	*pag;
2287  			struct xfs_buf		*bp;
2288  
2289  			pag = xfs_perag_get(mp,
2290  					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2291  			error = xfs_read_agi(pag, tp, 0, &bp);
2292  			xfs_perag_put(pag);
2293  			if (error)
2294  				goto out_trans_cancel;
2295  		}
2296  	}
2297  
2298  	error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2299  			&du_wip);
2300  	if (error)
2301  		goto out_trans_cancel;
2302  
2303  	if (du_wip.ip) {
2304  		/*
2305  		 * Now we have a real link, clear the "I'm a tmpfile" state
2306  		 * flag from the inode so it doesn't accidentally get misused in
2307  		 * future.
2308  		 */
2309  		VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2310  	}
2311  
2312  out_commit:
2313  	/*
2314  	 * If this is a synchronous mount, make sure that the rename
2315  	 * transaction goes to disk before returning to the user.
2316  	 */
2317  	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2318  		xfs_trans_set_sync(tp);
2319  
2320  	error = xfs_trans_commit(tp);
2321  	nospace_error = 0;
2322  	goto out_unlock;
2323  
2324  out_trans_cancel:
2325  	xfs_trans_cancel(tp);
2326  out_unlock:
2327  	xfs_iunlock_rename(inodes, num_inodes);
2328  out_tgt_ppargs:
2329  	xfs_parent_finish(mp, du_tgt.ppargs);
2330  out_wip_ppargs:
2331  	xfs_parent_finish(mp, du_wip.ppargs);
2332  out_src_ppargs:
2333  	xfs_parent_finish(mp, du_src.ppargs);
2334  out_release_wip:
2335  	if (du_wip.ip)
2336  		xfs_irele(du_wip.ip);
2337  	if (error == -ENOSPC && nospace_error)
2338  		error = nospace_error;
2339  	return error;
2340  }
2341  
2342  static int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf * bp)2343  xfs_iflush(
2344  	struct xfs_inode	*ip,
2345  	struct xfs_buf		*bp)
2346  {
2347  	struct xfs_inode_log_item *iip = ip->i_itemp;
2348  	struct xfs_dinode	*dip;
2349  	struct xfs_mount	*mp = ip->i_mount;
2350  	int			error;
2351  
2352  	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2353  	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2354  	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2355  	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2356  	ASSERT(iip->ili_item.li_buf == bp);
2357  
2358  	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2359  
2360  	/*
2361  	 * We don't flush the inode if any of the following checks fail, but we
2362  	 * do still update the log item and attach to the backing buffer as if
2363  	 * the flush happened. This is a formality to facilitate predictable
2364  	 * error handling as the caller will shutdown and fail the buffer.
2365  	 */
2366  	error = -EFSCORRUPTED;
2367  	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2368  			       mp, XFS_ERRTAG_IFLUSH_1)) {
2369  		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2370  			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2371  			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2372  		goto flush_out;
2373  	}
2374  	if (S_ISREG(VFS_I(ip)->i_mode)) {
2375  		if (XFS_TEST_ERROR(
2376  		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2377  		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2378  		    mp, XFS_ERRTAG_IFLUSH_3)) {
2379  			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2380  				"%s: Bad regular inode %llu, ptr "PTR_FMT,
2381  				__func__, ip->i_ino, ip);
2382  			goto flush_out;
2383  		}
2384  	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2385  		if (XFS_TEST_ERROR(
2386  		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2387  		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2388  		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2389  		    mp, XFS_ERRTAG_IFLUSH_4)) {
2390  			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2391  				"%s: Bad directory inode %llu, ptr "PTR_FMT,
2392  				__func__, ip->i_ino, ip);
2393  			goto flush_out;
2394  		}
2395  	}
2396  	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2397  				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
2398  		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2399  			"%s: detected corrupt incore inode %llu, "
2400  			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2401  			__func__, ip->i_ino,
2402  			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2403  			ip->i_nblocks, ip);
2404  		goto flush_out;
2405  	}
2406  	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2407  				mp, XFS_ERRTAG_IFLUSH_6)) {
2408  		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2409  			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2410  			__func__, ip->i_ino, ip->i_forkoff, ip);
2411  		goto flush_out;
2412  	}
2413  
2414  	/*
2415  	 * Inode item log recovery for v2 inodes are dependent on the flushiter
2416  	 * count for correct sequencing.  We bump the flush iteration count so
2417  	 * we can detect flushes which postdate a log record during recovery.
2418  	 * This is redundant as we now log every change and hence this can't
2419  	 * happen but we need to still do it to ensure backwards compatibility
2420  	 * with old kernels that predate logging all inode changes.
2421  	 */
2422  	if (!xfs_has_v3inodes(mp))
2423  		ip->i_flushiter++;
2424  
2425  	/*
2426  	 * If there are inline format data / attr forks attached to this inode,
2427  	 * make sure they are not corrupt.
2428  	 */
2429  	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2430  	    xfs_ifork_verify_local_data(ip))
2431  		goto flush_out;
2432  	if (xfs_inode_has_attr_fork(ip) &&
2433  	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2434  	    xfs_ifork_verify_local_attr(ip))
2435  		goto flush_out;
2436  
2437  	/*
2438  	 * Copy the dirty parts of the inode into the on-disk inode.  We always
2439  	 * copy out the core of the inode, because if the inode is dirty at all
2440  	 * the core must be.
2441  	 */
2442  	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2443  
2444  	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2445  	if (!xfs_has_v3inodes(mp)) {
2446  		if (ip->i_flushiter == DI_MAX_FLUSH)
2447  			ip->i_flushiter = 0;
2448  	}
2449  
2450  	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2451  	if (xfs_inode_has_attr_fork(ip))
2452  		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2453  
2454  	/*
2455  	 * We've recorded everything logged in the inode, so we'd like to clear
2456  	 * the ili_fields bits so we don't log and flush things unnecessarily.
2457  	 * However, we can't stop logging all this information until the data
2458  	 * we've copied into the disk buffer is written to disk.  If we did we
2459  	 * might overwrite the copy of the inode in the log with all the data
2460  	 * after re-logging only part of it, and in the face of a crash we
2461  	 * wouldn't have all the data we need to recover.
2462  	 *
2463  	 * What we do is move the bits to the ili_last_fields field.  When
2464  	 * logging the inode, these bits are moved back to the ili_fields field.
2465  	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2466  	 * we know that the information those bits represent is permanently on
2467  	 * disk.  As long as the flush completes before the inode is logged
2468  	 * again, then both ili_fields and ili_last_fields will be cleared.
2469  	 */
2470  	error = 0;
2471  flush_out:
2472  	spin_lock(&iip->ili_lock);
2473  	iip->ili_last_fields = iip->ili_fields;
2474  	iip->ili_fields = 0;
2475  	iip->ili_fsync_fields = 0;
2476  	set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2477  	spin_unlock(&iip->ili_lock);
2478  
2479  	/*
2480  	 * Store the current LSN of the inode so that we can tell whether the
2481  	 * item has moved in the AIL from xfs_buf_inode_iodone().
2482  	 */
2483  	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2484  				&iip->ili_item.li_lsn);
2485  
2486  	/* generate the checksum. */
2487  	xfs_dinode_calc_crc(mp, dip);
2488  	if (error)
2489  		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2490  	return error;
2491  }
2492  
2493  /*
2494   * Non-blocking flush of dirty inode metadata into the backing buffer.
2495   *
2496   * The caller must have a reference to the inode and hold the cluster buffer
2497   * locked. The function will walk across all the inodes on the cluster buffer it
2498   * can find and lock without blocking, and flush them to the cluster buffer.
2499   *
2500   * On successful flushing of at least one inode, the caller must write out the
2501   * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2502   * the caller needs to release the buffer. On failure, the filesystem will be
2503   * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2504   * will be returned.
2505   */
2506  int
xfs_iflush_cluster(struct xfs_buf * bp)2507  xfs_iflush_cluster(
2508  	struct xfs_buf		*bp)
2509  {
2510  	struct xfs_mount	*mp = bp->b_mount;
2511  	struct xfs_log_item	*lip, *n;
2512  	struct xfs_inode	*ip;
2513  	struct xfs_inode_log_item *iip;
2514  	int			clcount = 0;
2515  	int			error = 0;
2516  
2517  	/*
2518  	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2519  	 * will remove itself from the list.
2520  	 */
2521  	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2522  		iip = (struct xfs_inode_log_item *)lip;
2523  		ip = iip->ili_inode;
2524  
2525  		/*
2526  		 * Quick and dirty check to avoid locks if possible.
2527  		 */
2528  		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2529  			continue;
2530  		if (xfs_ipincount(ip))
2531  			continue;
2532  
2533  		/*
2534  		 * The inode is still attached to the buffer, which means it is
2535  		 * dirty but reclaim might try to grab it. Check carefully for
2536  		 * that, and grab the ilock while still holding the i_flags_lock
2537  		 * to guarantee reclaim will not be able to reclaim this inode
2538  		 * once we drop the i_flags_lock.
2539  		 */
2540  		spin_lock(&ip->i_flags_lock);
2541  		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2542  		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2543  			spin_unlock(&ip->i_flags_lock);
2544  			continue;
2545  		}
2546  
2547  		/*
2548  		 * ILOCK will pin the inode against reclaim and prevent
2549  		 * concurrent transactions modifying the inode while we are
2550  		 * flushing the inode. If we get the lock, set the flushing
2551  		 * state before we drop the i_flags_lock.
2552  		 */
2553  		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2554  			spin_unlock(&ip->i_flags_lock);
2555  			continue;
2556  		}
2557  		__xfs_iflags_set(ip, XFS_IFLUSHING);
2558  		spin_unlock(&ip->i_flags_lock);
2559  
2560  		/*
2561  		 * Abort flushing this inode if we are shut down because the
2562  		 * inode may not currently be in the AIL. This can occur when
2563  		 * log I/O failure unpins the inode without inserting into the
2564  		 * AIL, leaving a dirty/unpinned inode attached to the buffer
2565  		 * that otherwise looks like it should be flushed.
2566  		 */
2567  		if (xlog_is_shutdown(mp->m_log)) {
2568  			xfs_iunpin_wait(ip);
2569  			xfs_iflush_abort(ip);
2570  			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2571  			error = -EIO;
2572  			continue;
2573  		}
2574  
2575  		/* don't block waiting on a log force to unpin dirty inodes */
2576  		if (xfs_ipincount(ip)) {
2577  			xfs_iflags_clear(ip, XFS_IFLUSHING);
2578  			xfs_iunlock(ip, XFS_ILOCK_SHARED);
2579  			continue;
2580  		}
2581  
2582  		if (!xfs_inode_clean(ip))
2583  			error = xfs_iflush(ip, bp);
2584  		else
2585  			xfs_iflags_clear(ip, XFS_IFLUSHING);
2586  		xfs_iunlock(ip, XFS_ILOCK_SHARED);
2587  		if (error)
2588  			break;
2589  		clcount++;
2590  	}
2591  
2592  	if (error) {
2593  		/*
2594  		 * Shutdown first so we kill the log before we release this
2595  		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2596  		 * of the log, failing it before the _log_ is shut down can
2597  		 * result in the log tail being moved forward in the journal
2598  		 * on disk because log writes can still be taking place. Hence
2599  		 * unpinning the tail will allow the ICREATE intent to be
2600  		 * removed from the log an recovery will fail with uninitialised
2601  		 * inode cluster buffers.
2602  		 */
2603  		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2604  		bp->b_flags |= XBF_ASYNC;
2605  		xfs_buf_ioend_fail(bp);
2606  		return error;
2607  	}
2608  
2609  	if (!clcount)
2610  		return -EAGAIN;
2611  
2612  	XFS_STATS_INC(mp, xs_icluster_flushcnt);
2613  	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2614  	return 0;
2615  
2616  }
2617  
2618  /* Release an inode. */
2619  void
xfs_irele(struct xfs_inode * ip)2620  xfs_irele(
2621  	struct xfs_inode	*ip)
2622  {
2623  	trace_xfs_irele(ip, _RET_IP_);
2624  	iput(VFS_I(ip));
2625  }
2626  
2627  /*
2628   * Ensure all commited transactions touching the inode are written to the log.
2629   */
2630  int
xfs_log_force_inode(struct xfs_inode * ip)2631  xfs_log_force_inode(
2632  	struct xfs_inode	*ip)
2633  {
2634  	xfs_csn_t		seq = 0;
2635  
2636  	xfs_ilock(ip, XFS_ILOCK_SHARED);
2637  	if (xfs_ipincount(ip))
2638  		seq = ip->i_itemp->ili_commit_seq;
2639  	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2640  
2641  	if (!seq)
2642  		return 0;
2643  	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2644  }
2645  
2646  /*
2647   * Grab the exclusive iolock for a data copy from src to dest, making sure to
2648   * abide vfs locking order (lowest pointer value goes first) and breaking the
2649   * layout leases before proceeding.  The loop is needed because we cannot call
2650   * the blocking break_layout() with the iolocks held, and therefore have to
2651   * back out both locks.
2652   */
2653  static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)2654  xfs_iolock_two_inodes_and_break_layout(
2655  	struct inode		*src,
2656  	struct inode		*dest)
2657  {
2658  	int			error;
2659  
2660  	if (src > dest)
2661  		swap(src, dest);
2662  
2663  retry:
2664  	/* Wait to break both inodes' layouts before we start locking. */
2665  	error = break_layout(src, true);
2666  	if (error)
2667  		return error;
2668  	if (src != dest) {
2669  		error = break_layout(dest, true);
2670  		if (error)
2671  			return error;
2672  	}
2673  
2674  	/* Lock one inode and make sure nobody got in and leased it. */
2675  	inode_lock(src);
2676  	error = break_layout(src, false);
2677  	if (error) {
2678  		inode_unlock(src);
2679  		if (error == -EWOULDBLOCK)
2680  			goto retry;
2681  		return error;
2682  	}
2683  
2684  	if (src == dest)
2685  		return 0;
2686  
2687  	/* Lock the other inode and make sure nobody got in and leased it. */
2688  	inode_lock_nested(dest, I_MUTEX_NONDIR2);
2689  	error = break_layout(dest, false);
2690  	if (error) {
2691  		inode_unlock(src);
2692  		inode_unlock(dest);
2693  		if (error == -EWOULDBLOCK)
2694  			goto retry;
2695  		return error;
2696  	}
2697  
2698  	return 0;
2699  }
2700  
2701  static int
xfs_mmaplock_two_inodes_and_break_dax_layout(struct xfs_inode * ip1,struct xfs_inode * ip2)2702  xfs_mmaplock_two_inodes_and_break_dax_layout(
2703  	struct xfs_inode	*ip1,
2704  	struct xfs_inode	*ip2)
2705  {
2706  	int			error;
2707  	bool			retry;
2708  	struct page		*page;
2709  
2710  	if (ip1->i_ino > ip2->i_ino)
2711  		swap(ip1, ip2);
2712  
2713  again:
2714  	retry = false;
2715  	/* Lock the first inode */
2716  	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2717  	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2718  	if (error || retry) {
2719  		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2720  		if (error == 0 && retry)
2721  			goto again;
2722  		return error;
2723  	}
2724  
2725  	if (ip1 == ip2)
2726  		return 0;
2727  
2728  	/* Nested lock the second inode */
2729  	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2730  	/*
2731  	 * We cannot use xfs_break_dax_layouts() directly here because it may
2732  	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2733  	 * for this nested lock case.
2734  	 */
2735  	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2736  	if (page && page_ref_count(page) != 1) {
2737  		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2738  		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2739  		goto again;
2740  	}
2741  
2742  	return 0;
2743  }
2744  
2745  /*
2746   * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2747   * mmap activity.
2748   */
2749  int
xfs_ilock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2750  xfs_ilock2_io_mmap(
2751  	struct xfs_inode	*ip1,
2752  	struct xfs_inode	*ip2)
2753  {
2754  	int			ret;
2755  
2756  	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2757  	if (ret)
2758  		return ret;
2759  
2760  	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2761  		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2762  		if (ret) {
2763  			inode_unlock(VFS_I(ip2));
2764  			if (ip1 != ip2)
2765  				inode_unlock(VFS_I(ip1));
2766  			return ret;
2767  		}
2768  	} else
2769  		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2770  					    VFS_I(ip2)->i_mapping);
2771  
2772  	return 0;
2773  }
2774  
2775  /* Unlock both inodes to allow IO and mmap activity. */
2776  void
xfs_iunlock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2777  xfs_iunlock2_io_mmap(
2778  	struct xfs_inode	*ip1,
2779  	struct xfs_inode	*ip2)
2780  {
2781  	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2782  		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2783  		if (ip1 != ip2)
2784  			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2785  	} else
2786  		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2787  					      VFS_I(ip2)->i_mapping);
2788  
2789  	inode_unlock(VFS_I(ip2));
2790  	if (ip1 != ip2)
2791  		inode_unlock(VFS_I(ip1));
2792  }
2793  
2794  /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2795  void
xfs_iunlock2_remapping(struct xfs_inode * ip1,struct xfs_inode * ip2)2796  xfs_iunlock2_remapping(
2797  	struct xfs_inode	*ip1,
2798  	struct xfs_inode	*ip2)
2799  {
2800  	xfs_iflags_clear(ip1, XFS_IREMAPPING);
2801  
2802  	if (ip1 != ip2)
2803  		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2804  	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2805  
2806  	if (ip1 != ip2)
2807  		inode_unlock_shared(VFS_I(ip1));
2808  	inode_unlock(VFS_I(ip2));
2809  }
2810  
2811  /*
2812   * Reload the incore inode list for this inode.  Caller should ensure that
2813   * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2814   * preventing other threads from executing.
2815   */
2816  int
xfs_inode_reload_unlinked_bucket(struct xfs_trans * tp,struct xfs_inode * ip)2817  xfs_inode_reload_unlinked_bucket(
2818  	struct xfs_trans	*tp,
2819  	struct xfs_inode	*ip)
2820  {
2821  	struct xfs_mount	*mp = tp->t_mountp;
2822  	struct xfs_buf		*agibp;
2823  	struct xfs_agi		*agi;
2824  	struct xfs_perag	*pag;
2825  	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2826  	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2827  	xfs_agino_t		prev_agino, next_agino;
2828  	unsigned int		bucket;
2829  	bool			foundit = false;
2830  	int			error;
2831  
2832  	/* Grab the first inode in the list */
2833  	pag = xfs_perag_get(mp, agno);
2834  	error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2835  	xfs_perag_put(pag);
2836  	if (error)
2837  		return error;
2838  
2839  	/*
2840  	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2841  	 * incore unlinked list pointers for this inode.  Check once more to
2842  	 * see if we raced with anyone else to reload the unlinked list.
2843  	 */
2844  	if (!xfs_inode_unlinked_incomplete(ip)) {
2845  		foundit = true;
2846  		goto out_agibp;
2847  	}
2848  
2849  	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2850  	agi = agibp->b_addr;
2851  
2852  	trace_xfs_inode_reload_unlinked_bucket(ip);
2853  
2854  	xfs_info_ratelimited(mp,
2855   "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
2856  			agino, agno);
2857  
2858  	prev_agino = NULLAGINO;
2859  	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2860  	while (next_agino != NULLAGINO) {
2861  		struct xfs_inode	*next_ip = NULL;
2862  
2863  		/* Found this caller's inode, set its backlink. */
2864  		if (next_agino == agino) {
2865  			next_ip = ip;
2866  			next_ip->i_prev_unlinked = prev_agino;
2867  			foundit = true;
2868  			goto next_inode;
2869  		}
2870  
2871  		/* Try in-memory lookup first. */
2872  		next_ip = xfs_iunlink_lookup(pag, next_agino);
2873  		if (next_ip)
2874  			goto next_inode;
2875  
2876  		/* Inode not in memory, try reloading it. */
2877  		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2878  				next_agino);
2879  		if (error)
2880  			break;
2881  
2882  		/* Grab the reloaded inode. */
2883  		next_ip = xfs_iunlink_lookup(pag, next_agino);
2884  		if (!next_ip) {
2885  			/* No incore inode at all?  We reloaded it... */
2886  			ASSERT(next_ip != NULL);
2887  			error = -EFSCORRUPTED;
2888  			break;
2889  		}
2890  
2891  next_inode:
2892  		prev_agino = next_agino;
2893  		next_agino = next_ip->i_next_unlinked;
2894  	}
2895  
2896  out_agibp:
2897  	xfs_trans_brelse(tp, agibp);
2898  	/* Should have found this inode somewhere in the iunlinked bucket. */
2899  	if (!error && !foundit)
2900  		error = -EFSCORRUPTED;
2901  	return error;
2902  }
2903  
2904  /* Decide if this inode is missing its unlinked list and reload it. */
2905  int
xfs_inode_reload_unlinked(struct xfs_inode * ip)2906  xfs_inode_reload_unlinked(
2907  	struct xfs_inode	*ip)
2908  {
2909  	struct xfs_trans	*tp;
2910  	int			error;
2911  
2912  	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
2913  	if (error)
2914  		return error;
2915  
2916  	xfs_ilock(ip, XFS_ILOCK_SHARED);
2917  	if (xfs_inode_unlinked_incomplete(ip))
2918  		error = xfs_inode_reload_unlinked_bucket(tp, ip);
2919  	xfs_iunlock(ip, XFS_ILOCK_SHARED);
2920  	xfs_trans_cancel(tp);
2921  
2922  	return error;
2923  }
2924  
2925  /* Has this inode fork been zapped by repair? */
2926  bool
xfs_ifork_zapped(const struct xfs_inode * ip,int whichfork)2927  xfs_ifork_zapped(
2928  	const struct xfs_inode	*ip,
2929  	int			whichfork)
2930  {
2931  	unsigned int		datamask = 0;
2932  
2933  	switch (whichfork) {
2934  	case XFS_DATA_FORK:
2935  		switch (ip->i_vnode.i_mode & S_IFMT) {
2936  		case S_IFDIR:
2937  			datamask = XFS_SICK_INO_DIR_ZAPPED;
2938  			break;
2939  		case S_IFLNK:
2940  			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2941  			break;
2942  		}
2943  		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2944  	case XFS_ATTR_FORK:
2945  		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2946  	default:
2947  		return false;
2948  	}
2949  }
2950  
2951  /* Compute the number of data and realtime blocks used by a file. */
2952  void
xfs_inode_count_blocks(struct xfs_trans * tp,struct xfs_inode * ip,xfs_filblks_t * dblocks,xfs_filblks_t * rblocks)2953  xfs_inode_count_blocks(
2954  	struct xfs_trans	*tp,
2955  	struct xfs_inode	*ip,
2956  	xfs_filblks_t		*dblocks,
2957  	xfs_filblks_t		*rblocks)
2958  {
2959  	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2960  
2961  	*rblocks = 0;
2962  	if (XFS_IS_REALTIME_INODE(ip))
2963  		xfs_bmap_count_leaves(ifp, rblocks);
2964  	*dblocks = ip->i_nblocks - *rblocks;
2965  }
2966  
2967  static void
xfs_wait_dax_page(struct inode * inode)2968  xfs_wait_dax_page(
2969  	struct inode		*inode)
2970  {
2971  	struct xfs_inode        *ip = XFS_I(inode);
2972  
2973  	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
2974  	schedule();
2975  	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
2976  }
2977  
2978  int
xfs_break_dax_layouts(struct inode * inode,bool * retry)2979  xfs_break_dax_layouts(
2980  	struct inode		*inode,
2981  	bool			*retry)
2982  {
2983  	struct page		*page;
2984  
2985  	xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
2986  
2987  	page = dax_layout_busy_page(inode->i_mapping);
2988  	if (!page)
2989  		return 0;
2990  
2991  	*retry = true;
2992  	return ___wait_var_event(&page->_refcount,
2993  			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
2994  			0, 0, xfs_wait_dax_page(inode));
2995  }
2996  
2997  int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)2998  xfs_break_layouts(
2999  	struct inode		*inode,
3000  	uint			*iolock,
3001  	enum layout_break_reason reason)
3002  {
3003  	bool			retry;
3004  	int			error;
3005  
3006  	xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3007  
3008  	do {
3009  		retry = false;
3010  		switch (reason) {
3011  		case BREAK_UNMAP:
3012  			error = xfs_break_dax_layouts(inode, &retry);
3013  			if (error || retry)
3014  				break;
3015  			fallthrough;
3016  		case BREAK_WRITE:
3017  			error = xfs_break_leased_layouts(inode, iolock, &retry);
3018  			break;
3019  		default:
3020  			WARN_ON_ONCE(1);
3021  			error = -EINVAL;
3022  		}
3023  	} while (error == 0 && retry);
3024  
3025  	return error;
3026  }
3027  
3028  /* Returns the size of fundamental allocation unit for a file, in bytes. */
3029  unsigned int
xfs_inode_alloc_unitsize(struct xfs_inode * ip)3030  xfs_inode_alloc_unitsize(
3031  	struct xfs_inode	*ip)
3032  {
3033  	unsigned int		blocks = 1;
3034  
3035  	if (XFS_IS_REALTIME_INODE(ip))
3036  		blocks = ip->i_mount->m_sb.sb_rextsize;
3037  
3038  	return XFS_FSB_TO_B(ip->i_mount, blocks);
3039  }
3040  
3041  /* Should we always be using copy on write for file writes? */
3042  bool
xfs_is_always_cow_inode(struct xfs_inode * ip)3043  xfs_is_always_cow_inode(
3044  	struct xfs_inode	*ip)
3045  {
3046  	return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
3047  }
3048