1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_btree.h"
17 #include "xfs_trace.h"
18 #include "xfs_btree_staging.h"
19 
20 /*
21  * Staging Cursors and Fake Roots for Btrees
22  * =========================================
23  *
24  * A staging btree cursor is a special type of btree cursor that callers must
25  * use to construct a new btree index using the btree bulk loader code.  The
26  * bulk loading code uses the staging btree cursor to abstract the details of
27  * initializing new btree blocks and filling them with records or key/ptr
28  * pairs.  Regular btree operations (e.g. queries and modifications) are not
29  * supported with staging cursors, and callers must not invoke them.
30  *
31  * Fake root structures contain all the information about a btree that is under
32  * construction by the bulk loading code.  Staging btree cursors point to fake
33  * root structures instead of the usual AG header or inode structure.
34  *
35  * Callers are expected to initialize a fake root structure and pass it into
36  * the _stage_cursor function for a specific btree type.  When bulk loading is
37  * complete, callers should call the _commit_staged_btree function for that
38  * specific btree type to commit the new btree into the filesystem.
39  */
40 
41 /*
42  * Bulk Loading for AG Btrees
43  * ==========================
44  *
45  * For a btree rooted in an AG header, pass a xbtree_afakeroot structure to the
46  * staging cursor.  Callers should initialize this to zero.
47  *
48  * The _stage_cursor() function for a specific btree type should call
49  * xfs_btree_stage_afakeroot to set up the in-memory cursor as a staging
50  * cursor.  The corresponding _commit_staged_btree() function should log the
51  * new root and call xfs_btree_commit_afakeroot() to transform the staging
52  * cursor into a regular btree cursor.
53  */
54 
55 /*
56  * Initialize a AG-rooted btree cursor with the given AG btree fake root.
57  */
58 void
xfs_btree_stage_afakeroot(struct xfs_btree_cur * cur,struct xbtree_afakeroot * afake)59 xfs_btree_stage_afakeroot(
60 	struct xfs_btree_cur		*cur,
61 	struct xbtree_afakeroot		*afake)
62 {
63 	ASSERT(!(cur->bc_flags & XFS_BTREE_STAGING));
64 	ASSERT(cur->bc_ops->type != XFS_BTREE_TYPE_INODE);
65 	ASSERT(cur->bc_tp == NULL);
66 
67 	cur->bc_ag.afake = afake;
68 	cur->bc_nlevels = afake->af_levels;
69 	cur->bc_flags |= XFS_BTREE_STAGING;
70 }
71 
72 /*
73  * Transform an AG-rooted staging btree cursor back into a regular cursor by
74  * substituting a real btree root for the fake one and restoring normal btree
75  * cursor ops.  The caller must log the btree root change prior to calling
76  * this.
77  */
78 void
xfs_btree_commit_afakeroot(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)79 xfs_btree_commit_afakeroot(
80 	struct xfs_btree_cur		*cur,
81 	struct xfs_trans		*tp,
82 	struct xfs_buf			*agbp)
83 {
84 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
85 	ASSERT(cur->bc_tp == NULL);
86 
87 	trace_xfs_btree_commit_afakeroot(cur);
88 
89 	cur->bc_ag.afake = NULL;
90 	cur->bc_ag.agbp = agbp;
91 	cur->bc_flags &= ~XFS_BTREE_STAGING;
92 	cur->bc_tp = tp;
93 }
94 
95 /*
96  * Bulk Loading for Inode-Rooted Btrees
97  * ====================================
98  *
99  * For a btree rooted in an inode fork, pass a xbtree_ifakeroot structure to
100  * the staging cursor.  This structure should be initialized as follows:
101  *
102  * - if_fork_size field should be set to the number of bytes available to the
103  *   fork in the inode.
104  *
105  * - if_fork should point to a freshly allocated struct xfs_ifork.
106  *
107  * - if_format should be set to the appropriate fork type (e.g.
108  *   XFS_DINODE_FMT_BTREE).
109  *
110  * All other fields must be zero.
111  *
112  * The _stage_cursor() function for a specific btree type should call
113  * xfs_btree_stage_ifakeroot to set up the in-memory cursor as a staging
114  * cursor.  The corresponding _commit_staged_btree() function should log the
115  * new root and call xfs_btree_commit_ifakeroot() to transform the staging
116  * cursor into a regular btree cursor.
117  */
118 
119 /*
120  * Initialize an inode-rooted btree cursor with the given inode btree fake
121  * root.  The btree cursor's bc_ops will be overridden as needed to make the
122  * staging functionality work.  If new_ops is not NULL, these new ops will be
123  * passed out to the caller for further overriding.
124  */
125 void
xfs_btree_stage_ifakeroot(struct xfs_btree_cur * cur,struct xbtree_ifakeroot * ifake)126 xfs_btree_stage_ifakeroot(
127 	struct xfs_btree_cur		*cur,
128 	struct xbtree_ifakeroot		*ifake)
129 {
130 	ASSERT(!(cur->bc_flags & XFS_BTREE_STAGING));
131 	ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
132 	ASSERT(cur->bc_tp == NULL);
133 
134 	cur->bc_ino.ifake = ifake;
135 	cur->bc_nlevels = ifake->if_levels;
136 	cur->bc_ino.forksize = ifake->if_fork_size;
137 	cur->bc_flags |= XFS_BTREE_STAGING;
138 }
139 
140 /*
141  * Transform an inode-rooted staging btree cursor back into a regular cursor by
142  * substituting a real btree root for the fake one and restoring normal btree
143  * cursor ops.  The caller must log the btree root change prior to calling
144  * this.
145  */
146 void
xfs_btree_commit_ifakeroot(struct xfs_btree_cur * cur,struct xfs_trans * tp,int whichfork)147 xfs_btree_commit_ifakeroot(
148 	struct xfs_btree_cur		*cur,
149 	struct xfs_trans		*tp,
150 	int				whichfork)
151 {
152 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
153 	ASSERT(cur->bc_tp == NULL);
154 
155 	trace_xfs_btree_commit_ifakeroot(cur);
156 
157 	cur->bc_ino.ifake = NULL;
158 	cur->bc_ino.whichfork = whichfork;
159 	cur->bc_flags &= ~XFS_BTREE_STAGING;
160 	cur->bc_tp = tp;
161 }
162 
163 /*
164  * Bulk Loading of Staged Btrees
165  * =============================
166  *
167  * This interface is used with a staged btree cursor to create a totally new
168  * btree with a large number of records (i.e. more than what would fit in a
169  * single root block).  When the creation is complete, the new root can be
170  * linked atomically into the filesystem by committing the staged cursor.
171  *
172  * Creation of a new btree proceeds roughly as follows:
173  *
174  * The first step is to initialize an appropriate fake btree root structure and
175  * then construct a staged btree cursor.  Refer to the block comments about
176  * "Bulk Loading for AG Btrees" and "Bulk Loading for Inode-Rooted Btrees" for
177  * more information about how to do this.
178  *
179  * The second step is to initialize a struct xfs_btree_bload context as
180  * documented in the structure definition.
181  *
182  * The third step is to call xfs_btree_bload_compute_geometry to compute the
183  * height of and the number of blocks needed to construct the btree.  See the
184  * section "Computing the Geometry of the New Btree" for details about this
185  * computation.
186  *
187  * In step four, the caller must allocate xfs_btree_bload.nr_blocks blocks and
188  * save them for later use by ->claim_block().  Bulk loading requires all
189  * blocks to be allocated beforehand to avoid ENOSPC failures midway through a
190  * rebuild, and to minimize seek distances of the new btree.
191  *
192  * Step five is to call xfs_btree_bload() to start constructing the btree.
193  *
194  * The final step is to commit the staging btree cursor, which logs the new
195  * btree root and turns the staging cursor into a regular cursor.  The caller
196  * is responsible for cleaning up the previous btree blocks, if any.
197  *
198  * Computing the Geometry of the New Btree
199  * =======================================
200  *
201  * The number of items placed in each btree block is computed via the following
202  * algorithm: For leaf levels, the number of items for the level is nr_records
203  * in the bload structure.  For node levels, the number of items for the level
204  * is the number of blocks in the next lower level of the tree.  For each
205  * level, the desired number of items per block is defined as:
206  *
207  * desired = max(minrecs, maxrecs - slack factor)
208  *
209  * The number of blocks for the level is defined to be:
210  *
211  * blocks = floor(nr_items / desired)
212  *
213  * Note this is rounded down so that the npb calculation below will never fall
214  * below minrecs.  The number of items that will actually be loaded into each
215  * btree block is defined as:
216  *
217  * npb =  nr_items / blocks
218  *
219  * Some of the leftmost blocks in the level will contain one extra record as
220  * needed to handle uneven division.  If the number of records in any block
221  * would exceed maxrecs for that level, blocks is incremented and npb is
222  * recalculated.
223  *
224  * In other words, we compute the number of blocks needed to satisfy a given
225  * loading level, then spread the items as evenly as possible.
226  *
227  * The height and number of fs blocks required to create the btree are computed
228  * and returned via btree_height and nr_blocks.
229  */
230 
231 /*
232  * Put a btree block that we're loading onto the ordered list and release it.
233  * The btree blocks will be written to disk when bulk loading is finished.
234  * If we reach the dirty buffer threshold, flush them to disk before
235  * continuing.
236  */
237 static int
xfs_btree_bload_drop_buf(struct xfs_btree_bload * bbl,struct list_head * buffers_list,struct xfs_buf ** bpp)238 xfs_btree_bload_drop_buf(
239 	struct xfs_btree_bload		*bbl,
240 	struct list_head		*buffers_list,
241 	struct xfs_buf			**bpp)
242 {
243 	struct xfs_buf			*bp = *bpp;
244 	int				error;
245 
246 	if (!bp)
247 		return 0;
248 
249 	/*
250 	 * Mark this buffer XBF_DONE (i.e. uptodate) so that a subsequent
251 	 * xfs_buf_read will not pointlessly reread the contents from the disk.
252 	 */
253 	bp->b_flags |= XBF_DONE;
254 
255 	xfs_buf_delwri_queue_here(bp, buffers_list);
256 	xfs_buf_relse(bp);
257 	*bpp = NULL;
258 	bbl->nr_dirty++;
259 
260 	if (!bbl->max_dirty || bbl->nr_dirty < bbl->max_dirty)
261 		return 0;
262 
263 	error = xfs_buf_delwri_submit(buffers_list);
264 	if (error)
265 		return error;
266 
267 	bbl->nr_dirty = 0;
268 	return 0;
269 }
270 
271 /*
272  * Allocate and initialize one btree block for bulk loading.
273  *
274  * The new btree block will have its level and numrecs fields set to the values
275  * of the level and nr_this_block parameters, respectively.
276  *
277  * The caller should ensure that ptrp, bpp, and blockp refer to the left
278  * sibling of the new block, if there is any.  On exit, ptrp, bpp, and blockp
279  * will all point to the new block.
280  */
281 STATIC int
xfs_btree_bload_prep_block(struct xfs_btree_cur * cur,struct xfs_btree_bload * bbl,struct list_head * buffers_list,unsigned int level,unsigned int nr_this_block,union xfs_btree_ptr * ptrp,struct xfs_buf ** bpp,struct xfs_btree_block ** blockp,void * priv)282 xfs_btree_bload_prep_block(
283 	struct xfs_btree_cur		*cur,
284 	struct xfs_btree_bload		*bbl,
285 	struct list_head		*buffers_list,
286 	unsigned int			level,
287 	unsigned int			nr_this_block,
288 	union xfs_btree_ptr		*ptrp, /* in/out */
289 	struct xfs_buf			**bpp, /* in/out */
290 	struct xfs_btree_block		**blockp, /* in/out */
291 	void				*priv)
292 {
293 	union xfs_btree_ptr		new_ptr;
294 	struct xfs_buf			*new_bp;
295 	struct xfs_btree_block		*new_block;
296 	int				ret;
297 
298 	if (xfs_btree_at_iroot(cur, level)) {
299 		struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
300 		size_t			new_size;
301 
302 		ASSERT(*bpp == NULL);
303 
304 		/* Allocate a new incore btree root block. */
305 		new_size = bbl->iroot_size(cur, level, nr_this_block, priv);
306 		ifp->if_broot = kzalloc(new_size, GFP_KERNEL | __GFP_NOFAIL);
307 		ifp->if_broot_bytes = (int)new_size;
308 
309 		/* Initialize it and send it out. */
310 		xfs_btree_init_block(cur->bc_mp, ifp->if_broot, cur->bc_ops,
311 				level, nr_this_block, cur->bc_ino.ip->i_ino);
312 
313 		*bpp = NULL;
314 		*blockp = ifp->if_broot;
315 		xfs_btree_set_ptr_null(cur, ptrp);
316 		return 0;
317 	}
318 
319 	/* Claim one of the caller's preallocated blocks. */
320 	xfs_btree_set_ptr_null(cur, &new_ptr);
321 	ret = bbl->claim_block(cur, &new_ptr, priv);
322 	if (ret)
323 		return ret;
324 
325 	ASSERT(!xfs_btree_ptr_is_null(cur, &new_ptr));
326 
327 	ret = xfs_btree_get_buf_block(cur, &new_ptr, &new_block, &new_bp);
328 	if (ret)
329 		return ret;
330 
331 	/*
332 	 * The previous block (if any) is the left sibling of the new block,
333 	 * so set its right sibling pointer to the new block and drop it.
334 	 */
335 	if (*blockp)
336 		xfs_btree_set_sibling(cur, *blockp, &new_ptr, XFS_BB_RIGHTSIB);
337 
338 	ret = xfs_btree_bload_drop_buf(bbl, buffers_list, bpp);
339 	if (ret)
340 		return ret;
341 
342 	/* Initialize the new btree block. */
343 	xfs_btree_init_block_cur(cur, new_bp, level, nr_this_block);
344 	xfs_btree_set_sibling(cur, new_block, ptrp, XFS_BB_LEFTSIB);
345 
346 	/* Set the out parameters. */
347 	*bpp = new_bp;
348 	*blockp = new_block;
349 	xfs_btree_copy_ptrs(cur, ptrp, &new_ptr, 1);
350 	return 0;
351 }
352 
353 /* Load one leaf block. */
354 STATIC int
xfs_btree_bload_leaf(struct xfs_btree_cur * cur,unsigned int recs_this_block,xfs_btree_bload_get_records_fn get_records,struct xfs_btree_block * block,void * priv)355 xfs_btree_bload_leaf(
356 	struct xfs_btree_cur		*cur,
357 	unsigned int			recs_this_block,
358 	xfs_btree_bload_get_records_fn	get_records,
359 	struct xfs_btree_block		*block,
360 	void				*priv)
361 {
362 	unsigned int			j = 1;
363 	int				ret;
364 
365 	/* Fill the leaf block with records. */
366 	while (j <= recs_this_block) {
367 		ret = get_records(cur, j, block, recs_this_block - j + 1, priv);
368 		if (ret < 0)
369 			return ret;
370 		j += ret;
371 	}
372 
373 	return 0;
374 }
375 
376 /*
377  * Load one node block with key/ptr pairs.
378  *
379  * child_ptr must point to a block within the next level down in the tree.  A
380  * key/ptr entry will be created in the new node block to the block pointed to
381  * by child_ptr.  On exit, child_ptr points to the next block on the child
382  * level that needs processing.
383  */
384 STATIC int
xfs_btree_bload_node(struct xfs_btree_cur * cur,unsigned int recs_this_block,union xfs_btree_ptr * child_ptr,struct xfs_btree_block * block)385 xfs_btree_bload_node(
386 	struct xfs_btree_cur	*cur,
387 	unsigned int		recs_this_block,
388 	union xfs_btree_ptr	*child_ptr,
389 	struct xfs_btree_block	*block)
390 {
391 	unsigned int		j;
392 	int			ret;
393 
394 	/* Fill the node block with keys and pointers. */
395 	for (j = 1; j <= recs_this_block; j++) {
396 		union xfs_btree_key	child_key;
397 		union xfs_btree_ptr	*block_ptr;
398 		union xfs_btree_key	*block_key;
399 		struct xfs_btree_block	*child_block;
400 		struct xfs_buf		*child_bp;
401 
402 		ASSERT(!xfs_btree_ptr_is_null(cur, child_ptr));
403 
404 		/*
405 		 * Read the lower-level block in case the buffer for it has
406 		 * been reclaimed.  LRU refs will be set on the block, which is
407 		 * desirable if the new btree commits.
408 		 */
409 		ret = xfs_btree_read_buf_block(cur, child_ptr, 0, &child_block,
410 				&child_bp);
411 		if (ret)
412 			return ret;
413 
414 		block_ptr = xfs_btree_ptr_addr(cur, j, block);
415 		xfs_btree_copy_ptrs(cur, block_ptr, child_ptr, 1);
416 
417 		block_key = xfs_btree_key_addr(cur, j, block);
418 		xfs_btree_get_keys(cur, child_block, &child_key);
419 		xfs_btree_copy_keys(cur, block_key, &child_key, 1);
420 
421 		xfs_btree_get_sibling(cur, child_block, child_ptr,
422 				XFS_BB_RIGHTSIB);
423 		xfs_buf_relse(child_bp);
424 	}
425 
426 	return 0;
427 }
428 
429 /*
430  * Compute the maximum number of records (or keyptrs) per block that we want to
431  * install at this level in the btree.  Caller is responsible for having set
432  * @cur->bc_ino.forksize to the desired fork size, if appropriate.
433  */
434 STATIC unsigned int
xfs_btree_bload_max_npb(struct xfs_btree_cur * cur,struct xfs_btree_bload * bbl,unsigned int level)435 xfs_btree_bload_max_npb(
436 	struct xfs_btree_cur	*cur,
437 	struct xfs_btree_bload	*bbl,
438 	unsigned int		level)
439 {
440 	unsigned int		ret;
441 
442 	if (level == cur->bc_nlevels - 1 && cur->bc_ops->get_dmaxrecs)
443 		return cur->bc_ops->get_dmaxrecs(cur, level);
444 
445 	ret = cur->bc_ops->get_maxrecs(cur, level);
446 	if (level == 0)
447 		ret -= bbl->leaf_slack;
448 	else
449 		ret -= bbl->node_slack;
450 	return ret;
451 }
452 
453 /*
454  * Compute the desired number of records (or keyptrs) per block that we want to
455  * install at this level in the btree, which must be somewhere between minrecs
456  * and max_npb.  The caller is free to install fewer records per block.
457  */
458 STATIC unsigned int
xfs_btree_bload_desired_npb(struct xfs_btree_cur * cur,struct xfs_btree_bload * bbl,unsigned int level)459 xfs_btree_bload_desired_npb(
460 	struct xfs_btree_cur	*cur,
461 	struct xfs_btree_bload	*bbl,
462 	unsigned int		level)
463 {
464 	unsigned int		npb = xfs_btree_bload_max_npb(cur, bbl, level);
465 
466 	/* Root blocks are not subject to minrecs rules. */
467 	if (level == cur->bc_nlevels - 1)
468 		return max(1U, npb);
469 
470 	return max_t(unsigned int, cur->bc_ops->get_minrecs(cur, level), npb);
471 }
472 
473 /*
474  * Compute the number of records to be stored in each block at this level and
475  * the number of blocks for this level.  For leaf levels, we must populate an
476  * empty root block even if there are no records, so we have to have at least
477  * one block.
478  */
479 STATIC void
xfs_btree_bload_level_geometry(struct xfs_btree_cur * cur,struct xfs_btree_bload * bbl,unsigned int level,uint64_t nr_this_level,unsigned int * avg_per_block,uint64_t * blocks,uint64_t * blocks_with_extra)480 xfs_btree_bload_level_geometry(
481 	struct xfs_btree_cur	*cur,
482 	struct xfs_btree_bload	*bbl,
483 	unsigned int		level,
484 	uint64_t		nr_this_level,
485 	unsigned int		*avg_per_block,
486 	uint64_t		*blocks,
487 	uint64_t		*blocks_with_extra)
488 {
489 	uint64_t		npb;
490 	uint64_t		dontcare;
491 	unsigned int		desired_npb;
492 	unsigned int		maxnr;
493 
494 	/*
495 	 * Compute the absolute maximum number of records that we can store in
496 	 * the ondisk block or inode root.
497 	 */
498 	if (cur->bc_ops->get_dmaxrecs)
499 		maxnr = cur->bc_ops->get_dmaxrecs(cur, level);
500 	else
501 		maxnr = cur->bc_ops->get_maxrecs(cur, level);
502 
503 	/*
504 	 * Compute the number of blocks we need to fill each block with the
505 	 * desired number of records/keyptrs per block.  Because desired_npb
506 	 * could be minrecs, we use regular integer division (which rounds
507 	 * the block count down) so that in the next step the effective # of
508 	 * items per block will never be less than desired_npb.
509 	 */
510 	desired_npb = xfs_btree_bload_desired_npb(cur, bbl, level);
511 	*blocks = div64_u64_rem(nr_this_level, desired_npb, &dontcare);
512 	*blocks = max(1ULL, *blocks);
513 
514 	/*
515 	 * Compute the number of records that we will actually put in each
516 	 * block, assuming that we want to spread the records evenly between
517 	 * the blocks.  Take care that the effective # of items per block (npb)
518 	 * won't exceed maxrecs even for the blocks that get an extra record,
519 	 * since desired_npb could be maxrecs, and in the previous step we
520 	 * rounded the block count down.
521 	 */
522 	npb = div64_u64_rem(nr_this_level, *blocks, blocks_with_extra);
523 	if (npb > maxnr || (npb == maxnr && *blocks_with_extra > 0)) {
524 		(*blocks)++;
525 		npb = div64_u64_rem(nr_this_level, *blocks, blocks_with_extra);
526 	}
527 
528 	*avg_per_block = min_t(uint64_t, npb, nr_this_level);
529 
530 	trace_xfs_btree_bload_level_geometry(cur, level, nr_this_level,
531 			*avg_per_block, desired_npb, *blocks,
532 			*blocks_with_extra);
533 }
534 
535 /*
536  * Ensure a slack value is appropriate for the btree.
537  *
538  * If the slack value is negative, set slack so that we fill the block to
539  * halfway between minrecs and maxrecs.  Make sure the slack is never so large
540  * that we can underflow minrecs.
541  */
542 static void
xfs_btree_bload_ensure_slack(struct xfs_btree_cur * cur,int * slack,int level)543 xfs_btree_bload_ensure_slack(
544 	struct xfs_btree_cur	*cur,
545 	int			*slack,
546 	int			level)
547 {
548 	int			maxr;
549 	int			minr;
550 
551 	maxr = cur->bc_ops->get_maxrecs(cur, level);
552 	minr = cur->bc_ops->get_minrecs(cur, level);
553 
554 	/*
555 	 * If slack is negative, automatically set slack so that we load the
556 	 * btree block approximately halfway between minrecs and maxrecs.
557 	 * Generally, this will net us 75% loading.
558 	 */
559 	if (*slack < 0)
560 		*slack = maxr - ((maxr + minr) >> 1);
561 
562 	*slack = min(*slack, maxr - minr);
563 }
564 
565 /*
566  * Prepare a btree cursor for a bulk load operation by computing the geometry
567  * fields in bbl.  Caller must ensure that the btree cursor is a staging
568  * cursor.  This function can be called multiple times.
569  */
570 int
xfs_btree_bload_compute_geometry(struct xfs_btree_cur * cur,struct xfs_btree_bload * bbl,uint64_t nr_records)571 xfs_btree_bload_compute_geometry(
572 	struct xfs_btree_cur	*cur,
573 	struct xfs_btree_bload	*bbl,
574 	uint64_t		nr_records)
575 {
576 	uint64_t		nr_blocks = 0;
577 	uint64_t		nr_this_level;
578 
579 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
580 
581 	/*
582 	 * Make sure that the slack values make sense for traditional leaf and
583 	 * node blocks.  Inode-rooted btrees will return different minrecs and
584 	 * maxrecs values for the root block (bc_nlevels == level - 1).  We're
585 	 * checking levels 0 and 1 here, so set bc_nlevels such that the btree
586 	 * code doesn't interpret either as the root level.
587 	 */
588 	cur->bc_nlevels = cur->bc_maxlevels - 1;
589 	xfs_btree_bload_ensure_slack(cur, &bbl->leaf_slack, 0);
590 	xfs_btree_bload_ensure_slack(cur, &bbl->node_slack, 1);
591 
592 	bbl->nr_records = nr_this_level = nr_records;
593 	for (cur->bc_nlevels = 1; cur->bc_nlevels <= cur->bc_maxlevels;) {
594 		uint64_t	level_blocks;
595 		uint64_t	dontcare64;
596 		unsigned int	level = cur->bc_nlevels - 1;
597 		unsigned int	avg_per_block;
598 
599 		xfs_btree_bload_level_geometry(cur, bbl, level, nr_this_level,
600 				&avg_per_block, &level_blocks, &dontcare64);
601 
602 		if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
603 			/*
604 			 * If all the items we want to store at this level
605 			 * would fit in the inode root block, then we have our
606 			 * btree root and are done.
607 			 *
608 			 * Note that bmap btrees forbid records in the root.
609 			 */
610 			if (level != 0 && nr_this_level <= avg_per_block) {
611 				nr_blocks++;
612 				break;
613 			}
614 
615 			/*
616 			 * Otherwise, we have to store all the items for this
617 			 * level in traditional btree blocks and therefore need
618 			 * another level of btree to point to those blocks.
619 			 *
620 			 * We have to re-compute the geometry for each level of
621 			 * an inode-rooted btree because the geometry differs
622 			 * between a btree root in an inode fork and a
623 			 * traditional btree block.
624 			 *
625 			 * This distinction is made in the btree code based on
626 			 * whether level == bc_nlevels - 1.  Based on the
627 			 * previous root block size check against the root
628 			 * block geometry, we know that we aren't yet ready to
629 			 * populate the root.  Increment bc_nevels and
630 			 * recalculate the geometry for a traditional
631 			 * block-based btree level.
632 			 */
633 			cur->bc_nlevels++;
634 			ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
635 			xfs_btree_bload_level_geometry(cur, bbl, level,
636 					nr_this_level, &avg_per_block,
637 					&level_blocks, &dontcare64);
638 		} else {
639 			/*
640 			 * If all the items we want to store at this level
641 			 * would fit in a single root block, we're done.
642 			 */
643 			if (nr_this_level <= avg_per_block) {
644 				nr_blocks++;
645 				break;
646 			}
647 
648 			/* Otherwise, we need another level of btree. */
649 			cur->bc_nlevels++;
650 			ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
651 		}
652 
653 		nr_blocks += level_blocks;
654 		nr_this_level = level_blocks;
655 	}
656 
657 	if (cur->bc_nlevels > cur->bc_maxlevels)
658 		return -EOVERFLOW;
659 
660 	bbl->btree_height = cur->bc_nlevels;
661 	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
662 		bbl->nr_blocks = nr_blocks - 1;
663 	else
664 		bbl->nr_blocks = nr_blocks;
665 	return 0;
666 }
667 
668 /* Bulk load a btree given the parameters and geometry established in bbl. */
669 int
xfs_btree_bload(struct xfs_btree_cur * cur,struct xfs_btree_bload * bbl,void * priv)670 xfs_btree_bload(
671 	struct xfs_btree_cur		*cur,
672 	struct xfs_btree_bload		*bbl,
673 	void				*priv)
674 {
675 	struct list_head		buffers_list;
676 	union xfs_btree_ptr		child_ptr;
677 	union xfs_btree_ptr		ptr;
678 	struct xfs_buf			*bp = NULL;
679 	struct xfs_btree_block		*block = NULL;
680 	uint64_t			nr_this_level = bbl->nr_records;
681 	uint64_t			blocks;
682 	uint64_t			i;
683 	uint64_t			blocks_with_extra;
684 	uint64_t			total_blocks = 0;
685 	unsigned int			avg_per_block;
686 	unsigned int			level = 0;
687 	int				ret;
688 
689 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
690 
691 	INIT_LIST_HEAD(&buffers_list);
692 	cur->bc_nlevels = bbl->btree_height;
693 	xfs_btree_set_ptr_null(cur, &child_ptr);
694 	xfs_btree_set_ptr_null(cur, &ptr);
695 	bbl->nr_dirty = 0;
696 
697 	xfs_btree_bload_level_geometry(cur, bbl, level, nr_this_level,
698 			&avg_per_block, &blocks, &blocks_with_extra);
699 
700 	/* Load each leaf block. */
701 	for (i = 0; i < blocks; i++) {
702 		unsigned int		nr_this_block = avg_per_block;
703 
704 		/*
705 		 * Due to rounding, btree blocks will not be evenly populated
706 		 * in most cases.  blocks_with_extra tells us how many blocks
707 		 * will receive an extra record to distribute the excess across
708 		 * the current level as evenly as possible.
709 		 */
710 		if (i < blocks_with_extra)
711 			nr_this_block++;
712 
713 		ret = xfs_btree_bload_prep_block(cur, bbl, &buffers_list, level,
714 				nr_this_block, &ptr, &bp, &block, priv);
715 		if (ret)
716 			goto out;
717 
718 		trace_xfs_btree_bload_block(cur, level, i, blocks, &ptr,
719 				nr_this_block);
720 
721 		ret = xfs_btree_bload_leaf(cur, nr_this_block, bbl->get_records,
722 				block, priv);
723 		if (ret)
724 			goto out;
725 
726 		/*
727 		 * Record the leftmost leaf pointer so we know where to start
728 		 * with the first node level.
729 		 */
730 		if (i == 0)
731 			xfs_btree_copy_ptrs(cur, &child_ptr, &ptr, 1);
732 	}
733 	total_blocks += blocks;
734 
735 	ret = xfs_btree_bload_drop_buf(bbl, &buffers_list, &bp);
736 	if (ret)
737 		goto out;
738 
739 	/* Populate the internal btree nodes. */
740 	for (level = 1; level < cur->bc_nlevels; level++) {
741 		union xfs_btree_ptr	first_ptr;
742 
743 		nr_this_level = blocks;
744 		block = NULL;
745 		xfs_btree_set_ptr_null(cur, &ptr);
746 
747 		xfs_btree_bload_level_geometry(cur, bbl, level, nr_this_level,
748 				&avg_per_block, &blocks, &blocks_with_extra);
749 
750 		/* Load each node block. */
751 		for (i = 0; i < blocks; i++) {
752 			unsigned int	nr_this_block = avg_per_block;
753 
754 			if (i < blocks_with_extra)
755 				nr_this_block++;
756 
757 			ret = xfs_btree_bload_prep_block(cur, bbl,
758 					&buffers_list, level, nr_this_block,
759 					&ptr, &bp, &block, priv);
760 			if (ret)
761 				goto out;
762 
763 			trace_xfs_btree_bload_block(cur, level, i, blocks,
764 					&ptr, nr_this_block);
765 
766 			ret = xfs_btree_bload_node(cur, nr_this_block,
767 					&child_ptr, block);
768 			if (ret)
769 				goto out;
770 
771 			/*
772 			 * Record the leftmost node pointer so that we know
773 			 * where to start the next node level above this one.
774 			 */
775 			if (i == 0)
776 				xfs_btree_copy_ptrs(cur, &first_ptr, &ptr, 1);
777 		}
778 		total_blocks += blocks;
779 
780 		ret = xfs_btree_bload_drop_buf(bbl, &buffers_list, &bp);
781 		if (ret)
782 			goto out;
783 
784 		xfs_btree_copy_ptrs(cur, &child_ptr, &first_ptr, 1);
785 	}
786 
787 	/* Initialize the new root. */
788 	if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
789 		ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
790 		cur->bc_ino.ifake->if_levels = cur->bc_nlevels;
791 		cur->bc_ino.ifake->if_blocks = total_blocks - 1;
792 	} else {
793 		cur->bc_ag.afake->af_root = be32_to_cpu(ptr.s);
794 		cur->bc_ag.afake->af_levels = cur->bc_nlevels;
795 		cur->bc_ag.afake->af_blocks = total_blocks;
796 	}
797 
798 	/*
799 	 * Write the new blocks to disk.  If the ordered list isn't empty after
800 	 * that, then something went wrong and we have to fail.  This should
801 	 * never happen, but we'll check anyway.
802 	 */
803 	ret = xfs_buf_delwri_submit(&buffers_list);
804 	if (ret)
805 		goto out;
806 	if (!list_empty(&buffers_list)) {
807 		ASSERT(list_empty(&buffers_list));
808 		ret = -EIO;
809 	}
810 
811 out:
812 	xfs_buf_delwri_cancel(&buffers_list);
813 	if (bp)
814 		xfs_buf_relse(bp);
815 	return ret;
816 }
817