1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4   * All Rights Reserved.
5   */
6  #include "xfs.h"
7  #include "xfs_fs.h"
8  #include "xfs_shared.h"
9  #include "xfs_format.h"
10  #include "xfs_log_format.h"
11  #include "xfs_trans_resv.h"
12  #include "xfs_bit.h"
13  #include "xfs_mount.h"
14  #include "xfs_inode.h"
15  #include "xfs_btree.h"
16  #include "xfs_ialloc.h"
17  #include "xfs_ialloc_btree.h"
18  #include "xfs_alloc.h"
19  #include "xfs_errortag.h"
20  #include "xfs_error.h"
21  #include "xfs_bmap.h"
22  #include "xfs_trans.h"
23  #include "xfs_buf_item.h"
24  #include "xfs_icreate_item.h"
25  #include "xfs_icache.h"
26  #include "xfs_trace.h"
27  #include "xfs_log.h"
28  #include "xfs_rmap.h"
29  #include "xfs_ag.h"
30  #include "xfs_health.h"
31  
32  /*
33   * Lookup a record by ino in the btree given by cur.
34   */
35  int					/* error */
xfs_inobt_lookup(struct xfs_btree_cur * cur,xfs_agino_t ino,xfs_lookup_t dir,int * stat)36  xfs_inobt_lookup(
37  	struct xfs_btree_cur	*cur,	/* btree cursor */
38  	xfs_agino_t		ino,	/* starting inode of chunk */
39  	xfs_lookup_t		dir,	/* <=, >=, == */
40  	int			*stat)	/* success/failure */
41  {
42  	cur->bc_rec.i.ir_startino = ino;
43  	cur->bc_rec.i.ir_holemask = 0;
44  	cur->bc_rec.i.ir_count = 0;
45  	cur->bc_rec.i.ir_freecount = 0;
46  	cur->bc_rec.i.ir_free = 0;
47  	return xfs_btree_lookup(cur, dir, stat);
48  }
49  
50  /*
51   * Update the record referred to by cur to the value given.
52   * This either works (return 0) or gets an EFSCORRUPTED error.
53   */
54  STATIC int				/* error */
xfs_inobt_update(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * irec)55  xfs_inobt_update(
56  	struct xfs_btree_cur	*cur,	/* btree cursor */
57  	xfs_inobt_rec_incore_t	*irec)	/* btree record */
58  {
59  	union xfs_btree_rec	rec;
60  
61  	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62  	if (xfs_has_sparseinodes(cur->bc_mp)) {
63  		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64  		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65  		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66  	} else {
67  		/* ir_holemask/ir_count not supported on-disk */
68  		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69  	}
70  	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71  	return xfs_btree_update(cur, &rec);
72  }
73  
74  /* Convert on-disk btree record to incore inobt record. */
75  void
xfs_inobt_btrec_to_irec(struct xfs_mount * mp,const union xfs_btree_rec * rec,struct xfs_inobt_rec_incore * irec)76  xfs_inobt_btrec_to_irec(
77  	struct xfs_mount		*mp,
78  	const union xfs_btree_rec	*rec,
79  	struct xfs_inobt_rec_incore	*irec)
80  {
81  	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82  	if (xfs_has_sparseinodes(mp)) {
83  		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84  		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85  		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86  	} else {
87  		/*
88  		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89  		 * values for full inode chunks.
90  		 */
91  		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92  		irec->ir_count = XFS_INODES_PER_CHUNK;
93  		irec->ir_freecount =
94  				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95  	}
96  	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
97  }
98  
99  /* Compute the freecount of an incore inode record. */
100  uint8_t
xfs_inobt_rec_freecount(const struct xfs_inobt_rec_incore * irec)101  xfs_inobt_rec_freecount(
102  	const struct xfs_inobt_rec_incore	*irec)
103  {
104  	uint64_t				realfree = irec->ir_free;
105  
106  	if (xfs_inobt_issparse(irec->ir_holemask))
107  		realfree &= xfs_inobt_irec_to_allocmask(irec);
108  	return hweight64(realfree);
109  }
110  
111  /* Simple checks for inode records. */
112  xfs_failaddr_t
xfs_inobt_check_irec(struct xfs_perag * pag,const struct xfs_inobt_rec_incore * irec)113  xfs_inobt_check_irec(
114  	struct xfs_perag			*pag,
115  	const struct xfs_inobt_rec_incore	*irec)
116  {
117  	/* Record has to be properly aligned within the AG. */
118  	if (!xfs_verify_agino(pag, irec->ir_startino))
119  		return __this_address;
120  	if (!xfs_verify_agino(pag,
121  				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122  		return __this_address;
123  	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124  	    irec->ir_count > XFS_INODES_PER_CHUNK)
125  		return __this_address;
126  	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127  		return __this_address;
128  
129  	if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130  		return __this_address;
131  
132  	return NULL;
133  }
134  
135  static inline int
xfs_inobt_complain_bad_rec(struct xfs_btree_cur * cur,xfs_failaddr_t fa,const struct xfs_inobt_rec_incore * irec)136  xfs_inobt_complain_bad_rec(
137  	struct xfs_btree_cur		*cur,
138  	xfs_failaddr_t			fa,
139  	const struct xfs_inobt_rec_incore *irec)
140  {
141  	struct xfs_mount		*mp = cur->bc_mp;
142  
143  	xfs_warn(mp,
144  		"%sbt record corruption in AG %d detected at %pS!",
145  		cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
146  	xfs_warn(mp,
147  "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148  		irec->ir_startino, irec->ir_count, irec->ir_freecount,
149  		irec->ir_free, irec->ir_holemask);
150  	xfs_btree_mark_sick(cur);
151  	return -EFSCORRUPTED;
152  }
153  
154  /*
155   * Get the data from the pointed-to record.
156   */
157  int
xfs_inobt_get_rec(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * irec,int * stat)158  xfs_inobt_get_rec(
159  	struct xfs_btree_cur		*cur,
160  	struct xfs_inobt_rec_incore	*irec,
161  	int				*stat)
162  {
163  	struct xfs_mount		*mp = cur->bc_mp;
164  	union xfs_btree_rec		*rec;
165  	xfs_failaddr_t			fa;
166  	int				error;
167  
168  	error = xfs_btree_get_rec(cur, &rec, stat);
169  	if (error || *stat == 0)
170  		return error;
171  
172  	xfs_inobt_btrec_to_irec(mp, rec, irec);
173  	fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
174  	if (fa)
175  		return xfs_inobt_complain_bad_rec(cur, fa, irec);
176  
177  	return 0;
178  }
179  
180  /*
181   * Insert a single inobt record. Cursor must already point to desired location.
182   */
183  int
xfs_inobt_insert_rec(struct xfs_btree_cur * cur,uint16_t holemask,uint8_t count,int32_t freecount,xfs_inofree_t free,int * stat)184  xfs_inobt_insert_rec(
185  	struct xfs_btree_cur	*cur,
186  	uint16_t		holemask,
187  	uint8_t			count,
188  	int32_t			freecount,
189  	xfs_inofree_t		free,
190  	int			*stat)
191  {
192  	cur->bc_rec.i.ir_holemask = holemask;
193  	cur->bc_rec.i.ir_count = count;
194  	cur->bc_rec.i.ir_freecount = freecount;
195  	cur->bc_rec.i.ir_free = free;
196  	return xfs_btree_insert(cur, stat);
197  }
198  
199  /*
200   * Insert records describing a newly allocated inode chunk into the inobt.
201   */
202  STATIC int
xfs_inobt_insert(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t newino,xfs_agino_t newlen,bool is_finobt)203  xfs_inobt_insert(
204  	struct xfs_perag	*pag,
205  	struct xfs_trans	*tp,
206  	struct xfs_buf		*agbp,
207  	xfs_agino_t		newino,
208  	xfs_agino_t		newlen,
209  	bool			is_finobt)
210  {
211  	struct xfs_btree_cur	*cur;
212  	xfs_agino_t		thisino;
213  	int			i;
214  	int			error;
215  
216  	if (is_finobt)
217  		cur = xfs_finobt_init_cursor(pag, tp, agbp);
218  	else
219  		cur = xfs_inobt_init_cursor(pag, tp, agbp);
220  
221  	for (thisino = newino;
222  	     thisino < newino + newlen;
223  	     thisino += XFS_INODES_PER_CHUNK) {
224  		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225  		if (error) {
226  			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227  			return error;
228  		}
229  		ASSERT(i == 0);
230  
231  		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232  					     XFS_INODES_PER_CHUNK,
233  					     XFS_INODES_PER_CHUNK,
234  					     XFS_INOBT_ALL_FREE, &i);
235  		if (error) {
236  			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237  			return error;
238  		}
239  		ASSERT(i == 1);
240  	}
241  
242  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
243  
244  	return 0;
245  }
246  
247  /*
248   * Verify that the number of free inodes in the AGI is correct.
249   */
250  #ifdef DEBUG
251  static int
xfs_check_agi_freecount(struct xfs_btree_cur * cur)252  xfs_check_agi_freecount(
253  	struct xfs_btree_cur	*cur)
254  {
255  	if (cur->bc_nlevels == 1) {
256  		xfs_inobt_rec_incore_t rec;
257  		int		freecount = 0;
258  		int		error;
259  		int		i;
260  
261  		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262  		if (error)
263  			return error;
264  
265  		do {
266  			error = xfs_inobt_get_rec(cur, &rec, &i);
267  			if (error)
268  				return error;
269  
270  			if (i) {
271  				freecount += rec.ir_freecount;
272  				error = xfs_btree_increment(cur, 0, &i);
273  				if (error)
274  					return error;
275  			}
276  		} while (i == 1);
277  
278  		if (!xfs_is_shutdown(cur->bc_mp))
279  			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
280  	}
281  	return 0;
282  }
283  #else
284  #define xfs_check_agi_freecount(cur)	0
285  #endif
286  
287  /*
288   * Initialise a new set of inodes. When called without a transaction context
289   * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
290   * than logging them (which in a transaction context puts them into the AIL
291   * for writeback rather than the xfsbufd queue).
292   */
293  int
xfs_ialloc_inode_init(struct xfs_mount * mp,struct xfs_trans * tp,struct list_head * buffer_list,int icount,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_agblock_t length,unsigned int gen)294  xfs_ialloc_inode_init(
295  	struct xfs_mount	*mp,
296  	struct xfs_trans	*tp,
297  	struct list_head	*buffer_list,
298  	int			icount,
299  	xfs_agnumber_t		agno,
300  	xfs_agblock_t		agbno,
301  	xfs_agblock_t		length,
302  	unsigned int		gen)
303  {
304  	struct xfs_buf		*fbuf;
305  	struct xfs_dinode	*free;
306  	int			nbufs;
307  	int			version;
308  	int			i, j;
309  	xfs_daddr_t		d;
310  	xfs_ino_t		ino = 0;
311  	int			error;
312  
313  	/*
314  	 * Loop over the new block(s), filling in the inodes.  For small block
315  	 * sizes, manipulate the inodes in buffers  which are multiples of the
316  	 * blocks size.
317  	 */
318  	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
319  
320  	/*
321  	 * Figure out what version number to use in the inodes we create.  If
322  	 * the superblock version has caught up to the one that supports the new
323  	 * inode format, then use the new inode version.  Otherwise use the old
324  	 * version so that old kernels will continue to be able to use the file
325  	 * system.
326  	 *
327  	 * For v3 inodes, we also need to write the inode number into the inode,
328  	 * so calculate the first inode number of the chunk here as
329  	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
330  	 * across multiple filesystem blocks (such as a cluster) and so cannot
331  	 * be used in the cluster buffer loop below.
332  	 *
333  	 * Further, because we are writing the inode directly into the buffer
334  	 * and calculating a CRC on the entire inode, we have ot log the entire
335  	 * inode so that the entire range the CRC covers is present in the log.
336  	 * That means for v3 inode we log the entire buffer rather than just the
337  	 * inode cores.
338  	 */
339  	if (xfs_has_v3inodes(mp)) {
340  		version = 3;
341  		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
342  
343  		/*
344  		 * log the initialisation that is about to take place as an
345  		 * logical operation. This means the transaction does not
346  		 * need to log the physical changes to the inode buffers as log
347  		 * recovery will know what initialisation is actually needed.
348  		 * Hence we only need to log the buffers as "ordered" buffers so
349  		 * they track in the AIL as if they were physically logged.
350  		 */
351  		if (tp)
352  			xfs_icreate_log(tp, agno, agbno, icount,
353  					mp->m_sb.sb_inodesize, length, gen);
354  	} else
355  		version = 2;
356  
357  	for (j = 0; j < nbufs; j++) {
358  		/*
359  		 * Get the block.
360  		 */
361  		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
362  				(j * M_IGEO(mp)->blocks_per_cluster));
363  		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
364  				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
365  				XBF_UNMAPPED, &fbuf);
366  		if (error)
367  			return error;
368  
369  		/* Initialize the inode buffers and log them appropriately. */
370  		fbuf->b_ops = &xfs_inode_buf_ops;
371  		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
372  		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
373  			int	ioffset = i << mp->m_sb.sb_inodelog;
374  
375  			free = xfs_make_iptr(mp, fbuf, i);
376  			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
377  			free->di_version = version;
378  			free->di_gen = cpu_to_be32(gen);
379  			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
380  
381  			if (version == 3) {
382  				free->di_ino = cpu_to_be64(ino);
383  				ino++;
384  				uuid_copy(&free->di_uuid,
385  					  &mp->m_sb.sb_meta_uuid);
386  				xfs_dinode_calc_crc(mp, free);
387  			} else if (tp) {
388  				/* just log the inode core */
389  				xfs_trans_log_buf(tp, fbuf, ioffset,
390  					  ioffset + XFS_DINODE_SIZE(mp) - 1);
391  			}
392  		}
393  
394  		if (tp) {
395  			/*
396  			 * Mark the buffer as an inode allocation buffer so it
397  			 * sticks in AIL at the point of this allocation
398  			 * transaction. This ensures the they are on disk before
399  			 * the tail of the log can be moved past this
400  			 * transaction (i.e. by preventing relogging from moving
401  			 * it forward in the log).
402  			 */
403  			xfs_trans_inode_alloc_buf(tp, fbuf);
404  			if (version == 3) {
405  				/*
406  				 * Mark the buffer as ordered so that they are
407  				 * not physically logged in the transaction but
408  				 * still tracked in the AIL as part of the
409  				 * transaction and pin the log appropriately.
410  				 */
411  				xfs_trans_ordered_buf(tp, fbuf);
412  			}
413  		} else {
414  			fbuf->b_flags |= XBF_DONE;
415  			xfs_buf_delwri_queue(fbuf, buffer_list);
416  			xfs_buf_relse(fbuf);
417  		}
418  	}
419  	return 0;
420  }
421  
422  /*
423   * Align startino and allocmask for a recently allocated sparse chunk such that
424   * they are fit for insertion (or merge) into the on-disk inode btrees.
425   *
426   * Background:
427   *
428   * When enabled, sparse inode support increases the inode alignment from cluster
429   * size to inode chunk size. This means that the minimum range between two
430   * non-adjacent inode records in the inobt is large enough for a full inode
431   * record. This allows for cluster sized, cluster aligned block allocation
432   * without need to worry about whether the resulting inode record overlaps with
433   * another record in the tree. Without this basic rule, we would have to deal
434   * with the consequences of overlap by potentially undoing recent allocations in
435   * the inode allocation codepath.
436   *
437   * Because of this alignment rule (which is enforced on mount), there are two
438   * inobt possibilities for newly allocated sparse chunks. One is that the
439   * aligned inode record for the chunk covers a range of inodes not already
440   * covered in the inobt (i.e., it is safe to insert a new sparse record). The
441   * other is that a record already exists at the aligned startino that considers
442   * the newly allocated range as sparse. In the latter case, record content is
443   * merged in hope that sparse inode chunks fill to full chunks over time.
444   */
445  STATIC void
xfs_align_sparse_ino(struct xfs_mount * mp,xfs_agino_t * startino,uint16_t * allocmask)446  xfs_align_sparse_ino(
447  	struct xfs_mount		*mp,
448  	xfs_agino_t			*startino,
449  	uint16_t			*allocmask)
450  {
451  	xfs_agblock_t			agbno;
452  	xfs_agblock_t			mod;
453  	int				offset;
454  
455  	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
456  	mod = agbno % mp->m_sb.sb_inoalignmt;
457  	if (!mod)
458  		return;
459  
460  	/* calculate the inode offset and align startino */
461  	offset = XFS_AGB_TO_AGINO(mp, mod);
462  	*startino -= offset;
463  
464  	/*
465  	 * Since startino has been aligned down, left shift allocmask such that
466  	 * it continues to represent the same physical inodes relative to the
467  	 * new startino.
468  	 */
469  	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
470  }
471  
472  /*
473   * Determine whether the source inode record can merge into the target. Both
474   * records must be sparse, the inode ranges must match and there must be no
475   * allocation overlap between the records.
476   */
477  STATIC bool
__xfs_inobt_can_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)478  __xfs_inobt_can_merge(
479  	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
480  	struct xfs_inobt_rec_incore	*srec)	/* src record */
481  {
482  	uint64_t			talloc;
483  	uint64_t			salloc;
484  
485  	/* records must cover the same inode range */
486  	if (trec->ir_startino != srec->ir_startino)
487  		return false;
488  
489  	/* both records must be sparse */
490  	if (!xfs_inobt_issparse(trec->ir_holemask) ||
491  	    !xfs_inobt_issparse(srec->ir_holemask))
492  		return false;
493  
494  	/* both records must track some inodes */
495  	if (!trec->ir_count || !srec->ir_count)
496  		return false;
497  
498  	/* can't exceed capacity of a full record */
499  	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
500  		return false;
501  
502  	/* verify there is no allocation overlap */
503  	talloc = xfs_inobt_irec_to_allocmask(trec);
504  	salloc = xfs_inobt_irec_to_allocmask(srec);
505  	if (talloc & salloc)
506  		return false;
507  
508  	return true;
509  }
510  
511  /*
512   * Merge the source inode record into the target. The caller must call
513   * __xfs_inobt_can_merge() to ensure the merge is valid.
514   */
515  STATIC void
__xfs_inobt_rec_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)516  __xfs_inobt_rec_merge(
517  	struct xfs_inobt_rec_incore	*trec,	/* target */
518  	struct xfs_inobt_rec_incore	*srec)	/* src */
519  {
520  	ASSERT(trec->ir_startino == srec->ir_startino);
521  
522  	/* combine the counts */
523  	trec->ir_count += srec->ir_count;
524  	trec->ir_freecount += srec->ir_freecount;
525  
526  	/*
527  	 * Merge the holemask and free mask. For both fields, 0 bits refer to
528  	 * allocated inodes. We combine the allocated ranges with bitwise AND.
529  	 */
530  	trec->ir_holemask &= srec->ir_holemask;
531  	trec->ir_free &= srec->ir_free;
532  }
533  
534  /*
535   * Insert a new sparse inode chunk into the associated inode allocation btree.
536   * The inode record for the sparse chunk is pre-aligned to a startino that
537   * should match any pre-existing sparse inode record in the tree. This allows
538   * sparse chunks to fill over time.
539   *
540   * If no preexisting record exists, the provided record is inserted.
541   * If there is a preexisting record, the provided record is merged with the
542   * existing record and updated in place. The merged record is returned in nrec.
543   *
544   * It is considered corruption if a merge is requested and not possible. Given
545   * the sparse inode alignment constraints, this should never happen.
546   */
547  STATIC int
xfs_inobt_insert_sprec(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_inobt_rec_incore * nrec)548  xfs_inobt_insert_sprec(
549  	struct xfs_perag		*pag,
550  	struct xfs_trans		*tp,
551  	struct xfs_buf			*agbp,
552  	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new/merged rec. */
553  {
554  	struct xfs_mount		*mp = pag->pag_mount;
555  	struct xfs_btree_cur		*cur;
556  	int				error;
557  	int				i;
558  	struct xfs_inobt_rec_incore	rec;
559  
560  	cur = xfs_inobt_init_cursor(pag, tp, agbp);
561  
562  	/* the new record is pre-aligned so we know where to look */
563  	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564  	if (error)
565  		goto error;
566  	/* if nothing there, insert a new record and return */
567  	if (i == 0) {
568  		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569  					     nrec->ir_count, nrec->ir_freecount,
570  					     nrec->ir_free, &i);
571  		if (error)
572  			goto error;
573  		if (XFS_IS_CORRUPT(mp, i != 1)) {
574  			xfs_btree_mark_sick(cur);
575  			error = -EFSCORRUPTED;
576  			goto error;
577  		}
578  
579  		goto out;
580  	}
581  
582  	/*
583  	 * A record exists at this startino.  Merge the records.
584  	 */
585  	error = xfs_inobt_get_rec(cur, &rec, &i);
586  	if (error)
587  		goto error;
588  	if (XFS_IS_CORRUPT(mp, i != 1)) {
589  		xfs_btree_mark_sick(cur);
590  		error = -EFSCORRUPTED;
591  		goto error;
592  	}
593  	if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594  		xfs_btree_mark_sick(cur);
595  		error = -EFSCORRUPTED;
596  		goto error;
597  	}
598  
599  	/*
600  	 * This should never fail. If we have coexisting records that
601  	 * cannot merge, something is seriously wrong.
602  	 */
603  	if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
604  		xfs_btree_mark_sick(cur);
605  		error = -EFSCORRUPTED;
606  		goto error;
607  	}
608  
609  	trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
610  				 rec.ir_holemask, nrec->ir_startino,
611  				 nrec->ir_holemask);
612  
613  	/* merge to nrec to output the updated record */
614  	__xfs_inobt_rec_merge(nrec, &rec);
615  
616  	trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
617  				  nrec->ir_holemask);
618  
619  	error = xfs_inobt_rec_check_count(mp, nrec);
620  	if (error)
621  		goto error;
622  
623  	error = xfs_inobt_update(cur, nrec);
624  	if (error)
625  		goto error;
626  
627  out:
628  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
629  	return 0;
630  error:
631  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
632  	return error;
633  }
634  
635  /*
636   * Insert a new sparse inode chunk into the free inode btree. The inode
637   * record for the sparse chunk is pre-aligned to a startino that should match
638   * any pre-existing sparse inode record in the tree. This allows sparse chunks
639   * to fill over time.
640   *
641   * The new record is always inserted, overwriting a pre-existing record if
642   * there is one.
643   */
644  STATIC int
xfs_finobt_insert_sprec(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_inobt_rec_incore * nrec)645  xfs_finobt_insert_sprec(
646  	struct xfs_perag		*pag,
647  	struct xfs_trans		*tp,
648  	struct xfs_buf			*agbp,
649  	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new rec. */
650  {
651  	struct xfs_mount		*mp = pag->pag_mount;
652  	struct xfs_btree_cur		*cur;
653  	int				error;
654  	int				i;
655  
656  	cur = xfs_finobt_init_cursor(pag, tp, agbp);
657  
658  	/* the new record is pre-aligned so we know where to look */
659  	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
660  	if (error)
661  		goto error;
662  	/* if nothing there, insert a new record and return */
663  	if (i == 0) {
664  		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
665  					     nrec->ir_count, nrec->ir_freecount,
666  					     nrec->ir_free, &i);
667  		if (error)
668  			goto error;
669  		if (XFS_IS_CORRUPT(mp, i != 1)) {
670  			xfs_btree_mark_sick(cur);
671  			error = -EFSCORRUPTED;
672  			goto error;
673  		}
674  	} else {
675  		error = xfs_inobt_update(cur, nrec);
676  		if (error)
677  			goto error;
678  	}
679  
680  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
681  	return 0;
682  error:
683  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
684  	return error;
685  }
686  
687  
688  /*
689   * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
690   * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
691   * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
692   * inode count threshold, or the usual negative error code for other errors.
693   */
694  STATIC int
xfs_ialloc_ag_alloc(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)695  xfs_ialloc_ag_alloc(
696  	struct xfs_perag	*pag,
697  	struct xfs_trans	*tp,
698  	struct xfs_buf		*agbp)
699  {
700  	struct xfs_agi		*agi;
701  	struct xfs_alloc_arg	args;
702  	int			error;
703  	xfs_agino_t		newino;		/* new first inode's number */
704  	xfs_agino_t		newlen;		/* new number of inodes */
705  	int			isaligned = 0;	/* inode allocation at stripe */
706  						/* unit boundary */
707  	/* init. to full chunk */
708  	struct xfs_inobt_rec_incore rec;
709  	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
710  	uint16_t		allocmask = (uint16_t) -1;
711  	int			do_sparse = 0;
712  
713  	memset(&args, 0, sizeof(args));
714  	args.tp = tp;
715  	args.mp = tp->t_mountp;
716  	args.fsbno = NULLFSBLOCK;
717  	args.oinfo = XFS_RMAP_OINFO_INODES;
718  	args.pag = pag;
719  
720  #ifdef DEBUG
721  	/* randomly do sparse inode allocations */
722  	if (xfs_has_sparseinodes(tp->t_mountp) &&
723  	    igeo->ialloc_min_blks < igeo->ialloc_blks)
724  		do_sparse = get_random_u32_below(2);
725  #endif
726  
727  	/*
728  	 * Locking will ensure that we don't have two callers in here
729  	 * at one time.
730  	 */
731  	newlen = igeo->ialloc_inos;
732  	if (igeo->maxicount &&
733  	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
734  							igeo->maxicount)
735  		return -ENOSPC;
736  	args.minlen = args.maxlen = igeo->ialloc_blks;
737  	/*
738  	 * First try to allocate inodes contiguous with the last-allocated
739  	 * chunk of inodes.  If the filesystem is striped, this will fill
740  	 * an entire stripe unit with inodes.
741  	 */
742  	agi = agbp->b_addr;
743  	newino = be32_to_cpu(agi->agi_newino);
744  	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
745  		     igeo->ialloc_blks;
746  	if (do_sparse)
747  		goto sparse_alloc;
748  	if (likely(newino != NULLAGINO &&
749  		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
750  		args.prod = 1;
751  
752  		/*
753  		 * We need to take into account alignment here to ensure that
754  		 * we don't modify the free list if we fail to have an exact
755  		 * block. If we don't have an exact match, and every oher
756  		 * attempt allocation attempt fails, we'll end up cancelling
757  		 * a dirty transaction and shutting down.
758  		 *
759  		 * For an exact allocation, alignment must be 1,
760  		 * however we need to take cluster alignment into account when
761  		 * fixing up the freelist. Use the minalignslop field to
762  		 * indicate that extra blocks might be required for alignment,
763  		 * but not to use them in the actual exact allocation.
764  		 */
765  		args.alignment = 1;
766  		args.minalignslop = igeo->cluster_align - 1;
767  
768  		/* Allow space for the inode btree to split. */
769  		args.minleft = igeo->inobt_maxlevels;
770  		error = xfs_alloc_vextent_exact_bno(&args,
771  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
772  						args.agbno));
773  		if (error)
774  			return error;
775  
776  		/*
777  		 * This request might have dirtied the transaction if the AG can
778  		 * satisfy the request, but the exact block was not available.
779  		 * If the allocation did fail, subsequent requests will relax
780  		 * the exact agbno requirement and increase the alignment
781  		 * instead. It is critical that the total size of the request
782  		 * (len + alignment + slop) does not increase from this point
783  		 * on, so reset minalignslop to ensure it is not included in
784  		 * subsequent requests.
785  		 */
786  		args.minalignslop = 0;
787  	}
788  
789  	if (unlikely(args.fsbno == NULLFSBLOCK)) {
790  		/*
791  		 * Set the alignment for the allocation.
792  		 * If stripe alignment is turned on then align at stripe unit
793  		 * boundary.
794  		 * If the cluster size is smaller than a filesystem block
795  		 * then we're doing I/O for inodes in filesystem block size
796  		 * pieces, so don't need alignment anyway.
797  		 */
798  		isaligned = 0;
799  		if (igeo->ialloc_align) {
800  			ASSERT(!xfs_has_noalign(args.mp));
801  			args.alignment = args.mp->m_dalign;
802  			isaligned = 1;
803  		} else
804  			args.alignment = igeo->cluster_align;
805  		/*
806  		 * Allocate a fixed-size extent of inodes.
807  		 */
808  		args.prod = 1;
809  		/*
810  		 * Allow space for the inode btree to split.
811  		 */
812  		args.minleft = igeo->inobt_maxlevels;
813  		error = xfs_alloc_vextent_near_bno(&args,
814  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
815  						be32_to_cpu(agi->agi_root)));
816  		if (error)
817  			return error;
818  	}
819  
820  	/*
821  	 * If stripe alignment is turned on, then try again with cluster
822  	 * alignment.
823  	 */
824  	if (isaligned && args.fsbno == NULLFSBLOCK) {
825  		args.alignment = igeo->cluster_align;
826  		error = xfs_alloc_vextent_near_bno(&args,
827  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
828  						be32_to_cpu(agi->agi_root)));
829  		if (error)
830  			return error;
831  	}
832  
833  	/*
834  	 * Finally, try a sparse allocation if the filesystem supports it and
835  	 * the sparse allocation length is smaller than a full chunk.
836  	 */
837  	if (xfs_has_sparseinodes(args.mp) &&
838  	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
839  	    args.fsbno == NULLFSBLOCK) {
840  sparse_alloc:
841  		args.alignment = args.mp->m_sb.sb_spino_align;
842  		args.prod = 1;
843  
844  		args.minlen = igeo->ialloc_min_blks;
845  		args.maxlen = args.minlen;
846  
847  		/*
848  		 * The inode record will be aligned to full chunk size. We must
849  		 * prevent sparse allocation from AG boundaries that result in
850  		 * invalid inode records, such as records that start at agbno 0
851  		 * or extend beyond the AG.
852  		 *
853  		 * Set min agbno to the first aligned, non-zero agbno and max to
854  		 * the last aligned agbno that is at least one full chunk from
855  		 * the end of the AG.
856  		 */
857  		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
858  		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
859  					    args.mp->m_sb.sb_inoalignmt) -
860  				 igeo->ialloc_blks;
861  
862  		error = xfs_alloc_vextent_near_bno(&args,
863  				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
864  						be32_to_cpu(agi->agi_root)));
865  		if (error)
866  			return error;
867  
868  		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
869  		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
870  		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
871  	}
872  
873  	if (args.fsbno == NULLFSBLOCK)
874  		return -EAGAIN;
875  
876  	ASSERT(args.len == args.minlen);
877  
878  	/*
879  	 * Stamp and write the inode buffers.
880  	 *
881  	 * Seed the new inode cluster with a random generation number. This
882  	 * prevents short-term reuse of generation numbers if a chunk is
883  	 * freed and then immediately reallocated. We use random numbers
884  	 * rather than a linear progression to prevent the next generation
885  	 * number from being easily guessable.
886  	 */
887  	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
888  			args.agbno, args.len, get_random_u32());
889  
890  	if (error)
891  		return error;
892  	/*
893  	 * Convert the results.
894  	 */
895  	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
896  
897  	if (xfs_inobt_issparse(~allocmask)) {
898  		/*
899  		 * We've allocated a sparse chunk. Align the startino and mask.
900  		 */
901  		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
902  
903  		rec.ir_startino = newino;
904  		rec.ir_holemask = ~allocmask;
905  		rec.ir_count = newlen;
906  		rec.ir_freecount = newlen;
907  		rec.ir_free = XFS_INOBT_ALL_FREE;
908  
909  		/*
910  		 * Insert the sparse record into the inobt and allow for a merge
911  		 * if necessary. If a merge does occur, rec is updated to the
912  		 * merged record.
913  		 */
914  		error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
915  		if (error == -EFSCORRUPTED) {
916  			xfs_alert(args.mp,
917  	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
918  				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
919  						   rec.ir_startino),
920  				  rec.ir_holemask, rec.ir_count);
921  			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
922  		}
923  		if (error)
924  			return error;
925  
926  		/*
927  		 * We can't merge the part we've just allocated as for the inobt
928  		 * due to finobt semantics. The original record may or may not
929  		 * exist independent of whether physical inodes exist in this
930  		 * sparse chunk.
931  		 *
932  		 * We must update the finobt record based on the inobt record.
933  		 * rec contains the fully merged and up to date inobt record
934  		 * from the previous call. Set merge false to replace any
935  		 * existing record with this one.
936  		 */
937  		if (xfs_has_finobt(args.mp)) {
938  			error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
939  			if (error)
940  				return error;
941  		}
942  	} else {
943  		/* full chunk - insert new records to both btrees */
944  		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
945  		if (error)
946  			return error;
947  
948  		if (xfs_has_finobt(args.mp)) {
949  			error = xfs_inobt_insert(pag, tp, agbp, newino,
950  						 newlen, true);
951  			if (error)
952  				return error;
953  		}
954  	}
955  
956  	/*
957  	 * Update AGI counts and newino.
958  	 */
959  	be32_add_cpu(&agi->agi_count, newlen);
960  	be32_add_cpu(&agi->agi_freecount, newlen);
961  	pag->pagi_freecount += newlen;
962  	pag->pagi_count += newlen;
963  	agi->agi_newino = cpu_to_be32(newino);
964  
965  	/*
966  	 * Log allocation group header fields
967  	 */
968  	xfs_ialloc_log_agi(tp, agbp,
969  		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
970  	/*
971  	 * Modify/log superblock values for inode count and inode free count.
972  	 */
973  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
974  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
975  	return 0;
976  }
977  
978  /*
979   * Try to retrieve the next record to the left/right from the current one.
980   */
981  STATIC int
xfs_ialloc_next_rec(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * rec,int * done,int left)982  xfs_ialloc_next_rec(
983  	struct xfs_btree_cur	*cur,
984  	xfs_inobt_rec_incore_t	*rec,
985  	int			*done,
986  	int			left)
987  {
988  	int                     error;
989  	int			i;
990  
991  	if (left)
992  		error = xfs_btree_decrement(cur, 0, &i);
993  	else
994  		error = xfs_btree_increment(cur, 0, &i);
995  
996  	if (error)
997  		return error;
998  	*done = !i;
999  	if (i) {
1000  		error = xfs_inobt_get_rec(cur, rec, &i);
1001  		if (error)
1002  			return error;
1003  		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1004  			xfs_btree_mark_sick(cur);
1005  			return -EFSCORRUPTED;
1006  		}
1007  	}
1008  
1009  	return 0;
1010  }
1011  
1012  STATIC int
xfs_ialloc_get_rec(struct xfs_btree_cur * cur,xfs_agino_t agino,xfs_inobt_rec_incore_t * rec,int * done)1013  xfs_ialloc_get_rec(
1014  	struct xfs_btree_cur	*cur,
1015  	xfs_agino_t		agino,
1016  	xfs_inobt_rec_incore_t	*rec,
1017  	int			*done)
1018  {
1019  	int                     error;
1020  	int			i;
1021  
1022  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1023  	if (error)
1024  		return error;
1025  	*done = !i;
1026  	if (i) {
1027  		error = xfs_inobt_get_rec(cur, rec, &i);
1028  		if (error)
1029  			return error;
1030  		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1031  			xfs_btree_mark_sick(cur);
1032  			return -EFSCORRUPTED;
1033  		}
1034  	}
1035  
1036  	return 0;
1037  }
1038  
1039  /*
1040   * Return the offset of the first free inode in the record. If the inode chunk
1041   * is sparsely allocated, we convert the record holemask to inode granularity
1042   * and mask off the unallocated regions from the inode free mask.
1043   */
1044  STATIC int
xfs_inobt_first_free_inode(struct xfs_inobt_rec_incore * rec)1045  xfs_inobt_first_free_inode(
1046  	struct xfs_inobt_rec_incore	*rec)
1047  {
1048  	xfs_inofree_t			realfree;
1049  
1050  	/* if there are no holes, return the first available offset */
1051  	if (!xfs_inobt_issparse(rec->ir_holemask))
1052  		return xfs_lowbit64(rec->ir_free);
1053  
1054  	realfree = xfs_inobt_irec_to_allocmask(rec);
1055  	realfree &= rec->ir_free;
1056  
1057  	return xfs_lowbit64(realfree);
1058  }
1059  
1060  /*
1061   * If this AG has corrupt inodes, check if allocating this inode would fail
1062   * with corruption errors.  Returns 0 if we're clear, or EAGAIN to try again
1063   * somewhere else.
1064   */
1065  static int
xfs_dialloc_check_ino(struct xfs_perag * pag,struct xfs_trans * tp,xfs_ino_t ino)1066  xfs_dialloc_check_ino(
1067  	struct xfs_perag	*pag,
1068  	struct xfs_trans	*tp,
1069  	xfs_ino_t		ino)
1070  {
1071  	struct xfs_imap		imap;
1072  	struct xfs_buf		*bp;
1073  	int			error;
1074  
1075  	error = xfs_imap(pag, tp, ino, &imap, 0);
1076  	if (error)
1077  		return -EAGAIN;
1078  
1079  	error = xfs_imap_to_bp(pag->pag_mount, tp, &imap, &bp);
1080  	if (error)
1081  		return -EAGAIN;
1082  
1083  	xfs_trans_brelse(tp, bp);
1084  	return 0;
1085  }
1086  
1087  /*
1088   * Allocate an inode using the inobt-only algorithm.
1089   */
1090  STATIC int
xfs_dialloc_ag_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1091  xfs_dialloc_ag_inobt(
1092  	struct xfs_perag	*pag,
1093  	struct xfs_trans	*tp,
1094  	struct xfs_buf		*agbp,
1095  	xfs_ino_t		parent,
1096  	xfs_ino_t		*inop)
1097  {
1098  	struct xfs_mount	*mp = tp->t_mountp;
1099  	struct xfs_agi		*agi = agbp->b_addr;
1100  	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1101  	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1102  	struct xfs_btree_cur	*cur, *tcur;
1103  	struct xfs_inobt_rec_incore rec, trec;
1104  	xfs_ino_t		ino;
1105  	int			error;
1106  	int			offset;
1107  	int			i, j;
1108  	int			searchdistance = 10;
1109  
1110  	ASSERT(xfs_perag_initialised_agi(pag));
1111  	ASSERT(xfs_perag_allows_inodes(pag));
1112  	ASSERT(pag->pagi_freecount > 0);
1113  
1114   restart_pagno:
1115  	cur = xfs_inobt_init_cursor(pag, tp, agbp);
1116  	/*
1117  	 * If pagino is 0 (this is the root inode allocation) use newino.
1118  	 * This must work because we've just allocated some.
1119  	 */
1120  	if (!pagino)
1121  		pagino = be32_to_cpu(agi->agi_newino);
1122  
1123  	error = xfs_check_agi_freecount(cur);
1124  	if (error)
1125  		goto error0;
1126  
1127  	/*
1128  	 * If in the same AG as the parent, try to get near the parent.
1129  	 */
1130  	if (pagno == pag->pag_agno) {
1131  		int		doneleft;	/* done, to the left */
1132  		int		doneright;	/* done, to the right */
1133  
1134  		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1135  		if (error)
1136  			goto error0;
1137  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1138  			xfs_btree_mark_sick(cur);
1139  			error = -EFSCORRUPTED;
1140  			goto error0;
1141  		}
1142  
1143  		error = xfs_inobt_get_rec(cur, &rec, &j);
1144  		if (error)
1145  			goto error0;
1146  		if (XFS_IS_CORRUPT(mp, j != 1)) {
1147  			xfs_btree_mark_sick(cur);
1148  			error = -EFSCORRUPTED;
1149  			goto error0;
1150  		}
1151  
1152  		if (rec.ir_freecount > 0) {
1153  			/*
1154  			 * Found a free inode in the same chunk
1155  			 * as the parent, done.
1156  			 */
1157  			goto alloc_inode;
1158  		}
1159  
1160  
1161  		/*
1162  		 * In the same AG as parent, but parent's chunk is full.
1163  		 */
1164  
1165  		/* duplicate the cursor, search left & right simultaneously */
1166  		error = xfs_btree_dup_cursor(cur, &tcur);
1167  		if (error)
1168  			goto error0;
1169  
1170  		/*
1171  		 * Skip to last blocks looked up if same parent inode.
1172  		 */
1173  		if (pagino != NULLAGINO &&
1174  		    pag->pagl_pagino == pagino &&
1175  		    pag->pagl_leftrec != NULLAGINO &&
1176  		    pag->pagl_rightrec != NULLAGINO) {
1177  			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1178  						   &trec, &doneleft);
1179  			if (error)
1180  				goto error1;
1181  
1182  			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1183  						   &rec, &doneright);
1184  			if (error)
1185  				goto error1;
1186  		} else {
1187  			/* search left with tcur, back up 1 record */
1188  			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1189  			if (error)
1190  				goto error1;
1191  
1192  			/* search right with cur, go forward 1 record. */
1193  			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1194  			if (error)
1195  				goto error1;
1196  		}
1197  
1198  		/*
1199  		 * Loop until we find an inode chunk with a free inode.
1200  		 */
1201  		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1202  			int	useleft;  /* using left inode chunk this time */
1203  
1204  			/* figure out the closer block if both are valid. */
1205  			if (!doneleft && !doneright) {
1206  				useleft = pagino -
1207  				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1208  				  rec.ir_startino - pagino;
1209  			} else {
1210  				useleft = !doneleft;
1211  			}
1212  
1213  			/* free inodes to the left? */
1214  			if (useleft && trec.ir_freecount) {
1215  				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1216  				cur = tcur;
1217  
1218  				pag->pagl_leftrec = trec.ir_startino;
1219  				pag->pagl_rightrec = rec.ir_startino;
1220  				pag->pagl_pagino = pagino;
1221  				rec = trec;
1222  				goto alloc_inode;
1223  			}
1224  
1225  			/* free inodes to the right? */
1226  			if (!useleft && rec.ir_freecount) {
1227  				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1228  
1229  				pag->pagl_leftrec = trec.ir_startino;
1230  				pag->pagl_rightrec = rec.ir_startino;
1231  				pag->pagl_pagino = pagino;
1232  				goto alloc_inode;
1233  			}
1234  
1235  			/* get next record to check */
1236  			if (useleft) {
1237  				error = xfs_ialloc_next_rec(tcur, &trec,
1238  								 &doneleft, 1);
1239  			} else {
1240  				error = xfs_ialloc_next_rec(cur, &rec,
1241  								 &doneright, 0);
1242  			}
1243  			if (error)
1244  				goto error1;
1245  		}
1246  
1247  		if (searchdistance <= 0) {
1248  			/*
1249  			 * Not in range - save last search
1250  			 * location and allocate a new inode
1251  			 */
1252  			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1253  			pag->pagl_leftrec = trec.ir_startino;
1254  			pag->pagl_rightrec = rec.ir_startino;
1255  			pag->pagl_pagino = pagino;
1256  
1257  		} else {
1258  			/*
1259  			 * We've reached the end of the btree. because
1260  			 * we are only searching a small chunk of the
1261  			 * btree each search, there is obviously free
1262  			 * inodes closer to the parent inode than we
1263  			 * are now. restart the search again.
1264  			 */
1265  			pag->pagl_pagino = NULLAGINO;
1266  			pag->pagl_leftrec = NULLAGINO;
1267  			pag->pagl_rightrec = NULLAGINO;
1268  			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1269  			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1270  			goto restart_pagno;
1271  		}
1272  	}
1273  
1274  	/*
1275  	 * In a different AG from the parent.
1276  	 * See if the most recently allocated block has any free.
1277  	 */
1278  	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1279  		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1280  					 XFS_LOOKUP_EQ, &i);
1281  		if (error)
1282  			goto error0;
1283  
1284  		if (i == 1) {
1285  			error = xfs_inobt_get_rec(cur, &rec, &j);
1286  			if (error)
1287  				goto error0;
1288  
1289  			if (j == 1 && rec.ir_freecount > 0) {
1290  				/*
1291  				 * The last chunk allocated in the group
1292  				 * still has a free inode.
1293  				 */
1294  				goto alloc_inode;
1295  			}
1296  		}
1297  	}
1298  
1299  	/*
1300  	 * None left in the last group, search the whole AG
1301  	 */
1302  	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1303  	if (error)
1304  		goto error0;
1305  	if (XFS_IS_CORRUPT(mp, i != 1)) {
1306  		xfs_btree_mark_sick(cur);
1307  		error = -EFSCORRUPTED;
1308  		goto error0;
1309  	}
1310  
1311  	for (;;) {
1312  		error = xfs_inobt_get_rec(cur, &rec, &i);
1313  		if (error)
1314  			goto error0;
1315  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1316  			xfs_btree_mark_sick(cur);
1317  			error = -EFSCORRUPTED;
1318  			goto error0;
1319  		}
1320  		if (rec.ir_freecount > 0)
1321  			break;
1322  		error = xfs_btree_increment(cur, 0, &i);
1323  		if (error)
1324  			goto error0;
1325  		if (XFS_IS_CORRUPT(mp, i != 1)) {
1326  			xfs_btree_mark_sick(cur);
1327  			error = -EFSCORRUPTED;
1328  			goto error0;
1329  		}
1330  	}
1331  
1332  alloc_inode:
1333  	offset = xfs_inobt_first_free_inode(&rec);
1334  	ASSERT(offset >= 0);
1335  	ASSERT(offset < XFS_INODES_PER_CHUNK);
1336  	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1337  				   XFS_INODES_PER_CHUNK) == 0);
1338  	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1339  
1340  	if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1341  		error = xfs_dialloc_check_ino(pag, tp, ino);
1342  		if (error)
1343  			goto error0;
1344  	}
1345  
1346  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1347  	rec.ir_freecount--;
1348  	error = xfs_inobt_update(cur, &rec);
1349  	if (error)
1350  		goto error0;
1351  	be32_add_cpu(&agi->agi_freecount, -1);
1352  	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1353  	pag->pagi_freecount--;
1354  
1355  	error = xfs_check_agi_freecount(cur);
1356  	if (error)
1357  		goto error0;
1358  
1359  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1360  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1361  	*inop = ino;
1362  	return 0;
1363  error1:
1364  	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1365  error0:
1366  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1367  	return error;
1368  }
1369  
1370  /*
1371   * Use the free inode btree to allocate an inode based on distance from the
1372   * parent. Note that the provided cursor may be deleted and replaced.
1373   */
1374  STATIC int
xfs_dialloc_ag_finobt_near(xfs_agino_t pagino,struct xfs_btree_cur ** ocur,struct xfs_inobt_rec_incore * rec)1375  xfs_dialloc_ag_finobt_near(
1376  	xfs_agino_t			pagino,
1377  	struct xfs_btree_cur		**ocur,
1378  	struct xfs_inobt_rec_incore	*rec)
1379  {
1380  	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1381  	struct xfs_btree_cur		*rcur;	/* right search cursor */
1382  	struct xfs_inobt_rec_incore	rrec;
1383  	int				error;
1384  	int				i, j;
1385  
1386  	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387  	if (error)
1388  		return error;
1389  
1390  	if (i == 1) {
1391  		error = xfs_inobt_get_rec(lcur, rec, &i);
1392  		if (error)
1393  			return error;
1394  		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1395  			xfs_btree_mark_sick(lcur);
1396  			return -EFSCORRUPTED;
1397  		}
1398  
1399  		/*
1400  		 * See if we've landed in the parent inode record. The finobt
1401  		 * only tracks chunks with at least one free inode, so record
1402  		 * existence is enough.
1403  		 */
1404  		if (pagino >= rec->ir_startino &&
1405  		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1406  			return 0;
1407  	}
1408  
1409  	error = xfs_btree_dup_cursor(lcur, &rcur);
1410  	if (error)
1411  		return error;
1412  
1413  	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1414  	if (error)
1415  		goto error_rcur;
1416  	if (j == 1) {
1417  		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1418  		if (error)
1419  			goto error_rcur;
1420  		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1421  			xfs_btree_mark_sick(lcur);
1422  			error = -EFSCORRUPTED;
1423  			goto error_rcur;
1424  		}
1425  	}
1426  
1427  	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1428  		xfs_btree_mark_sick(lcur);
1429  		error = -EFSCORRUPTED;
1430  		goto error_rcur;
1431  	}
1432  	if (i == 1 && j == 1) {
1433  		/*
1434  		 * Both the left and right records are valid. Choose the closer
1435  		 * inode chunk to the target.
1436  		 */
1437  		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1438  		    (rrec.ir_startino - pagino)) {
1439  			*rec = rrec;
1440  			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1441  			*ocur = rcur;
1442  		} else {
1443  			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1444  		}
1445  	} else if (j == 1) {
1446  		/* only the right record is valid */
1447  		*rec = rrec;
1448  		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1449  		*ocur = rcur;
1450  	} else if (i == 1) {
1451  		/* only the left record is valid */
1452  		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1453  	}
1454  
1455  	return 0;
1456  
1457  error_rcur:
1458  	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1459  	return error;
1460  }
1461  
1462  /*
1463   * Use the free inode btree to find a free inode based on a newino hint. If
1464   * the hint is NULL, find the first free inode in the AG.
1465   */
1466  STATIC int
xfs_dialloc_ag_finobt_newino(struct xfs_agi * agi,struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * rec)1467  xfs_dialloc_ag_finobt_newino(
1468  	struct xfs_agi			*agi,
1469  	struct xfs_btree_cur		*cur,
1470  	struct xfs_inobt_rec_incore	*rec)
1471  {
1472  	int error;
1473  	int i;
1474  
1475  	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1476  		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1477  					 XFS_LOOKUP_EQ, &i);
1478  		if (error)
1479  			return error;
1480  		if (i == 1) {
1481  			error = xfs_inobt_get_rec(cur, rec, &i);
1482  			if (error)
1483  				return error;
1484  			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1485  				xfs_btree_mark_sick(cur);
1486  				return -EFSCORRUPTED;
1487  			}
1488  			return 0;
1489  		}
1490  	}
1491  
1492  	/*
1493  	 * Find the first inode available in the AG.
1494  	 */
1495  	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1496  	if (error)
1497  		return error;
1498  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1499  		xfs_btree_mark_sick(cur);
1500  		return -EFSCORRUPTED;
1501  	}
1502  
1503  	error = xfs_inobt_get_rec(cur, rec, &i);
1504  	if (error)
1505  		return error;
1506  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1507  		xfs_btree_mark_sick(cur);
1508  		return -EFSCORRUPTED;
1509  	}
1510  
1511  	return 0;
1512  }
1513  
1514  /*
1515   * Update the inobt based on a modification made to the finobt. Also ensure that
1516   * the records from both trees are equivalent post-modification.
1517   */
1518  STATIC int
xfs_dialloc_ag_update_inobt(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * frec,int offset)1519  xfs_dialloc_ag_update_inobt(
1520  	struct xfs_btree_cur		*cur,	/* inobt cursor */
1521  	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1522  	int				offset) /* inode offset */
1523  {
1524  	struct xfs_inobt_rec_incore	rec;
1525  	int				error;
1526  	int				i;
1527  
1528  	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1529  	if (error)
1530  		return error;
1531  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1532  		xfs_btree_mark_sick(cur);
1533  		return -EFSCORRUPTED;
1534  	}
1535  
1536  	error = xfs_inobt_get_rec(cur, &rec, &i);
1537  	if (error)
1538  		return error;
1539  	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1540  		xfs_btree_mark_sick(cur);
1541  		return -EFSCORRUPTED;
1542  	}
1543  	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1544  				   XFS_INODES_PER_CHUNK) == 0);
1545  
1546  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1547  	rec.ir_freecount--;
1548  
1549  	if (XFS_IS_CORRUPT(cur->bc_mp,
1550  			   rec.ir_free != frec->ir_free ||
1551  			   rec.ir_freecount != frec->ir_freecount)) {
1552  		xfs_btree_mark_sick(cur);
1553  		return -EFSCORRUPTED;
1554  	}
1555  
1556  	return xfs_inobt_update(cur, &rec);
1557  }
1558  
1559  /*
1560   * Allocate an inode using the free inode btree, if available. Otherwise, fall
1561   * back to the inobt search algorithm.
1562   *
1563   * The caller selected an AG for us, and made sure that free inodes are
1564   * available.
1565   */
1566  static int
xfs_dialloc_ag(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1567  xfs_dialloc_ag(
1568  	struct xfs_perag	*pag,
1569  	struct xfs_trans	*tp,
1570  	struct xfs_buf		*agbp,
1571  	xfs_ino_t		parent,
1572  	xfs_ino_t		*inop)
1573  {
1574  	struct xfs_mount		*mp = tp->t_mountp;
1575  	struct xfs_agi			*agi = agbp->b_addr;
1576  	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1577  	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1578  	struct xfs_btree_cur		*cur;	/* finobt cursor */
1579  	struct xfs_btree_cur		*icur;	/* inobt cursor */
1580  	struct xfs_inobt_rec_incore	rec;
1581  	xfs_ino_t			ino;
1582  	int				error;
1583  	int				offset;
1584  	int				i;
1585  
1586  	if (!xfs_has_finobt(mp))
1587  		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1588  
1589  	/*
1590  	 * If pagino is 0 (this is the root inode allocation) use newino.
1591  	 * This must work because we've just allocated some.
1592  	 */
1593  	if (!pagino)
1594  		pagino = be32_to_cpu(agi->agi_newino);
1595  
1596  	cur = xfs_finobt_init_cursor(pag, tp, agbp);
1597  
1598  	error = xfs_check_agi_freecount(cur);
1599  	if (error)
1600  		goto error_cur;
1601  
1602  	/*
1603  	 * The search algorithm depends on whether we're in the same AG as the
1604  	 * parent. If so, find the closest available inode to the parent. If
1605  	 * not, consider the agi hint or find the first free inode in the AG.
1606  	 */
1607  	if (pag->pag_agno == pagno)
1608  		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1609  	else
1610  		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1611  	if (error)
1612  		goto error_cur;
1613  
1614  	offset = xfs_inobt_first_free_inode(&rec);
1615  	ASSERT(offset >= 0);
1616  	ASSERT(offset < XFS_INODES_PER_CHUNK);
1617  	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1618  				   XFS_INODES_PER_CHUNK) == 0);
1619  	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1620  
1621  	if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1622  		error = xfs_dialloc_check_ino(pag, tp, ino);
1623  		if (error)
1624  			goto error_cur;
1625  	}
1626  
1627  	/*
1628  	 * Modify or remove the finobt record.
1629  	 */
1630  	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1631  	rec.ir_freecount--;
1632  	if (rec.ir_freecount)
1633  		error = xfs_inobt_update(cur, &rec);
1634  	else
1635  		error = xfs_btree_delete(cur, &i);
1636  	if (error)
1637  		goto error_cur;
1638  
1639  	/*
1640  	 * The finobt has now been updated appropriately. We haven't updated the
1641  	 * agi and superblock yet, so we can create an inobt cursor and validate
1642  	 * the original freecount. If all is well, make the equivalent update to
1643  	 * the inobt using the finobt record and offset information.
1644  	 */
1645  	icur = xfs_inobt_init_cursor(pag, tp, agbp);
1646  
1647  	error = xfs_check_agi_freecount(icur);
1648  	if (error)
1649  		goto error_icur;
1650  
1651  	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1652  	if (error)
1653  		goto error_icur;
1654  
1655  	/*
1656  	 * Both trees have now been updated. We must update the perag and
1657  	 * superblock before we can check the freecount for each btree.
1658  	 */
1659  	be32_add_cpu(&agi->agi_freecount, -1);
1660  	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1661  	pag->pagi_freecount--;
1662  
1663  	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1664  
1665  	error = xfs_check_agi_freecount(icur);
1666  	if (error)
1667  		goto error_icur;
1668  	error = xfs_check_agi_freecount(cur);
1669  	if (error)
1670  		goto error_icur;
1671  
1672  	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1673  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1674  	*inop = ino;
1675  	return 0;
1676  
1677  error_icur:
1678  	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1679  error_cur:
1680  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1681  	return error;
1682  }
1683  
1684  static int
xfs_dialloc_roll(struct xfs_trans ** tpp,struct xfs_buf * agibp)1685  xfs_dialloc_roll(
1686  	struct xfs_trans	**tpp,
1687  	struct xfs_buf		*agibp)
1688  {
1689  	struct xfs_trans	*tp = *tpp;
1690  	struct xfs_dquot_acct	*dqinfo;
1691  	int			error;
1692  
1693  	/*
1694  	 * Hold to on to the agibp across the commit so no other allocation can
1695  	 * come in and take the free inodes we just allocated for our caller.
1696  	 */
1697  	xfs_trans_bhold(tp, agibp);
1698  
1699  	/*
1700  	 * We want the quota changes to be associated with the next transaction,
1701  	 * NOT this one. So, detach the dqinfo from this and attach it to the
1702  	 * next transaction.
1703  	 */
1704  	dqinfo = tp->t_dqinfo;
1705  	tp->t_dqinfo = NULL;
1706  
1707  	error = xfs_trans_roll(&tp);
1708  
1709  	/* Re-attach the quota info that we detached from prev trx. */
1710  	tp->t_dqinfo = dqinfo;
1711  
1712  	/*
1713  	 * Join the buffer even on commit error so that the buffer is released
1714  	 * when the caller cancels the transaction and doesn't have to handle
1715  	 * this error case specially.
1716  	 */
1717  	xfs_trans_bjoin(tp, agibp);
1718  	*tpp = tp;
1719  	return error;
1720  }
1721  
1722  static bool
xfs_dialloc_good_ag(struct xfs_perag * pag,struct xfs_trans * tp,umode_t mode,int flags,bool ok_alloc)1723  xfs_dialloc_good_ag(
1724  	struct xfs_perag	*pag,
1725  	struct xfs_trans	*tp,
1726  	umode_t			mode,
1727  	int			flags,
1728  	bool			ok_alloc)
1729  {
1730  	struct xfs_mount	*mp = tp->t_mountp;
1731  	xfs_extlen_t		ineed;
1732  	xfs_extlen_t		longest = 0;
1733  	int			needspace;
1734  	int			error;
1735  
1736  	if (!pag)
1737  		return false;
1738  	if (!xfs_perag_allows_inodes(pag))
1739  		return false;
1740  
1741  	if (!xfs_perag_initialised_agi(pag)) {
1742  		error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
1743  		if (error)
1744  			return false;
1745  	}
1746  
1747  	if (pag->pagi_freecount)
1748  		return true;
1749  	if (!ok_alloc)
1750  		return false;
1751  
1752  	if (!xfs_perag_initialised_agf(pag)) {
1753  		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1754  		if (error)
1755  			return false;
1756  	}
1757  
1758  	/*
1759  	 * Check that there is enough free space for the file plus a chunk of
1760  	 * inodes if we need to allocate some. If this is the first pass across
1761  	 * the AGs, take into account the potential space needed for alignment
1762  	 * of inode chunks when checking the longest contiguous free space in
1763  	 * the AG - this prevents us from getting ENOSPC because we have free
1764  	 * space larger than ialloc_blks but alignment constraints prevent us
1765  	 * from using it.
1766  	 *
1767  	 * If we can't find an AG with space for full alignment slack to be
1768  	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1769  	 * don't include alignment for the second pass and so if we fail
1770  	 * allocation due to alignment issues then it is most likely a real
1771  	 * ENOSPC condition.
1772  	 *
1773  	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1774  	 * reservations that xfs_alloc_fix_freelist() now does via
1775  	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1776  	 * be more than large enough for the check below to succeed, but
1777  	 * xfs_alloc_space_available() will fail because of the non-zero
1778  	 * metadata reservation and hence we won't actually be able to allocate
1779  	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1780  	 * because of this.
1781  	 */
1782  	ineed = M_IGEO(mp)->ialloc_min_blks;
1783  	if (flags && ineed > 1)
1784  		ineed += M_IGEO(mp)->cluster_align;
1785  	longest = pag->pagf_longest;
1786  	if (!longest)
1787  		longest = pag->pagf_flcount > 0;
1788  	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1789  
1790  	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1791  		return false;
1792  	return true;
1793  }
1794  
1795  static int
xfs_dialloc_try_ag(struct xfs_perag * pag,struct xfs_trans ** tpp,xfs_ino_t parent,xfs_ino_t * new_ino,bool ok_alloc)1796  xfs_dialloc_try_ag(
1797  	struct xfs_perag	*pag,
1798  	struct xfs_trans	**tpp,
1799  	xfs_ino_t		parent,
1800  	xfs_ino_t		*new_ino,
1801  	bool			ok_alloc)
1802  {
1803  	struct xfs_buf		*agbp;
1804  	xfs_ino_t		ino;
1805  	int			error;
1806  
1807  	/*
1808  	 * Then read in the AGI buffer and recheck with the AGI buffer
1809  	 * lock held.
1810  	 */
1811  	error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
1812  	if (error)
1813  		return error;
1814  
1815  	if (!pag->pagi_freecount) {
1816  		if (!ok_alloc) {
1817  			error = -EAGAIN;
1818  			goto out_release;
1819  		}
1820  
1821  		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1822  		if (error < 0)
1823  			goto out_release;
1824  
1825  		/*
1826  		 * We successfully allocated space for an inode cluster in this
1827  		 * AG.  Roll the transaction so that we can allocate one of the
1828  		 * new inodes.
1829  		 */
1830  		ASSERT(pag->pagi_freecount > 0);
1831  		error = xfs_dialloc_roll(tpp, agbp);
1832  		if (error)
1833  			goto out_release;
1834  	}
1835  
1836  	/* Allocate an inode in the found AG */
1837  	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1838  	if (!error)
1839  		*new_ino = ino;
1840  	return error;
1841  
1842  out_release:
1843  	xfs_trans_brelse(*tpp, agbp);
1844  	return error;
1845  }
1846  
1847  /*
1848   * Allocate an on-disk inode.
1849   *
1850   * Mode is used to tell whether the new inode is a directory and hence where to
1851   * locate it. The on-disk inode that is allocated will be returned in @new_ino
1852   * on success, otherwise an error will be set to indicate the failure (e.g.
1853   * -ENOSPC).
1854   */
1855  int
xfs_dialloc(struct xfs_trans ** tpp,const struct xfs_icreate_args * args,xfs_ino_t * new_ino)1856  xfs_dialloc(
1857  	struct xfs_trans	**tpp,
1858  	const struct xfs_icreate_args *args,
1859  	xfs_ino_t		*new_ino)
1860  {
1861  	struct xfs_mount	*mp = (*tpp)->t_mountp;
1862  	xfs_ino_t		parent = args->pip ? args->pip->i_ino : 0;
1863  	umode_t			mode = args->mode & S_IFMT;
1864  	xfs_agnumber_t		agno;
1865  	int			error = 0;
1866  	xfs_agnumber_t		start_agno;
1867  	struct xfs_perag	*pag;
1868  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1869  	bool			ok_alloc = true;
1870  	bool			low_space = false;
1871  	int			flags;
1872  	xfs_ino_t		ino = NULLFSINO;
1873  
1874  	/*
1875  	 * Directories, symlinks, and regular files frequently allocate at least
1876  	 * one block, so factor that potential expansion when we examine whether
1877  	 * an AG has enough space for file creation.
1878  	 */
1879  	if (S_ISDIR(mode))
1880  		start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1881  				mp->m_maxagi;
1882  	else {
1883  		start_agno = XFS_INO_TO_AGNO(mp, parent);
1884  		if (start_agno >= mp->m_maxagi)
1885  			start_agno = 0;
1886  	}
1887  
1888  	/*
1889  	 * If we have already hit the ceiling of inode blocks then clear
1890  	 * ok_alloc so we scan all available agi structures for a free
1891  	 * inode.
1892  	 *
1893  	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1894  	 * which will sacrifice the preciseness but improve the performance.
1895  	 */
1896  	if (igeo->maxicount &&
1897  	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1898  							> igeo->maxicount) {
1899  		ok_alloc = false;
1900  	}
1901  
1902  	/*
1903  	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1904  	 * have free inodes in them rather than use up free space allocating new
1905  	 * inode chunks. Hence we turn off allocation for the first non-blocking
1906  	 * pass through the AGs if we are near ENOSPC to consume free inodes
1907  	 * that we can immediately allocate, but then we allow allocation on the
1908  	 * second pass if we fail to find an AG with free inodes in it.
1909  	 */
1910  	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1911  			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1912  		ok_alloc = false;
1913  		low_space = true;
1914  	}
1915  
1916  	/*
1917  	 * Loop until we find an allocation group that either has free inodes
1918  	 * or in which we can allocate some inodes.  Iterate through the
1919  	 * allocation groups upward, wrapping at the end.
1920  	 */
1921  	flags = XFS_ALLOC_FLAG_TRYLOCK;
1922  retry:
1923  	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1924  		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1925  			error = xfs_dialloc_try_ag(pag, tpp, parent,
1926  					&ino, ok_alloc);
1927  			if (error != -EAGAIN)
1928  				break;
1929  			error = 0;
1930  		}
1931  
1932  		if (xfs_is_shutdown(mp)) {
1933  			error = -EFSCORRUPTED;
1934  			break;
1935  		}
1936  	}
1937  	if (pag)
1938  		xfs_perag_rele(pag);
1939  	if (error)
1940  		return error;
1941  	if (ino == NULLFSINO) {
1942  		if (flags) {
1943  			flags = 0;
1944  			if (low_space)
1945  				ok_alloc = true;
1946  			goto retry;
1947  		}
1948  		return -ENOSPC;
1949  	}
1950  
1951  	/*
1952  	 * Protect against obviously corrupt allocation btree records. Later
1953  	 * xfs_iget checks will catch re-allocation of other active in-memory
1954  	 * and on-disk inodes. If we don't catch reallocating the parent inode
1955  	 * here we will deadlock in xfs_iget() so we have to do these checks
1956  	 * first.
1957  	 */
1958  	if (ino == parent || !xfs_verify_dir_ino(mp, ino)) {
1959  		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
1960  		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
1961  				XFS_SICK_AG_INOBT);
1962  		return -EFSCORRUPTED;
1963  	}
1964  
1965  	*new_ino = ino;
1966  	return 0;
1967  }
1968  
1969  /*
1970   * Free the blocks of an inode chunk. We must consider that the inode chunk
1971   * might be sparse and only free the regions that are allocated as part of the
1972   * chunk.
1973   */
1974  static int
xfs_difree_inode_chunk(struct xfs_trans * tp,xfs_agnumber_t agno,struct xfs_inobt_rec_incore * rec)1975  xfs_difree_inode_chunk(
1976  	struct xfs_trans		*tp,
1977  	xfs_agnumber_t			agno,
1978  	struct xfs_inobt_rec_incore	*rec)
1979  {
1980  	struct xfs_mount		*mp = tp->t_mountp;
1981  	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1982  							rec->ir_startino);
1983  	int				startidx, endidx;
1984  	int				nextbit;
1985  	xfs_agblock_t			agbno;
1986  	int				contigblk;
1987  	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1988  
1989  	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1990  		/* not sparse, calculate extent info directly */
1991  		return xfs_free_extent_later(tp,
1992  				XFS_AGB_TO_FSB(mp, agno, sagbno),
1993  				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1994  				XFS_AG_RESV_NONE, 0);
1995  	}
1996  
1997  	/* holemask is only 16-bits (fits in an unsigned long) */
1998  	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1999  	holemask[0] = rec->ir_holemask;
2000  
2001  	/*
2002  	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
2003  	 * holemask and convert the start/end index of each range to an extent.
2004  	 * We start with the start and end index both pointing at the first 0 in
2005  	 * the mask.
2006  	 */
2007  	startidx = endidx = find_first_zero_bit(holemask,
2008  						XFS_INOBT_HOLEMASK_BITS);
2009  	nextbit = startidx + 1;
2010  	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
2011  		int error;
2012  
2013  		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
2014  					     nextbit);
2015  		/*
2016  		 * If the next zero bit is contiguous, update the end index of
2017  		 * the current range and continue.
2018  		 */
2019  		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
2020  		    nextbit == endidx + 1) {
2021  			endidx = nextbit;
2022  			goto next;
2023  		}
2024  
2025  		/*
2026  		 * nextbit is not contiguous with the current end index. Convert
2027  		 * the current start/end to an extent and add it to the free
2028  		 * list.
2029  		 */
2030  		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
2031  				  mp->m_sb.sb_inopblock;
2032  		contigblk = ((endidx - startidx + 1) *
2033  			     XFS_INODES_PER_HOLEMASK_BIT) /
2034  			    mp->m_sb.sb_inopblock;
2035  
2036  		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
2037  		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2038  		error = xfs_free_extent_later(tp,
2039  				XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
2040  				&XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, 0);
2041  		if (error)
2042  			return error;
2043  
2044  		/* reset range to current bit and carry on... */
2045  		startidx = endidx = nextbit;
2046  
2047  next:
2048  		nextbit++;
2049  	}
2050  	return 0;
2051  }
2052  
2053  STATIC int
xfs_difree_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_icluster * xic,struct xfs_inobt_rec_incore * orec)2054  xfs_difree_inobt(
2055  	struct xfs_perag		*pag,
2056  	struct xfs_trans		*tp,
2057  	struct xfs_buf			*agbp,
2058  	xfs_agino_t			agino,
2059  	struct xfs_icluster		*xic,
2060  	struct xfs_inobt_rec_incore	*orec)
2061  {
2062  	struct xfs_mount		*mp = pag->pag_mount;
2063  	struct xfs_agi			*agi = agbp->b_addr;
2064  	struct xfs_btree_cur		*cur;
2065  	struct xfs_inobt_rec_incore	rec;
2066  	int				ilen;
2067  	int				error;
2068  	int				i;
2069  	int				off;
2070  
2071  	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2072  	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2073  
2074  	/*
2075  	 * Initialize the cursor.
2076  	 */
2077  	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2078  
2079  	error = xfs_check_agi_freecount(cur);
2080  	if (error)
2081  		goto error0;
2082  
2083  	/*
2084  	 * Look for the entry describing this inode.
2085  	 */
2086  	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2087  		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2088  			__func__, error);
2089  		goto error0;
2090  	}
2091  	if (XFS_IS_CORRUPT(mp, i != 1)) {
2092  		xfs_btree_mark_sick(cur);
2093  		error = -EFSCORRUPTED;
2094  		goto error0;
2095  	}
2096  	error = xfs_inobt_get_rec(cur, &rec, &i);
2097  	if (error) {
2098  		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2099  			__func__, error);
2100  		goto error0;
2101  	}
2102  	if (XFS_IS_CORRUPT(mp, i != 1)) {
2103  		xfs_btree_mark_sick(cur);
2104  		error = -EFSCORRUPTED;
2105  		goto error0;
2106  	}
2107  	/*
2108  	 * Get the offset in the inode chunk.
2109  	 */
2110  	off = agino - rec.ir_startino;
2111  	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2112  	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2113  	/*
2114  	 * Mark the inode free & increment the count.
2115  	 */
2116  	rec.ir_free |= XFS_INOBT_MASK(off);
2117  	rec.ir_freecount++;
2118  
2119  	/*
2120  	 * When an inode chunk is free, it becomes eligible for removal. Don't
2121  	 * remove the chunk if the block size is large enough for multiple inode
2122  	 * chunks (that might not be free).
2123  	 */
2124  	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2125  	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2126  		xic->deleted = true;
2127  		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
2128  				rec.ir_startino);
2129  		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2130  
2131  		/*
2132  		 * Remove the inode cluster from the AGI B+Tree, adjust the
2133  		 * AGI and Superblock inode counts, and mark the disk space
2134  		 * to be freed when the transaction is committed.
2135  		 */
2136  		ilen = rec.ir_freecount;
2137  		be32_add_cpu(&agi->agi_count, -ilen);
2138  		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2139  		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2140  		pag->pagi_freecount -= ilen - 1;
2141  		pag->pagi_count -= ilen;
2142  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2143  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2144  
2145  		if ((error = xfs_btree_delete(cur, &i))) {
2146  			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2147  				__func__, error);
2148  			goto error0;
2149  		}
2150  
2151  		error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2152  		if (error)
2153  			goto error0;
2154  	} else {
2155  		xic->deleted = false;
2156  
2157  		error = xfs_inobt_update(cur, &rec);
2158  		if (error) {
2159  			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2160  				__func__, error);
2161  			goto error0;
2162  		}
2163  
2164  		/*
2165  		 * Change the inode free counts and log the ag/sb changes.
2166  		 */
2167  		be32_add_cpu(&agi->agi_freecount, 1);
2168  		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2169  		pag->pagi_freecount++;
2170  		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2171  	}
2172  
2173  	error = xfs_check_agi_freecount(cur);
2174  	if (error)
2175  		goto error0;
2176  
2177  	*orec = rec;
2178  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2179  	return 0;
2180  
2181  error0:
2182  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2183  	return error;
2184  }
2185  
2186  /*
2187   * Free an inode in the free inode btree.
2188   */
2189  STATIC int
xfs_difree_finobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_inobt_rec_incore * ibtrec)2190  xfs_difree_finobt(
2191  	struct xfs_perag		*pag,
2192  	struct xfs_trans		*tp,
2193  	struct xfs_buf			*agbp,
2194  	xfs_agino_t			agino,
2195  	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2196  {
2197  	struct xfs_mount		*mp = pag->pag_mount;
2198  	struct xfs_btree_cur		*cur;
2199  	struct xfs_inobt_rec_incore	rec;
2200  	int				offset = agino - ibtrec->ir_startino;
2201  	int				error;
2202  	int				i;
2203  
2204  	cur = xfs_finobt_init_cursor(pag, tp, agbp);
2205  
2206  	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2207  	if (error)
2208  		goto error;
2209  	if (i == 0) {
2210  		/*
2211  		 * If the record does not exist in the finobt, we must have just
2212  		 * freed an inode in a previously fully allocated chunk. If not,
2213  		 * something is out of sync.
2214  		 */
2215  		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2216  			xfs_btree_mark_sick(cur);
2217  			error = -EFSCORRUPTED;
2218  			goto error;
2219  		}
2220  
2221  		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2222  					     ibtrec->ir_count,
2223  					     ibtrec->ir_freecount,
2224  					     ibtrec->ir_free, &i);
2225  		if (error)
2226  			goto error;
2227  		ASSERT(i == 1);
2228  
2229  		goto out;
2230  	}
2231  
2232  	/*
2233  	 * Read and update the existing record. We could just copy the ibtrec
2234  	 * across here, but that would defeat the purpose of having redundant
2235  	 * metadata. By making the modifications independently, we can catch
2236  	 * corruptions that we wouldn't see if we just copied from one record
2237  	 * to another.
2238  	 */
2239  	error = xfs_inobt_get_rec(cur, &rec, &i);
2240  	if (error)
2241  		goto error;
2242  	if (XFS_IS_CORRUPT(mp, i != 1)) {
2243  		xfs_btree_mark_sick(cur);
2244  		error = -EFSCORRUPTED;
2245  		goto error;
2246  	}
2247  
2248  	rec.ir_free |= XFS_INOBT_MASK(offset);
2249  	rec.ir_freecount++;
2250  
2251  	if (XFS_IS_CORRUPT(mp,
2252  			   rec.ir_free != ibtrec->ir_free ||
2253  			   rec.ir_freecount != ibtrec->ir_freecount)) {
2254  		xfs_btree_mark_sick(cur);
2255  		error = -EFSCORRUPTED;
2256  		goto error;
2257  	}
2258  
2259  	/*
2260  	 * The content of inobt records should always match between the inobt
2261  	 * and finobt. The lifecycle of records in the finobt is different from
2262  	 * the inobt in that the finobt only tracks records with at least one
2263  	 * free inode. Hence, if all of the inodes are free and we aren't
2264  	 * keeping inode chunks permanently on disk, remove the record.
2265  	 * Otherwise, update the record with the new information.
2266  	 *
2267  	 * Note that we currently can't free chunks when the block size is large
2268  	 * enough for multiple chunks. Leave the finobt record to remain in sync
2269  	 * with the inobt.
2270  	 */
2271  	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2272  	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2273  		error = xfs_btree_delete(cur, &i);
2274  		if (error)
2275  			goto error;
2276  		ASSERT(i == 1);
2277  	} else {
2278  		error = xfs_inobt_update(cur, &rec);
2279  		if (error)
2280  			goto error;
2281  	}
2282  
2283  out:
2284  	error = xfs_check_agi_freecount(cur);
2285  	if (error)
2286  		goto error;
2287  
2288  	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2289  	return 0;
2290  
2291  error:
2292  	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2293  	return error;
2294  }
2295  
2296  /*
2297   * Free disk inode.  Carefully avoids touching the incore inode, all
2298   * manipulations incore are the caller's responsibility.
2299   * The on-disk inode is not changed by this operation, only the
2300   * btree (free inode mask) is changed.
2301   */
2302  int
xfs_difree(struct xfs_trans * tp,struct xfs_perag * pag,xfs_ino_t inode,struct xfs_icluster * xic)2303  xfs_difree(
2304  	struct xfs_trans	*tp,
2305  	struct xfs_perag	*pag,
2306  	xfs_ino_t		inode,
2307  	struct xfs_icluster	*xic)
2308  {
2309  	/* REFERENCED */
2310  	xfs_agblock_t		agbno;	/* block number containing inode */
2311  	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2312  	xfs_agino_t		agino;	/* allocation group inode number */
2313  	int			error;	/* error return value */
2314  	struct xfs_mount	*mp = tp->t_mountp;
2315  	struct xfs_inobt_rec_incore rec;/* btree record */
2316  
2317  	/*
2318  	 * Break up inode number into its components.
2319  	 */
2320  	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2321  		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2322  			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2323  		ASSERT(0);
2324  		return -EINVAL;
2325  	}
2326  	agino = XFS_INO_TO_AGINO(mp, inode);
2327  	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2328  		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2329  			__func__, (unsigned long long)inode,
2330  			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2331  		ASSERT(0);
2332  		return -EINVAL;
2333  	}
2334  	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2335  	if (agbno >= mp->m_sb.sb_agblocks)  {
2336  		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2337  			__func__, agbno, mp->m_sb.sb_agblocks);
2338  		ASSERT(0);
2339  		return -EINVAL;
2340  	}
2341  	/*
2342  	 * Get the allocation group header.
2343  	 */
2344  	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2345  	if (error) {
2346  		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2347  			__func__, error);
2348  		return error;
2349  	}
2350  
2351  	/*
2352  	 * Fix up the inode allocation btree.
2353  	 */
2354  	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2355  	if (error)
2356  		goto error0;
2357  
2358  	/*
2359  	 * Fix up the free inode btree.
2360  	 */
2361  	if (xfs_has_finobt(mp)) {
2362  		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2363  		if (error)
2364  			goto error0;
2365  	}
2366  
2367  	return 0;
2368  
2369  error0:
2370  	return error;
2371  }
2372  
2373  STATIC int
xfs_imap_lookup(struct xfs_perag * pag,struct xfs_trans * tp,xfs_agino_t agino,xfs_agblock_t agbno,xfs_agblock_t * chunk_agbno,xfs_agblock_t * offset_agbno,int flags)2374  xfs_imap_lookup(
2375  	struct xfs_perag	*pag,
2376  	struct xfs_trans	*tp,
2377  	xfs_agino_t		agino,
2378  	xfs_agblock_t		agbno,
2379  	xfs_agblock_t		*chunk_agbno,
2380  	xfs_agblock_t		*offset_agbno,
2381  	int			flags)
2382  {
2383  	struct xfs_mount	*mp = pag->pag_mount;
2384  	struct xfs_inobt_rec_incore rec;
2385  	struct xfs_btree_cur	*cur;
2386  	struct xfs_buf		*agbp;
2387  	int			error;
2388  	int			i;
2389  
2390  	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2391  	if (error) {
2392  		xfs_alert(mp,
2393  			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2394  			__func__, error, pag->pag_agno);
2395  		return error;
2396  	}
2397  
2398  	/*
2399  	 * Lookup the inode record for the given agino. If the record cannot be
2400  	 * found, then it's an invalid inode number and we should abort. Once
2401  	 * we have a record, we need to ensure it contains the inode number
2402  	 * we are looking up.
2403  	 */
2404  	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2405  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2406  	if (!error) {
2407  		if (i)
2408  			error = xfs_inobt_get_rec(cur, &rec, &i);
2409  		if (!error && i == 0)
2410  			error = -EINVAL;
2411  	}
2412  
2413  	xfs_trans_brelse(tp, agbp);
2414  	xfs_btree_del_cursor(cur, error);
2415  	if (error)
2416  		return error;
2417  
2418  	/* check that the returned record contains the required inode */
2419  	if (rec.ir_startino > agino ||
2420  	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2421  		return -EINVAL;
2422  
2423  	/* for untrusted inodes check it is allocated first */
2424  	if ((flags & XFS_IGET_UNTRUSTED) &&
2425  	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2426  		return -EINVAL;
2427  
2428  	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2429  	*offset_agbno = agbno - *chunk_agbno;
2430  	return 0;
2431  }
2432  
2433  /*
2434   * Return the location of the inode in imap, for mapping it into a buffer.
2435   */
2436  int
xfs_imap(struct xfs_perag * pag,struct xfs_trans * tp,xfs_ino_t ino,struct xfs_imap * imap,uint flags)2437  xfs_imap(
2438  	struct xfs_perag	*pag,
2439  	struct xfs_trans	*tp,
2440  	xfs_ino_t		ino,	/* inode to locate */
2441  	struct xfs_imap		*imap,	/* location map structure */
2442  	uint			flags)	/* flags for inode btree lookup */
2443  {
2444  	struct xfs_mount	*mp = pag->pag_mount;
2445  	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2446  	xfs_agino_t		agino;	/* inode number within alloc group */
2447  	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2448  	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2449  	int			error;	/* error code */
2450  	int			offset;	/* index of inode in its buffer */
2451  	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2452  
2453  	ASSERT(ino != NULLFSINO);
2454  
2455  	/*
2456  	 * Split up the inode number into its parts.
2457  	 */
2458  	agino = XFS_INO_TO_AGINO(mp, ino);
2459  	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2460  	if (agbno >= mp->m_sb.sb_agblocks ||
2461  	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2462  		error = -EINVAL;
2463  #ifdef DEBUG
2464  		/*
2465  		 * Don't output diagnostic information for untrusted inodes
2466  		 * as they can be invalid without implying corruption.
2467  		 */
2468  		if (flags & XFS_IGET_UNTRUSTED)
2469  			return error;
2470  		if (agbno >= mp->m_sb.sb_agblocks) {
2471  			xfs_alert(mp,
2472  		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2473  				__func__, (unsigned long long)agbno,
2474  				(unsigned long)mp->m_sb.sb_agblocks);
2475  		}
2476  		if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2477  			xfs_alert(mp,
2478  		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2479  				__func__, ino,
2480  				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2481  		}
2482  		xfs_stack_trace();
2483  #endif /* DEBUG */
2484  		return error;
2485  	}
2486  
2487  	/*
2488  	 * For bulkstat and handle lookups, we have an untrusted inode number
2489  	 * that we have to verify is valid. We cannot do this just by reading
2490  	 * the inode buffer as it may have been unlinked and removed leaving
2491  	 * inodes in stale state on disk. Hence we have to do a btree lookup
2492  	 * in all cases where an untrusted inode number is passed.
2493  	 */
2494  	if (flags & XFS_IGET_UNTRUSTED) {
2495  		error = xfs_imap_lookup(pag, tp, agino, agbno,
2496  					&chunk_agbno, &offset_agbno, flags);
2497  		if (error)
2498  			return error;
2499  		goto out_map;
2500  	}
2501  
2502  	/*
2503  	 * If the inode cluster size is the same as the blocksize or
2504  	 * smaller we get to the buffer by simple arithmetics.
2505  	 */
2506  	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2507  		offset = XFS_INO_TO_OFFSET(mp, ino);
2508  		ASSERT(offset < mp->m_sb.sb_inopblock);
2509  
2510  		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2511  		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2512  		imap->im_boffset = (unsigned short)(offset <<
2513  							mp->m_sb.sb_inodelog);
2514  		return 0;
2515  	}
2516  
2517  	/*
2518  	 * If the inode chunks are aligned then use simple maths to
2519  	 * find the location. Otherwise we have to do a btree
2520  	 * lookup to find the location.
2521  	 */
2522  	if (M_IGEO(mp)->inoalign_mask) {
2523  		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2524  		chunk_agbno = agbno - offset_agbno;
2525  	} else {
2526  		error = xfs_imap_lookup(pag, tp, agino, agbno,
2527  					&chunk_agbno, &offset_agbno, flags);
2528  		if (error)
2529  			return error;
2530  	}
2531  
2532  out_map:
2533  	ASSERT(agbno >= chunk_agbno);
2534  	cluster_agbno = chunk_agbno +
2535  		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2536  		 M_IGEO(mp)->blocks_per_cluster);
2537  	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2538  		XFS_INO_TO_OFFSET(mp, ino);
2539  
2540  	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2541  	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2542  	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2543  
2544  	/*
2545  	 * If the inode number maps to a block outside the bounds
2546  	 * of the file system then return NULL rather than calling
2547  	 * read_buf and panicing when we get an error from the
2548  	 * driver.
2549  	 */
2550  	if ((imap->im_blkno + imap->im_len) >
2551  	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2552  		xfs_alert(mp,
2553  	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2554  			__func__, (unsigned long long) imap->im_blkno,
2555  			(unsigned long long) imap->im_len,
2556  			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2557  		return -EINVAL;
2558  	}
2559  	return 0;
2560  }
2561  
2562  /*
2563   * Log specified fields for the ag hdr (inode section). The growth of the agi
2564   * structure over time requires that we interpret the buffer as two logical
2565   * regions delineated by the end of the unlinked list. This is due to the size
2566   * of the hash table and its location in the middle of the agi.
2567   *
2568   * For example, a request to log a field before agi_unlinked and a field after
2569   * agi_unlinked could cause us to log the entire hash table and use an excessive
2570   * amount of log space. To avoid this behavior, log the region up through
2571   * agi_unlinked in one call and the region after agi_unlinked through the end of
2572   * the structure in another.
2573   */
2574  void
xfs_ialloc_log_agi(struct xfs_trans * tp,struct xfs_buf * bp,uint32_t fields)2575  xfs_ialloc_log_agi(
2576  	struct xfs_trans	*tp,
2577  	struct xfs_buf		*bp,
2578  	uint32_t		fields)
2579  {
2580  	int			first;		/* first byte number */
2581  	int			last;		/* last byte number */
2582  	static const short	offsets[] = {	/* field starting offsets */
2583  					/* keep in sync with bit definitions */
2584  		offsetof(xfs_agi_t, agi_magicnum),
2585  		offsetof(xfs_agi_t, agi_versionnum),
2586  		offsetof(xfs_agi_t, agi_seqno),
2587  		offsetof(xfs_agi_t, agi_length),
2588  		offsetof(xfs_agi_t, agi_count),
2589  		offsetof(xfs_agi_t, agi_root),
2590  		offsetof(xfs_agi_t, agi_level),
2591  		offsetof(xfs_agi_t, agi_freecount),
2592  		offsetof(xfs_agi_t, agi_newino),
2593  		offsetof(xfs_agi_t, agi_dirino),
2594  		offsetof(xfs_agi_t, agi_unlinked),
2595  		offsetof(xfs_agi_t, agi_free_root),
2596  		offsetof(xfs_agi_t, agi_free_level),
2597  		offsetof(xfs_agi_t, agi_iblocks),
2598  		sizeof(xfs_agi_t)
2599  	};
2600  #ifdef DEBUG
2601  	struct xfs_agi		*agi = bp->b_addr;
2602  
2603  	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2604  #endif
2605  
2606  	/*
2607  	 * Compute byte offsets for the first and last fields in the first
2608  	 * region and log the agi buffer. This only logs up through
2609  	 * agi_unlinked.
2610  	 */
2611  	if (fields & XFS_AGI_ALL_BITS_R1) {
2612  		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2613  				  &first, &last);
2614  		xfs_trans_log_buf(tp, bp, first, last);
2615  	}
2616  
2617  	/*
2618  	 * Mask off the bits in the first region and calculate the first and
2619  	 * last field offsets for any bits in the second region.
2620  	 */
2621  	fields &= ~XFS_AGI_ALL_BITS_R1;
2622  	if (fields) {
2623  		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2624  				  &first, &last);
2625  		xfs_trans_log_buf(tp, bp, first, last);
2626  	}
2627  }
2628  
2629  static xfs_failaddr_t
xfs_agi_verify(struct xfs_buf * bp)2630  xfs_agi_verify(
2631  	struct xfs_buf		*bp)
2632  {
2633  	struct xfs_mount	*mp = bp->b_mount;
2634  	struct xfs_agi		*agi = bp->b_addr;
2635  	xfs_failaddr_t		fa;
2636  	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2637  	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2638  	int			i;
2639  
2640  	if (xfs_has_crc(mp)) {
2641  		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2642  			return __this_address;
2643  		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2644  			return __this_address;
2645  	}
2646  
2647  	/*
2648  	 * Validate the magic number of the agi block.
2649  	 */
2650  	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2651  		return __this_address;
2652  	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2653  		return __this_address;
2654  
2655  	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2656  	if (fa)
2657  		return fa;
2658  
2659  	if (be32_to_cpu(agi->agi_level) < 1 ||
2660  	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2661  		return __this_address;
2662  
2663  	if (xfs_has_finobt(mp) &&
2664  	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2665  	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2666  		return __this_address;
2667  
2668  	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2669  		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2670  			continue;
2671  		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2672  			return __this_address;
2673  	}
2674  
2675  	return NULL;
2676  }
2677  
2678  static void
xfs_agi_read_verify(struct xfs_buf * bp)2679  xfs_agi_read_verify(
2680  	struct xfs_buf	*bp)
2681  {
2682  	struct xfs_mount *mp = bp->b_mount;
2683  	xfs_failaddr_t	fa;
2684  
2685  	if (xfs_has_crc(mp) &&
2686  	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2687  		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2688  	else {
2689  		fa = xfs_agi_verify(bp);
2690  		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2691  			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2692  	}
2693  }
2694  
2695  static void
xfs_agi_write_verify(struct xfs_buf * bp)2696  xfs_agi_write_verify(
2697  	struct xfs_buf	*bp)
2698  {
2699  	struct xfs_mount	*mp = bp->b_mount;
2700  	struct xfs_buf_log_item	*bip = bp->b_log_item;
2701  	struct xfs_agi		*agi = bp->b_addr;
2702  	xfs_failaddr_t		fa;
2703  
2704  	fa = xfs_agi_verify(bp);
2705  	if (fa) {
2706  		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2707  		return;
2708  	}
2709  
2710  	if (!xfs_has_crc(mp))
2711  		return;
2712  
2713  	if (bip)
2714  		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2715  	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2716  }
2717  
2718  const struct xfs_buf_ops xfs_agi_buf_ops = {
2719  	.name = "xfs_agi",
2720  	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2721  	.verify_read = xfs_agi_read_verify,
2722  	.verify_write = xfs_agi_write_verify,
2723  	.verify_struct = xfs_agi_verify,
2724  };
2725  
2726  /*
2727   * Read in the allocation group header (inode allocation section)
2728   */
2729  int
xfs_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,xfs_buf_flags_t flags,struct xfs_buf ** agibpp)2730  xfs_read_agi(
2731  	struct xfs_perag	*pag,
2732  	struct xfs_trans	*tp,
2733  	xfs_buf_flags_t		flags,
2734  	struct xfs_buf		**agibpp)
2735  {
2736  	struct xfs_mount	*mp = pag->pag_mount;
2737  	int			error;
2738  
2739  	trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2740  
2741  	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2742  			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2743  			XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
2744  	if (xfs_metadata_is_sick(error))
2745  		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2746  	if (error)
2747  		return error;
2748  	if (tp)
2749  		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2750  
2751  	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2752  	return 0;
2753  }
2754  
2755  /*
2756   * Read in the agi and initialise the per-ag data. If the caller supplies a
2757   * @agibpp, return the locked AGI buffer to them, otherwise release it.
2758   */
2759  int
xfs_ialloc_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agibpp)2760  xfs_ialloc_read_agi(
2761  	struct xfs_perag	*pag,
2762  	struct xfs_trans	*tp,
2763  	int			flags,
2764  	struct xfs_buf		**agibpp)
2765  {
2766  	struct xfs_buf		*agibp;
2767  	struct xfs_agi		*agi;
2768  	int			error;
2769  
2770  	trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2771  
2772  	error = xfs_read_agi(pag, tp,
2773  			(flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2774  			&agibp);
2775  	if (error)
2776  		return error;
2777  
2778  	agi = agibp->b_addr;
2779  	if (!xfs_perag_initialised_agi(pag)) {
2780  		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2781  		pag->pagi_count = be32_to_cpu(agi->agi_count);
2782  		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2783  	}
2784  
2785  	/*
2786  	 * It's possible for these to be out of sync if
2787  	 * we are in the middle of a forced shutdown.
2788  	 */
2789  	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2790  		xfs_is_shutdown(pag->pag_mount));
2791  	if (agibpp)
2792  		*agibpp = agibp;
2793  	else
2794  		xfs_trans_brelse(tp, agibp);
2795  	return 0;
2796  }
2797  
2798  /* How many inodes are backed by inode clusters ondisk? */
2799  STATIC int
xfs_ialloc_count_ondisk(struct xfs_btree_cur * cur,xfs_agino_t low,xfs_agino_t high,unsigned int * allocated)2800  xfs_ialloc_count_ondisk(
2801  	struct xfs_btree_cur		*cur,
2802  	xfs_agino_t			low,
2803  	xfs_agino_t			high,
2804  	unsigned int			*allocated)
2805  {
2806  	struct xfs_inobt_rec_incore	irec;
2807  	unsigned int			ret = 0;
2808  	int				has_record;
2809  	int				error;
2810  
2811  	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2812  	if (error)
2813  		return error;
2814  
2815  	while (has_record) {
2816  		unsigned int		i, hole_idx;
2817  
2818  		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2819  		if (error)
2820  			return error;
2821  		if (irec.ir_startino > high)
2822  			break;
2823  
2824  		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2825  			if (irec.ir_startino + i < low)
2826  				continue;
2827  			if (irec.ir_startino + i > high)
2828  				break;
2829  
2830  			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2831  			if (!(irec.ir_holemask & (1U << hole_idx)))
2832  				ret++;
2833  		}
2834  
2835  		error = xfs_btree_increment(cur, 0, &has_record);
2836  		if (error)
2837  			return error;
2838  	}
2839  
2840  	*allocated = ret;
2841  	return 0;
2842  }
2843  
2844  /* Is there an inode record covering a given extent? */
2845  int
xfs_ialloc_has_inodes_at_extent(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,enum xbtree_recpacking * outcome)2846  xfs_ialloc_has_inodes_at_extent(
2847  	struct xfs_btree_cur	*cur,
2848  	xfs_agblock_t		bno,
2849  	xfs_extlen_t		len,
2850  	enum xbtree_recpacking	*outcome)
2851  {
2852  	xfs_agino_t		agino;
2853  	xfs_agino_t		last_agino;
2854  	unsigned int		allocated;
2855  	int			error;
2856  
2857  	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2858  	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2859  
2860  	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2861  	if (error)
2862  		return error;
2863  
2864  	if (allocated == 0)
2865  		*outcome = XBTREE_RECPACKING_EMPTY;
2866  	else if (allocated == last_agino - agino + 1)
2867  		*outcome = XBTREE_RECPACKING_FULL;
2868  	else
2869  		*outcome = XBTREE_RECPACKING_SPARSE;
2870  	return 0;
2871  }
2872  
2873  struct xfs_ialloc_count_inodes {
2874  	xfs_agino_t			count;
2875  	xfs_agino_t			freecount;
2876  };
2877  
2878  /* Record inode counts across all inobt records. */
2879  STATIC int
xfs_ialloc_count_inodes_rec(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)2880  xfs_ialloc_count_inodes_rec(
2881  	struct xfs_btree_cur		*cur,
2882  	const union xfs_btree_rec	*rec,
2883  	void				*priv)
2884  {
2885  	struct xfs_inobt_rec_incore	irec;
2886  	struct xfs_ialloc_count_inodes	*ci = priv;
2887  	xfs_failaddr_t			fa;
2888  
2889  	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2890  	fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2891  	if (fa)
2892  		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2893  
2894  	ci->count += irec.ir_count;
2895  	ci->freecount += irec.ir_freecount;
2896  
2897  	return 0;
2898  }
2899  
2900  /* Count allocated and free inodes under an inobt. */
2901  int
xfs_ialloc_count_inodes(struct xfs_btree_cur * cur,xfs_agino_t * count,xfs_agino_t * freecount)2902  xfs_ialloc_count_inodes(
2903  	struct xfs_btree_cur		*cur,
2904  	xfs_agino_t			*count,
2905  	xfs_agino_t			*freecount)
2906  {
2907  	struct xfs_ialloc_count_inodes	ci = {0};
2908  	int				error;
2909  
2910  	ASSERT(xfs_btree_is_ino(cur->bc_ops));
2911  	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2912  	if (error)
2913  		return error;
2914  
2915  	*count = ci.count;
2916  	*freecount = ci.freecount;
2917  	return 0;
2918  }
2919  
2920  /*
2921   * Initialize inode-related geometry information.
2922   *
2923   * Compute the inode btree min and max levels and set maxicount.
2924   *
2925   * Set the inode cluster size.  This may still be overridden by the file
2926   * system block size if it is larger than the chosen cluster size.
2927   *
2928   * For v5 filesystems, scale the cluster size with the inode size to keep a
2929   * constant ratio of inode per cluster buffer, but only if mkfs has set the
2930   * inode alignment value appropriately for larger cluster sizes.
2931   *
2932   * Then compute the inode cluster alignment information.
2933   */
2934  void
xfs_ialloc_setup_geometry(struct xfs_mount * mp)2935  xfs_ialloc_setup_geometry(
2936  	struct xfs_mount	*mp)
2937  {
2938  	struct xfs_sb		*sbp = &mp->m_sb;
2939  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2940  	uint64_t		icount;
2941  	uint			inodes;
2942  
2943  	igeo->new_diflags2 = 0;
2944  	if (xfs_has_bigtime(mp))
2945  		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2946  	if (xfs_has_large_extent_counts(mp))
2947  		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2948  
2949  	/* Compute inode btree geometry. */
2950  	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2951  	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true);
2952  	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false);
2953  	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2954  	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2955  
2956  	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2957  			sbp->sb_inopblock);
2958  	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2959  
2960  	if (sbp->sb_spino_align)
2961  		igeo->ialloc_min_blks = sbp->sb_spino_align;
2962  	else
2963  		igeo->ialloc_min_blks = igeo->ialloc_blks;
2964  
2965  	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2966  	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2967  	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2968  			inodes);
2969  	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2970  
2971  	/*
2972  	 * Set the maximum inode count for this filesystem, being careful not
2973  	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2974  	 * users should never get here due to failing sb verification, but
2975  	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2976  	 */
2977  	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2978  		/*
2979  		 * Make sure the maximum inode count is a multiple
2980  		 * of the units we allocate inodes in.
2981  		 */
2982  		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2983  		do_div(icount, 100);
2984  		do_div(icount, igeo->ialloc_blks);
2985  		igeo->maxicount = XFS_FSB_TO_INO(mp,
2986  				icount * igeo->ialloc_blks);
2987  	} else {
2988  		igeo->maxicount = 0;
2989  	}
2990  
2991  	/*
2992  	 * Compute the desired size of an inode cluster buffer size, which
2993  	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2994  	 * sizes.
2995  	 *
2996  	 * Preserve the desired inode cluster size because the sparse inodes
2997  	 * feature uses that desired size (not the actual size) to compute the
2998  	 * sparse inode alignment.  The mount code validates this value, so we
2999  	 * cannot change the behavior.
3000  	 */
3001  	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
3002  	if (xfs_has_v3inodes(mp)) {
3003  		int	new_size = igeo->inode_cluster_size_raw;
3004  
3005  		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
3006  		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
3007  			igeo->inode_cluster_size_raw = new_size;
3008  	}
3009  
3010  	/* Calculate inode cluster ratios. */
3011  	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
3012  		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
3013  				igeo->inode_cluster_size_raw);
3014  	else
3015  		igeo->blocks_per_cluster = 1;
3016  	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
3017  	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
3018  
3019  	/* Calculate inode cluster alignment. */
3020  	if (xfs_has_align(mp) &&
3021  	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
3022  		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
3023  	else
3024  		igeo->cluster_align = 1;
3025  	igeo->inoalign_mask = igeo->cluster_align - 1;
3026  	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
3027  
3028  	/*
3029  	 * If we are using stripe alignment, check whether
3030  	 * the stripe unit is a multiple of the inode alignment
3031  	 */
3032  	if (mp->m_dalign && igeo->inoalign_mask &&
3033  	    !(mp->m_dalign & igeo->inoalign_mask))
3034  		igeo->ialloc_align = mp->m_dalign;
3035  	else
3036  		igeo->ialloc_align = 0;
3037  
3038  	if (mp->m_sb.sb_blocksize > PAGE_SIZE)
3039  		igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT;
3040  	else
3041  		igeo->min_folio_order = 0;
3042  }
3043  
3044  /* Compute the location of the root directory inode that is laid out by mkfs. */
3045  xfs_ino_t
xfs_ialloc_calc_rootino(struct xfs_mount * mp,int sunit)3046  xfs_ialloc_calc_rootino(
3047  	struct xfs_mount	*mp,
3048  	int			sunit)
3049  {
3050  	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3051  	xfs_agblock_t		first_bno;
3052  
3053  	/*
3054  	 * Pre-calculate the geometry of AG 0.  We know what it looks like
3055  	 * because libxfs knows how to create allocation groups now.
3056  	 *
3057  	 * first_bno is the first block in which mkfs could possibly have
3058  	 * allocated the root directory inode, once we factor in the metadata
3059  	 * that mkfs formats before it.  Namely, the four AG headers...
3060  	 */
3061  	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
3062  
3063  	/* ...the two free space btree roots... */
3064  	first_bno += 2;
3065  
3066  	/* ...the inode btree root... */
3067  	first_bno += 1;
3068  
3069  	/* ...the initial AGFL... */
3070  	first_bno += xfs_alloc_min_freelist(mp, NULL);
3071  
3072  	/* ...the free inode btree root... */
3073  	if (xfs_has_finobt(mp))
3074  		first_bno++;
3075  
3076  	/* ...the reverse mapping btree root... */
3077  	if (xfs_has_rmapbt(mp))
3078  		first_bno++;
3079  
3080  	/* ...the reference count btree... */
3081  	if (xfs_has_reflink(mp))
3082  		first_bno++;
3083  
3084  	/*
3085  	 * ...and the log, if it is allocated in the first allocation group.
3086  	 *
3087  	 * This can happen with filesystems that only have a single
3088  	 * allocation group, or very odd geometries created by old mkfs
3089  	 * versions on very small filesystems.
3090  	 */
3091  	if (xfs_ag_contains_log(mp, 0))
3092  		 first_bno += mp->m_sb.sb_logblocks;
3093  
3094  	/*
3095  	 * Now round first_bno up to whatever allocation alignment is given
3096  	 * by the filesystem or was passed in.
3097  	 */
3098  	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3099  		first_bno = roundup(first_bno, sunit);
3100  	else if (xfs_has_align(mp) &&
3101  			mp->m_sb.sb_inoalignmt > 1)
3102  		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3103  
3104  	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3105  }
3106  
3107  /*
3108   * Ensure there are not sparse inode clusters that cross the new EOAG.
3109   *
3110   * This is a no-op for non-spinode filesystems since clusters are always fully
3111   * allocated and checking the bnobt suffices.  However, a spinode filesystem
3112   * could have a record where the upper inodes are free blocks.  If those blocks
3113   * were removed from the filesystem, the inode record would extend beyond EOAG,
3114   * which will be flagged as corruption.
3115   */
3116  int
xfs_ialloc_check_shrink(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agblock_t new_length)3117  xfs_ialloc_check_shrink(
3118  	struct xfs_perag	*pag,
3119  	struct xfs_trans	*tp,
3120  	struct xfs_buf		*agibp,
3121  	xfs_agblock_t		new_length)
3122  {
3123  	struct xfs_inobt_rec_incore rec;
3124  	struct xfs_btree_cur	*cur;
3125  	xfs_agino_t		agino;
3126  	int			has;
3127  	int			error;
3128  
3129  	if (!xfs_has_sparseinodes(pag->pag_mount))
3130  		return 0;
3131  
3132  	cur = xfs_inobt_init_cursor(pag, tp, agibp);
3133  
3134  	/* Look up the inobt record that would correspond to the new EOFS. */
3135  	agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
3136  	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3137  	if (error || !has)
3138  		goto out;
3139  
3140  	error = xfs_inobt_get_rec(cur, &rec, &has);
3141  	if (error)
3142  		goto out;
3143  
3144  	if (!has) {
3145  		xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3146  		error = -EFSCORRUPTED;
3147  		goto out;
3148  	}
3149  
3150  	/* If the record covers inodes that would be beyond EOFS, bail out. */
3151  	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3152  		error = -ENOSPC;
3153  		goto out;
3154  	}
3155  out:
3156  	xfs_btree_del_cursor(cur, error);
3157  	return error;
3158  }
3159