1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4   * All Rights Reserved.
5   */
6  #include "xfs.h"
7  #include "xfs_fs.h"
8  #include "xfs_shared.h"
9  #include "xfs_format.h"
10  #include "xfs_log_format.h"
11  #include "xfs_trans_resv.h"
12  #include "xfs_mount.h"
13  #include "xfs_inode.h"
14  #include "xfs_trans.h"
15  #include "xfs_inode_item.h"
16  #include "xfs_bmap.h"
17  #include "xfs_bmap_util.h"
18  #include "xfs_dir2.h"
19  #include "xfs_dir2_priv.h"
20  #include "xfs_ioctl.h"
21  #include "xfs_trace.h"
22  #include "xfs_log.h"
23  #include "xfs_icache.h"
24  #include "xfs_pnfs.h"
25  #include "xfs_iomap.h"
26  #include "xfs_reflink.h"
27  #include "xfs_file.h"
28  
29  #include <linux/dax.h>
30  #include <linux/falloc.h>
31  #include <linux/backing-dev.h>
32  #include <linux/mman.h>
33  #include <linux/fadvise.h>
34  #include <linux/mount.h>
35  
36  static const struct vm_operations_struct xfs_file_vm_ops;
37  
38  /*
39   * Decide if the given file range is aligned to the size of the fundamental
40   * allocation unit for the file.
41   */
42  bool
xfs_is_falloc_aligned(struct xfs_inode * ip,loff_t pos,long long int len)43  xfs_is_falloc_aligned(
44  	struct xfs_inode	*ip,
45  	loff_t			pos,
46  	long long int		len)
47  {
48  	unsigned int		alloc_unit = xfs_inode_alloc_unitsize(ip);
49  
50  	if (!is_power_of_2(alloc_unit))
51  		return isaligned_64(pos, alloc_unit) &&
52  		       isaligned_64(len, alloc_unit);
53  
54  	return !((pos | len) & (alloc_unit - 1));
55  }
56  
57  /*
58   * Fsync operations on directories are much simpler than on regular files,
59   * as there is no file data to flush, and thus also no need for explicit
60   * cache flush operations, and there are no non-transaction metadata updates
61   * on directories either.
62   */
63  STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)64  xfs_dir_fsync(
65  	struct file		*file,
66  	loff_t			start,
67  	loff_t			end,
68  	int			datasync)
69  {
70  	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
71  
72  	trace_xfs_dir_fsync(ip);
73  	return xfs_log_force_inode(ip);
74  }
75  
76  static xfs_csn_t
xfs_fsync_seq(struct xfs_inode * ip,bool datasync)77  xfs_fsync_seq(
78  	struct xfs_inode	*ip,
79  	bool			datasync)
80  {
81  	if (!xfs_ipincount(ip))
82  		return 0;
83  	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
84  		return 0;
85  	return ip->i_itemp->ili_commit_seq;
86  }
87  
88  /*
89   * All metadata updates are logged, which means that we just have to flush the
90   * log up to the latest LSN that touched the inode.
91   *
92   * If we have concurrent fsync/fdatasync() calls, we need them to all block on
93   * the log force before we clear the ili_fsync_fields field. This ensures that
94   * we don't get a racing sync operation that does not wait for the metadata to
95   * hit the journal before returning.  If we race with clearing ili_fsync_fields,
96   * then all that will happen is the log force will do nothing as the lsn will
97   * already be on disk.  We can't race with setting ili_fsync_fields because that
98   * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
99   * shared until after the ili_fsync_fields is cleared.
100   */
101  static  int
xfs_fsync_flush_log(struct xfs_inode * ip,bool datasync,int * log_flushed)102  xfs_fsync_flush_log(
103  	struct xfs_inode	*ip,
104  	bool			datasync,
105  	int			*log_flushed)
106  {
107  	int			error = 0;
108  	xfs_csn_t		seq;
109  
110  	xfs_ilock(ip, XFS_ILOCK_SHARED);
111  	seq = xfs_fsync_seq(ip, datasync);
112  	if (seq) {
113  		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
114  					  log_flushed);
115  
116  		spin_lock(&ip->i_itemp->ili_lock);
117  		ip->i_itemp->ili_fsync_fields = 0;
118  		spin_unlock(&ip->i_itemp->ili_lock);
119  	}
120  	xfs_iunlock(ip, XFS_ILOCK_SHARED);
121  	return error;
122  }
123  
124  STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)125  xfs_file_fsync(
126  	struct file		*file,
127  	loff_t			start,
128  	loff_t			end,
129  	int			datasync)
130  {
131  	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
132  	struct xfs_mount	*mp = ip->i_mount;
133  	int			error, err2;
134  	int			log_flushed = 0;
135  
136  	trace_xfs_file_fsync(ip);
137  
138  	error = file_write_and_wait_range(file, start, end);
139  	if (error)
140  		return error;
141  
142  	if (xfs_is_shutdown(mp))
143  		return -EIO;
144  
145  	xfs_iflags_clear(ip, XFS_ITRUNCATED);
146  
147  	/*
148  	 * If we have an RT and/or log subvolume we need to make sure to flush
149  	 * the write cache the device used for file data first.  This is to
150  	 * ensure newly written file data make it to disk before logging the new
151  	 * inode size in case of an extending write.
152  	 */
153  	if (XFS_IS_REALTIME_INODE(ip))
154  		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
155  	else if (mp->m_logdev_targp != mp->m_ddev_targp)
156  		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
157  
158  	/*
159  	 * Any inode that has dirty modifications in the log is pinned.  The
160  	 * racy check here for a pinned inode will not catch modifications
161  	 * that happen concurrently to the fsync call, but fsync semantics
162  	 * only require to sync previously completed I/O.
163  	 */
164  	if (xfs_ipincount(ip)) {
165  		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
166  		if (err2 && !error)
167  			error = err2;
168  	}
169  
170  	/*
171  	 * If we only have a single device, and the log force about was
172  	 * a no-op we might have to flush the data device cache here.
173  	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
174  	 * an already allocated file and thus do not have any metadata to
175  	 * commit.
176  	 */
177  	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
178  	    mp->m_logdev_targp == mp->m_ddev_targp) {
179  		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
180  		if (err2 && !error)
181  			error = err2;
182  	}
183  
184  	return error;
185  }
186  
187  static int
xfs_ilock_iocb(struct kiocb * iocb,unsigned int lock_mode)188  xfs_ilock_iocb(
189  	struct kiocb		*iocb,
190  	unsigned int		lock_mode)
191  {
192  	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
193  
194  	if (iocb->ki_flags & IOCB_NOWAIT) {
195  		if (!xfs_ilock_nowait(ip, lock_mode))
196  			return -EAGAIN;
197  	} else {
198  		xfs_ilock(ip, lock_mode);
199  	}
200  
201  	return 0;
202  }
203  
204  static int
xfs_ilock_iocb_for_write(struct kiocb * iocb,unsigned int * lock_mode)205  xfs_ilock_iocb_for_write(
206  	struct kiocb		*iocb,
207  	unsigned int		*lock_mode)
208  {
209  	ssize_t			ret;
210  	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
211  
212  	ret = xfs_ilock_iocb(iocb, *lock_mode);
213  	if (ret)
214  		return ret;
215  
216  	/*
217  	 * If a reflink remap is in progress we always need to take the iolock
218  	 * exclusively to wait for it to finish.
219  	 */
220  	if (*lock_mode == XFS_IOLOCK_SHARED &&
221  	    xfs_iflags_test(ip, XFS_IREMAPPING)) {
222  		xfs_iunlock(ip, *lock_mode);
223  		*lock_mode = XFS_IOLOCK_EXCL;
224  		return xfs_ilock_iocb(iocb, *lock_mode);
225  	}
226  
227  	return 0;
228  }
229  
230  STATIC ssize_t
xfs_file_dio_read(struct kiocb * iocb,struct iov_iter * to)231  xfs_file_dio_read(
232  	struct kiocb		*iocb,
233  	struct iov_iter		*to)
234  {
235  	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
236  	ssize_t			ret;
237  
238  	trace_xfs_file_direct_read(iocb, to);
239  
240  	if (!iov_iter_count(to))
241  		return 0; /* skip atime */
242  
243  	file_accessed(iocb->ki_filp);
244  
245  	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
246  	if (ret)
247  		return ret;
248  	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
249  	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
250  
251  	return ret;
252  }
253  
254  static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)255  xfs_file_dax_read(
256  	struct kiocb		*iocb,
257  	struct iov_iter		*to)
258  {
259  	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
260  	ssize_t			ret = 0;
261  
262  	trace_xfs_file_dax_read(iocb, to);
263  
264  	if (!iov_iter_count(to))
265  		return 0; /* skip atime */
266  
267  	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
268  	if (ret)
269  		return ret;
270  	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
271  	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
272  
273  	file_accessed(iocb->ki_filp);
274  	return ret;
275  }
276  
277  STATIC ssize_t
xfs_file_buffered_read(struct kiocb * iocb,struct iov_iter * to)278  xfs_file_buffered_read(
279  	struct kiocb		*iocb,
280  	struct iov_iter		*to)
281  {
282  	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
283  	ssize_t			ret;
284  
285  	trace_xfs_file_buffered_read(iocb, to);
286  
287  	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
288  	if (ret)
289  		return ret;
290  	ret = generic_file_read_iter(iocb, to);
291  	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
292  
293  	return ret;
294  }
295  
296  STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)297  xfs_file_read_iter(
298  	struct kiocb		*iocb,
299  	struct iov_iter		*to)
300  {
301  	struct inode		*inode = file_inode(iocb->ki_filp);
302  	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
303  	ssize_t			ret = 0;
304  
305  	XFS_STATS_INC(mp, xs_read_calls);
306  
307  	if (xfs_is_shutdown(mp))
308  		return -EIO;
309  
310  	if (IS_DAX(inode))
311  		ret = xfs_file_dax_read(iocb, to);
312  	else if (iocb->ki_flags & IOCB_DIRECT)
313  		ret = xfs_file_dio_read(iocb, to);
314  	else
315  		ret = xfs_file_buffered_read(iocb, to);
316  
317  	if (ret > 0)
318  		XFS_STATS_ADD(mp, xs_read_bytes, ret);
319  	return ret;
320  }
321  
322  STATIC ssize_t
xfs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)323  xfs_file_splice_read(
324  	struct file		*in,
325  	loff_t			*ppos,
326  	struct pipe_inode_info	*pipe,
327  	size_t			len,
328  	unsigned int		flags)
329  {
330  	struct inode		*inode = file_inode(in);
331  	struct xfs_inode	*ip = XFS_I(inode);
332  	struct xfs_mount	*mp = ip->i_mount;
333  	ssize_t			ret = 0;
334  
335  	XFS_STATS_INC(mp, xs_read_calls);
336  
337  	if (xfs_is_shutdown(mp))
338  		return -EIO;
339  
340  	trace_xfs_file_splice_read(ip, *ppos, len);
341  
342  	xfs_ilock(ip, XFS_IOLOCK_SHARED);
343  	ret = filemap_splice_read(in, ppos, pipe, len, flags);
344  	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
345  	if (ret > 0)
346  		XFS_STATS_ADD(mp, xs_read_bytes, ret);
347  	return ret;
348  }
349  
350  /*
351   * Take care of zeroing post-EOF blocks when they might exist.
352   *
353   * Returns 0 if successfully, a negative error for a failure, or 1 if this
354   * function dropped the iolock and reacquired it exclusively and the caller
355   * needs to restart the write sanity checks.
356   */
357  static ssize_t
xfs_file_write_zero_eof(struct kiocb * iocb,struct iov_iter * from,unsigned int * iolock,size_t count,bool * drained_dio)358  xfs_file_write_zero_eof(
359  	struct kiocb		*iocb,
360  	struct iov_iter		*from,
361  	unsigned int		*iolock,
362  	size_t			count,
363  	bool			*drained_dio)
364  {
365  	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
366  	loff_t			isize;
367  	int			error;
368  
369  	/*
370  	 * We need to serialise against EOF updates that occur in IO completions
371  	 * here. We want to make sure that nobody is changing the size while
372  	 * we do this check until we have placed an IO barrier (i.e. hold
373  	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
374  	 * spinlock effectively forms a memory barrier once we have
375  	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
376  	 * hence be able to correctly determine if we need to run zeroing.
377  	 */
378  	spin_lock(&ip->i_flags_lock);
379  	isize = i_size_read(VFS_I(ip));
380  	if (iocb->ki_pos <= isize) {
381  		spin_unlock(&ip->i_flags_lock);
382  		return 0;
383  	}
384  	spin_unlock(&ip->i_flags_lock);
385  
386  	if (iocb->ki_flags & IOCB_NOWAIT)
387  		return -EAGAIN;
388  
389  	if (!*drained_dio) {
390  		/*
391  		 * If zeroing is needed and we are currently holding the iolock
392  		 * shared, we need to update it to exclusive which implies
393  		 * having to redo all checks before.
394  		 */
395  		if (*iolock == XFS_IOLOCK_SHARED) {
396  			xfs_iunlock(ip, *iolock);
397  			*iolock = XFS_IOLOCK_EXCL;
398  			xfs_ilock(ip, *iolock);
399  			iov_iter_reexpand(from, count);
400  		}
401  
402  		/*
403  		 * We now have an IO submission barrier in place, but AIO can do
404  		 * EOF updates during IO completion and hence we now need to
405  		 * wait for all of them to drain.  Non-AIO DIO will have drained
406  		 * before we are given the XFS_IOLOCK_EXCL, and so for most
407  		 * cases this wait is a no-op.
408  		 */
409  		inode_dio_wait(VFS_I(ip));
410  		*drained_dio = true;
411  		return 1;
412  	}
413  
414  	trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
415  
416  	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
417  	error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
418  	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
419  
420  	return error;
421  }
422  
423  /*
424   * Common pre-write limit and setup checks.
425   *
426   * Called with the iolock held either shared and exclusive according to
427   * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
428   * if called for a direct write beyond i_size.
429   */
430  STATIC ssize_t
xfs_file_write_checks(struct kiocb * iocb,struct iov_iter * from,unsigned int * iolock)431  xfs_file_write_checks(
432  	struct kiocb		*iocb,
433  	struct iov_iter		*from,
434  	unsigned int		*iolock)
435  {
436  	struct inode		*inode = iocb->ki_filp->f_mapping->host;
437  	size_t			count = iov_iter_count(from);
438  	bool			drained_dio = false;
439  	ssize_t			error;
440  
441  restart:
442  	error = generic_write_checks(iocb, from);
443  	if (error <= 0)
444  		return error;
445  
446  	if (iocb->ki_flags & IOCB_NOWAIT) {
447  		error = break_layout(inode, false);
448  		if (error == -EWOULDBLOCK)
449  			error = -EAGAIN;
450  	} else {
451  		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
452  	}
453  
454  	if (error)
455  		return error;
456  
457  	/*
458  	 * For changing security info in file_remove_privs() we need i_rwsem
459  	 * exclusively.
460  	 */
461  	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
462  		xfs_iunlock(XFS_I(inode), *iolock);
463  		*iolock = XFS_IOLOCK_EXCL;
464  		error = xfs_ilock_iocb(iocb, *iolock);
465  		if (error) {
466  			*iolock = 0;
467  			return error;
468  		}
469  		goto restart;
470  	}
471  
472  	/*
473  	 * If the offset is beyond the size of the file, we need to zero all
474  	 * blocks that fall between the existing EOF and the start of this
475  	 * write.
476  	 *
477  	 * We can do an unlocked check for i_size here safely as I/O completion
478  	 * can only extend EOF.  Truncate is locked out at this point, so the
479  	 * EOF can not move backwards, only forwards. Hence we only need to take
480  	 * the slow path when we are at or beyond the current EOF.
481  	 */
482  	if (iocb->ki_pos > i_size_read(inode)) {
483  		error = xfs_file_write_zero_eof(iocb, from, iolock, count,
484  				&drained_dio);
485  		if (error == 1)
486  			goto restart;
487  		if (error)
488  			return error;
489  	}
490  
491  	return kiocb_modified(iocb);
492  }
493  
494  static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)495  xfs_dio_write_end_io(
496  	struct kiocb		*iocb,
497  	ssize_t			size,
498  	int			error,
499  	unsigned		flags)
500  {
501  	struct inode		*inode = file_inode(iocb->ki_filp);
502  	struct xfs_inode	*ip = XFS_I(inode);
503  	loff_t			offset = iocb->ki_pos;
504  	unsigned int		nofs_flag;
505  
506  	trace_xfs_end_io_direct_write(ip, offset, size);
507  
508  	if (xfs_is_shutdown(ip->i_mount))
509  		return -EIO;
510  
511  	if (error)
512  		return error;
513  	if (!size)
514  		return 0;
515  
516  	/*
517  	 * Capture amount written on completion as we can't reliably account
518  	 * for it on submission.
519  	 */
520  	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
521  
522  	/*
523  	 * We can allocate memory here while doing writeback on behalf of
524  	 * memory reclaim.  To avoid memory allocation deadlocks set the
525  	 * task-wide nofs context for the following operations.
526  	 */
527  	nofs_flag = memalloc_nofs_save();
528  
529  	if (flags & IOMAP_DIO_COW) {
530  		error = xfs_reflink_end_cow(ip, offset, size);
531  		if (error)
532  			goto out;
533  	}
534  
535  	/*
536  	 * Unwritten conversion updates the in-core isize after extent
537  	 * conversion but before updating the on-disk size. Updating isize any
538  	 * earlier allows a racing dio read to find unwritten extents before
539  	 * they are converted.
540  	 */
541  	if (flags & IOMAP_DIO_UNWRITTEN) {
542  		error = xfs_iomap_write_unwritten(ip, offset, size, true);
543  		goto out;
544  	}
545  
546  	/*
547  	 * We need to update the in-core inode size here so that we don't end up
548  	 * with the on-disk inode size being outside the in-core inode size. We
549  	 * have no other method of updating EOF for AIO, so always do it here
550  	 * if necessary.
551  	 *
552  	 * We need to lock the test/set EOF update as we can be racing with
553  	 * other IO completions here to update the EOF. Failing to serialise
554  	 * here can result in EOF moving backwards and Bad Things Happen when
555  	 * that occurs.
556  	 *
557  	 * As IO completion only ever extends EOF, we can do an unlocked check
558  	 * here to avoid taking the spinlock. If we land within the current EOF,
559  	 * then we do not need to do an extending update at all, and we don't
560  	 * need to take the lock to check this. If we race with an update moving
561  	 * EOF, then we'll either still be beyond EOF and need to take the lock,
562  	 * or we'll be within EOF and we don't need to take it at all.
563  	 */
564  	if (offset + size <= i_size_read(inode))
565  		goto out;
566  
567  	spin_lock(&ip->i_flags_lock);
568  	if (offset + size > i_size_read(inode)) {
569  		i_size_write(inode, offset + size);
570  		spin_unlock(&ip->i_flags_lock);
571  		error = xfs_setfilesize(ip, offset, size);
572  	} else {
573  		spin_unlock(&ip->i_flags_lock);
574  	}
575  
576  out:
577  	memalloc_nofs_restore(nofs_flag);
578  	return error;
579  }
580  
581  static const struct iomap_dio_ops xfs_dio_write_ops = {
582  	.end_io		= xfs_dio_write_end_io,
583  };
584  
585  /*
586   * Handle block aligned direct I/O writes
587   */
588  static noinline ssize_t
xfs_file_dio_write_aligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)589  xfs_file_dio_write_aligned(
590  	struct xfs_inode	*ip,
591  	struct kiocb		*iocb,
592  	struct iov_iter		*from)
593  {
594  	unsigned int		iolock = XFS_IOLOCK_SHARED;
595  	ssize_t			ret;
596  
597  	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
598  	if (ret)
599  		return ret;
600  	ret = xfs_file_write_checks(iocb, from, &iolock);
601  	if (ret)
602  		goto out_unlock;
603  
604  	/*
605  	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
606  	 * the iolock back to shared if we had to take the exclusive lock in
607  	 * xfs_file_write_checks() for other reasons.
608  	 */
609  	if (iolock == XFS_IOLOCK_EXCL) {
610  		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
611  		iolock = XFS_IOLOCK_SHARED;
612  	}
613  	trace_xfs_file_direct_write(iocb, from);
614  	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
615  			   &xfs_dio_write_ops, 0, NULL, 0);
616  out_unlock:
617  	if (iolock)
618  		xfs_iunlock(ip, iolock);
619  	return ret;
620  }
621  
622  /*
623   * Handle block unaligned direct I/O writes
624   *
625   * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
626   * them to be done in parallel with reads and other direct I/O writes.  However,
627   * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
628   * to do sub-block zeroing and that requires serialisation against other direct
629   * I/O to the same block.  In this case we need to serialise the submission of
630   * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
631   * In the case where sub-block zeroing is not required, we can do concurrent
632   * sub-block dios to the same block successfully.
633   *
634   * Optimistically submit the I/O using the shared lock first, but use the
635   * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
636   * if block allocation or partial block zeroing would be required.  In that case
637   * we try again with the exclusive lock.
638   */
639  static noinline ssize_t
xfs_file_dio_write_unaligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)640  xfs_file_dio_write_unaligned(
641  	struct xfs_inode	*ip,
642  	struct kiocb		*iocb,
643  	struct iov_iter		*from)
644  {
645  	size_t			isize = i_size_read(VFS_I(ip));
646  	size_t			count = iov_iter_count(from);
647  	unsigned int		iolock = XFS_IOLOCK_SHARED;
648  	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
649  	ssize_t			ret;
650  
651  	/*
652  	 * Extending writes need exclusivity because of the sub-block zeroing
653  	 * that the DIO code always does for partial tail blocks beyond EOF, so
654  	 * don't even bother trying the fast path in this case.
655  	 */
656  	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
657  		if (iocb->ki_flags & IOCB_NOWAIT)
658  			return -EAGAIN;
659  retry_exclusive:
660  		iolock = XFS_IOLOCK_EXCL;
661  		flags = IOMAP_DIO_FORCE_WAIT;
662  	}
663  
664  	ret = xfs_ilock_iocb_for_write(iocb, &iolock);
665  	if (ret)
666  		return ret;
667  
668  	/*
669  	 * We can't properly handle unaligned direct I/O to reflink files yet,
670  	 * as we can't unshare a partial block.
671  	 */
672  	if (xfs_is_cow_inode(ip)) {
673  		trace_xfs_reflink_bounce_dio_write(iocb, from);
674  		ret = -ENOTBLK;
675  		goto out_unlock;
676  	}
677  
678  	ret = xfs_file_write_checks(iocb, from, &iolock);
679  	if (ret)
680  		goto out_unlock;
681  
682  	/*
683  	 * If we are doing exclusive unaligned I/O, this must be the only I/O
684  	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
685  	 * conversions from the AIO end_io handler.  Wait for all other I/O to
686  	 * drain first.
687  	 */
688  	if (flags & IOMAP_DIO_FORCE_WAIT)
689  		inode_dio_wait(VFS_I(ip));
690  
691  	trace_xfs_file_direct_write(iocb, from);
692  	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
693  			   &xfs_dio_write_ops, flags, NULL, 0);
694  
695  	/*
696  	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
697  	 * layer rejected it for mapping or locking reasons. If we are doing
698  	 * nonblocking user I/O, propagate the error.
699  	 */
700  	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
701  		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
702  		xfs_iunlock(ip, iolock);
703  		goto retry_exclusive;
704  	}
705  
706  out_unlock:
707  	if (iolock)
708  		xfs_iunlock(ip, iolock);
709  	return ret;
710  }
711  
712  static ssize_t
xfs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)713  xfs_file_dio_write(
714  	struct kiocb		*iocb,
715  	struct iov_iter		*from)
716  {
717  	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
718  	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
719  	size_t			count = iov_iter_count(from);
720  
721  	/* direct I/O must be aligned to device logical sector size */
722  	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
723  		return -EINVAL;
724  	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
725  		return xfs_file_dio_write_unaligned(ip, iocb, from);
726  	return xfs_file_dio_write_aligned(ip, iocb, from);
727  }
728  
729  static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)730  xfs_file_dax_write(
731  	struct kiocb		*iocb,
732  	struct iov_iter		*from)
733  {
734  	struct inode		*inode = iocb->ki_filp->f_mapping->host;
735  	struct xfs_inode	*ip = XFS_I(inode);
736  	unsigned int		iolock = XFS_IOLOCK_EXCL;
737  	ssize_t			ret, error = 0;
738  	loff_t			pos;
739  
740  	ret = xfs_ilock_iocb(iocb, iolock);
741  	if (ret)
742  		return ret;
743  	ret = xfs_file_write_checks(iocb, from, &iolock);
744  	if (ret)
745  		goto out;
746  
747  	pos = iocb->ki_pos;
748  
749  	trace_xfs_file_dax_write(iocb, from);
750  	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
751  	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
752  		i_size_write(inode, iocb->ki_pos);
753  		error = xfs_setfilesize(ip, pos, ret);
754  	}
755  out:
756  	if (iolock)
757  		xfs_iunlock(ip, iolock);
758  	if (error)
759  		return error;
760  
761  	if (ret > 0) {
762  		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
763  
764  		/* Handle various SYNC-type writes */
765  		ret = generic_write_sync(iocb, ret);
766  	}
767  	return ret;
768  }
769  
770  STATIC ssize_t
xfs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)771  xfs_file_buffered_write(
772  	struct kiocb		*iocb,
773  	struct iov_iter		*from)
774  {
775  	struct inode		*inode = iocb->ki_filp->f_mapping->host;
776  	struct xfs_inode	*ip = XFS_I(inode);
777  	ssize_t			ret;
778  	bool			cleared_space = false;
779  	unsigned int		iolock;
780  
781  write_retry:
782  	iolock = XFS_IOLOCK_EXCL;
783  	ret = xfs_ilock_iocb(iocb, iolock);
784  	if (ret)
785  		return ret;
786  
787  	ret = xfs_file_write_checks(iocb, from, &iolock);
788  	if (ret)
789  		goto out;
790  
791  	trace_xfs_file_buffered_write(iocb, from);
792  	ret = iomap_file_buffered_write(iocb, from,
793  			&xfs_buffered_write_iomap_ops, NULL);
794  
795  	/*
796  	 * If we hit a space limit, try to free up some lingering preallocated
797  	 * space before returning an error. In the case of ENOSPC, first try to
798  	 * write back all dirty inodes to free up some of the excess reserved
799  	 * metadata space. This reduces the chances that the eofblocks scan
800  	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
801  	 * also behaves as a filter to prevent too many eofblocks scans from
802  	 * running at the same time.  Use a synchronous scan to increase the
803  	 * effectiveness of the scan.
804  	 */
805  	if (ret == -EDQUOT && !cleared_space) {
806  		xfs_iunlock(ip, iolock);
807  		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
808  		cleared_space = true;
809  		goto write_retry;
810  	} else if (ret == -ENOSPC && !cleared_space) {
811  		struct xfs_icwalk	icw = {0};
812  
813  		cleared_space = true;
814  		xfs_flush_inodes(ip->i_mount);
815  
816  		xfs_iunlock(ip, iolock);
817  		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
818  		xfs_blockgc_free_space(ip->i_mount, &icw);
819  		goto write_retry;
820  	}
821  
822  out:
823  	if (iolock)
824  		xfs_iunlock(ip, iolock);
825  
826  	if (ret > 0) {
827  		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
828  		/* Handle various SYNC-type writes */
829  		ret = generic_write_sync(iocb, ret);
830  	}
831  	return ret;
832  }
833  
834  STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)835  xfs_file_write_iter(
836  	struct kiocb		*iocb,
837  	struct iov_iter		*from)
838  {
839  	struct inode		*inode = iocb->ki_filp->f_mapping->host;
840  	struct xfs_inode	*ip = XFS_I(inode);
841  	ssize_t			ret;
842  	size_t			ocount = iov_iter_count(from);
843  
844  	XFS_STATS_INC(ip->i_mount, xs_write_calls);
845  
846  	if (ocount == 0)
847  		return 0;
848  
849  	if (xfs_is_shutdown(ip->i_mount))
850  		return -EIO;
851  
852  	if (IS_DAX(inode))
853  		return xfs_file_dax_write(iocb, from);
854  
855  	if (iocb->ki_flags & IOCB_DIRECT) {
856  		/*
857  		 * Allow a directio write to fall back to a buffered
858  		 * write *only* in the case that we're doing a reflink
859  		 * CoW.  In all other directio scenarios we do not
860  		 * allow an operation to fall back to buffered mode.
861  		 */
862  		ret = xfs_file_dio_write(iocb, from);
863  		if (ret != -ENOTBLK)
864  			return ret;
865  	}
866  
867  	return xfs_file_buffered_write(iocb, from);
868  }
869  
870  /* Does this file, inode, or mount want synchronous writes? */
xfs_file_sync_writes(struct file * filp)871  static inline bool xfs_file_sync_writes(struct file *filp)
872  {
873  	struct xfs_inode	*ip = XFS_I(file_inode(filp));
874  
875  	if (xfs_has_wsync(ip->i_mount))
876  		return true;
877  	if (filp->f_flags & (__O_SYNC | O_DSYNC))
878  		return true;
879  	if (IS_SYNC(file_inode(filp)))
880  		return true;
881  
882  	return false;
883  }
884  
885  static int
xfs_falloc_newsize(struct file * file,int mode,loff_t offset,loff_t len,loff_t * new_size)886  xfs_falloc_newsize(
887  	struct file		*file,
888  	int			mode,
889  	loff_t			offset,
890  	loff_t			len,
891  	loff_t			*new_size)
892  {
893  	struct inode		*inode = file_inode(file);
894  
895  	if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode))
896  		return 0;
897  	*new_size = offset + len;
898  	return inode_newsize_ok(inode, *new_size);
899  }
900  
901  static int
xfs_falloc_setsize(struct file * file,loff_t new_size)902  xfs_falloc_setsize(
903  	struct file		*file,
904  	loff_t			new_size)
905  {
906  	struct iattr iattr = {
907  		.ia_valid	= ATTR_SIZE,
908  		.ia_size	= new_size,
909  	};
910  
911  	if (!new_size)
912  		return 0;
913  	return xfs_vn_setattr_size(file_mnt_idmap(file), file_dentry(file),
914  			&iattr);
915  }
916  
917  static int
xfs_falloc_collapse_range(struct file * file,loff_t offset,loff_t len)918  xfs_falloc_collapse_range(
919  	struct file		*file,
920  	loff_t			offset,
921  	loff_t			len)
922  {
923  	struct inode		*inode = file_inode(file);
924  	loff_t			new_size = i_size_read(inode) - len;
925  	int			error;
926  
927  	if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
928  		return -EINVAL;
929  
930  	/*
931  	 * There is no need to overlap collapse range with EOF, in which case it
932  	 * is effectively a truncate operation
933  	 */
934  	if (offset + len >= i_size_read(inode))
935  		return -EINVAL;
936  
937  	error = xfs_collapse_file_space(XFS_I(inode), offset, len);
938  	if (error)
939  		return error;
940  	return xfs_falloc_setsize(file, new_size);
941  }
942  
943  static int
xfs_falloc_insert_range(struct file * file,loff_t offset,loff_t len)944  xfs_falloc_insert_range(
945  	struct file		*file,
946  	loff_t			offset,
947  	loff_t			len)
948  {
949  	struct inode		*inode = file_inode(file);
950  	loff_t			isize = i_size_read(inode);
951  	int			error;
952  
953  	if (!xfs_is_falloc_aligned(XFS_I(inode), offset, len))
954  		return -EINVAL;
955  
956  	/*
957  	 * New inode size must not exceed ->s_maxbytes, accounting for
958  	 * possible signed overflow.
959  	 */
960  	if (inode->i_sb->s_maxbytes - isize < len)
961  		return -EFBIG;
962  
963  	/* Offset should be less than i_size */
964  	if (offset >= isize)
965  		return -EINVAL;
966  
967  	error = xfs_falloc_setsize(file, isize + len);
968  	if (error)
969  		return error;
970  
971  	/*
972  	 * Perform hole insertion now that the file size has been updated so
973  	 * that if we crash during the operation we don't leave shifted extents
974  	 * past EOF and hence losing access to the data that is contained within
975  	 * them.
976  	 */
977  	return xfs_insert_file_space(XFS_I(inode), offset, len);
978  }
979  
980  /*
981   * Punch a hole and prealloc the range.  We use a hole punch rather than
982   * unwritten extent conversion for two reasons:
983   *
984   *   1.) Hole punch handles partial block zeroing for us.
985   *   2.) If prealloc returns ENOSPC, the file range is still zero-valued by
986   *	 virtue of the hole punch.
987   */
988  static int
xfs_falloc_zero_range(struct file * file,int mode,loff_t offset,loff_t len)989  xfs_falloc_zero_range(
990  	struct file		*file,
991  	int			mode,
992  	loff_t			offset,
993  	loff_t			len)
994  {
995  	struct inode		*inode = file_inode(file);
996  	unsigned int		blksize = i_blocksize(inode);
997  	loff_t			new_size = 0;
998  	int			error;
999  
1000  	trace_xfs_zero_file_space(XFS_I(inode));
1001  
1002  	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1003  	if (error)
1004  		return error;
1005  
1006  	error = xfs_free_file_space(XFS_I(inode), offset, len);
1007  	if (error)
1008  		return error;
1009  
1010  	len = round_up(offset + len, blksize) - round_down(offset, blksize);
1011  	offset = round_down(offset, blksize);
1012  	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1013  	if (error)
1014  		return error;
1015  	return xfs_falloc_setsize(file, new_size);
1016  }
1017  
1018  static int
xfs_falloc_unshare_range(struct file * file,int mode,loff_t offset,loff_t len)1019  xfs_falloc_unshare_range(
1020  	struct file		*file,
1021  	int			mode,
1022  	loff_t			offset,
1023  	loff_t			len)
1024  {
1025  	struct inode		*inode = file_inode(file);
1026  	loff_t			new_size = 0;
1027  	int			error;
1028  
1029  	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1030  	if (error)
1031  		return error;
1032  
1033  	error = xfs_reflink_unshare(XFS_I(inode), offset, len);
1034  	if (error)
1035  		return error;
1036  
1037  	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1038  	if (error)
1039  		return error;
1040  	return xfs_falloc_setsize(file, new_size);
1041  }
1042  
1043  static int
xfs_falloc_allocate_range(struct file * file,int mode,loff_t offset,loff_t len)1044  xfs_falloc_allocate_range(
1045  	struct file		*file,
1046  	int			mode,
1047  	loff_t			offset,
1048  	loff_t			len)
1049  {
1050  	struct inode		*inode = file_inode(file);
1051  	loff_t			new_size = 0;
1052  	int			error;
1053  
1054  	/*
1055  	 * If always_cow mode we can't use preallocations and thus should not
1056  	 * create them.
1057  	 */
1058  	if (xfs_is_always_cow_inode(XFS_I(inode)))
1059  		return -EOPNOTSUPP;
1060  
1061  	error = xfs_falloc_newsize(file, mode, offset, len, &new_size);
1062  	if (error)
1063  		return error;
1064  
1065  	error = xfs_alloc_file_space(XFS_I(inode), offset, len);
1066  	if (error)
1067  		return error;
1068  	return xfs_falloc_setsize(file, new_size);
1069  }
1070  
1071  #define	XFS_FALLOC_FL_SUPPORTED						\
1072  		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1073  		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
1074  		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
1075  
1076  STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1077  xfs_file_fallocate(
1078  	struct file		*file,
1079  	int			mode,
1080  	loff_t			offset,
1081  	loff_t			len)
1082  {
1083  	struct inode		*inode = file_inode(file);
1084  	struct xfs_inode	*ip = XFS_I(inode);
1085  	long			error;
1086  	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1087  
1088  	if (!S_ISREG(inode->i_mode))
1089  		return -EINVAL;
1090  	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
1091  		return -EOPNOTSUPP;
1092  
1093  	xfs_ilock(ip, iolock);
1094  	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1095  	if (error)
1096  		goto out_unlock;
1097  
1098  	/*
1099  	 * Must wait for all AIO to complete before we continue as AIO can
1100  	 * change the file size on completion without holding any locks we
1101  	 * currently hold. We must do this first because AIO can update both
1102  	 * the on disk and in memory inode sizes, and the operations that follow
1103  	 * require the in-memory size to be fully up-to-date.
1104  	 */
1105  	inode_dio_wait(inode);
1106  
1107  	error = file_modified(file);
1108  	if (error)
1109  		goto out_unlock;
1110  
1111  	switch (mode & FALLOC_FL_MODE_MASK) {
1112  	case FALLOC_FL_PUNCH_HOLE:
1113  		error = xfs_free_file_space(ip, offset, len);
1114  		break;
1115  	case FALLOC_FL_COLLAPSE_RANGE:
1116  		error = xfs_falloc_collapse_range(file, offset, len);
1117  		break;
1118  	case FALLOC_FL_INSERT_RANGE:
1119  		error = xfs_falloc_insert_range(file, offset, len);
1120  		break;
1121  	case FALLOC_FL_ZERO_RANGE:
1122  		error = xfs_falloc_zero_range(file, mode, offset, len);
1123  		break;
1124  	case FALLOC_FL_UNSHARE_RANGE:
1125  		error = xfs_falloc_unshare_range(file, mode, offset, len);
1126  		break;
1127  	case FALLOC_FL_ALLOCATE_RANGE:
1128  		error = xfs_falloc_allocate_range(file, mode, offset, len);
1129  		break;
1130  	default:
1131  		error = -EOPNOTSUPP;
1132  		break;
1133  	}
1134  
1135  	if (!error && xfs_file_sync_writes(file))
1136  		error = xfs_log_force_inode(ip);
1137  
1138  out_unlock:
1139  	xfs_iunlock(ip, iolock);
1140  	return error;
1141  }
1142  
1143  STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)1144  xfs_file_fadvise(
1145  	struct file	*file,
1146  	loff_t		start,
1147  	loff_t		end,
1148  	int		advice)
1149  {
1150  	struct xfs_inode *ip = XFS_I(file_inode(file));
1151  	int ret;
1152  	int lockflags = 0;
1153  
1154  	/*
1155  	 * Operations creating pages in page cache need protection from hole
1156  	 * punching and similar ops
1157  	 */
1158  	if (advice == POSIX_FADV_WILLNEED) {
1159  		lockflags = XFS_IOLOCK_SHARED;
1160  		xfs_ilock(ip, lockflags);
1161  	}
1162  	ret = generic_fadvise(file, start, end, advice);
1163  	if (lockflags)
1164  		xfs_iunlock(ip, lockflags);
1165  	return ret;
1166  }
1167  
1168  STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)1169  xfs_file_remap_range(
1170  	struct file		*file_in,
1171  	loff_t			pos_in,
1172  	struct file		*file_out,
1173  	loff_t			pos_out,
1174  	loff_t			len,
1175  	unsigned int		remap_flags)
1176  {
1177  	struct inode		*inode_in = file_inode(file_in);
1178  	struct xfs_inode	*src = XFS_I(inode_in);
1179  	struct inode		*inode_out = file_inode(file_out);
1180  	struct xfs_inode	*dest = XFS_I(inode_out);
1181  	struct xfs_mount	*mp = src->i_mount;
1182  	loff_t			remapped = 0;
1183  	xfs_extlen_t		cowextsize;
1184  	int			ret;
1185  
1186  	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1187  		return -EINVAL;
1188  
1189  	if (!xfs_has_reflink(mp))
1190  		return -EOPNOTSUPP;
1191  
1192  	if (xfs_is_shutdown(mp))
1193  		return -EIO;
1194  
1195  	/* Prepare and then clone file data. */
1196  	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1197  			&len, remap_flags);
1198  	if (ret || len == 0)
1199  		return ret;
1200  
1201  	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1202  
1203  	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1204  			&remapped);
1205  	if (ret)
1206  		goto out_unlock;
1207  
1208  	/*
1209  	 * Carry the cowextsize hint from src to dest if we're sharing the
1210  	 * entire source file to the entire destination file, the source file
1211  	 * has a cowextsize hint, and the destination file does not.
1212  	 */
1213  	cowextsize = 0;
1214  	if (pos_in == 0 && len == i_size_read(inode_in) &&
1215  	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1216  	    pos_out == 0 && len >= i_size_read(inode_out) &&
1217  	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1218  		cowextsize = src->i_cowextsize;
1219  
1220  	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1221  			remap_flags);
1222  	if (ret)
1223  		goto out_unlock;
1224  
1225  	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1226  		xfs_log_force_inode(dest);
1227  out_unlock:
1228  	xfs_iunlock2_remapping(src, dest);
1229  	if (ret)
1230  		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1231  	return remapped > 0 ? remapped : ret;
1232  }
1233  
1234  STATIC int
xfs_file_open(struct inode * inode,struct file * file)1235  xfs_file_open(
1236  	struct inode	*inode,
1237  	struct file	*file)
1238  {
1239  	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1240  		return -EIO;
1241  	file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
1242  	return generic_file_open(inode, file);
1243  }
1244  
1245  STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1246  xfs_dir_open(
1247  	struct inode	*inode,
1248  	struct file	*file)
1249  {
1250  	struct xfs_inode *ip = XFS_I(inode);
1251  	unsigned int	mode;
1252  	int		error;
1253  
1254  	if (xfs_is_shutdown(ip->i_mount))
1255  		return -EIO;
1256  	error = generic_file_open(inode, file);
1257  	if (error)
1258  		return error;
1259  
1260  	/*
1261  	 * If there are any blocks, read-ahead block 0 as we're almost
1262  	 * certain to have the next operation be a read there.
1263  	 */
1264  	mode = xfs_ilock_data_map_shared(ip);
1265  	if (ip->i_df.if_nextents > 0)
1266  		error = xfs_dir3_data_readahead(ip, 0, 0);
1267  	xfs_iunlock(ip, mode);
1268  	return error;
1269  }
1270  
1271  /*
1272   * Don't bother propagating errors.  We're just doing cleanup, and the caller
1273   * ignores the return value anyway.
1274   */
1275  STATIC int
xfs_file_release(struct inode * inode,struct file * file)1276  xfs_file_release(
1277  	struct inode		*inode,
1278  	struct file		*file)
1279  {
1280  	struct xfs_inode	*ip = XFS_I(inode);
1281  	struct xfs_mount	*mp = ip->i_mount;
1282  
1283  	/*
1284  	 * If this is a read-only mount or the file system has been shut down,
1285  	 * don't generate I/O.
1286  	 */
1287  	if (xfs_is_readonly(mp) || xfs_is_shutdown(mp))
1288  		return 0;
1289  
1290  	/*
1291  	 * If we previously truncated this file and removed old data in the
1292  	 * process, we want to initiate "early" writeout on the last close.
1293  	 * This is an attempt to combat the notorious NULL files problem which
1294  	 * is particularly noticeable from a truncate down, buffered (re-)write
1295  	 * (delalloc), followed by a crash.  What we are effectively doing here
1296  	 * is significantly reducing the time window where we'd otherwise be
1297  	 * exposed to that problem.
1298  	 */
1299  	if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) {
1300  		xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED);
1301  		if (ip->i_delayed_blks > 0)
1302  			filemap_flush(inode->i_mapping);
1303  	}
1304  
1305  	/*
1306  	 * XFS aggressively preallocates post-EOF space to generate contiguous
1307  	 * allocations for writers that append to the end of the file.
1308  	 *
1309  	 * To support workloads that close and reopen the file frequently, these
1310  	 * preallocations usually persist after a close unless it is the first
1311  	 * close for the inode.  This is a tradeoff to generate tightly packed
1312  	 * data layouts for unpacking tarballs or similar archives that write
1313  	 * one file after another without going back to it while keeping the
1314  	 * preallocation for files that have recurring open/write/close cycles.
1315  	 *
1316  	 * This heuristic is skipped for inodes with the append-only flag as
1317  	 * that flag is rather pointless for inodes written only once.
1318  	 *
1319  	 * There is no point in freeing blocks here for open but unlinked files
1320  	 * as they will be taken care of by the inactivation path soon.
1321  	 *
1322  	 * When releasing a read-only context, don't flush data or trim post-EOF
1323  	 * blocks.  This avoids open/read/close workloads from removing EOF
1324  	 * blocks that other writers depend upon to reduce fragmentation.
1325  	 *
1326  	 * If we can't get the iolock just skip truncating the blocks past EOF
1327  	 * because we could deadlock with the mmap_lock otherwise. We'll get
1328  	 * another chance to drop them once the last reference to the inode is
1329  	 * dropped, so we'll never leak blocks permanently.
1330  	 */
1331  	if (inode->i_nlink &&
1332  	    (file->f_mode & FMODE_WRITE) &&
1333  	    !(ip->i_diflags & XFS_DIFLAG_APPEND) &&
1334  	    !xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) &&
1335  	    xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1336  		if (xfs_can_free_eofblocks(ip) &&
1337  		    !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED))
1338  			xfs_free_eofblocks(ip);
1339  		xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1340  	}
1341  
1342  	return 0;
1343  }
1344  
1345  STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1346  xfs_file_readdir(
1347  	struct file	*file,
1348  	struct dir_context *ctx)
1349  {
1350  	struct inode	*inode = file_inode(file);
1351  	xfs_inode_t	*ip = XFS_I(inode);
1352  	size_t		bufsize;
1353  
1354  	/*
1355  	 * The Linux API doesn't pass down the total size of the buffer
1356  	 * we read into down to the filesystem.  With the filldir concept
1357  	 * it's not needed for correct information, but the XFS dir2 leaf
1358  	 * code wants an estimate of the buffer size to calculate it's
1359  	 * readahead window and size the buffers used for mapping to
1360  	 * physical blocks.
1361  	 *
1362  	 * Try to give it an estimate that's good enough, maybe at some
1363  	 * point we can change the ->readdir prototype to include the
1364  	 * buffer size.  For now we use the current glibc buffer size.
1365  	 */
1366  	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1367  
1368  	return xfs_readdir(NULL, ip, ctx, bufsize);
1369  }
1370  
1371  STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1372  xfs_file_llseek(
1373  	struct file	*file,
1374  	loff_t		offset,
1375  	int		whence)
1376  {
1377  	struct inode		*inode = file->f_mapping->host;
1378  
1379  	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1380  		return -EIO;
1381  
1382  	switch (whence) {
1383  	default:
1384  		return generic_file_llseek(file, offset, whence);
1385  	case SEEK_HOLE:
1386  		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1387  		break;
1388  	case SEEK_DATA:
1389  		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1390  		break;
1391  	}
1392  
1393  	if (offset < 0)
1394  		return offset;
1395  	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1396  }
1397  
1398  static inline vm_fault_t
xfs_dax_fault_locked(struct vm_fault * vmf,unsigned int order,bool write_fault)1399  xfs_dax_fault_locked(
1400  	struct vm_fault		*vmf,
1401  	unsigned int		order,
1402  	bool			write_fault)
1403  {
1404  	vm_fault_t		ret;
1405  	pfn_t			pfn;
1406  
1407  	if (!IS_ENABLED(CONFIG_FS_DAX)) {
1408  		ASSERT(0);
1409  		return VM_FAULT_SIGBUS;
1410  	}
1411  	ret = dax_iomap_fault(vmf, order, &pfn, NULL,
1412  			(write_fault && !vmf->cow_page) ?
1413  				&xfs_dax_write_iomap_ops :
1414  				&xfs_read_iomap_ops);
1415  	if (ret & VM_FAULT_NEEDDSYNC)
1416  		ret = dax_finish_sync_fault(vmf, order, pfn);
1417  	return ret;
1418  }
1419  
1420  static vm_fault_t
xfs_dax_read_fault(struct vm_fault * vmf,unsigned int order)1421  xfs_dax_read_fault(
1422  	struct vm_fault		*vmf,
1423  	unsigned int		order)
1424  {
1425  	struct xfs_inode	*ip = XFS_I(file_inode(vmf->vma->vm_file));
1426  	vm_fault_t		ret;
1427  
1428  	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1429  	ret = xfs_dax_fault_locked(vmf, order, false);
1430  	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1431  
1432  	return ret;
1433  }
1434  
1435  static vm_fault_t
xfs_write_fault(struct vm_fault * vmf,unsigned int order)1436  xfs_write_fault(
1437  	struct vm_fault		*vmf,
1438  	unsigned int		order)
1439  {
1440  	struct inode		*inode = file_inode(vmf->vma->vm_file);
1441  	struct xfs_inode	*ip = XFS_I(inode);
1442  	unsigned int		lock_mode = XFS_MMAPLOCK_SHARED;
1443  	vm_fault_t		ret;
1444  
1445  	sb_start_pagefault(inode->i_sb);
1446  	file_update_time(vmf->vma->vm_file);
1447  
1448  	/*
1449  	 * Normally we only need the shared mmaplock, but if a reflink remap is
1450  	 * in progress we take the exclusive lock to wait for the remap to
1451  	 * finish before taking a write fault.
1452  	 */
1453  	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1454  	if (xfs_iflags_test(ip, XFS_IREMAPPING)) {
1455  		xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1456  		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1457  		lock_mode = XFS_MMAPLOCK_EXCL;
1458  	}
1459  
1460  	if (IS_DAX(inode))
1461  		ret = xfs_dax_fault_locked(vmf, order, true);
1462  	else
1463  		ret = iomap_page_mkwrite(vmf, &xfs_page_mkwrite_iomap_ops);
1464  	xfs_iunlock(ip, lock_mode);
1465  
1466  	sb_end_pagefault(inode->i_sb);
1467  	return ret;
1468  }
1469  
1470  /*
1471   * Locking for serialisation of IO during page faults. This results in a lock
1472   * ordering of:
1473   *
1474   * mmap_lock (MM)
1475   *   sb_start_pagefault(vfs, freeze)
1476   *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1477   *       page_lock (MM)
1478   *         i_lock (XFS - extent map serialisation)
1479   */
1480  static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,unsigned int order,bool write_fault)1481  __xfs_filemap_fault(
1482  	struct vm_fault		*vmf,
1483  	unsigned int		order,
1484  	bool			write_fault)
1485  {
1486  	struct inode		*inode = file_inode(vmf->vma->vm_file);
1487  
1488  	trace_xfs_filemap_fault(XFS_I(inode), order, write_fault);
1489  
1490  	if (write_fault)
1491  		return xfs_write_fault(vmf, order);
1492  	if (IS_DAX(inode))
1493  		return xfs_dax_read_fault(vmf, order);
1494  	return filemap_fault(vmf);
1495  }
1496  
1497  static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1498  xfs_is_write_fault(
1499  	struct vm_fault		*vmf)
1500  {
1501  	return (vmf->flags & FAULT_FLAG_WRITE) &&
1502  	       (vmf->vma->vm_flags & VM_SHARED);
1503  }
1504  
1505  static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1506  xfs_filemap_fault(
1507  	struct vm_fault		*vmf)
1508  {
1509  	/* DAX can shortcut the normal fault path on write faults! */
1510  	return __xfs_filemap_fault(vmf, 0,
1511  			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1512  			xfs_is_write_fault(vmf));
1513  }
1514  
1515  static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,unsigned int order)1516  xfs_filemap_huge_fault(
1517  	struct vm_fault		*vmf,
1518  	unsigned int		order)
1519  {
1520  	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1521  		return VM_FAULT_FALLBACK;
1522  
1523  	/* DAX can shortcut the normal fault path on write faults! */
1524  	return __xfs_filemap_fault(vmf, order,
1525  			xfs_is_write_fault(vmf));
1526  }
1527  
1528  static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1529  xfs_filemap_page_mkwrite(
1530  	struct vm_fault		*vmf)
1531  {
1532  	return __xfs_filemap_fault(vmf, 0, true);
1533  }
1534  
1535  /*
1536   * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1537   * on write faults. In reality, it needs to serialise against truncate and
1538   * prepare memory for writing so handle is as standard write fault.
1539   */
1540  static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1541  xfs_filemap_pfn_mkwrite(
1542  	struct vm_fault		*vmf)
1543  {
1544  
1545  	return __xfs_filemap_fault(vmf, 0, true);
1546  }
1547  
1548  static const struct vm_operations_struct xfs_file_vm_ops = {
1549  	.fault		= xfs_filemap_fault,
1550  	.huge_fault	= xfs_filemap_huge_fault,
1551  	.map_pages	= filemap_map_pages,
1552  	.page_mkwrite	= xfs_filemap_page_mkwrite,
1553  	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1554  };
1555  
1556  STATIC int
xfs_file_mmap(struct file * file,struct vm_area_struct * vma)1557  xfs_file_mmap(
1558  	struct file		*file,
1559  	struct vm_area_struct	*vma)
1560  {
1561  	struct inode		*inode = file_inode(file);
1562  	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1563  
1564  	/*
1565  	 * We don't support synchronous mappings for non-DAX files and
1566  	 * for DAX files if underneath dax_device is not synchronous.
1567  	 */
1568  	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1569  		return -EOPNOTSUPP;
1570  
1571  	file_accessed(file);
1572  	vma->vm_ops = &xfs_file_vm_ops;
1573  	if (IS_DAX(inode))
1574  		vm_flags_set(vma, VM_HUGEPAGE);
1575  	return 0;
1576  }
1577  
1578  const struct file_operations xfs_file_operations = {
1579  	.llseek		= xfs_file_llseek,
1580  	.read_iter	= xfs_file_read_iter,
1581  	.write_iter	= xfs_file_write_iter,
1582  	.splice_read	= xfs_file_splice_read,
1583  	.splice_write	= iter_file_splice_write,
1584  	.iopoll		= iocb_bio_iopoll,
1585  	.unlocked_ioctl	= xfs_file_ioctl,
1586  #ifdef CONFIG_COMPAT
1587  	.compat_ioctl	= xfs_file_compat_ioctl,
1588  #endif
1589  	.mmap		= xfs_file_mmap,
1590  	.open		= xfs_file_open,
1591  	.release	= xfs_file_release,
1592  	.fsync		= xfs_file_fsync,
1593  	.get_unmapped_area = thp_get_unmapped_area,
1594  	.fallocate	= xfs_file_fallocate,
1595  	.fadvise	= xfs_file_fadvise,
1596  	.remap_file_range = xfs_file_remap_range,
1597  	.fop_flags	= FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
1598  			  FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE,
1599  };
1600  
1601  const struct file_operations xfs_dir_file_operations = {
1602  	.open		= xfs_dir_open,
1603  	.read		= generic_read_dir,
1604  	.iterate_shared	= xfs_file_readdir,
1605  	.llseek		= generic_file_llseek,
1606  	.unlocked_ioctl	= xfs_file_ioctl,
1607  #ifdef CONFIG_COMPAT
1608  	.compat_ioctl	= xfs_file_compat_ioctl,
1609  #endif
1610  	.fsync		= xfs_dir_fsync,
1611  };
1612