1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 
23 struct xfs_writepage_ctx {
24 	struct iomap_writepage_ctx ctx;
25 	unsigned int		data_seq;
26 	unsigned int		cow_seq;
27 };
28 
29 static inline struct xfs_writepage_ctx *
XFS_WPC(struct iomap_writepage_ctx * ctx)30 XFS_WPC(struct iomap_writepage_ctx *ctx)
31 {
32 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
33 }
34 
35 /*
36  * Fast and loose check if this write could update the on-disk inode size.
37  */
xfs_ioend_is_append(struct iomap_ioend * ioend)38 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
39 {
40 	return ioend->io_offset + ioend->io_size >
41 		XFS_I(ioend->io_inode)->i_disk_size;
42 }
43 
44 /*
45  * Update on-disk file size now that data has been written to disk.
46  */
47 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)48 xfs_setfilesize(
49 	struct xfs_inode	*ip,
50 	xfs_off_t		offset,
51 	size_t			size)
52 {
53 	struct xfs_mount	*mp = ip->i_mount;
54 	struct xfs_trans	*tp;
55 	xfs_fsize_t		isize;
56 	int			error;
57 
58 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
59 	if (error)
60 		return error;
61 
62 	xfs_ilock(ip, XFS_ILOCK_EXCL);
63 	isize = xfs_new_eof(ip, offset + size);
64 	if (!isize) {
65 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
66 		xfs_trans_cancel(tp);
67 		return 0;
68 	}
69 
70 	trace_xfs_setfilesize(ip, offset, size);
71 
72 	ip->i_disk_size = isize;
73 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
74 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
75 
76 	return xfs_trans_commit(tp);
77 }
78 
79 /*
80  * IO write completion.
81  */
82 STATIC void
xfs_end_ioend(struct iomap_ioend * ioend)83 xfs_end_ioend(
84 	struct iomap_ioend	*ioend)
85 {
86 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
87 	struct xfs_mount	*mp = ip->i_mount;
88 	xfs_off_t		offset = ioend->io_offset;
89 	size_t			size = ioend->io_size;
90 	unsigned int		nofs_flag;
91 	int			error;
92 
93 	/*
94 	 * We can allocate memory here while doing writeback on behalf of
95 	 * memory reclaim.  To avoid memory allocation deadlocks set the
96 	 * task-wide nofs context for the following operations.
97 	 */
98 	nofs_flag = memalloc_nofs_save();
99 
100 	/*
101 	 * Just clean up the in-memory structures if the fs has been shut down.
102 	 */
103 	if (xfs_is_shutdown(mp)) {
104 		error = -EIO;
105 		goto done;
106 	}
107 
108 	/*
109 	 * Clean up all COW blocks and underlying data fork delalloc blocks on
110 	 * I/O error. The delalloc punch is required because this ioend was
111 	 * mapped to blocks in the COW fork and the associated pages are no
112 	 * longer dirty. If we don't remove delalloc blocks here, they become
113 	 * stale and can corrupt free space accounting on unmount.
114 	 */
115 	error = blk_status_to_errno(ioend->io_bio.bi_status);
116 	if (unlikely(error)) {
117 		if (ioend->io_flags & IOMAP_F_SHARED) {
118 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
119 			xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset,
120 					offset + size);
121 		}
122 		goto done;
123 	}
124 
125 	/*
126 	 * Success: commit the COW or unwritten blocks if needed.
127 	 */
128 	if (ioend->io_flags & IOMAP_F_SHARED)
129 		error = xfs_reflink_end_cow(ip, offset, size);
130 	else if (ioend->io_type == IOMAP_UNWRITTEN)
131 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
132 
133 	if (!error && xfs_ioend_is_append(ioend))
134 		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
135 done:
136 	iomap_finish_ioends(ioend, error);
137 	memalloc_nofs_restore(nofs_flag);
138 }
139 
140 /*
141  * Finish all pending IO completions that require transactional modifications.
142  *
143  * We try to merge physical and logically contiguous ioends before completion to
144  * minimise the number of transactions we need to perform during IO completion.
145  * Both unwritten extent conversion and COW remapping need to iterate and modify
146  * one physical extent at a time, so we gain nothing by merging physically
147  * discontiguous extents here.
148  *
149  * The ioend chain length that we can be processing here is largely unbound in
150  * length and we may have to perform significant amounts of work on each ioend
151  * to complete it. Hence we have to be careful about holding the CPU for too
152  * long in this loop.
153  */
154 void
xfs_end_io(struct work_struct * work)155 xfs_end_io(
156 	struct work_struct	*work)
157 {
158 	struct xfs_inode	*ip =
159 		container_of(work, struct xfs_inode, i_ioend_work);
160 	struct iomap_ioend	*ioend;
161 	struct list_head	tmp;
162 	unsigned long		flags;
163 
164 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
165 	list_replace_init(&ip->i_ioend_list, &tmp);
166 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167 
168 	iomap_sort_ioends(&tmp);
169 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
170 			io_list))) {
171 		list_del_init(&ioend->io_list);
172 		iomap_ioend_try_merge(ioend, &tmp);
173 		xfs_end_ioend(ioend);
174 		cond_resched();
175 	}
176 }
177 
178 STATIC void
xfs_end_bio(struct bio * bio)179 xfs_end_bio(
180 	struct bio		*bio)
181 {
182 	struct iomap_ioend	*ioend = iomap_ioend_from_bio(bio);
183 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
184 	unsigned long		flags;
185 
186 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
187 	if (list_empty(&ip->i_ioend_list))
188 		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189 					 &ip->i_ioend_work));
190 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
192 }
193 
194 /*
195  * Fast revalidation of the cached writeback mapping. Return true if the current
196  * mapping is valid, false otherwise.
197  */
198 static bool
xfs_imap_valid(struct iomap_writepage_ctx * wpc,struct xfs_inode * ip,loff_t offset)199 xfs_imap_valid(
200 	struct iomap_writepage_ctx	*wpc,
201 	struct xfs_inode		*ip,
202 	loff_t				offset)
203 {
204 	if (offset < wpc->iomap.offset ||
205 	    offset >= wpc->iomap.offset + wpc->iomap.length)
206 		return false;
207 	/*
208 	 * If this is a COW mapping, it is sufficient to check that the mapping
209 	 * covers the offset. Be careful to check this first because the caller
210 	 * can revalidate a COW mapping without updating the data seqno.
211 	 */
212 	if (wpc->iomap.flags & IOMAP_F_SHARED)
213 		return true;
214 
215 	/*
216 	 * This is not a COW mapping. Check the sequence number of the data fork
217 	 * because concurrent changes could have invalidated the extent. Check
218 	 * the COW fork because concurrent changes since the last time we
219 	 * checked (and found nothing at this offset) could have added
220 	 * overlapping blocks.
221 	 */
222 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223 		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224 				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
225 		return false;
226 	}
227 	if (xfs_inode_has_cow_data(ip) &&
228 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229 		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230 				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
231 		return false;
232 	}
233 	return true;
234 }
235 
236 static int
xfs_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset,unsigned int len)237 xfs_map_blocks(
238 	struct iomap_writepage_ctx *wpc,
239 	struct inode		*inode,
240 	loff_t			offset,
241 	unsigned int		len)
242 {
243 	struct xfs_inode	*ip = XFS_I(inode);
244 	struct xfs_mount	*mp = ip->i_mount;
245 	ssize_t			count = i_blocksize(inode);
246 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
247 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
248 	xfs_fileoff_t		cow_fsb;
249 	int			whichfork;
250 	struct xfs_bmbt_irec	imap;
251 	struct xfs_iext_cursor	icur;
252 	int			retries = 0;
253 	int			error = 0;
254 	unsigned int		*seq;
255 
256 	if (xfs_is_shutdown(mp))
257 		return -EIO;
258 
259 	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
260 
261 	/*
262 	 * COW fork blocks can overlap data fork blocks even if the blocks
263 	 * aren't shared.  COW I/O always takes precedent, so we must always
264 	 * check for overlap on reflink inodes unless the mapping is already a
265 	 * COW one, or the COW fork hasn't changed from the last time we looked
266 	 * at it.
267 	 *
268 	 * It's safe to check the COW fork if_seq here without the ILOCK because
269 	 * we've indirectly protected against concurrent updates: writeback has
270 	 * the page locked, which prevents concurrent invalidations by reflink
271 	 * and directio and prevents concurrent buffered writes to the same
272 	 * page.  Changes to if_seq always happen under i_lock, which protects
273 	 * against concurrent updates and provides a memory barrier on the way
274 	 * out that ensures that we always see the current value.
275 	 */
276 	if (xfs_imap_valid(wpc, ip, offset))
277 		return 0;
278 
279 	/*
280 	 * If we don't have a valid map, now it's time to get a new one for this
281 	 * offset.  This will convert delayed allocations (including COW ones)
282 	 * into real extents.  If we return without a valid map, it means we
283 	 * landed in a hole and we skip the block.
284 	 */
285 retry:
286 	cow_fsb = NULLFILEOFF;
287 	whichfork = XFS_DATA_FORK;
288 	xfs_ilock(ip, XFS_ILOCK_SHARED);
289 	ASSERT(!xfs_need_iread_extents(&ip->i_df));
290 
291 	/*
292 	 * Check if this is offset is covered by a COW extents, and if yes use
293 	 * it directly instead of looking up anything in the data fork.
294 	 */
295 	if (xfs_inode_has_cow_data(ip) &&
296 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
297 		cow_fsb = imap.br_startoff;
298 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
299 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
300 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
301 
302 		whichfork = XFS_COW_FORK;
303 		goto allocate_blocks;
304 	}
305 
306 	/*
307 	 * No COW extent overlap. Revalidate now that we may have updated
308 	 * ->cow_seq. If the data mapping is still valid, we're done.
309 	 */
310 	if (xfs_imap_valid(wpc, ip, offset)) {
311 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
312 		return 0;
313 	}
314 
315 	/*
316 	 * If we don't have a valid map, now it's time to get a new one for this
317 	 * offset.  This will convert delayed allocations (including COW ones)
318 	 * into real extents.
319 	 */
320 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
321 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
322 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
323 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
324 
325 	/* landed in a hole or beyond EOF? */
326 	if (imap.br_startoff > offset_fsb) {
327 		imap.br_blockcount = imap.br_startoff - offset_fsb;
328 		imap.br_startoff = offset_fsb;
329 		imap.br_startblock = HOLESTARTBLOCK;
330 		imap.br_state = XFS_EXT_NORM;
331 	}
332 
333 	/*
334 	 * Truncate to the next COW extent if there is one.  This is the only
335 	 * opportunity to do this because we can skip COW fork lookups for the
336 	 * subsequent blocks in the mapping; however, the requirement to treat
337 	 * the COW range separately remains.
338 	 */
339 	if (cow_fsb != NULLFILEOFF &&
340 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
341 		imap.br_blockcount = cow_fsb - imap.br_startoff;
342 
343 	/* got a delalloc extent? */
344 	if (imap.br_startblock != HOLESTARTBLOCK &&
345 	    isnullstartblock(imap.br_startblock))
346 		goto allocate_blocks;
347 
348 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
349 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
350 	return 0;
351 allocate_blocks:
352 	/*
353 	 * Convert a dellalloc extent to a real one. The current page is held
354 	 * locked so nothing could have removed the block backing offset_fsb,
355 	 * although it could have moved from the COW to the data fork by another
356 	 * thread.
357 	 */
358 	if (whichfork == XFS_COW_FORK)
359 		seq = &XFS_WPC(wpc)->cow_seq;
360 	else
361 		seq = &XFS_WPC(wpc)->data_seq;
362 
363 	error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
364 				&wpc->iomap, seq);
365 	if (error) {
366 		/*
367 		 * If we failed to find the extent in the COW fork we might have
368 		 * raced with a COW to data fork conversion or truncate.
369 		 * Restart the lookup to catch the extent in the data fork for
370 		 * the former case, but prevent additional retries to avoid
371 		 * looping forever for the latter case.
372 		 */
373 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
374 			goto retry;
375 		ASSERT(error != -EAGAIN);
376 		return error;
377 	}
378 
379 	/*
380 	 * Due to merging the return real extent might be larger than the
381 	 * original delalloc one.  Trim the return extent to the next COW
382 	 * boundary again to force a re-lookup.
383 	 */
384 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
385 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
386 
387 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
388 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
389 	}
390 
391 	ASSERT(wpc->iomap.offset <= offset);
392 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
393 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
394 	return 0;
395 }
396 
397 static int
xfs_prepare_ioend(struct iomap_ioend * ioend,int status)398 xfs_prepare_ioend(
399 	struct iomap_ioend	*ioend,
400 	int			status)
401 {
402 	unsigned int		nofs_flag;
403 
404 	/*
405 	 * We can allocate memory here while doing writeback on behalf of
406 	 * memory reclaim.  To avoid memory allocation deadlocks set the
407 	 * task-wide nofs context for the following operations.
408 	 */
409 	nofs_flag = memalloc_nofs_save();
410 
411 	/* Convert CoW extents to regular */
412 	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
413 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
414 				ioend->io_offset, ioend->io_size);
415 	}
416 
417 	memalloc_nofs_restore(nofs_flag);
418 
419 	/* send ioends that might require a transaction to the completion wq */
420 	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
421 	    (ioend->io_flags & IOMAP_F_SHARED))
422 		ioend->io_bio.bi_end_io = xfs_end_bio;
423 	return status;
424 }
425 
426 /*
427  * If the folio has delalloc blocks on it, the caller is asking us to punch them
428  * out. If we don't, we can leave a stale delalloc mapping covered by a clean
429  * page that needs to be dirtied again before the delalloc mapping can be
430  * converted. This stale delalloc mapping can trip up a later direct I/O read
431  * operation on the same region.
432  *
433  * We prevent this by truncating away the delalloc regions on the folio. Because
434  * they are delalloc, we can do this without needing a transaction. Indeed - if
435  * we get ENOSPC errors, we have to be able to do this truncation without a
436  * transaction as there is no space left for block reservation (typically why
437  * we see a ENOSPC in writeback).
438  */
439 static void
xfs_discard_folio(struct folio * folio,loff_t pos)440 xfs_discard_folio(
441 	struct folio		*folio,
442 	loff_t			pos)
443 {
444 	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
445 	struct xfs_mount	*mp = ip->i_mount;
446 
447 	if (xfs_is_shutdown(mp))
448 		return;
449 
450 	xfs_alert_ratelimited(mp,
451 		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
452 			folio, ip->i_ino, pos);
453 
454 	/*
455 	 * The end of the punch range is always the offset of the first
456 	 * byte of the next folio. Hence the end offset is only dependent on the
457 	 * folio itself and not the start offset that is passed in.
458 	 */
459 	xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos,
460 				folio_pos(folio) + folio_size(folio));
461 }
462 
463 static const struct iomap_writeback_ops xfs_writeback_ops = {
464 	.map_blocks		= xfs_map_blocks,
465 	.prepare_ioend		= xfs_prepare_ioend,
466 	.discard_folio		= xfs_discard_folio,
467 };
468 
469 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)470 xfs_vm_writepages(
471 	struct address_space	*mapping,
472 	struct writeback_control *wbc)
473 {
474 	struct xfs_writepage_ctx wpc = { };
475 
476 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
477 	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
478 }
479 
480 STATIC int
xfs_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)481 xfs_dax_writepages(
482 	struct address_space	*mapping,
483 	struct writeback_control *wbc)
484 {
485 	struct xfs_inode	*ip = XFS_I(mapping->host);
486 
487 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
488 	return dax_writeback_mapping_range(mapping,
489 			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
490 }
491 
492 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)493 xfs_vm_bmap(
494 	struct address_space	*mapping,
495 	sector_t		block)
496 {
497 	struct xfs_inode	*ip = XFS_I(mapping->host);
498 
499 	trace_xfs_vm_bmap(ip);
500 
501 	/*
502 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
503 	 * bypasses the file system for actual I/O.  We really can't allow
504 	 * that on reflinks inodes, so we have to skip out here.  And yes,
505 	 * 0 is the magic code for a bmap error.
506 	 *
507 	 * Since we don't pass back blockdev info, we can't return bmap
508 	 * information for rt files either.
509 	 */
510 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
511 		return 0;
512 	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
513 }
514 
515 STATIC int
xfs_vm_read_folio(struct file * unused,struct folio * folio)516 xfs_vm_read_folio(
517 	struct file		*unused,
518 	struct folio		*folio)
519 {
520 	return iomap_read_folio(folio, &xfs_read_iomap_ops);
521 }
522 
523 STATIC void
xfs_vm_readahead(struct readahead_control * rac)524 xfs_vm_readahead(
525 	struct readahead_control	*rac)
526 {
527 	iomap_readahead(rac, &xfs_read_iomap_ops);
528 }
529 
530 static int
xfs_iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)531 xfs_iomap_swapfile_activate(
532 	struct swap_info_struct		*sis,
533 	struct file			*swap_file,
534 	sector_t			*span)
535 {
536 	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
537 	return iomap_swapfile_activate(sis, swap_file, span,
538 			&xfs_read_iomap_ops);
539 }
540 
541 const struct address_space_operations xfs_address_space_operations = {
542 	.read_folio		= xfs_vm_read_folio,
543 	.readahead		= xfs_vm_readahead,
544 	.writepages		= xfs_vm_writepages,
545 	.dirty_folio		= iomap_dirty_folio,
546 	.release_folio		= iomap_release_folio,
547 	.invalidate_folio	= iomap_invalidate_folio,
548 	.bmap			= xfs_vm_bmap,
549 	.migrate_folio		= filemap_migrate_folio,
550 	.is_partially_uptodate  = iomap_is_partially_uptodate,
551 	.error_remove_folio	= generic_error_remove_folio,
552 	.swap_activate		= xfs_iomap_swapfile_activate,
553 };
554 
555 const struct address_space_operations xfs_dax_aops = {
556 	.writepages		= xfs_dax_writepages,
557 	.dirty_folio		= noop_dirty_folio,
558 	.swap_activate		= xfs_iomap_swapfile_activate,
559 };
560