1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap.h"
17 #include "xfs_alloc.h"
18 #include "xfs_fsops.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_dir2.h"
24 #include "xfs_extfree_item.h"
25 #include "xfs_mru_cache.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_icache.h"
28 #include "xfs_trace.h"
29 #include "xfs_icreate_item.h"
30 #include "xfs_filestream.h"
31 #include "xfs_quota.h"
32 #include "xfs_sysfs.h"
33 #include "xfs_ondisk.h"
34 #include "xfs_rmap_item.h"
35 #include "xfs_refcount_item.h"
36 #include "xfs_bmap_item.h"
37 #include "xfs_reflink.h"
38 #include "xfs_pwork.h"
39 #include "xfs_ag.h"
40 #include "xfs_defer.h"
41 #include "xfs_attr_item.h"
42 #include "xfs_xattr.h"
43 #include "xfs_iunlink_item.h"
44 #include "xfs_dahash_test.h"
45 #include "xfs_rtbitmap.h"
46 #include "xfs_exchmaps_item.h"
47 #include "xfs_parent.h"
48 #include "scrub/stats.h"
49 #include "scrub/rcbag_btree.h"
50 
51 #include <linux/magic.h>
52 #include <linux/fs_context.h>
53 #include <linux/fs_parser.h>
54 
55 static const struct super_operations xfs_super_operations;
56 
57 static struct dentry *xfs_debugfs;	/* top-level xfs debugfs dir */
58 static struct kset *xfs_kset;		/* top-level xfs sysfs dir */
59 #ifdef DEBUG
60 static struct xfs_kobj xfs_dbg_kobj;	/* global debug sysfs attrs */
61 #endif
62 
63 enum xfs_dax_mode {
64 	XFS_DAX_INODE = 0,
65 	XFS_DAX_ALWAYS = 1,
66 	XFS_DAX_NEVER = 2,
67 };
68 
69 static void
xfs_mount_set_dax_mode(struct xfs_mount * mp,enum xfs_dax_mode mode)70 xfs_mount_set_dax_mode(
71 	struct xfs_mount	*mp,
72 	enum xfs_dax_mode	mode)
73 {
74 	switch (mode) {
75 	case XFS_DAX_INODE:
76 		mp->m_features &= ~(XFS_FEAT_DAX_ALWAYS | XFS_FEAT_DAX_NEVER);
77 		break;
78 	case XFS_DAX_ALWAYS:
79 		mp->m_features |= XFS_FEAT_DAX_ALWAYS;
80 		mp->m_features &= ~XFS_FEAT_DAX_NEVER;
81 		break;
82 	case XFS_DAX_NEVER:
83 		mp->m_features |= XFS_FEAT_DAX_NEVER;
84 		mp->m_features &= ~XFS_FEAT_DAX_ALWAYS;
85 		break;
86 	}
87 }
88 
89 static const struct constant_table dax_param_enums[] = {
90 	{"inode",	XFS_DAX_INODE },
91 	{"always",	XFS_DAX_ALWAYS },
92 	{"never",	XFS_DAX_NEVER },
93 	{}
94 };
95 
96 /*
97  * Table driven mount option parser.
98  */
99 enum {
100 	Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev,
101 	Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
102 	Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
103 	Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep,
104 	Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2,
105 	Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
106 	Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
107 	Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
108 	Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum,
109 };
110 
111 static const struct fs_parameter_spec xfs_fs_parameters[] = {
112 	fsparam_u32("logbufs",		Opt_logbufs),
113 	fsparam_string("logbsize",	Opt_logbsize),
114 	fsparam_string("logdev",	Opt_logdev),
115 	fsparam_string("rtdev",		Opt_rtdev),
116 	fsparam_flag("wsync",		Opt_wsync),
117 	fsparam_flag("noalign",		Opt_noalign),
118 	fsparam_flag("swalloc",		Opt_swalloc),
119 	fsparam_u32("sunit",		Opt_sunit),
120 	fsparam_u32("swidth",		Opt_swidth),
121 	fsparam_flag("nouuid",		Opt_nouuid),
122 	fsparam_flag("grpid",		Opt_grpid),
123 	fsparam_flag("nogrpid",		Opt_nogrpid),
124 	fsparam_flag("bsdgroups",	Opt_bsdgroups),
125 	fsparam_flag("sysvgroups",	Opt_sysvgroups),
126 	fsparam_string("allocsize",	Opt_allocsize),
127 	fsparam_flag("norecovery",	Opt_norecovery),
128 	fsparam_flag("inode64",		Opt_inode64),
129 	fsparam_flag("inode32",		Opt_inode32),
130 	fsparam_flag("ikeep",		Opt_ikeep),
131 	fsparam_flag("noikeep",		Opt_noikeep),
132 	fsparam_flag("largeio",		Opt_largeio),
133 	fsparam_flag("nolargeio",	Opt_nolargeio),
134 	fsparam_flag("attr2",		Opt_attr2),
135 	fsparam_flag("noattr2",		Opt_noattr2),
136 	fsparam_flag("filestreams",	Opt_filestreams),
137 	fsparam_flag("quota",		Opt_quota),
138 	fsparam_flag("noquota",		Opt_noquota),
139 	fsparam_flag("usrquota",	Opt_usrquota),
140 	fsparam_flag("grpquota",	Opt_grpquota),
141 	fsparam_flag("prjquota",	Opt_prjquota),
142 	fsparam_flag("uquota",		Opt_uquota),
143 	fsparam_flag("gquota",		Opt_gquota),
144 	fsparam_flag("pquota",		Opt_pquota),
145 	fsparam_flag("uqnoenforce",	Opt_uqnoenforce),
146 	fsparam_flag("gqnoenforce",	Opt_gqnoenforce),
147 	fsparam_flag("pqnoenforce",	Opt_pqnoenforce),
148 	fsparam_flag("qnoenforce",	Opt_qnoenforce),
149 	fsparam_flag("discard",		Opt_discard),
150 	fsparam_flag("nodiscard",	Opt_nodiscard),
151 	fsparam_flag("dax",		Opt_dax),
152 	fsparam_enum("dax",		Opt_dax_enum, dax_param_enums),
153 	{}
154 };
155 
156 struct proc_xfs_info {
157 	uint64_t	flag;
158 	char		*str;
159 };
160 
161 static int
xfs_fs_show_options(struct seq_file * m,struct dentry * root)162 xfs_fs_show_options(
163 	struct seq_file		*m,
164 	struct dentry		*root)
165 {
166 	static struct proc_xfs_info xfs_info_set[] = {
167 		/* the few simple ones we can get from the mount struct */
168 		{ XFS_FEAT_IKEEP,		",ikeep" },
169 		{ XFS_FEAT_WSYNC,		",wsync" },
170 		{ XFS_FEAT_NOALIGN,		",noalign" },
171 		{ XFS_FEAT_SWALLOC,		",swalloc" },
172 		{ XFS_FEAT_NOUUID,		",nouuid" },
173 		{ XFS_FEAT_NORECOVERY,		",norecovery" },
174 		{ XFS_FEAT_ATTR2,		",attr2" },
175 		{ XFS_FEAT_FILESTREAMS,		",filestreams" },
176 		{ XFS_FEAT_GRPID,		",grpid" },
177 		{ XFS_FEAT_DISCARD,		",discard" },
178 		{ XFS_FEAT_LARGE_IOSIZE,	",largeio" },
179 		{ XFS_FEAT_DAX_ALWAYS,		",dax=always" },
180 		{ XFS_FEAT_DAX_NEVER,		",dax=never" },
181 		{ 0, NULL }
182 	};
183 	struct xfs_mount	*mp = XFS_M(root->d_sb);
184 	struct proc_xfs_info	*xfs_infop;
185 
186 	for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
187 		if (mp->m_features & xfs_infop->flag)
188 			seq_puts(m, xfs_infop->str);
189 	}
190 
191 	seq_printf(m, ",inode%d", xfs_has_small_inums(mp) ? 32 : 64);
192 
193 	if (xfs_has_allocsize(mp))
194 		seq_printf(m, ",allocsize=%dk",
195 			   (1 << mp->m_allocsize_log) >> 10);
196 
197 	if (mp->m_logbufs > 0)
198 		seq_printf(m, ",logbufs=%d", mp->m_logbufs);
199 	if (mp->m_logbsize > 0)
200 		seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
201 
202 	if (mp->m_logname)
203 		seq_show_option(m, "logdev", mp->m_logname);
204 	if (mp->m_rtname)
205 		seq_show_option(m, "rtdev", mp->m_rtname);
206 
207 	if (mp->m_dalign > 0)
208 		seq_printf(m, ",sunit=%d",
209 				(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
210 	if (mp->m_swidth > 0)
211 		seq_printf(m, ",swidth=%d",
212 				(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
213 
214 	if (mp->m_qflags & XFS_UQUOTA_ENFD)
215 		seq_puts(m, ",usrquota");
216 	else if (mp->m_qflags & XFS_UQUOTA_ACCT)
217 		seq_puts(m, ",uqnoenforce");
218 
219 	if (mp->m_qflags & XFS_PQUOTA_ENFD)
220 		seq_puts(m, ",prjquota");
221 	else if (mp->m_qflags & XFS_PQUOTA_ACCT)
222 		seq_puts(m, ",pqnoenforce");
223 
224 	if (mp->m_qflags & XFS_GQUOTA_ENFD)
225 		seq_puts(m, ",grpquota");
226 	else if (mp->m_qflags & XFS_GQUOTA_ACCT)
227 		seq_puts(m, ",gqnoenforce");
228 
229 	if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
230 		seq_puts(m, ",noquota");
231 
232 	return 0;
233 }
234 
235 static bool
xfs_set_inode_alloc_perag(struct xfs_perag * pag,xfs_ino_t ino,xfs_agnumber_t max_metadata)236 xfs_set_inode_alloc_perag(
237 	struct xfs_perag	*pag,
238 	xfs_ino_t		ino,
239 	xfs_agnumber_t		max_metadata)
240 {
241 	if (!xfs_is_inode32(pag->pag_mount)) {
242 		set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
243 		clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
244 		return false;
245 	}
246 
247 	if (ino > XFS_MAXINUMBER_32) {
248 		clear_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
249 		clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
250 		return false;
251 	}
252 
253 	set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
254 	if (pag->pag_agno < max_metadata)
255 		set_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
256 	else
257 		clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
258 	return true;
259 }
260 
261 /*
262  * Set parameters for inode allocation heuristics, taking into account
263  * filesystem size and inode32/inode64 mount options; i.e. specifically
264  * whether or not XFS_FEAT_SMALL_INUMS is set.
265  *
266  * Inode allocation patterns are altered only if inode32 is requested
267  * (XFS_FEAT_SMALL_INUMS), and the filesystem is sufficiently large.
268  * If altered, XFS_OPSTATE_INODE32 is set as well.
269  *
270  * An agcount independent of that in the mount structure is provided
271  * because in the growfs case, mp->m_sb.sb_agcount is not yet updated
272  * to the potentially higher ag count.
273  *
274  * Returns the maximum AG index which may contain inodes.
275  */
276 xfs_agnumber_t
xfs_set_inode_alloc(struct xfs_mount * mp,xfs_agnumber_t agcount)277 xfs_set_inode_alloc(
278 	struct xfs_mount *mp,
279 	xfs_agnumber_t	agcount)
280 {
281 	xfs_agnumber_t	index;
282 	xfs_agnumber_t	maxagi = 0;
283 	xfs_sb_t	*sbp = &mp->m_sb;
284 	xfs_agnumber_t	max_metadata;
285 	xfs_agino_t	agino;
286 	xfs_ino_t	ino;
287 
288 	/*
289 	 * Calculate how much should be reserved for inodes to meet
290 	 * the max inode percentage.  Used only for inode32.
291 	 */
292 	if (M_IGEO(mp)->maxicount) {
293 		uint64_t	icount;
294 
295 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
296 		do_div(icount, 100);
297 		icount += sbp->sb_agblocks - 1;
298 		do_div(icount, sbp->sb_agblocks);
299 		max_metadata = icount;
300 	} else {
301 		max_metadata = agcount;
302 	}
303 
304 	/* Get the last possible inode in the filesystem */
305 	agino =	XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
306 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
307 
308 	/*
309 	 * If user asked for no more than 32-bit inodes, and the fs is
310 	 * sufficiently large, set XFS_OPSTATE_INODE32 if we must alter
311 	 * the allocator to accommodate the request.
312 	 */
313 	if (xfs_has_small_inums(mp) && ino > XFS_MAXINUMBER_32)
314 		xfs_set_inode32(mp);
315 	else
316 		xfs_clear_inode32(mp);
317 
318 	for (index = 0; index < agcount; index++) {
319 		struct xfs_perag	*pag;
320 
321 		ino = XFS_AGINO_TO_INO(mp, index, agino);
322 
323 		pag = xfs_perag_get(mp, index);
324 		if (xfs_set_inode_alloc_perag(pag, ino, max_metadata))
325 			maxagi++;
326 		xfs_perag_put(pag);
327 	}
328 
329 	return xfs_is_inode32(mp) ? maxagi : agcount;
330 }
331 
332 static int
xfs_setup_dax_always(struct xfs_mount * mp)333 xfs_setup_dax_always(
334 	struct xfs_mount	*mp)
335 {
336 	if (!mp->m_ddev_targp->bt_daxdev &&
337 	    (!mp->m_rtdev_targp || !mp->m_rtdev_targp->bt_daxdev)) {
338 		xfs_alert(mp,
339 			"DAX unsupported by block device. Turning off DAX.");
340 		goto disable_dax;
341 	}
342 
343 	if (mp->m_super->s_blocksize != PAGE_SIZE) {
344 		xfs_alert(mp,
345 			"DAX not supported for blocksize. Turning off DAX.");
346 		goto disable_dax;
347 	}
348 
349 	if (xfs_has_reflink(mp) &&
350 	    bdev_is_partition(mp->m_ddev_targp->bt_bdev)) {
351 		xfs_alert(mp,
352 			"DAX and reflink cannot work with multi-partitions!");
353 		return -EINVAL;
354 	}
355 
356 	return 0;
357 
358 disable_dax:
359 	xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER);
360 	return 0;
361 }
362 
363 STATIC int
xfs_blkdev_get(xfs_mount_t * mp,const char * name,struct file ** bdev_filep)364 xfs_blkdev_get(
365 	xfs_mount_t		*mp,
366 	const char		*name,
367 	struct file		**bdev_filep)
368 {
369 	int			error = 0;
370 
371 	*bdev_filep = bdev_file_open_by_path(name,
372 		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
373 		mp->m_super, &fs_holder_ops);
374 	if (IS_ERR(*bdev_filep)) {
375 		error = PTR_ERR(*bdev_filep);
376 		*bdev_filep = NULL;
377 		xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
378 	}
379 
380 	return error;
381 }
382 
383 STATIC void
xfs_shutdown_devices(struct xfs_mount * mp)384 xfs_shutdown_devices(
385 	struct xfs_mount	*mp)
386 {
387 	/*
388 	 * Udev is triggered whenever anyone closes a block device or unmounts
389 	 * a file systemm on a block device.
390 	 * The default udev rules invoke blkid to read the fs super and create
391 	 * symlinks to the bdev under /dev/disk.  For this, it uses buffered
392 	 * reads through the page cache.
393 	 *
394 	 * xfs_db also uses buffered reads to examine metadata.  There is no
395 	 * coordination between xfs_db and udev, which means that they can run
396 	 * concurrently.  Note there is no coordination between the kernel and
397 	 * blkid either.
398 	 *
399 	 * On a system with 64k pages, the page cache can cache the superblock
400 	 * and the root inode (and hence the root directory) with the same 64k
401 	 * page.  If udev spawns blkid after the mkfs and the system is busy
402 	 * enough that it is still running when xfs_db starts up, they'll both
403 	 * read from the same page in the pagecache.
404 	 *
405 	 * The unmount writes updated inode metadata to disk directly.  The XFS
406 	 * buffer cache does not use the bdev pagecache, so it needs to
407 	 * invalidate that pagecache on unmount.  If the above scenario occurs,
408 	 * the pagecache no longer reflects what's on disk, xfs_db reads the
409 	 * stale metadata, and fails to find /a.  Most of the time this succeeds
410 	 * because closing a bdev invalidates the page cache, but when processes
411 	 * race, everyone loses.
412 	 */
413 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
414 		blkdev_issue_flush(mp->m_logdev_targp->bt_bdev);
415 		invalidate_bdev(mp->m_logdev_targp->bt_bdev);
416 	}
417 	if (mp->m_rtdev_targp) {
418 		blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
419 		invalidate_bdev(mp->m_rtdev_targp->bt_bdev);
420 	}
421 	blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
422 	invalidate_bdev(mp->m_ddev_targp->bt_bdev);
423 }
424 
425 /*
426  * The file system configurations are:
427  *	(1) device (partition) with data and internal log
428  *	(2) logical volume with data and log subvolumes.
429  *	(3) logical volume with data, log, and realtime subvolumes.
430  *
431  * We only have to handle opening the log and realtime volumes here if
432  * they are present.  The data subvolume has already been opened by
433  * get_sb_bdev() and is stored in sb->s_bdev.
434  */
435 STATIC int
xfs_open_devices(struct xfs_mount * mp)436 xfs_open_devices(
437 	struct xfs_mount	*mp)
438 {
439 	struct super_block	*sb = mp->m_super;
440 	struct block_device	*ddev = sb->s_bdev;
441 	struct file		*logdev_file = NULL, *rtdev_file = NULL;
442 	int			error;
443 
444 	/*
445 	 * Open real time and log devices - order is important.
446 	 */
447 	if (mp->m_logname) {
448 		error = xfs_blkdev_get(mp, mp->m_logname, &logdev_file);
449 		if (error)
450 			return error;
451 	}
452 
453 	if (mp->m_rtname) {
454 		error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev_file);
455 		if (error)
456 			goto out_close_logdev;
457 
458 		if (file_bdev(rtdev_file) == ddev ||
459 		    (logdev_file &&
460 		     file_bdev(rtdev_file) == file_bdev(logdev_file))) {
461 			xfs_warn(mp,
462 	"Cannot mount filesystem with identical rtdev and ddev/logdev.");
463 			error = -EINVAL;
464 			goto out_close_rtdev;
465 		}
466 	}
467 
468 	/*
469 	 * Setup xfs_mount buffer target pointers
470 	 */
471 	error = -ENOMEM;
472 	mp->m_ddev_targp = xfs_alloc_buftarg(mp, sb->s_bdev_file);
473 	if (!mp->m_ddev_targp)
474 		goto out_close_rtdev;
475 
476 	if (rtdev_file) {
477 		mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev_file);
478 		if (!mp->m_rtdev_targp)
479 			goto out_free_ddev_targ;
480 	}
481 
482 	if (logdev_file && file_bdev(logdev_file) != ddev) {
483 		mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev_file);
484 		if (!mp->m_logdev_targp)
485 			goto out_free_rtdev_targ;
486 	} else {
487 		mp->m_logdev_targp = mp->m_ddev_targp;
488 		/* Handle won't be used, drop it */
489 		if (logdev_file)
490 			bdev_fput(logdev_file);
491 	}
492 
493 	return 0;
494 
495  out_free_rtdev_targ:
496 	if (mp->m_rtdev_targp)
497 		xfs_free_buftarg(mp->m_rtdev_targp);
498  out_free_ddev_targ:
499 	xfs_free_buftarg(mp->m_ddev_targp);
500  out_close_rtdev:
501 	 if (rtdev_file)
502 		bdev_fput(rtdev_file);
503  out_close_logdev:
504 	if (logdev_file)
505 		bdev_fput(logdev_file);
506 	return error;
507 }
508 
509 /*
510  * Setup xfs_mount buffer target pointers based on superblock
511  */
512 STATIC int
xfs_setup_devices(struct xfs_mount * mp)513 xfs_setup_devices(
514 	struct xfs_mount	*mp)
515 {
516 	int			error;
517 
518 	error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
519 	if (error)
520 		return error;
521 
522 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
523 		unsigned int	log_sector_size = BBSIZE;
524 
525 		if (xfs_has_sector(mp))
526 			log_sector_size = mp->m_sb.sb_logsectsize;
527 		error = xfs_setsize_buftarg(mp->m_logdev_targp,
528 					    log_sector_size);
529 		if (error)
530 			return error;
531 	}
532 	if (mp->m_rtdev_targp) {
533 		error = xfs_setsize_buftarg(mp->m_rtdev_targp,
534 					    mp->m_sb.sb_sectsize);
535 		if (error)
536 			return error;
537 	}
538 
539 	return 0;
540 }
541 
542 STATIC int
xfs_init_mount_workqueues(struct xfs_mount * mp)543 xfs_init_mount_workqueues(
544 	struct xfs_mount	*mp)
545 {
546 	mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
547 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
548 			1, mp->m_super->s_id);
549 	if (!mp->m_buf_workqueue)
550 		goto out;
551 
552 	mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
553 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
554 			0, mp->m_super->s_id);
555 	if (!mp->m_unwritten_workqueue)
556 		goto out_destroy_buf;
557 
558 	mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
559 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
560 			0, mp->m_super->s_id);
561 	if (!mp->m_reclaim_workqueue)
562 		goto out_destroy_unwritten;
563 
564 	mp->m_blockgc_wq = alloc_workqueue("xfs-blockgc/%s",
565 			XFS_WQFLAGS(WQ_UNBOUND | WQ_FREEZABLE | WQ_MEM_RECLAIM),
566 			0, mp->m_super->s_id);
567 	if (!mp->m_blockgc_wq)
568 		goto out_destroy_reclaim;
569 
570 	mp->m_inodegc_wq = alloc_workqueue("xfs-inodegc/%s",
571 			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
572 			1, mp->m_super->s_id);
573 	if (!mp->m_inodegc_wq)
574 		goto out_destroy_blockgc;
575 
576 	mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s",
577 			XFS_WQFLAGS(WQ_FREEZABLE), 0, mp->m_super->s_id);
578 	if (!mp->m_sync_workqueue)
579 		goto out_destroy_inodegc;
580 
581 	return 0;
582 
583 out_destroy_inodegc:
584 	destroy_workqueue(mp->m_inodegc_wq);
585 out_destroy_blockgc:
586 	destroy_workqueue(mp->m_blockgc_wq);
587 out_destroy_reclaim:
588 	destroy_workqueue(mp->m_reclaim_workqueue);
589 out_destroy_unwritten:
590 	destroy_workqueue(mp->m_unwritten_workqueue);
591 out_destroy_buf:
592 	destroy_workqueue(mp->m_buf_workqueue);
593 out:
594 	return -ENOMEM;
595 }
596 
597 STATIC void
xfs_destroy_mount_workqueues(struct xfs_mount * mp)598 xfs_destroy_mount_workqueues(
599 	struct xfs_mount	*mp)
600 {
601 	destroy_workqueue(mp->m_sync_workqueue);
602 	destroy_workqueue(mp->m_blockgc_wq);
603 	destroy_workqueue(mp->m_inodegc_wq);
604 	destroy_workqueue(mp->m_reclaim_workqueue);
605 	destroy_workqueue(mp->m_unwritten_workqueue);
606 	destroy_workqueue(mp->m_buf_workqueue);
607 }
608 
609 static void
xfs_flush_inodes_worker(struct work_struct * work)610 xfs_flush_inodes_worker(
611 	struct work_struct	*work)
612 {
613 	struct xfs_mount	*mp = container_of(work, struct xfs_mount,
614 						   m_flush_inodes_work);
615 	struct super_block	*sb = mp->m_super;
616 
617 	if (down_read_trylock(&sb->s_umount)) {
618 		sync_inodes_sb(sb);
619 		up_read(&sb->s_umount);
620 	}
621 }
622 
623 /*
624  * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
625  * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
626  * for IO to complete so that we effectively throttle multiple callers to the
627  * rate at which IO is completing.
628  */
629 void
xfs_flush_inodes(struct xfs_mount * mp)630 xfs_flush_inodes(
631 	struct xfs_mount	*mp)
632 {
633 	/*
634 	 * If flush_work() returns true then that means we waited for a flush
635 	 * which was already in progress.  Don't bother running another scan.
636 	 */
637 	if (flush_work(&mp->m_flush_inodes_work))
638 		return;
639 
640 	queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work);
641 	flush_work(&mp->m_flush_inodes_work);
642 }
643 
644 /* Catch misguided souls that try to use this interface on XFS */
645 STATIC struct inode *
xfs_fs_alloc_inode(struct super_block * sb)646 xfs_fs_alloc_inode(
647 	struct super_block	*sb)
648 {
649 	BUG();
650 	return NULL;
651 }
652 
653 /*
654  * Now that the generic code is guaranteed not to be accessing
655  * the linux inode, we can inactivate and reclaim the inode.
656  */
657 STATIC void
xfs_fs_destroy_inode(struct inode * inode)658 xfs_fs_destroy_inode(
659 	struct inode		*inode)
660 {
661 	struct xfs_inode	*ip = XFS_I(inode);
662 
663 	trace_xfs_destroy_inode(ip);
664 
665 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
666 	XFS_STATS_INC(ip->i_mount, vn_rele);
667 	XFS_STATS_INC(ip->i_mount, vn_remove);
668 	xfs_inode_mark_reclaimable(ip);
669 }
670 
671 static void
xfs_fs_dirty_inode(struct inode * inode,int flags)672 xfs_fs_dirty_inode(
673 	struct inode			*inode,
674 	int				flags)
675 {
676 	struct xfs_inode		*ip = XFS_I(inode);
677 	struct xfs_mount		*mp = ip->i_mount;
678 	struct xfs_trans		*tp;
679 
680 	if (!(inode->i_sb->s_flags & SB_LAZYTIME))
681 		return;
682 
683 	/*
684 	 * Only do the timestamp update if the inode is dirty (I_DIRTY_SYNC)
685 	 * and has dirty timestamp (I_DIRTY_TIME). I_DIRTY_TIME can be passed
686 	 * in flags possibly together with I_DIRTY_SYNC.
687 	 */
688 	if ((flags & ~I_DIRTY_TIME) != I_DIRTY_SYNC || !(flags & I_DIRTY_TIME))
689 		return;
690 
691 	if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
692 		return;
693 	xfs_ilock(ip, XFS_ILOCK_EXCL);
694 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
695 	xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
696 	xfs_trans_commit(tp);
697 }
698 
699 /*
700  * Slab object creation initialisation for the XFS inode.
701  * This covers only the idempotent fields in the XFS inode;
702  * all other fields need to be initialised on allocation
703  * from the slab. This avoids the need to repeatedly initialise
704  * fields in the xfs inode that left in the initialise state
705  * when freeing the inode.
706  */
707 STATIC void
xfs_fs_inode_init_once(void * inode)708 xfs_fs_inode_init_once(
709 	void			*inode)
710 {
711 	struct xfs_inode	*ip = inode;
712 
713 	memset(ip, 0, sizeof(struct xfs_inode));
714 
715 	/* vfs inode */
716 	inode_init_once(VFS_I(ip));
717 
718 	/* xfs inode */
719 	atomic_set(&ip->i_pincount, 0);
720 	spin_lock_init(&ip->i_flags_lock);
721 	init_rwsem(&ip->i_lock);
722 }
723 
724 /*
725  * We do an unlocked check for XFS_IDONTCACHE here because we are already
726  * serialised against cache hits here via the inode->i_lock and igrab() in
727  * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
728  * racing with us, and it avoids needing to grab a spinlock here for every inode
729  * we drop the final reference on.
730  */
731 STATIC int
xfs_fs_drop_inode(struct inode * inode)732 xfs_fs_drop_inode(
733 	struct inode		*inode)
734 {
735 	struct xfs_inode	*ip = XFS_I(inode);
736 
737 	/*
738 	 * If this unlinked inode is in the middle of recovery, don't
739 	 * drop the inode just yet; log recovery will take care of
740 	 * that.  See the comment for this inode flag.
741 	 */
742 	if (ip->i_flags & XFS_IRECOVERY) {
743 		ASSERT(xlog_recovery_needed(ip->i_mount->m_log));
744 		return 0;
745 	}
746 
747 	return generic_drop_inode(inode);
748 }
749 
750 static void
xfs_mount_free(struct xfs_mount * mp)751 xfs_mount_free(
752 	struct xfs_mount	*mp)
753 {
754 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
755 		xfs_free_buftarg(mp->m_logdev_targp);
756 	if (mp->m_rtdev_targp)
757 		xfs_free_buftarg(mp->m_rtdev_targp);
758 	if (mp->m_ddev_targp)
759 		xfs_free_buftarg(mp->m_ddev_targp);
760 
761 	debugfs_remove(mp->m_debugfs);
762 	kfree(mp->m_rtname);
763 	kfree(mp->m_logname);
764 	kfree(mp);
765 }
766 
767 STATIC int
xfs_fs_sync_fs(struct super_block * sb,int wait)768 xfs_fs_sync_fs(
769 	struct super_block	*sb,
770 	int			wait)
771 {
772 	struct xfs_mount	*mp = XFS_M(sb);
773 	int			error;
774 
775 	trace_xfs_fs_sync_fs(mp, __return_address);
776 
777 	/*
778 	 * Doing anything during the async pass would be counterproductive.
779 	 */
780 	if (!wait)
781 		return 0;
782 
783 	error = xfs_log_force(mp, XFS_LOG_SYNC);
784 	if (error)
785 		return error;
786 
787 	if (laptop_mode) {
788 		/*
789 		 * The disk must be active because we're syncing.
790 		 * We schedule log work now (now that the disk is
791 		 * active) instead of later (when it might not be).
792 		 */
793 		flush_delayed_work(&mp->m_log->l_work);
794 	}
795 
796 	/*
797 	 * If we are called with page faults frozen out, it means we are about
798 	 * to freeze the transaction subsystem. Take the opportunity to shut
799 	 * down inodegc because once SB_FREEZE_FS is set it's too late to
800 	 * prevent inactivation races with freeze. The fs doesn't get called
801 	 * again by the freezing process until after SB_FREEZE_FS has been set,
802 	 * so it's now or never.  Same logic applies to speculative allocation
803 	 * garbage collection.
804 	 *
805 	 * We don't care if this is a normal syncfs call that does this or
806 	 * freeze that does this - we can run this multiple times without issue
807 	 * and we won't race with a restart because a restart can only occur
808 	 * when the state is either SB_FREEZE_FS or SB_FREEZE_COMPLETE.
809 	 */
810 	if (sb->s_writers.frozen == SB_FREEZE_PAGEFAULT) {
811 		xfs_inodegc_stop(mp);
812 		xfs_blockgc_stop(mp);
813 	}
814 
815 	return 0;
816 }
817 
818 STATIC int
xfs_fs_statfs(struct dentry * dentry,struct kstatfs * statp)819 xfs_fs_statfs(
820 	struct dentry		*dentry,
821 	struct kstatfs		*statp)
822 {
823 	struct xfs_mount	*mp = XFS_M(dentry->d_sb);
824 	xfs_sb_t		*sbp = &mp->m_sb;
825 	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
826 	uint64_t		fakeinos, id;
827 	uint64_t		icount;
828 	uint64_t		ifree;
829 	uint64_t		fdblocks;
830 	xfs_extlen_t		lsize;
831 	int64_t			ffree;
832 
833 	/*
834 	 * Expedite background inodegc but don't wait. We do not want to block
835 	 * here waiting hours for a billion extent file to be truncated.
836 	 */
837 	xfs_inodegc_push(mp);
838 
839 	statp->f_type = XFS_SUPER_MAGIC;
840 	statp->f_namelen = MAXNAMELEN - 1;
841 
842 	id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
843 	statp->f_fsid = u64_to_fsid(id);
844 
845 	icount = percpu_counter_sum(&mp->m_icount);
846 	ifree = percpu_counter_sum(&mp->m_ifree);
847 	fdblocks = percpu_counter_sum(&mp->m_fdblocks);
848 
849 	spin_lock(&mp->m_sb_lock);
850 	statp->f_bsize = sbp->sb_blocksize;
851 	lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
852 	statp->f_blocks = sbp->sb_dblocks - lsize;
853 	spin_unlock(&mp->m_sb_lock);
854 
855 	/* make sure statp->f_bfree does not underflow */
856 	statp->f_bfree = max_t(int64_t, 0,
857 				fdblocks - xfs_fdblocks_unavailable(mp));
858 	statp->f_bavail = statp->f_bfree;
859 
860 	fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree);
861 	statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
862 	if (M_IGEO(mp)->maxicount)
863 		statp->f_files = min_t(typeof(statp->f_files),
864 					statp->f_files,
865 					M_IGEO(mp)->maxicount);
866 
867 	/* If sb_icount overshot maxicount, report actual allocation */
868 	statp->f_files = max_t(typeof(statp->f_files),
869 					statp->f_files,
870 					sbp->sb_icount);
871 
872 	/* make sure statp->f_ffree does not underflow */
873 	ffree = statp->f_files - (icount - ifree);
874 	statp->f_ffree = max_t(int64_t, ffree, 0);
875 
876 
877 	if ((ip->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
878 	    ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
879 			      (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
880 		xfs_qm_statvfs(ip, statp);
881 
882 	if (XFS_IS_REALTIME_MOUNT(mp) &&
883 	    (ip->i_diflags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
884 		s64	freertx;
885 
886 		statp->f_blocks = sbp->sb_rblocks;
887 		freertx = percpu_counter_sum_positive(&mp->m_frextents);
888 		statp->f_bavail = statp->f_bfree = xfs_rtx_to_rtb(mp, freertx);
889 	}
890 
891 	return 0;
892 }
893 
894 STATIC void
xfs_save_resvblks(struct xfs_mount * mp)895 xfs_save_resvblks(struct xfs_mount *mp)
896 {
897 	mp->m_resblks_save = mp->m_resblks;
898 	xfs_reserve_blocks(mp, 0);
899 }
900 
901 STATIC void
xfs_restore_resvblks(struct xfs_mount * mp)902 xfs_restore_resvblks(struct xfs_mount *mp)
903 {
904 	uint64_t resblks;
905 
906 	if (mp->m_resblks_save) {
907 		resblks = mp->m_resblks_save;
908 		mp->m_resblks_save = 0;
909 	} else
910 		resblks = xfs_default_resblks(mp);
911 
912 	xfs_reserve_blocks(mp, resblks);
913 }
914 
915 /*
916  * Second stage of a freeze. The data is already frozen so we only
917  * need to take care of the metadata. Once that's done sync the superblock
918  * to the log to dirty it in case of a crash while frozen. This ensures that we
919  * will recover the unlinked inode lists on the next mount.
920  */
921 STATIC int
xfs_fs_freeze(struct super_block * sb)922 xfs_fs_freeze(
923 	struct super_block	*sb)
924 {
925 	struct xfs_mount	*mp = XFS_M(sb);
926 	unsigned int		flags;
927 	int			ret;
928 
929 	/*
930 	 * The filesystem is now frozen far enough that memory reclaim
931 	 * cannot safely operate on the filesystem. Hence we need to
932 	 * set a GFP_NOFS context here to avoid recursion deadlocks.
933 	 */
934 	flags = memalloc_nofs_save();
935 	xfs_save_resvblks(mp);
936 	ret = xfs_log_quiesce(mp);
937 	memalloc_nofs_restore(flags);
938 
939 	/*
940 	 * For read-write filesystems, we need to restart the inodegc on error
941 	 * because we stopped it at SB_FREEZE_PAGEFAULT level and a thaw is not
942 	 * going to be run to restart it now.  We are at SB_FREEZE_FS level
943 	 * here, so we can restart safely without racing with a stop in
944 	 * xfs_fs_sync_fs().
945 	 */
946 	if (ret && !xfs_is_readonly(mp)) {
947 		xfs_blockgc_start(mp);
948 		xfs_inodegc_start(mp);
949 	}
950 
951 	return ret;
952 }
953 
954 STATIC int
xfs_fs_unfreeze(struct super_block * sb)955 xfs_fs_unfreeze(
956 	struct super_block	*sb)
957 {
958 	struct xfs_mount	*mp = XFS_M(sb);
959 
960 	xfs_restore_resvblks(mp);
961 	xfs_log_work_queue(mp);
962 
963 	/*
964 	 * Don't reactivate the inodegc worker on a readonly filesystem because
965 	 * inodes are sent directly to reclaim.  Don't reactivate the blockgc
966 	 * worker because there are no speculative preallocations on a readonly
967 	 * filesystem.
968 	 */
969 	if (!xfs_is_readonly(mp)) {
970 		xfs_blockgc_start(mp);
971 		xfs_inodegc_start(mp);
972 	}
973 
974 	return 0;
975 }
976 
977 /*
978  * This function fills in xfs_mount_t fields based on mount args.
979  * Note: the superblock _has_ now been read in.
980  */
981 STATIC int
xfs_finish_flags(struct xfs_mount * mp)982 xfs_finish_flags(
983 	struct xfs_mount	*mp)
984 {
985 	/* Fail a mount where the logbuf is smaller than the log stripe */
986 	if (xfs_has_logv2(mp)) {
987 		if (mp->m_logbsize <= 0 &&
988 		    mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
989 			mp->m_logbsize = mp->m_sb.sb_logsunit;
990 		} else if (mp->m_logbsize > 0 &&
991 			   mp->m_logbsize < mp->m_sb.sb_logsunit) {
992 			xfs_warn(mp,
993 		"logbuf size must be greater than or equal to log stripe size");
994 			return -EINVAL;
995 		}
996 	} else {
997 		/* Fail a mount if the logbuf is larger than 32K */
998 		if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
999 			xfs_warn(mp,
1000 		"logbuf size for version 1 logs must be 16K or 32K");
1001 			return -EINVAL;
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * V5 filesystems always use attr2 format for attributes.
1007 	 */
1008 	if (xfs_has_crc(mp) && xfs_has_noattr2(mp)) {
1009 		xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
1010 			     "attr2 is always enabled for V5 filesystems.");
1011 		return -EINVAL;
1012 	}
1013 
1014 	/*
1015 	 * prohibit r/w mounts of read-only filesystems
1016 	 */
1017 	if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !xfs_is_readonly(mp)) {
1018 		xfs_warn(mp,
1019 			"cannot mount a read-only filesystem as read-write");
1020 		return -EROFS;
1021 	}
1022 
1023 	if ((mp->m_qflags & XFS_GQUOTA_ACCT) &&
1024 	    (mp->m_qflags & XFS_PQUOTA_ACCT) &&
1025 	    !xfs_has_pquotino(mp)) {
1026 		xfs_warn(mp,
1027 		  "Super block does not support project and group quota together");
1028 		return -EINVAL;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static int
xfs_init_percpu_counters(struct xfs_mount * mp)1035 xfs_init_percpu_counters(
1036 	struct xfs_mount	*mp)
1037 {
1038 	int		error;
1039 
1040 	error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
1041 	if (error)
1042 		return -ENOMEM;
1043 
1044 	error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
1045 	if (error)
1046 		goto free_icount;
1047 
1048 	error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
1049 	if (error)
1050 		goto free_ifree;
1051 
1052 	error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
1053 	if (error)
1054 		goto free_fdblocks;
1055 
1056 	error = percpu_counter_init(&mp->m_delalloc_rtextents, 0, GFP_KERNEL);
1057 	if (error)
1058 		goto free_delalloc;
1059 
1060 	error = percpu_counter_init(&mp->m_frextents, 0, GFP_KERNEL);
1061 	if (error)
1062 		goto free_delalloc_rt;
1063 
1064 	return 0;
1065 
1066 free_delalloc_rt:
1067 	percpu_counter_destroy(&mp->m_delalloc_rtextents);
1068 free_delalloc:
1069 	percpu_counter_destroy(&mp->m_delalloc_blks);
1070 free_fdblocks:
1071 	percpu_counter_destroy(&mp->m_fdblocks);
1072 free_ifree:
1073 	percpu_counter_destroy(&mp->m_ifree);
1074 free_icount:
1075 	percpu_counter_destroy(&mp->m_icount);
1076 	return -ENOMEM;
1077 }
1078 
1079 void
xfs_reinit_percpu_counters(struct xfs_mount * mp)1080 xfs_reinit_percpu_counters(
1081 	struct xfs_mount	*mp)
1082 {
1083 	percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
1084 	percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
1085 	percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
1086 	percpu_counter_set(&mp->m_frextents, mp->m_sb.sb_frextents);
1087 }
1088 
1089 static void
xfs_destroy_percpu_counters(struct xfs_mount * mp)1090 xfs_destroy_percpu_counters(
1091 	struct xfs_mount	*mp)
1092 {
1093 	percpu_counter_destroy(&mp->m_icount);
1094 	percpu_counter_destroy(&mp->m_ifree);
1095 	percpu_counter_destroy(&mp->m_fdblocks);
1096 	ASSERT(xfs_is_shutdown(mp) ||
1097 	       percpu_counter_sum(&mp->m_delalloc_rtextents) == 0);
1098 	percpu_counter_destroy(&mp->m_delalloc_rtextents);
1099 	ASSERT(xfs_is_shutdown(mp) ||
1100 	       percpu_counter_sum(&mp->m_delalloc_blks) == 0);
1101 	percpu_counter_destroy(&mp->m_delalloc_blks);
1102 	percpu_counter_destroy(&mp->m_frextents);
1103 }
1104 
1105 static int
xfs_inodegc_init_percpu(struct xfs_mount * mp)1106 xfs_inodegc_init_percpu(
1107 	struct xfs_mount	*mp)
1108 {
1109 	struct xfs_inodegc	*gc;
1110 	int			cpu;
1111 
1112 	mp->m_inodegc = alloc_percpu(struct xfs_inodegc);
1113 	if (!mp->m_inodegc)
1114 		return -ENOMEM;
1115 
1116 	for_each_possible_cpu(cpu) {
1117 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
1118 		gc->cpu = cpu;
1119 		gc->mp = mp;
1120 		init_llist_head(&gc->list);
1121 		gc->items = 0;
1122 		gc->error = 0;
1123 		INIT_DELAYED_WORK(&gc->work, xfs_inodegc_worker);
1124 	}
1125 	return 0;
1126 }
1127 
1128 static void
xfs_inodegc_free_percpu(struct xfs_mount * mp)1129 xfs_inodegc_free_percpu(
1130 	struct xfs_mount	*mp)
1131 {
1132 	if (!mp->m_inodegc)
1133 		return;
1134 	free_percpu(mp->m_inodegc);
1135 }
1136 
1137 static void
xfs_fs_put_super(struct super_block * sb)1138 xfs_fs_put_super(
1139 	struct super_block	*sb)
1140 {
1141 	struct xfs_mount	*mp = XFS_M(sb);
1142 
1143 	xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid);
1144 	xfs_filestream_unmount(mp);
1145 	xfs_unmountfs(mp);
1146 
1147 	xfs_freesb(mp);
1148 	xchk_mount_stats_free(mp);
1149 	free_percpu(mp->m_stats.xs_stats);
1150 	xfs_inodegc_free_percpu(mp);
1151 	xfs_destroy_percpu_counters(mp);
1152 	xfs_destroy_mount_workqueues(mp);
1153 	xfs_shutdown_devices(mp);
1154 }
1155 
1156 static long
xfs_fs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)1157 xfs_fs_nr_cached_objects(
1158 	struct super_block	*sb,
1159 	struct shrink_control	*sc)
1160 {
1161 	/* Paranoia: catch incorrect calls during mount setup or teardown */
1162 	if (WARN_ON_ONCE(!sb->s_fs_info))
1163 		return 0;
1164 	return xfs_reclaim_inodes_count(XFS_M(sb));
1165 }
1166 
1167 static long
xfs_fs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)1168 xfs_fs_free_cached_objects(
1169 	struct super_block	*sb,
1170 	struct shrink_control	*sc)
1171 {
1172 	return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
1173 }
1174 
1175 static void
xfs_fs_shutdown(struct super_block * sb)1176 xfs_fs_shutdown(
1177 	struct super_block	*sb)
1178 {
1179 	xfs_force_shutdown(XFS_M(sb), SHUTDOWN_DEVICE_REMOVED);
1180 }
1181 
1182 static const struct super_operations xfs_super_operations = {
1183 	.alloc_inode		= xfs_fs_alloc_inode,
1184 	.destroy_inode		= xfs_fs_destroy_inode,
1185 	.dirty_inode		= xfs_fs_dirty_inode,
1186 	.drop_inode		= xfs_fs_drop_inode,
1187 	.put_super		= xfs_fs_put_super,
1188 	.sync_fs		= xfs_fs_sync_fs,
1189 	.freeze_fs		= xfs_fs_freeze,
1190 	.unfreeze_fs		= xfs_fs_unfreeze,
1191 	.statfs			= xfs_fs_statfs,
1192 	.show_options		= xfs_fs_show_options,
1193 	.nr_cached_objects	= xfs_fs_nr_cached_objects,
1194 	.free_cached_objects	= xfs_fs_free_cached_objects,
1195 	.shutdown		= xfs_fs_shutdown,
1196 };
1197 
1198 static int
suffix_kstrtoint(const char * s,unsigned int base,int * res)1199 suffix_kstrtoint(
1200 	const char	*s,
1201 	unsigned int	base,
1202 	int		*res)
1203 {
1204 	int		last, shift_left_factor = 0, _res;
1205 	char		*value;
1206 	int		ret = 0;
1207 
1208 	value = kstrdup(s, GFP_KERNEL);
1209 	if (!value)
1210 		return -ENOMEM;
1211 
1212 	last = strlen(value) - 1;
1213 	if (value[last] == 'K' || value[last] == 'k') {
1214 		shift_left_factor = 10;
1215 		value[last] = '\0';
1216 	}
1217 	if (value[last] == 'M' || value[last] == 'm') {
1218 		shift_left_factor = 20;
1219 		value[last] = '\0';
1220 	}
1221 	if (value[last] == 'G' || value[last] == 'g') {
1222 		shift_left_factor = 30;
1223 		value[last] = '\0';
1224 	}
1225 
1226 	if (kstrtoint(value, base, &_res))
1227 		ret = -EINVAL;
1228 	kfree(value);
1229 	*res = _res << shift_left_factor;
1230 	return ret;
1231 }
1232 
1233 static inline void
xfs_fs_warn_deprecated(struct fs_context * fc,struct fs_parameter * param,uint64_t flag,bool value)1234 xfs_fs_warn_deprecated(
1235 	struct fs_context	*fc,
1236 	struct fs_parameter	*param,
1237 	uint64_t		flag,
1238 	bool			value)
1239 {
1240 	/* Don't print the warning if reconfiguring and current mount point
1241 	 * already had the flag set
1242 	 */
1243 	if ((fc->purpose & FS_CONTEXT_FOR_RECONFIGURE) &&
1244             !!(XFS_M(fc->root->d_sb)->m_features & flag) == value)
1245 		return;
1246 	xfs_warn(fc->s_fs_info, "%s mount option is deprecated.", param->key);
1247 }
1248 
1249 /*
1250  * Set mount state from a mount option.
1251  *
1252  * NOTE: mp->m_super is NULL here!
1253  */
1254 static int
xfs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1255 xfs_fs_parse_param(
1256 	struct fs_context	*fc,
1257 	struct fs_parameter	*param)
1258 {
1259 	struct xfs_mount	*parsing_mp = fc->s_fs_info;
1260 	struct fs_parse_result	result;
1261 	int			size = 0;
1262 	int			opt;
1263 
1264 	opt = fs_parse(fc, xfs_fs_parameters, param, &result);
1265 	if (opt < 0)
1266 		return opt;
1267 
1268 	switch (opt) {
1269 	case Opt_logbufs:
1270 		parsing_mp->m_logbufs = result.uint_32;
1271 		return 0;
1272 	case Opt_logbsize:
1273 		if (suffix_kstrtoint(param->string, 10, &parsing_mp->m_logbsize))
1274 			return -EINVAL;
1275 		return 0;
1276 	case Opt_logdev:
1277 		kfree(parsing_mp->m_logname);
1278 		parsing_mp->m_logname = kstrdup(param->string, GFP_KERNEL);
1279 		if (!parsing_mp->m_logname)
1280 			return -ENOMEM;
1281 		return 0;
1282 	case Opt_rtdev:
1283 		kfree(parsing_mp->m_rtname);
1284 		parsing_mp->m_rtname = kstrdup(param->string, GFP_KERNEL);
1285 		if (!parsing_mp->m_rtname)
1286 			return -ENOMEM;
1287 		return 0;
1288 	case Opt_allocsize:
1289 		if (suffix_kstrtoint(param->string, 10, &size))
1290 			return -EINVAL;
1291 		parsing_mp->m_allocsize_log = ffs(size) - 1;
1292 		parsing_mp->m_features |= XFS_FEAT_ALLOCSIZE;
1293 		return 0;
1294 	case Opt_grpid:
1295 	case Opt_bsdgroups:
1296 		parsing_mp->m_features |= XFS_FEAT_GRPID;
1297 		return 0;
1298 	case Opt_nogrpid:
1299 	case Opt_sysvgroups:
1300 		parsing_mp->m_features &= ~XFS_FEAT_GRPID;
1301 		return 0;
1302 	case Opt_wsync:
1303 		parsing_mp->m_features |= XFS_FEAT_WSYNC;
1304 		return 0;
1305 	case Opt_norecovery:
1306 		parsing_mp->m_features |= XFS_FEAT_NORECOVERY;
1307 		return 0;
1308 	case Opt_noalign:
1309 		parsing_mp->m_features |= XFS_FEAT_NOALIGN;
1310 		return 0;
1311 	case Opt_swalloc:
1312 		parsing_mp->m_features |= XFS_FEAT_SWALLOC;
1313 		return 0;
1314 	case Opt_sunit:
1315 		parsing_mp->m_dalign = result.uint_32;
1316 		return 0;
1317 	case Opt_swidth:
1318 		parsing_mp->m_swidth = result.uint_32;
1319 		return 0;
1320 	case Opt_inode32:
1321 		parsing_mp->m_features |= XFS_FEAT_SMALL_INUMS;
1322 		return 0;
1323 	case Opt_inode64:
1324 		parsing_mp->m_features &= ~XFS_FEAT_SMALL_INUMS;
1325 		return 0;
1326 	case Opt_nouuid:
1327 		parsing_mp->m_features |= XFS_FEAT_NOUUID;
1328 		return 0;
1329 	case Opt_largeio:
1330 		parsing_mp->m_features |= XFS_FEAT_LARGE_IOSIZE;
1331 		return 0;
1332 	case Opt_nolargeio:
1333 		parsing_mp->m_features &= ~XFS_FEAT_LARGE_IOSIZE;
1334 		return 0;
1335 	case Opt_filestreams:
1336 		parsing_mp->m_features |= XFS_FEAT_FILESTREAMS;
1337 		return 0;
1338 	case Opt_noquota:
1339 		parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
1340 		parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
1341 		return 0;
1342 	case Opt_quota:
1343 	case Opt_uquota:
1344 	case Opt_usrquota:
1345 		parsing_mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ENFD);
1346 		return 0;
1347 	case Opt_qnoenforce:
1348 	case Opt_uqnoenforce:
1349 		parsing_mp->m_qflags |= XFS_UQUOTA_ACCT;
1350 		parsing_mp->m_qflags &= ~XFS_UQUOTA_ENFD;
1351 		return 0;
1352 	case Opt_pquota:
1353 	case Opt_prjquota:
1354 		parsing_mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ENFD);
1355 		return 0;
1356 	case Opt_pqnoenforce:
1357 		parsing_mp->m_qflags |= XFS_PQUOTA_ACCT;
1358 		parsing_mp->m_qflags &= ~XFS_PQUOTA_ENFD;
1359 		return 0;
1360 	case Opt_gquota:
1361 	case Opt_grpquota:
1362 		parsing_mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ENFD);
1363 		return 0;
1364 	case Opt_gqnoenforce:
1365 		parsing_mp->m_qflags |= XFS_GQUOTA_ACCT;
1366 		parsing_mp->m_qflags &= ~XFS_GQUOTA_ENFD;
1367 		return 0;
1368 	case Opt_discard:
1369 		parsing_mp->m_features |= XFS_FEAT_DISCARD;
1370 		return 0;
1371 	case Opt_nodiscard:
1372 		parsing_mp->m_features &= ~XFS_FEAT_DISCARD;
1373 		return 0;
1374 #ifdef CONFIG_FS_DAX
1375 	case Opt_dax:
1376 		xfs_mount_set_dax_mode(parsing_mp, XFS_DAX_ALWAYS);
1377 		return 0;
1378 	case Opt_dax_enum:
1379 		xfs_mount_set_dax_mode(parsing_mp, result.uint_32);
1380 		return 0;
1381 #endif
1382 	/* Following mount options will be removed in September 2025 */
1383 	case Opt_ikeep:
1384 		xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, true);
1385 		parsing_mp->m_features |= XFS_FEAT_IKEEP;
1386 		return 0;
1387 	case Opt_noikeep:
1388 		xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, false);
1389 		parsing_mp->m_features &= ~XFS_FEAT_IKEEP;
1390 		return 0;
1391 	case Opt_attr2:
1392 		xfs_fs_warn_deprecated(fc, param, XFS_FEAT_ATTR2, true);
1393 		parsing_mp->m_features |= XFS_FEAT_ATTR2;
1394 		return 0;
1395 	case Opt_noattr2:
1396 		xfs_fs_warn_deprecated(fc, param, XFS_FEAT_NOATTR2, true);
1397 		parsing_mp->m_features |= XFS_FEAT_NOATTR2;
1398 		return 0;
1399 	default:
1400 		xfs_warn(parsing_mp, "unknown mount option [%s].", param->key);
1401 		return -EINVAL;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 static int
xfs_fs_validate_params(struct xfs_mount * mp)1408 xfs_fs_validate_params(
1409 	struct xfs_mount	*mp)
1410 {
1411 	/* No recovery flag requires a read-only mount */
1412 	if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
1413 		xfs_warn(mp, "no-recovery mounts must be read-only.");
1414 		return -EINVAL;
1415 	}
1416 
1417 	/*
1418 	 * We have not read the superblock at this point, so only the attr2
1419 	 * mount option can set the attr2 feature by this stage.
1420 	 */
1421 	if (xfs_has_attr2(mp) && xfs_has_noattr2(mp)) {
1422 		xfs_warn(mp, "attr2 and noattr2 cannot both be specified.");
1423 		return -EINVAL;
1424 	}
1425 
1426 
1427 	if (xfs_has_noalign(mp) && (mp->m_dalign || mp->m_swidth)) {
1428 		xfs_warn(mp,
1429 	"sunit and swidth options incompatible with the noalign option");
1430 		return -EINVAL;
1431 	}
1432 
1433 	if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) {
1434 		xfs_warn(mp, "quota support not available in this kernel.");
1435 		return -EINVAL;
1436 	}
1437 
1438 	if ((mp->m_dalign && !mp->m_swidth) ||
1439 	    (!mp->m_dalign && mp->m_swidth)) {
1440 		xfs_warn(mp, "sunit and swidth must be specified together");
1441 		return -EINVAL;
1442 	}
1443 
1444 	if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) {
1445 		xfs_warn(mp,
1446 	"stripe width (%d) must be a multiple of the stripe unit (%d)",
1447 			mp->m_swidth, mp->m_dalign);
1448 		return -EINVAL;
1449 	}
1450 
1451 	if (mp->m_logbufs != -1 &&
1452 	    mp->m_logbufs != 0 &&
1453 	    (mp->m_logbufs < XLOG_MIN_ICLOGS ||
1454 	     mp->m_logbufs > XLOG_MAX_ICLOGS)) {
1455 		xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
1456 			mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
1457 		return -EINVAL;
1458 	}
1459 
1460 	if (mp->m_logbsize != -1 &&
1461 	    mp->m_logbsize !=  0 &&
1462 	    (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
1463 	     mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
1464 	     !is_power_of_2(mp->m_logbsize))) {
1465 		xfs_warn(mp,
1466 			"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
1467 			mp->m_logbsize);
1468 		return -EINVAL;
1469 	}
1470 
1471 	if (xfs_has_allocsize(mp) &&
1472 	    (mp->m_allocsize_log > XFS_MAX_IO_LOG ||
1473 	     mp->m_allocsize_log < XFS_MIN_IO_LOG)) {
1474 		xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
1475 			mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG);
1476 		return -EINVAL;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 struct dentry *
xfs_debugfs_mkdir(const char * name,struct dentry * parent)1483 xfs_debugfs_mkdir(
1484 	const char	*name,
1485 	struct dentry	*parent)
1486 {
1487 	struct dentry	*child;
1488 
1489 	/* Apparently we're expected to ignore error returns?? */
1490 	child = debugfs_create_dir(name, parent);
1491 	if (IS_ERR(child))
1492 		return NULL;
1493 
1494 	return child;
1495 }
1496 
1497 static int
xfs_fs_fill_super(struct super_block * sb,struct fs_context * fc)1498 xfs_fs_fill_super(
1499 	struct super_block	*sb,
1500 	struct fs_context	*fc)
1501 {
1502 	struct xfs_mount	*mp = sb->s_fs_info;
1503 	struct inode		*root;
1504 	int			flags = 0, error;
1505 
1506 	mp->m_super = sb;
1507 
1508 	/*
1509 	 * Copy VFS mount flags from the context now that all parameter parsing
1510 	 * is guaranteed to have been completed by either the old mount API or
1511 	 * the newer fsopen/fsconfig API.
1512 	 */
1513 	if (fc->sb_flags & SB_RDONLY)
1514 		xfs_set_readonly(mp);
1515 	if (fc->sb_flags & SB_DIRSYNC)
1516 		mp->m_features |= XFS_FEAT_DIRSYNC;
1517 	if (fc->sb_flags & SB_SYNCHRONOUS)
1518 		mp->m_features |= XFS_FEAT_WSYNC;
1519 
1520 	error = xfs_fs_validate_params(mp);
1521 	if (error)
1522 		return error;
1523 
1524 	sb_min_blocksize(sb, BBSIZE);
1525 	sb->s_xattr = xfs_xattr_handlers;
1526 	sb->s_export_op = &xfs_export_operations;
1527 #ifdef CONFIG_XFS_QUOTA
1528 	sb->s_qcop = &xfs_quotactl_operations;
1529 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
1530 #endif
1531 	sb->s_op = &xfs_super_operations;
1532 
1533 	/*
1534 	 * Delay mount work if the debug hook is set. This is debug
1535 	 * instrumention to coordinate simulation of xfs mount failures with
1536 	 * VFS superblock operations
1537 	 */
1538 	if (xfs_globals.mount_delay) {
1539 		xfs_notice(mp, "Delaying mount for %d seconds.",
1540 			xfs_globals.mount_delay);
1541 		msleep(xfs_globals.mount_delay * 1000);
1542 	}
1543 
1544 	if (fc->sb_flags & SB_SILENT)
1545 		flags |= XFS_MFSI_QUIET;
1546 
1547 	error = xfs_open_devices(mp);
1548 	if (error)
1549 		return error;
1550 
1551 	if (xfs_debugfs) {
1552 		mp->m_debugfs = xfs_debugfs_mkdir(mp->m_super->s_id,
1553 						  xfs_debugfs);
1554 	} else {
1555 		mp->m_debugfs = NULL;
1556 	}
1557 
1558 	error = xfs_init_mount_workqueues(mp);
1559 	if (error)
1560 		goto out_shutdown_devices;
1561 
1562 	error = xfs_init_percpu_counters(mp);
1563 	if (error)
1564 		goto out_destroy_workqueues;
1565 
1566 	error = xfs_inodegc_init_percpu(mp);
1567 	if (error)
1568 		goto out_destroy_counters;
1569 
1570 	/* Allocate stats memory before we do operations that might use it */
1571 	mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
1572 	if (!mp->m_stats.xs_stats) {
1573 		error = -ENOMEM;
1574 		goto out_destroy_inodegc;
1575 	}
1576 
1577 	error = xchk_mount_stats_alloc(mp);
1578 	if (error)
1579 		goto out_free_stats;
1580 
1581 	error = xfs_readsb(mp, flags);
1582 	if (error)
1583 		goto out_free_scrub_stats;
1584 
1585 	error = xfs_finish_flags(mp);
1586 	if (error)
1587 		goto out_free_sb;
1588 
1589 	error = xfs_setup_devices(mp);
1590 	if (error)
1591 		goto out_free_sb;
1592 
1593 	/*
1594 	 * V4 support is undergoing deprecation.
1595 	 *
1596 	 * Note: this has to use an open coded m_features check as xfs_has_crc
1597 	 * always returns false for !CONFIG_XFS_SUPPORT_V4.
1598 	 */
1599 	if (!(mp->m_features & XFS_FEAT_CRC)) {
1600 		if (!IS_ENABLED(CONFIG_XFS_SUPPORT_V4)) {
1601 			xfs_warn(mp,
1602 	"Deprecated V4 format (crc=0) not supported by kernel.");
1603 			error = -EINVAL;
1604 			goto out_free_sb;
1605 		}
1606 		xfs_warn_once(mp,
1607 	"Deprecated V4 format (crc=0) will not be supported after September 2030.");
1608 	}
1609 
1610 	/* ASCII case insensitivity is undergoing deprecation. */
1611 	if (xfs_has_asciici(mp)) {
1612 #ifdef CONFIG_XFS_SUPPORT_ASCII_CI
1613 		xfs_warn_once(mp,
1614 	"Deprecated ASCII case-insensitivity feature (ascii-ci=1) will not be supported after September 2030.");
1615 #else
1616 		xfs_warn(mp,
1617 	"Deprecated ASCII case-insensitivity feature (ascii-ci=1) not supported by kernel.");
1618 		error = -EINVAL;
1619 		goto out_free_sb;
1620 #endif
1621 	}
1622 
1623 	/* Filesystem claims it needs repair, so refuse the mount. */
1624 	if (xfs_has_needsrepair(mp)) {
1625 		xfs_warn(mp, "Filesystem needs repair.  Please run xfs_repair.");
1626 		error = -EFSCORRUPTED;
1627 		goto out_free_sb;
1628 	}
1629 
1630 	/*
1631 	 * Don't touch the filesystem if a user tool thinks it owns the primary
1632 	 * superblock.  mkfs doesn't clear the flag from secondary supers, so
1633 	 * we don't check them at all.
1634 	 */
1635 	if (mp->m_sb.sb_inprogress) {
1636 		xfs_warn(mp, "Offline file system operation in progress!");
1637 		error = -EFSCORRUPTED;
1638 		goto out_free_sb;
1639 	}
1640 
1641 	if (mp->m_sb.sb_blocksize > PAGE_SIZE) {
1642 		size_t max_folio_size = mapping_max_folio_size_supported();
1643 
1644 		if (!xfs_has_crc(mp)) {
1645 			xfs_warn(mp,
1646 "V4 Filesystem with blocksize %d bytes. Only pagesize (%ld) or less is supported.",
1647 				mp->m_sb.sb_blocksize, PAGE_SIZE);
1648 			error = -ENOSYS;
1649 			goto out_free_sb;
1650 		}
1651 
1652 		if (mp->m_sb.sb_blocksize > max_folio_size) {
1653 			xfs_warn(mp,
1654 "block size (%u bytes) not supported; Only block size (%zu) or less is supported",
1655 				mp->m_sb.sb_blocksize, max_folio_size);
1656 			error = -ENOSYS;
1657 			goto out_free_sb;
1658 		}
1659 
1660 		xfs_warn(mp,
1661 "EXPERIMENTAL: V5 Filesystem with Large Block Size (%d bytes) enabled.",
1662 			mp->m_sb.sb_blocksize);
1663 	}
1664 
1665 	/* Ensure this filesystem fits in the page cache limits */
1666 	if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) ||
1667 	    xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) {
1668 		xfs_warn(mp,
1669 		"file system too large to be mounted on this system.");
1670 		error = -EFBIG;
1671 		goto out_free_sb;
1672 	}
1673 
1674 	/*
1675 	 * XFS block mappings use 54 bits to store the logical block offset.
1676 	 * This should suffice to handle the maximum file size that the VFS
1677 	 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT
1678 	 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes
1679 	 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON
1680 	 * to check this assertion.
1681 	 *
1682 	 * Avoid integer overflow by comparing the maximum bmbt offset to the
1683 	 * maximum pagecache offset in units of fs blocks.
1684 	 */
1685 	if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) {
1686 		xfs_warn(mp,
1687 "MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!",
1688 			 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE),
1689 			 XFS_MAX_FILEOFF);
1690 		error = -EINVAL;
1691 		goto out_free_sb;
1692 	}
1693 
1694 	error = xfs_filestream_mount(mp);
1695 	if (error)
1696 		goto out_free_sb;
1697 
1698 	/*
1699 	 * we must configure the block size in the superblock before we run the
1700 	 * full mount process as the mount process can lookup and cache inodes.
1701 	 */
1702 	sb->s_magic = XFS_SUPER_MAGIC;
1703 	sb->s_blocksize = mp->m_sb.sb_blocksize;
1704 	sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1705 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1706 	sb->s_max_links = XFS_MAXLINK;
1707 	sb->s_time_gran = 1;
1708 	if (xfs_has_bigtime(mp)) {
1709 		sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN);
1710 		sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX);
1711 	} else {
1712 		sb->s_time_min = XFS_LEGACY_TIME_MIN;
1713 		sb->s_time_max = XFS_LEGACY_TIME_MAX;
1714 	}
1715 	trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max);
1716 	sb->s_iflags |= SB_I_CGROUPWB;
1717 
1718 	set_posix_acl_flag(sb);
1719 
1720 	/* version 5 superblocks support inode version counters. */
1721 	if (xfs_has_crc(mp))
1722 		sb->s_flags |= SB_I_VERSION;
1723 
1724 	if (xfs_has_dax_always(mp)) {
1725 		error = xfs_setup_dax_always(mp);
1726 		if (error)
1727 			goto out_filestream_unmount;
1728 	}
1729 
1730 	if (xfs_has_discard(mp) && !bdev_max_discard_sectors(sb->s_bdev)) {
1731 		xfs_warn(mp,
1732 	"mounting with \"discard\" option, but the device does not support discard");
1733 		mp->m_features &= ~XFS_FEAT_DISCARD;
1734 	}
1735 
1736 	if (xfs_has_reflink(mp)) {
1737 		if (mp->m_sb.sb_rblocks) {
1738 			xfs_alert(mp,
1739 	"reflink not compatible with realtime device!");
1740 			error = -EINVAL;
1741 			goto out_filestream_unmount;
1742 		}
1743 
1744 		if (xfs_globals.always_cow) {
1745 			xfs_info(mp, "using DEBUG-only always_cow mode.");
1746 			mp->m_always_cow = true;
1747 		}
1748 	}
1749 
1750 	if (xfs_has_rmapbt(mp) && mp->m_sb.sb_rblocks) {
1751 		xfs_alert(mp,
1752 	"reverse mapping btree not compatible with realtime device!");
1753 		error = -EINVAL;
1754 		goto out_filestream_unmount;
1755 	}
1756 
1757 	if (xfs_has_exchange_range(mp))
1758 		xfs_warn(mp,
1759 	"EXPERIMENTAL exchange-range feature enabled. Use at your own risk!");
1760 
1761 	if (xfs_has_parent(mp))
1762 		xfs_warn(mp,
1763 	"EXPERIMENTAL parent pointer feature enabled. Use at your own risk!");
1764 
1765 	error = xfs_mountfs(mp);
1766 	if (error)
1767 		goto out_filestream_unmount;
1768 
1769 	root = igrab(VFS_I(mp->m_rootip));
1770 	if (!root) {
1771 		error = -ENOENT;
1772 		goto out_unmount;
1773 	}
1774 	sb->s_root = d_make_root(root);
1775 	if (!sb->s_root) {
1776 		error = -ENOMEM;
1777 		goto out_unmount;
1778 	}
1779 
1780 	return 0;
1781 
1782  out_filestream_unmount:
1783 	xfs_filestream_unmount(mp);
1784  out_free_sb:
1785 	xfs_freesb(mp);
1786  out_free_scrub_stats:
1787 	xchk_mount_stats_free(mp);
1788  out_free_stats:
1789 	free_percpu(mp->m_stats.xs_stats);
1790  out_destroy_inodegc:
1791 	xfs_inodegc_free_percpu(mp);
1792  out_destroy_counters:
1793 	xfs_destroy_percpu_counters(mp);
1794  out_destroy_workqueues:
1795 	xfs_destroy_mount_workqueues(mp);
1796  out_shutdown_devices:
1797 	xfs_shutdown_devices(mp);
1798 	return error;
1799 
1800  out_unmount:
1801 	xfs_filestream_unmount(mp);
1802 	xfs_unmountfs(mp);
1803 	goto out_free_sb;
1804 }
1805 
1806 static int
xfs_fs_get_tree(struct fs_context * fc)1807 xfs_fs_get_tree(
1808 	struct fs_context	*fc)
1809 {
1810 	return get_tree_bdev(fc, xfs_fs_fill_super);
1811 }
1812 
1813 static int
xfs_remount_rw(struct xfs_mount * mp)1814 xfs_remount_rw(
1815 	struct xfs_mount	*mp)
1816 {
1817 	struct xfs_sb		*sbp = &mp->m_sb;
1818 	int error;
1819 
1820 	if (xfs_has_norecovery(mp)) {
1821 		xfs_warn(mp,
1822 			"ro->rw transition prohibited on norecovery mount");
1823 		return -EINVAL;
1824 	}
1825 
1826 	if (xfs_sb_is_v5(sbp) &&
1827 	    xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
1828 		xfs_warn(mp,
1829 	"ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
1830 			(sbp->sb_features_ro_compat &
1831 				XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
1832 		return -EINVAL;
1833 	}
1834 
1835 	xfs_clear_readonly(mp);
1836 
1837 	/*
1838 	 * If this is the first remount to writeable state we might have some
1839 	 * superblock changes to update.
1840 	 */
1841 	if (mp->m_update_sb) {
1842 		error = xfs_sync_sb(mp, false);
1843 		if (error) {
1844 			xfs_warn(mp, "failed to write sb changes");
1845 			return error;
1846 		}
1847 		mp->m_update_sb = false;
1848 	}
1849 
1850 	/*
1851 	 * Fill out the reserve pool if it is empty. Use the stashed value if
1852 	 * it is non-zero, otherwise go with the default.
1853 	 */
1854 	xfs_restore_resvblks(mp);
1855 	xfs_log_work_queue(mp);
1856 	xfs_blockgc_start(mp);
1857 
1858 	/* Create the per-AG metadata reservation pool .*/
1859 	error = xfs_fs_reserve_ag_blocks(mp);
1860 	if (error && error != -ENOSPC)
1861 		return error;
1862 
1863 	/* Re-enable the background inode inactivation worker. */
1864 	xfs_inodegc_start(mp);
1865 
1866 	return 0;
1867 }
1868 
1869 static int
xfs_remount_ro(struct xfs_mount * mp)1870 xfs_remount_ro(
1871 	struct xfs_mount	*mp)
1872 {
1873 	struct xfs_icwalk	icw = {
1874 		.icw_flags	= XFS_ICWALK_FLAG_SYNC,
1875 	};
1876 	int			error;
1877 
1878 	/* Flush all the dirty data to disk. */
1879 	error = sync_filesystem(mp->m_super);
1880 	if (error)
1881 		return error;
1882 
1883 	/*
1884 	 * Cancel background eofb scanning so it cannot race with the final
1885 	 * log force+buftarg wait and deadlock the remount.
1886 	 */
1887 	xfs_blockgc_stop(mp);
1888 
1889 	/*
1890 	 * Clear out all remaining COW staging extents and speculative post-EOF
1891 	 * preallocations so that we don't leave inodes requiring inactivation
1892 	 * cleanups during reclaim on a read-only mount.  We must process every
1893 	 * cached inode, so this requires a synchronous cache scan.
1894 	 */
1895 	error = xfs_blockgc_free_space(mp, &icw);
1896 	if (error) {
1897 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1898 		return error;
1899 	}
1900 
1901 	/*
1902 	 * Stop the inodegc background worker.  xfs_fs_reconfigure already
1903 	 * flushed all pending inodegc work when it sync'd the filesystem.
1904 	 * The VFS holds s_umount, so we know that inodes cannot enter
1905 	 * xfs_fs_destroy_inode during a remount operation.  In readonly mode
1906 	 * we send inodes straight to reclaim, so no inodes will be queued.
1907 	 */
1908 	xfs_inodegc_stop(mp);
1909 
1910 	/* Free the per-AG metadata reservation pool. */
1911 	xfs_fs_unreserve_ag_blocks(mp);
1912 
1913 	/*
1914 	 * Before we sync the metadata, we need to free up the reserve block
1915 	 * pool so that the used block count in the superblock on disk is
1916 	 * correct at the end of the remount. Stash the current* reserve pool
1917 	 * size so that if we get remounted rw, we can return it to the same
1918 	 * size.
1919 	 */
1920 	xfs_save_resvblks(mp);
1921 
1922 	xfs_log_clean(mp);
1923 	xfs_set_readonly(mp);
1924 
1925 	return 0;
1926 }
1927 
1928 /*
1929  * Logically we would return an error here to prevent users from believing
1930  * they might have changed mount options using remount which can't be changed.
1931  *
1932  * But unfortunately mount(8) adds all options from mtab and fstab to the mount
1933  * arguments in some cases so we can't blindly reject options, but have to
1934  * check for each specified option if it actually differs from the currently
1935  * set option and only reject it if that's the case.
1936  *
1937  * Until that is implemented we return success for every remount request, and
1938  * silently ignore all options that we can't actually change.
1939  */
1940 static int
xfs_fs_reconfigure(struct fs_context * fc)1941 xfs_fs_reconfigure(
1942 	struct fs_context *fc)
1943 {
1944 	struct xfs_mount	*mp = XFS_M(fc->root->d_sb);
1945 	struct xfs_mount        *new_mp = fc->s_fs_info;
1946 	int			flags = fc->sb_flags;
1947 	int			error;
1948 
1949 	/* version 5 superblocks always support version counters. */
1950 	if (xfs_has_crc(mp))
1951 		fc->sb_flags |= SB_I_VERSION;
1952 
1953 	error = xfs_fs_validate_params(new_mp);
1954 	if (error)
1955 		return error;
1956 
1957 	/* inode32 -> inode64 */
1958 	if (xfs_has_small_inums(mp) && !xfs_has_small_inums(new_mp)) {
1959 		mp->m_features &= ~XFS_FEAT_SMALL_INUMS;
1960 		mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount);
1961 	}
1962 
1963 	/* inode64 -> inode32 */
1964 	if (!xfs_has_small_inums(mp) && xfs_has_small_inums(new_mp)) {
1965 		mp->m_features |= XFS_FEAT_SMALL_INUMS;
1966 		mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount);
1967 	}
1968 
1969 	/* ro -> rw */
1970 	if (xfs_is_readonly(mp) && !(flags & SB_RDONLY)) {
1971 		error = xfs_remount_rw(mp);
1972 		if (error)
1973 			return error;
1974 	}
1975 
1976 	/* rw -> ro */
1977 	if (!xfs_is_readonly(mp) && (flags & SB_RDONLY)) {
1978 		error = xfs_remount_ro(mp);
1979 		if (error)
1980 			return error;
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 static void
xfs_fs_free(struct fs_context * fc)1987 xfs_fs_free(
1988 	struct fs_context	*fc)
1989 {
1990 	struct xfs_mount	*mp = fc->s_fs_info;
1991 
1992 	/*
1993 	 * mp is stored in the fs_context when it is initialized.
1994 	 * mp is transferred to the superblock on a successful mount,
1995 	 * but if an error occurs before the transfer we have to free
1996 	 * it here.
1997 	 */
1998 	if (mp)
1999 		xfs_mount_free(mp);
2000 }
2001 
2002 static const struct fs_context_operations xfs_context_ops = {
2003 	.parse_param = xfs_fs_parse_param,
2004 	.get_tree    = xfs_fs_get_tree,
2005 	.reconfigure = xfs_fs_reconfigure,
2006 	.free        = xfs_fs_free,
2007 };
2008 
2009 /*
2010  * WARNING: do not initialise any parameters in this function that depend on
2011  * mount option parsing having already been performed as this can be called from
2012  * fsopen() before any parameters have been set.
2013  */
xfs_init_fs_context(struct fs_context * fc)2014 static int xfs_init_fs_context(
2015 	struct fs_context	*fc)
2016 {
2017 	struct xfs_mount	*mp;
2018 
2019 	mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL | __GFP_NOFAIL);
2020 	if (!mp)
2021 		return -ENOMEM;
2022 
2023 	spin_lock_init(&mp->m_sb_lock);
2024 	xa_init(&mp->m_perags);
2025 	mutex_init(&mp->m_growlock);
2026 	INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker);
2027 	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
2028 	mp->m_kobj.kobject.kset = xfs_kset;
2029 	/*
2030 	 * We don't create the finobt per-ag space reservation until after log
2031 	 * recovery, so we must set this to true so that an ifree transaction
2032 	 * started during log recovery will not depend on space reservations
2033 	 * for finobt expansion.
2034 	 */
2035 	mp->m_finobt_nores = true;
2036 
2037 	/*
2038 	 * These can be overridden by the mount option parsing.
2039 	 */
2040 	mp->m_logbufs = -1;
2041 	mp->m_logbsize = -1;
2042 	mp->m_allocsize_log = 16; /* 64k */
2043 
2044 	xfs_hooks_init(&mp->m_dir_update_hooks);
2045 
2046 	fc->s_fs_info = mp;
2047 	fc->ops = &xfs_context_ops;
2048 
2049 	return 0;
2050 }
2051 
2052 static void
xfs_kill_sb(struct super_block * sb)2053 xfs_kill_sb(
2054 	struct super_block		*sb)
2055 {
2056 	kill_block_super(sb);
2057 	xfs_mount_free(XFS_M(sb));
2058 }
2059 
2060 static struct file_system_type xfs_fs_type = {
2061 	.owner			= THIS_MODULE,
2062 	.name			= "xfs",
2063 	.init_fs_context	= xfs_init_fs_context,
2064 	.parameters		= xfs_fs_parameters,
2065 	.kill_sb		= xfs_kill_sb,
2066 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
2067 };
2068 MODULE_ALIAS_FS("xfs");
2069 
2070 STATIC int __init
xfs_init_caches(void)2071 xfs_init_caches(void)
2072 {
2073 	int		error;
2074 
2075 	xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2076 					 SLAB_HWCACHE_ALIGN |
2077 					 SLAB_RECLAIM_ACCOUNT,
2078 					 NULL);
2079 	if (!xfs_buf_cache)
2080 		goto out;
2081 
2082 	xfs_log_ticket_cache = kmem_cache_create("xfs_log_ticket",
2083 						sizeof(struct xlog_ticket),
2084 						0, 0, NULL);
2085 	if (!xfs_log_ticket_cache)
2086 		goto out_destroy_buf_cache;
2087 
2088 	error = xfs_btree_init_cur_caches();
2089 	if (error)
2090 		goto out_destroy_log_ticket_cache;
2091 
2092 	error = rcbagbt_init_cur_cache();
2093 	if (error)
2094 		goto out_destroy_btree_cur_cache;
2095 
2096 	error = xfs_defer_init_item_caches();
2097 	if (error)
2098 		goto out_destroy_rcbagbt_cur_cache;
2099 
2100 	xfs_da_state_cache = kmem_cache_create("xfs_da_state",
2101 					      sizeof(struct xfs_da_state),
2102 					      0, 0, NULL);
2103 	if (!xfs_da_state_cache)
2104 		goto out_destroy_defer_item_cache;
2105 
2106 	xfs_ifork_cache = kmem_cache_create("xfs_ifork",
2107 					   sizeof(struct xfs_ifork),
2108 					   0, 0, NULL);
2109 	if (!xfs_ifork_cache)
2110 		goto out_destroy_da_state_cache;
2111 
2112 	xfs_trans_cache = kmem_cache_create("xfs_trans",
2113 					   sizeof(struct xfs_trans),
2114 					   0, 0, NULL);
2115 	if (!xfs_trans_cache)
2116 		goto out_destroy_ifork_cache;
2117 
2118 
2119 	/*
2120 	 * The size of the cache-allocated buf log item is the maximum
2121 	 * size possible under XFS.  This wastes a little bit of memory,
2122 	 * but it is much faster.
2123 	 */
2124 	xfs_buf_item_cache = kmem_cache_create("xfs_buf_item",
2125 					      sizeof(struct xfs_buf_log_item),
2126 					      0, 0, NULL);
2127 	if (!xfs_buf_item_cache)
2128 		goto out_destroy_trans_cache;
2129 
2130 	xfs_efd_cache = kmem_cache_create("xfs_efd_item",
2131 			xfs_efd_log_item_sizeof(XFS_EFD_MAX_FAST_EXTENTS),
2132 			0, 0, NULL);
2133 	if (!xfs_efd_cache)
2134 		goto out_destroy_buf_item_cache;
2135 
2136 	xfs_efi_cache = kmem_cache_create("xfs_efi_item",
2137 			xfs_efi_log_item_sizeof(XFS_EFI_MAX_FAST_EXTENTS),
2138 			0, 0, NULL);
2139 	if (!xfs_efi_cache)
2140 		goto out_destroy_efd_cache;
2141 
2142 	xfs_inode_cache = kmem_cache_create("xfs_inode",
2143 					   sizeof(struct xfs_inode), 0,
2144 					   (SLAB_HWCACHE_ALIGN |
2145 					    SLAB_RECLAIM_ACCOUNT |
2146 					    SLAB_ACCOUNT),
2147 					   xfs_fs_inode_init_once);
2148 	if (!xfs_inode_cache)
2149 		goto out_destroy_efi_cache;
2150 
2151 	xfs_ili_cache = kmem_cache_create("xfs_ili",
2152 					 sizeof(struct xfs_inode_log_item), 0,
2153 					 SLAB_RECLAIM_ACCOUNT,
2154 					 NULL);
2155 	if (!xfs_ili_cache)
2156 		goto out_destroy_inode_cache;
2157 
2158 	xfs_icreate_cache = kmem_cache_create("xfs_icr",
2159 					     sizeof(struct xfs_icreate_item),
2160 					     0, 0, NULL);
2161 	if (!xfs_icreate_cache)
2162 		goto out_destroy_ili_cache;
2163 
2164 	xfs_rud_cache = kmem_cache_create("xfs_rud_item",
2165 					 sizeof(struct xfs_rud_log_item),
2166 					 0, 0, NULL);
2167 	if (!xfs_rud_cache)
2168 		goto out_destroy_icreate_cache;
2169 
2170 	xfs_rui_cache = kmem_cache_create("xfs_rui_item",
2171 			xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
2172 			0, 0, NULL);
2173 	if (!xfs_rui_cache)
2174 		goto out_destroy_rud_cache;
2175 
2176 	xfs_cud_cache = kmem_cache_create("xfs_cud_item",
2177 					 sizeof(struct xfs_cud_log_item),
2178 					 0, 0, NULL);
2179 	if (!xfs_cud_cache)
2180 		goto out_destroy_rui_cache;
2181 
2182 	xfs_cui_cache = kmem_cache_create("xfs_cui_item",
2183 			xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
2184 			0, 0, NULL);
2185 	if (!xfs_cui_cache)
2186 		goto out_destroy_cud_cache;
2187 
2188 	xfs_bud_cache = kmem_cache_create("xfs_bud_item",
2189 					 sizeof(struct xfs_bud_log_item),
2190 					 0, 0, NULL);
2191 	if (!xfs_bud_cache)
2192 		goto out_destroy_cui_cache;
2193 
2194 	xfs_bui_cache = kmem_cache_create("xfs_bui_item",
2195 			xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
2196 			0, 0, NULL);
2197 	if (!xfs_bui_cache)
2198 		goto out_destroy_bud_cache;
2199 
2200 	xfs_attrd_cache = kmem_cache_create("xfs_attrd_item",
2201 					    sizeof(struct xfs_attrd_log_item),
2202 					    0, 0, NULL);
2203 	if (!xfs_attrd_cache)
2204 		goto out_destroy_bui_cache;
2205 
2206 	xfs_attri_cache = kmem_cache_create("xfs_attri_item",
2207 					    sizeof(struct xfs_attri_log_item),
2208 					    0, 0, NULL);
2209 	if (!xfs_attri_cache)
2210 		goto out_destroy_attrd_cache;
2211 
2212 	xfs_iunlink_cache = kmem_cache_create("xfs_iul_item",
2213 					     sizeof(struct xfs_iunlink_item),
2214 					     0, 0, NULL);
2215 	if (!xfs_iunlink_cache)
2216 		goto out_destroy_attri_cache;
2217 
2218 	xfs_xmd_cache = kmem_cache_create("xfs_xmd_item",
2219 					 sizeof(struct xfs_xmd_log_item),
2220 					 0, 0, NULL);
2221 	if (!xfs_xmd_cache)
2222 		goto out_destroy_iul_cache;
2223 
2224 	xfs_xmi_cache = kmem_cache_create("xfs_xmi_item",
2225 					 sizeof(struct xfs_xmi_log_item),
2226 					 0, 0, NULL);
2227 	if (!xfs_xmi_cache)
2228 		goto out_destroy_xmd_cache;
2229 
2230 	xfs_parent_args_cache = kmem_cache_create("xfs_parent_args",
2231 					     sizeof(struct xfs_parent_args),
2232 					     0, 0, NULL);
2233 	if (!xfs_parent_args_cache)
2234 		goto out_destroy_xmi_cache;
2235 
2236 	return 0;
2237 
2238  out_destroy_xmi_cache:
2239 	kmem_cache_destroy(xfs_xmi_cache);
2240  out_destroy_xmd_cache:
2241 	kmem_cache_destroy(xfs_xmd_cache);
2242  out_destroy_iul_cache:
2243 	kmem_cache_destroy(xfs_iunlink_cache);
2244  out_destroy_attri_cache:
2245 	kmem_cache_destroy(xfs_attri_cache);
2246  out_destroy_attrd_cache:
2247 	kmem_cache_destroy(xfs_attrd_cache);
2248  out_destroy_bui_cache:
2249 	kmem_cache_destroy(xfs_bui_cache);
2250  out_destroy_bud_cache:
2251 	kmem_cache_destroy(xfs_bud_cache);
2252  out_destroy_cui_cache:
2253 	kmem_cache_destroy(xfs_cui_cache);
2254  out_destroy_cud_cache:
2255 	kmem_cache_destroy(xfs_cud_cache);
2256  out_destroy_rui_cache:
2257 	kmem_cache_destroy(xfs_rui_cache);
2258  out_destroy_rud_cache:
2259 	kmem_cache_destroy(xfs_rud_cache);
2260  out_destroy_icreate_cache:
2261 	kmem_cache_destroy(xfs_icreate_cache);
2262  out_destroy_ili_cache:
2263 	kmem_cache_destroy(xfs_ili_cache);
2264  out_destroy_inode_cache:
2265 	kmem_cache_destroy(xfs_inode_cache);
2266  out_destroy_efi_cache:
2267 	kmem_cache_destroy(xfs_efi_cache);
2268  out_destroy_efd_cache:
2269 	kmem_cache_destroy(xfs_efd_cache);
2270  out_destroy_buf_item_cache:
2271 	kmem_cache_destroy(xfs_buf_item_cache);
2272  out_destroy_trans_cache:
2273 	kmem_cache_destroy(xfs_trans_cache);
2274  out_destroy_ifork_cache:
2275 	kmem_cache_destroy(xfs_ifork_cache);
2276  out_destroy_da_state_cache:
2277 	kmem_cache_destroy(xfs_da_state_cache);
2278  out_destroy_defer_item_cache:
2279 	xfs_defer_destroy_item_caches();
2280  out_destroy_rcbagbt_cur_cache:
2281 	rcbagbt_destroy_cur_cache();
2282  out_destroy_btree_cur_cache:
2283 	xfs_btree_destroy_cur_caches();
2284  out_destroy_log_ticket_cache:
2285 	kmem_cache_destroy(xfs_log_ticket_cache);
2286  out_destroy_buf_cache:
2287 	kmem_cache_destroy(xfs_buf_cache);
2288  out:
2289 	return -ENOMEM;
2290 }
2291 
2292 STATIC void
xfs_destroy_caches(void)2293 xfs_destroy_caches(void)
2294 {
2295 	/*
2296 	 * Make sure all delayed rcu free are flushed before we
2297 	 * destroy caches.
2298 	 */
2299 	rcu_barrier();
2300 	kmem_cache_destroy(xfs_parent_args_cache);
2301 	kmem_cache_destroy(xfs_xmd_cache);
2302 	kmem_cache_destroy(xfs_xmi_cache);
2303 	kmem_cache_destroy(xfs_iunlink_cache);
2304 	kmem_cache_destroy(xfs_attri_cache);
2305 	kmem_cache_destroy(xfs_attrd_cache);
2306 	kmem_cache_destroy(xfs_bui_cache);
2307 	kmem_cache_destroy(xfs_bud_cache);
2308 	kmem_cache_destroy(xfs_cui_cache);
2309 	kmem_cache_destroy(xfs_cud_cache);
2310 	kmem_cache_destroy(xfs_rui_cache);
2311 	kmem_cache_destroy(xfs_rud_cache);
2312 	kmem_cache_destroy(xfs_icreate_cache);
2313 	kmem_cache_destroy(xfs_ili_cache);
2314 	kmem_cache_destroy(xfs_inode_cache);
2315 	kmem_cache_destroy(xfs_efi_cache);
2316 	kmem_cache_destroy(xfs_efd_cache);
2317 	kmem_cache_destroy(xfs_buf_item_cache);
2318 	kmem_cache_destroy(xfs_trans_cache);
2319 	kmem_cache_destroy(xfs_ifork_cache);
2320 	kmem_cache_destroy(xfs_da_state_cache);
2321 	xfs_defer_destroy_item_caches();
2322 	rcbagbt_destroy_cur_cache();
2323 	xfs_btree_destroy_cur_caches();
2324 	kmem_cache_destroy(xfs_log_ticket_cache);
2325 	kmem_cache_destroy(xfs_buf_cache);
2326 }
2327 
2328 STATIC int __init
xfs_init_workqueues(void)2329 xfs_init_workqueues(void)
2330 {
2331 	/*
2332 	 * The allocation workqueue can be used in memory reclaim situations
2333 	 * (writepage path), and parallelism is only limited by the number of
2334 	 * AGs in all the filesystems mounted. Hence use the default large
2335 	 * max_active value for this workqueue.
2336 	 */
2337 	xfs_alloc_wq = alloc_workqueue("xfsalloc",
2338 			XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE), 0);
2339 	if (!xfs_alloc_wq)
2340 		return -ENOMEM;
2341 
2342 	xfs_discard_wq = alloc_workqueue("xfsdiscard", XFS_WQFLAGS(WQ_UNBOUND),
2343 			0);
2344 	if (!xfs_discard_wq)
2345 		goto out_free_alloc_wq;
2346 
2347 	return 0;
2348 out_free_alloc_wq:
2349 	destroy_workqueue(xfs_alloc_wq);
2350 	return -ENOMEM;
2351 }
2352 
2353 STATIC void
xfs_destroy_workqueues(void)2354 xfs_destroy_workqueues(void)
2355 {
2356 	destroy_workqueue(xfs_discard_wq);
2357 	destroy_workqueue(xfs_alloc_wq);
2358 }
2359 
2360 STATIC int __init
init_xfs_fs(void)2361 init_xfs_fs(void)
2362 {
2363 	int			error;
2364 
2365 	xfs_check_ondisk_structs();
2366 
2367 	error = xfs_dahash_test();
2368 	if (error)
2369 		return error;
2370 
2371 	printk(KERN_INFO XFS_VERSION_STRING " with "
2372 			 XFS_BUILD_OPTIONS " enabled\n");
2373 
2374 	xfs_dir_startup();
2375 
2376 	error = xfs_init_caches();
2377 	if (error)
2378 		goto out;
2379 
2380 	error = xfs_init_workqueues();
2381 	if (error)
2382 		goto out_destroy_caches;
2383 
2384 	error = xfs_mru_cache_init();
2385 	if (error)
2386 		goto out_destroy_wq;
2387 
2388 	error = xfs_init_procfs();
2389 	if (error)
2390 		goto out_mru_cache_uninit;
2391 
2392 	error = xfs_sysctl_register();
2393 	if (error)
2394 		goto out_cleanup_procfs;
2395 
2396 	xfs_debugfs = xfs_debugfs_mkdir("xfs", NULL);
2397 
2398 	xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
2399 	if (!xfs_kset) {
2400 		error = -ENOMEM;
2401 		goto out_debugfs_unregister;
2402 	}
2403 
2404 	xfsstats.xs_kobj.kobject.kset = xfs_kset;
2405 
2406 	xfsstats.xs_stats = alloc_percpu(struct xfsstats);
2407 	if (!xfsstats.xs_stats) {
2408 		error = -ENOMEM;
2409 		goto out_kset_unregister;
2410 	}
2411 
2412 	error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
2413 			       "stats");
2414 	if (error)
2415 		goto out_free_stats;
2416 
2417 	error = xchk_global_stats_setup(xfs_debugfs);
2418 	if (error)
2419 		goto out_remove_stats_kobj;
2420 
2421 #ifdef DEBUG
2422 	xfs_dbg_kobj.kobject.kset = xfs_kset;
2423 	error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
2424 	if (error)
2425 		goto out_remove_scrub_stats;
2426 #endif
2427 
2428 	error = xfs_qm_init();
2429 	if (error)
2430 		goto out_remove_dbg_kobj;
2431 
2432 	error = register_filesystem(&xfs_fs_type);
2433 	if (error)
2434 		goto out_qm_exit;
2435 	return 0;
2436 
2437  out_qm_exit:
2438 	xfs_qm_exit();
2439  out_remove_dbg_kobj:
2440 #ifdef DEBUG
2441 	xfs_sysfs_del(&xfs_dbg_kobj);
2442  out_remove_scrub_stats:
2443 #endif
2444 	xchk_global_stats_teardown();
2445  out_remove_stats_kobj:
2446 	xfs_sysfs_del(&xfsstats.xs_kobj);
2447  out_free_stats:
2448 	free_percpu(xfsstats.xs_stats);
2449  out_kset_unregister:
2450 	kset_unregister(xfs_kset);
2451  out_debugfs_unregister:
2452 	debugfs_remove(xfs_debugfs);
2453 	xfs_sysctl_unregister();
2454  out_cleanup_procfs:
2455 	xfs_cleanup_procfs();
2456  out_mru_cache_uninit:
2457 	xfs_mru_cache_uninit();
2458  out_destroy_wq:
2459 	xfs_destroy_workqueues();
2460  out_destroy_caches:
2461 	xfs_destroy_caches();
2462  out:
2463 	return error;
2464 }
2465 
2466 STATIC void __exit
exit_xfs_fs(void)2467 exit_xfs_fs(void)
2468 {
2469 	xfs_qm_exit();
2470 	unregister_filesystem(&xfs_fs_type);
2471 #ifdef DEBUG
2472 	xfs_sysfs_del(&xfs_dbg_kobj);
2473 #endif
2474 	xchk_global_stats_teardown();
2475 	xfs_sysfs_del(&xfsstats.xs_kobj);
2476 	free_percpu(xfsstats.xs_stats);
2477 	kset_unregister(xfs_kset);
2478 	debugfs_remove(xfs_debugfs);
2479 	xfs_sysctl_unregister();
2480 	xfs_cleanup_procfs();
2481 	xfs_mru_cache_uninit();
2482 	xfs_destroy_workqueues();
2483 	xfs_destroy_caches();
2484 	xfs_uuid_table_free();
2485 }
2486 
2487 module_init(init_xfs_fs);
2488 module_exit(exit_xfs_fs);
2489 
2490 MODULE_AUTHOR("Silicon Graphics, Inc.");
2491 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
2492 MODULE_LICENSE("GPL");
2493