1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_sync.h"
7 
8 #include <linux/dma-fence-array.h>
9 #include <linux/kthread.h>
10 #include <linux/sched/mm.h>
11 #include <linux/uaccess.h>
12 
13 #include <drm/drm_print.h>
14 #include <drm/drm_syncobj.h>
15 #include <uapi/drm/xe_drm.h>
16 
17 #include "xe_device_types.h"
18 #include "xe_exec_queue.h"
19 #include "xe_macros.h"
20 #include "xe_sched_job_types.h"
21 
22 struct xe_user_fence {
23 	struct xe_device *xe;
24 	struct kref refcount;
25 	struct dma_fence_cb cb;
26 	struct work_struct worker;
27 	struct mm_struct *mm;
28 	u64 __user *addr;
29 	u64 value;
30 	int signalled;
31 };
32 
user_fence_destroy(struct kref * kref)33 static void user_fence_destroy(struct kref *kref)
34 {
35 	struct xe_user_fence *ufence = container_of(kref, struct xe_user_fence,
36 						 refcount);
37 
38 	mmdrop(ufence->mm);
39 	kfree(ufence);
40 }
41 
user_fence_get(struct xe_user_fence * ufence)42 static void user_fence_get(struct xe_user_fence *ufence)
43 {
44 	kref_get(&ufence->refcount);
45 }
46 
user_fence_put(struct xe_user_fence * ufence)47 static void user_fence_put(struct xe_user_fence *ufence)
48 {
49 	kref_put(&ufence->refcount, user_fence_destroy);
50 }
51 
user_fence_create(struct xe_device * xe,u64 addr,u64 value)52 static struct xe_user_fence *user_fence_create(struct xe_device *xe, u64 addr,
53 					       u64 value)
54 {
55 	struct xe_user_fence *ufence;
56 	u64 __user *ptr = u64_to_user_ptr(addr);
57 	u64 __maybe_unused prefetch_val;
58 
59 	if (get_user(prefetch_val, ptr))
60 		return ERR_PTR(-EFAULT);
61 
62 	ufence = kzalloc(sizeof(*ufence), GFP_KERNEL);
63 	if (!ufence)
64 		return ERR_PTR(-ENOMEM);
65 
66 	ufence->xe = xe;
67 	kref_init(&ufence->refcount);
68 	ufence->addr = ptr;
69 	ufence->value = value;
70 	ufence->mm = current->mm;
71 	mmgrab(ufence->mm);
72 
73 	return ufence;
74 }
75 
user_fence_worker(struct work_struct * w)76 static void user_fence_worker(struct work_struct *w)
77 {
78 	struct xe_user_fence *ufence = container_of(w, struct xe_user_fence, worker);
79 
80 	if (mmget_not_zero(ufence->mm)) {
81 		kthread_use_mm(ufence->mm);
82 		if (copy_to_user(ufence->addr, &ufence->value, sizeof(ufence->value)))
83 			XE_WARN_ON("Copy to user failed");
84 		kthread_unuse_mm(ufence->mm);
85 		mmput(ufence->mm);
86 	}
87 
88 	wake_up_all(&ufence->xe->ufence_wq);
89 	WRITE_ONCE(ufence->signalled, 1);
90 	user_fence_put(ufence);
91 }
92 
kick_ufence(struct xe_user_fence * ufence,struct dma_fence * fence)93 static void kick_ufence(struct xe_user_fence *ufence, struct dma_fence *fence)
94 {
95 	INIT_WORK(&ufence->worker, user_fence_worker);
96 	queue_work(ufence->xe->ordered_wq, &ufence->worker);
97 	dma_fence_put(fence);
98 }
99 
user_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)100 static void user_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
101 {
102 	struct xe_user_fence *ufence = container_of(cb, struct xe_user_fence, cb);
103 
104 	kick_ufence(ufence, fence);
105 }
106 
xe_sync_entry_parse(struct xe_device * xe,struct xe_file * xef,struct xe_sync_entry * sync,struct drm_xe_sync __user * sync_user,unsigned int flags)107 int xe_sync_entry_parse(struct xe_device *xe, struct xe_file *xef,
108 			struct xe_sync_entry *sync,
109 			struct drm_xe_sync __user *sync_user,
110 			unsigned int flags)
111 {
112 	struct drm_xe_sync sync_in;
113 	int err;
114 	bool exec = flags & SYNC_PARSE_FLAG_EXEC;
115 	bool in_lr_mode = flags & SYNC_PARSE_FLAG_LR_MODE;
116 	bool disallow_user_fence = flags & SYNC_PARSE_FLAG_DISALLOW_USER_FENCE;
117 	bool signal;
118 
119 	if (copy_from_user(&sync_in, sync_user, sizeof(*sync_user)))
120 		return -EFAULT;
121 
122 	if (XE_IOCTL_DBG(xe, sync_in.flags & ~DRM_XE_SYNC_FLAG_SIGNAL) ||
123 	    XE_IOCTL_DBG(xe, sync_in.reserved[0] || sync_in.reserved[1]))
124 		return -EINVAL;
125 
126 	signal = sync_in.flags & DRM_XE_SYNC_FLAG_SIGNAL;
127 	switch (sync_in.type) {
128 	case DRM_XE_SYNC_TYPE_SYNCOBJ:
129 		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
130 			return -EOPNOTSUPP;
131 
132 		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
133 			return -EINVAL;
134 
135 		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
136 		if (XE_IOCTL_DBG(xe, !sync->syncobj))
137 			return -ENOENT;
138 
139 		if (!signal) {
140 			sync->fence = drm_syncobj_fence_get(sync->syncobj);
141 			if (XE_IOCTL_DBG(xe, !sync->fence))
142 				return -EINVAL;
143 		}
144 		break;
145 
146 	case DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ:
147 		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
148 			return -EOPNOTSUPP;
149 
150 		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
151 			return -EINVAL;
152 
153 		if (XE_IOCTL_DBG(xe, sync_in.timeline_value == 0))
154 			return -EINVAL;
155 
156 		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
157 		if (XE_IOCTL_DBG(xe, !sync->syncobj))
158 			return -ENOENT;
159 
160 		if (signal) {
161 			sync->chain_fence = dma_fence_chain_alloc();
162 			if (!sync->chain_fence)
163 				return -ENOMEM;
164 		} else {
165 			sync->fence = drm_syncobj_fence_get(sync->syncobj);
166 			if (XE_IOCTL_DBG(xe, !sync->fence))
167 				return -EINVAL;
168 
169 			err = dma_fence_chain_find_seqno(&sync->fence,
170 							 sync_in.timeline_value);
171 			if (err)
172 				return err;
173 		}
174 		break;
175 
176 	case DRM_XE_SYNC_TYPE_USER_FENCE:
177 		if (XE_IOCTL_DBG(xe, disallow_user_fence))
178 			return -EOPNOTSUPP;
179 
180 		if (XE_IOCTL_DBG(xe, !signal))
181 			return -EOPNOTSUPP;
182 
183 		if (XE_IOCTL_DBG(xe, sync_in.addr & 0x7))
184 			return -EINVAL;
185 
186 		if (exec) {
187 			sync->addr = sync_in.addr;
188 		} else {
189 			sync->ufence = user_fence_create(xe, sync_in.addr,
190 							 sync_in.timeline_value);
191 			if (XE_IOCTL_DBG(xe, IS_ERR(sync->ufence)))
192 				return PTR_ERR(sync->ufence);
193 		}
194 
195 		break;
196 
197 	default:
198 		return -EINVAL;
199 	}
200 
201 	sync->type = sync_in.type;
202 	sync->flags = sync_in.flags;
203 	sync->timeline_value = sync_in.timeline_value;
204 
205 	return 0;
206 }
207 
xe_sync_entry_add_deps(struct xe_sync_entry * sync,struct xe_sched_job * job)208 int xe_sync_entry_add_deps(struct xe_sync_entry *sync, struct xe_sched_job *job)
209 {
210 	if (sync->fence)
211 		return  drm_sched_job_add_dependency(&job->drm,
212 						     dma_fence_get(sync->fence));
213 
214 	return 0;
215 }
216 
xe_sync_entry_signal(struct xe_sync_entry * sync,struct dma_fence * fence)217 void xe_sync_entry_signal(struct xe_sync_entry *sync, struct dma_fence *fence)
218 {
219 	if (!(sync->flags & DRM_XE_SYNC_FLAG_SIGNAL))
220 		return;
221 
222 	if (sync->chain_fence) {
223 		drm_syncobj_add_point(sync->syncobj, sync->chain_fence,
224 				      fence, sync->timeline_value);
225 		/*
226 		 * The chain's ownership is transferred to the
227 		 * timeline.
228 		 */
229 		sync->chain_fence = NULL;
230 	} else if (sync->syncobj) {
231 		drm_syncobj_replace_fence(sync->syncobj, fence);
232 	} else if (sync->ufence) {
233 		int err;
234 
235 		dma_fence_get(fence);
236 		user_fence_get(sync->ufence);
237 		err = dma_fence_add_callback(fence, &sync->ufence->cb,
238 					     user_fence_cb);
239 		if (err == -ENOENT) {
240 			kick_ufence(sync->ufence, fence);
241 		} else if (err) {
242 			XE_WARN_ON("failed to add user fence");
243 			user_fence_put(sync->ufence);
244 			dma_fence_put(fence);
245 		}
246 	}
247 }
248 
xe_sync_entry_cleanup(struct xe_sync_entry * sync)249 void xe_sync_entry_cleanup(struct xe_sync_entry *sync)
250 {
251 	if (sync->syncobj)
252 		drm_syncobj_put(sync->syncobj);
253 	dma_fence_put(sync->fence);
254 	dma_fence_chain_free(sync->chain_fence);
255 	if (sync->ufence)
256 		user_fence_put(sync->ufence);
257 }
258 
259 /**
260  * xe_sync_in_fence_get() - Get a fence from syncs, exec queue, and VM
261  * @sync: input syncs
262  * @num_sync: number of syncs
263  * @q: exec queue
264  * @vm: VM
265  *
266  * Get a fence from syncs, exec queue, and VM. If syncs contain in-fences create
267  * and return a composite fence of all in-fences + last fence. If no in-fences
268  * return last fence on  input exec queue. Caller must drop reference to
269  * returned fence.
270  *
271  * Return: fence on success, ERR_PTR(-ENOMEM) on failure
272  */
273 struct dma_fence *
xe_sync_in_fence_get(struct xe_sync_entry * sync,int num_sync,struct xe_exec_queue * q,struct xe_vm * vm)274 xe_sync_in_fence_get(struct xe_sync_entry *sync, int num_sync,
275 		     struct xe_exec_queue *q, struct xe_vm *vm)
276 {
277 	struct dma_fence **fences = NULL;
278 	struct dma_fence_array *cf = NULL;
279 	struct dma_fence *fence;
280 	int i, num_in_fence = 0, current_fence = 0;
281 
282 	lockdep_assert_held(&vm->lock);
283 
284 	/* Count in-fences */
285 	for (i = 0; i < num_sync; ++i) {
286 		if (sync[i].fence) {
287 			++num_in_fence;
288 			fence = sync[i].fence;
289 		}
290 	}
291 
292 	/* Easy case... */
293 	if (!num_in_fence) {
294 		fence = xe_exec_queue_last_fence_get(q, vm);
295 		return fence;
296 	}
297 
298 	/* Create composite fence */
299 	fences = kmalloc_array(num_in_fence + 1, sizeof(*fences), GFP_KERNEL);
300 	if (!fences)
301 		return ERR_PTR(-ENOMEM);
302 	for (i = 0; i < num_sync; ++i) {
303 		if (sync[i].fence) {
304 			dma_fence_get(sync[i].fence);
305 			fences[current_fence++] = sync[i].fence;
306 		}
307 	}
308 	fences[current_fence++] = xe_exec_queue_last_fence_get(q, vm);
309 	cf = dma_fence_array_create(num_in_fence, fences,
310 				    vm->composite_fence_ctx,
311 				    vm->composite_fence_seqno++,
312 				    false);
313 	if (!cf) {
314 		--vm->composite_fence_seqno;
315 		goto err_out;
316 	}
317 
318 	return &cf->base;
319 
320 err_out:
321 	while (current_fence)
322 		dma_fence_put(fences[--current_fence]);
323 	kfree(fences);
324 	kfree(cf);
325 
326 	return ERR_PTR(-ENOMEM);
327 }
328 
329 /**
330  * __xe_sync_ufence_get() - Get user fence from user fence
331  * @ufence: input user fence
332  *
333  * Get a user fence reference from user fence
334  *
335  * Return: xe_user_fence pointer with reference
336  */
__xe_sync_ufence_get(struct xe_user_fence * ufence)337 struct xe_user_fence *__xe_sync_ufence_get(struct xe_user_fence *ufence)
338 {
339 	user_fence_get(ufence);
340 
341 	return ufence;
342 }
343 
344 /**
345  * xe_sync_ufence_get() - Get user fence from sync
346  * @sync: input sync
347  *
348  * Get a user fence reference from sync.
349  *
350  * Return: xe_user_fence pointer with reference
351  */
xe_sync_ufence_get(struct xe_sync_entry * sync)352 struct xe_user_fence *xe_sync_ufence_get(struct xe_sync_entry *sync)
353 {
354 	user_fence_get(sync->ufence);
355 
356 	return sync->ufence;
357 }
358 
359 /**
360  * xe_sync_ufence_put() - Put user fence reference
361  * @ufence: user fence reference
362  *
363  */
xe_sync_ufence_put(struct xe_user_fence * ufence)364 void xe_sync_ufence_put(struct xe_user_fence *ufence)
365 {
366 	user_fence_put(ufence);
367 }
368 
369 /**
370  * xe_sync_ufence_get_status() - Get user fence status
371  * @ufence: user fence
372  *
373  * Return: 1 if signalled, 0 not signalled, <0 on error
374  */
xe_sync_ufence_get_status(struct xe_user_fence * ufence)375 int xe_sync_ufence_get_status(struct xe_user_fence *ufence)
376 {
377 	return READ_ONCE(ufence->signalled);
378 }
379