1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include <linux/dma-fence-array.h>
7
8 #include "xe_pt.h"
9
10 #include "regs/xe_gtt_defs.h"
11 #include "xe_bo.h"
12 #include "xe_device.h"
13 #include "xe_drm_client.h"
14 #include "xe_exec_queue.h"
15 #include "xe_gt.h"
16 #include "xe_gt_tlb_invalidation.h"
17 #include "xe_migrate.h"
18 #include "xe_pt_types.h"
19 #include "xe_pt_walk.h"
20 #include "xe_res_cursor.h"
21 #include "xe_sched_job.h"
22 #include "xe_sync.h"
23 #include "xe_trace.h"
24 #include "xe_ttm_stolen_mgr.h"
25 #include "xe_vm.h"
26
27 struct xe_pt_dir {
28 struct xe_pt pt;
29 /** @children: Array of page-table child nodes */
30 struct xe_ptw *children[XE_PDES];
31 };
32
33 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
34 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
35 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
36 #else
37 #define xe_pt_set_addr(__xe_pt, __addr)
38 #define xe_pt_addr(__xe_pt) 0ull
39 #endif
40
41 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
42 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
43
44 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
45
as_xe_pt_dir(struct xe_pt * pt)46 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
47 {
48 return container_of(pt, struct xe_pt_dir, pt);
49 }
50
xe_pt_entry(struct xe_pt_dir * pt_dir,unsigned int index)51 static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index)
52 {
53 return container_of(pt_dir->children[index], struct xe_pt, base);
54 }
55
__xe_pt_empty_pte(struct xe_tile * tile,struct xe_vm * vm,unsigned int level)56 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
57 unsigned int level)
58 {
59 struct xe_device *xe = tile_to_xe(tile);
60 u16 pat_index = xe->pat.idx[XE_CACHE_WB];
61 u8 id = tile->id;
62
63 if (!xe_vm_has_scratch(vm))
64 return 0;
65
66 if (level > MAX_HUGEPTE_LEVEL)
67 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
68 0, pat_index);
69
70 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
71 XE_PTE_NULL;
72 }
73
xe_pt_free(struct xe_pt * pt)74 static void xe_pt_free(struct xe_pt *pt)
75 {
76 if (pt->level)
77 kfree(as_xe_pt_dir(pt));
78 else
79 kfree(pt);
80 }
81
82 /**
83 * xe_pt_create() - Create a page-table.
84 * @vm: The vm to create for.
85 * @tile: The tile to create for.
86 * @level: The page-table level.
87 *
88 * Allocate and initialize a single struct xe_pt metadata structure. Also
89 * create the corresponding page-table bo, but don't initialize it. If the
90 * level is grater than zero, then it's assumed to be a directory page-
91 * table and the directory structure is also allocated and initialized to
92 * NULL pointers.
93 *
94 * Return: A valid struct xe_pt pointer on success, Pointer error code on
95 * error.
96 */
xe_pt_create(struct xe_vm * vm,struct xe_tile * tile,unsigned int level)97 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
98 unsigned int level)
99 {
100 struct xe_pt *pt;
101 struct xe_bo *bo;
102 int err;
103
104 if (level) {
105 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
106
107 pt = (dir) ? &dir->pt : NULL;
108 } else {
109 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
110 }
111 if (!pt)
112 return ERR_PTR(-ENOMEM);
113
114 pt->level = level;
115 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
116 ttm_bo_type_kernel,
117 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
118 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
119 XE_BO_FLAG_PINNED |
120 XE_BO_FLAG_NO_RESV_EVICT |
121 XE_BO_FLAG_PAGETABLE);
122 if (IS_ERR(bo)) {
123 err = PTR_ERR(bo);
124 goto err_kfree;
125 }
126 pt->bo = bo;
127 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
128
129 if (vm->xef)
130 xe_drm_client_add_bo(vm->xef->client, pt->bo);
131 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
132
133 return pt;
134
135 err_kfree:
136 xe_pt_free(pt);
137 return ERR_PTR(err);
138 }
139
140 /**
141 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
142 * entries.
143 * @tile: The tile the scratch pagetable of which to use.
144 * @vm: The vm we populate for.
145 * @pt: The pagetable the bo of which to initialize.
146 *
147 * Populate the page-table bo of @pt with entries pointing into the tile's
148 * scratch page-table tree if any. Otherwise populate with zeros.
149 */
xe_pt_populate_empty(struct xe_tile * tile,struct xe_vm * vm,struct xe_pt * pt)150 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
151 struct xe_pt *pt)
152 {
153 struct iosys_map *map = &pt->bo->vmap;
154 u64 empty;
155 int i;
156
157 if (!xe_vm_has_scratch(vm)) {
158 /*
159 * FIXME: Some memory is allocated already allocated to zero?
160 * Find out which memory that is and avoid this memset...
161 */
162 xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
163 } else {
164 empty = __xe_pt_empty_pte(tile, vm, pt->level);
165 for (i = 0; i < XE_PDES; i++)
166 xe_pt_write(vm->xe, map, i, empty);
167 }
168 }
169
170 /**
171 * xe_pt_shift() - Return the ilog2 value of the size of the address range of
172 * a page-table at a certain level.
173 * @level: The level.
174 *
175 * Return: The ilog2 value of the size of the address range of a page-table
176 * at level @level.
177 */
xe_pt_shift(unsigned int level)178 unsigned int xe_pt_shift(unsigned int level)
179 {
180 return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
181 }
182
183 /**
184 * xe_pt_destroy() - Destroy a page-table tree.
185 * @pt: The root of the page-table tree to destroy.
186 * @flags: vm flags. Currently unused.
187 * @deferred: List head of lockless list for deferred putting. NULL for
188 * immediate putting.
189 *
190 * Puts the page-table bo, recursively calls xe_pt_destroy on all children
191 * and finally frees @pt. TODO: Can we remove the @flags argument?
192 */
xe_pt_destroy(struct xe_pt * pt,u32 flags,struct llist_head * deferred)193 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
194 {
195 int i;
196
197 if (!pt)
198 return;
199
200 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
201 xe_bo_unpin(pt->bo);
202 xe_bo_put_deferred(pt->bo, deferred);
203
204 if (pt->level > 0 && pt->num_live) {
205 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
206
207 for (i = 0; i < XE_PDES; i++) {
208 if (xe_pt_entry(pt_dir, i))
209 xe_pt_destroy(xe_pt_entry(pt_dir, i), flags,
210 deferred);
211 }
212 }
213 xe_pt_free(pt);
214 }
215
216 /**
217 * DOC: Pagetable building
218 *
219 * Below we use the term "page-table" for both page-directories, containing
220 * pointers to lower level page-directories or page-tables, and level 0
221 * page-tables that contain only page-table-entries pointing to memory pages.
222 *
223 * When inserting an address range in an already existing page-table tree
224 * there will typically be a set of page-tables that are shared with other
225 * address ranges, and a set that are private to this address range.
226 * The set of shared page-tables can be at most two per level,
227 * and those can't be updated immediately because the entries of those
228 * page-tables may still be in use by the gpu for other mappings. Therefore
229 * when inserting entries into those, we instead stage those insertions by
230 * adding insertion data into struct xe_vm_pgtable_update structures. This
231 * data, (subtrees for the cpu and page-table-entries for the gpu) is then
232 * added in a separate commit step. CPU-data is committed while still under the
233 * vm lock, the object lock and for userptr, the notifier lock in read mode.
234 * The GPU async data is committed either by the GPU or CPU after fulfilling
235 * relevant dependencies.
236 * For non-shared page-tables (and, in fact, for shared ones that aren't
237 * existing at the time of staging), we add the data in-place without the
238 * special update structures. This private part of the page-table tree will
239 * remain disconnected from the vm page-table tree until data is committed to
240 * the shared page tables of the vm tree in the commit phase.
241 */
242
243 struct xe_pt_update {
244 /** @update: The update structure we're building for this parent. */
245 struct xe_vm_pgtable_update *update;
246 /** @parent: The parent. Used to detect a parent change. */
247 struct xe_pt *parent;
248 /** @preexisting: Whether the parent was pre-existing or allocated */
249 bool preexisting;
250 };
251
252 struct xe_pt_stage_bind_walk {
253 /** base: The base class. */
254 struct xe_pt_walk base;
255
256 /* Input parameters for the walk */
257 /** @vm: The vm we're building for. */
258 struct xe_vm *vm;
259 /** @tile: The tile we're building for. */
260 struct xe_tile *tile;
261 /** @default_pte: PTE flag only template. No address is associated */
262 u64 default_pte;
263 /** @dma_offset: DMA offset to add to the PTE. */
264 u64 dma_offset;
265 /**
266 * @needs_64k: This address range enforces 64K alignment and
267 * granularity.
268 */
269 bool needs_64K;
270 /**
271 * @vma: VMA being mapped
272 */
273 struct xe_vma *vma;
274
275 /* Also input, but is updated during the walk*/
276 /** @curs: The DMA address cursor. */
277 struct xe_res_cursor *curs;
278 /** @va_curs_start: The Virtual address coresponding to @curs->start */
279 u64 va_curs_start;
280
281 /* Output */
282 struct xe_walk_update {
283 /** @wupd.entries: Caller provided storage. */
284 struct xe_vm_pgtable_update *entries;
285 /** @wupd.num_used_entries: Number of update @entries used. */
286 unsigned int num_used_entries;
287 /** @wupd.updates: Tracks the update entry at a given level */
288 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
289 } wupd;
290
291 /* Walk state */
292 /**
293 * @l0_end_addr: The end address of the current l0 leaf. Used for
294 * 64K granularity detection.
295 */
296 u64 l0_end_addr;
297 /** @addr_64K: The start address of the current 64K chunk. */
298 u64 addr_64K;
299 /** @found_64: Whether @add_64K actually points to a 64K chunk. */
300 bool found_64K;
301 };
302
303 static int
xe_pt_new_shared(struct xe_walk_update * wupd,struct xe_pt * parent,pgoff_t offset,bool alloc_entries)304 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
305 pgoff_t offset, bool alloc_entries)
306 {
307 struct xe_pt_update *upd = &wupd->updates[parent->level];
308 struct xe_vm_pgtable_update *entry;
309
310 /*
311 * For *each level*, we could only have one active
312 * struct xt_pt_update at any one time. Once we move on to a
313 * new parent and page-directory, the old one is complete, and
314 * updates are either already stored in the build tree or in
315 * @wupd->entries
316 */
317 if (likely(upd->parent == parent))
318 return 0;
319
320 upd->parent = parent;
321 upd->preexisting = true;
322
323 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
324 return -EINVAL;
325
326 entry = wupd->entries + wupd->num_used_entries++;
327 upd->update = entry;
328 entry->ofs = offset;
329 entry->pt_bo = parent->bo;
330 entry->pt = parent;
331 entry->flags = 0;
332 entry->qwords = 0;
333 entry->pt_bo->update_index = -1;
334
335 if (alloc_entries) {
336 entry->pt_entries = kmalloc_array(XE_PDES,
337 sizeof(*entry->pt_entries),
338 GFP_KERNEL);
339 if (!entry->pt_entries)
340 return -ENOMEM;
341 }
342
343 return 0;
344 }
345
346 /*
347 * NOTE: This is a very frequently called function so we allow ourselves
348 * to annotate (using branch prediction hints) the fastpath of updating a
349 * non-pre-existing pagetable with leaf ptes.
350 */
351 static int
xe_pt_insert_entry(struct xe_pt_stage_bind_walk * xe_walk,struct xe_pt * parent,pgoff_t offset,struct xe_pt * xe_child,u64 pte)352 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
353 pgoff_t offset, struct xe_pt *xe_child, u64 pte)
354 {
355 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
356 struct xe_pt_update *child_upd = xe_child ?
357 &xe_walk->wupd.updates[xe_child->level] : NULL;
358 int ret;
359
360 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
361 if (unlikely(ret))
362 return ret;
363
364 /*
365 * Register this new pagetable so that it won't be recognized as
366 * a shared pagetable by a subsequent insertion.
367 */
368 if (unlikely(child_upd)) {
369 child_upd->update = NULL;
370 child_upd->parent = xe_child;
371 child_upd->preexisting = false;
372 }
373
374 if (likely(!upd->preexisting)) {
375 /* Continue building a non-connected subtree. */
376 struct iosys_map *map = &parent->bo->vmap;
377
378 if (unlikely(xe_child))
379 parent->base.children[offset] = &xe_child->base;
380
381 xe_pt_write(xe_walk->vm->xe, map, offset, pte);
382 parent->num_live++;
383 } else {
384 /* Shared pt. Stage update. */
385 unsigned int idx;
386 struct xe_vm_pgtable_update *entry = upd->update;
387
388 idx = offset - entry->ofs;
389 entry->pt_entries[idx].pt = xe_child;
390 entry->pt_entries[idx].pte = pte;
391 entry->qwords++;
392 }
393
394 return 0;
395 }
396
xe_pt_hugepte_possible(u64 addr,u64 next,unsigned int level,struct xe_pt_stage_bind_walk * xe_walk)397 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
398 struct xe_pt_stage_bind_walk *xe_walk)
399 {
400 u64 size, dma;
401
402 if (level > MAX_HUGEPTE_LEVEL)
403 return false;
404
405 /* Does the virtual range requested cover a huge pte? */
406 if (!xe_pt_covers(addr, next, level, &xe_walk->base))
407 return false;
408
409 /* Does the DMA segment cover the whole pte? */
410 if (next - xe_walk->va_curs_start > xe_walk->curs->size)
411 return false;
412
413 /* null VMA's do not have dma addresses */
414 if (xe_vma_is_null(xe_walk->vma))
415 return true;
416
417 /* Is the DMA address huge PTE size aligned? */
418 size = next - addr;
419 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
420
421 return IS_ALIGNED(dma, size);
422 }
423
424 /*
425 * Scan the requested mapping to check whether it can be done entirely
426 * with 64K PTEs.
427 */
428 static bool
xe_pt_scan_64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)429 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
430 {
431 struct xe_res_cursor curs = *xe_walk->curs;
432
433 if (!IS_ALIGNED(addr, SZ_64K))
434 return false;
435
436 if (next > xe_walk->l0_end_addr)
437 return false;
438
439 /* null VMA's do not have dma addresses */
440 if (xe_vma_is_null(xe_walk->vma))
441 return true;
442
443 xe_res_next(&curs, addr - xe_walk->va_curs_start);
444 for (; addr < next; addr += SZ_64K) {
445 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
446 return false;
447
448 xe_res_next(&curs, SZ_64K);
449 }
450
451 return addr == next;
452 }
453
454 /*
455 * For non-compact "normal" 4K level-0 pagetables, we want to try to group
456 * addresses together in 64K-contigous regions to add a 64K TLB hint for the
457 * device to the PTE.
458 * This function determines whether the address is part of such a
459 * segment. For VRAM in normal pagetables, this is strictly necessary on
460 * some devices.
461 */
462 static bool
xe_pt_is_pte_ps64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)463 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
464 {
465 /* Address is within an already found 64k region */
466 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
467 return true;
468
469 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
470 xe_walk->addr_64K = addr;
471
472 return xe_walk->found_64K;
473 }
474
475 static int
xe_pt_stage_bind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)476 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
477 unsigned int level, u64 addr, u64 next,
478 struct xe_ptw **child,
479 enum page_walk_action *action,
480 struct xe_pt_walk *walk)
481 {
482 struct xe_pt_stage_bind_walk *xe_walk =
483 container_of(walk, typeof(*xe_walk), base);
484 u16 pat_index = xe_walk->vma->pat_index;
485 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
486 struct xe_vm *vm = xe_walk->vm;
487 struct xe_pt *xe_child;
488 bool covers;
489 int ret = 0;
490 u64 pte;
491
492 /* Is this a leaf entry ?*/
493 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
494 struct xe_res_cursor *curs = xe_walk->curs;
495 bool is_null = xe_vma_is_null(xe_walk->vma);
496
497 XE_WARN_ON(xe_walk->va_curs_start != addr);
498
499 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
500 xe_res_dma(curs) + xe_walk->dma_offset,
501 xe_walk->vma, pat_index, level);
502 pte |= xe_walk->default_pte;
503
504 /*
505 * Set the XE_PTE_PS64 hint if possible, otherwise if
506 * this device *requires* 64K PTE size for VRAM, fail.
507 */
508 if (level == 0 && !xe_parent->is_compact) {
509 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
510 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_64K;
511 pte |= XE_PTE_PS64;
512 } else if (XE_WARN_ON(xe_walk->needs_64K)) {
513 return -EINVAL;
514 }
515 }
516
517 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
518 if (unlikely(ret))
519 return ret;
520
521 if (!is_null)
522 xe_res_next(curs, next - addr);
523 xe_walk->va_curs_start = next;
524 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
525 *action = ACTION_CONTINUE;
526
527 return ret;
528 }
529
530 /*
531 * Descending to lower level. Determine if we need to allocate a
532 * new page table or -directory, which we do if there is no
533 * previous one or there is one we can completely replace.
534 */
535 if (level == 1) {
536 walk->shifts = xe_normal_pt_shifts;
537 xe_walk->l0_end_addr = next;
538 }
539
540 covers = xe_pt_covers(addr, next, level, &xe_walk->base);
541 if (covers || !*child) {
542 u64 flags = 0;
543
544 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
545 if (IS_ERR(xe_child))
546 return PTR_ERR(xe_child);
547
548 xe_pt_set_addr(xe_child,
549 round_down(addr, 1ull << walk->shifts[level]));
550
551 if (!covers)
552 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
553
554 *child = &xe_child->base;
555
556 /*
557 * Prefer the compact pagetable layout for L0 if possible. Only
558 * possible if VMA covers entire 2MB region as compact 64k and
559 * 4k pages cannot be mixed within a 2MB region.
560 * TODO: Suballocate the pt bo to avoid wasting a lot of
561 * memory.
562 */
563 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
564 covers && xe_pt_scan_64K(addr, next, xe_walk)) {
565 walk->shifts = xe_compact_pt_shifts;
566 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
567 flags |= XE_PDE_64K;
568 xe_child->is_compact = true;
569 }
570
571 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
572 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
573 pte);
574 }
575
576 *action = ACTION_SUBTREE;
577 return ret;
578 }
579
580 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
581 .pt_entry = xe_pt_stage_bind_entry,
582 };
583
584 /**
585 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
586 * range.
587 * @tile: The tile we're building for.
588 * @vma: The vma indicating the address range.
589 * @entries: Storage for the update entries used for connecting the tree to
590 * the main tree at commit time.
591 * @num_entries: On output contains the number of @entries used.
592 *
593 * This function builds a disconnected page-table tree for a given address
594 * range. The tree is connected to the main vm tree for the gpu using
595 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
596 * The function builds xe_vm_pgtable_update structures for already existing
597 * shared page-tables, and non-existing shared and non-shared page-tables
598 * are built and populated directly.
599 *
600 * Return 0 on success, negative error code on error.
601 */
602 static int
xe_pt_stage_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 * num_entries)603 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
604 struct xe_vm_pgtable_update *entries, u32 *num_entries)
605 {
606 struct xe_device *xe = tile_to_xe(tile);
607 struct xe_bo *bo = xe_vma_bo(vma);
608 bool is_devmem = !xe_vma_is_userptr(vma) && bo &&
609 (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo));
610 struct xe_res_cursor curs;
611 struct xe_pt_stage_bind_walk xe_walk = {
612 .base = {
613 .ops = &xe_pt_stage_bind_ops,
614 .shifts = xe_normal_pt_shifts,
615 .max_level = XE_PT_HIGHEST_LEVEL,
616 },
617 .vm = xe_vma_vm(vma),
618 .tile = tile,
619 .curs = &curs,
620 .va_curs_start = xe_vma_start(vma),
621 .vma = vma,
622 .wupd.entries = entries,
623 .needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem,
624 };
625 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
626 int ret;
627
628 /**
629 * Default atomic expectations for different allocation scenarios are as follows:
630 *
631 * 1. Traditional API: When the VM is not in LR mode:
632 * - Device atomics are expected to function with all allocations.
633 *
634 * 2. Compute/SVM API: When the VM is in LR mode:
635 * - Device atomics are the default behavior when the bo is placed in a single region.
636 * - In all other cases device atomics will be disabled with AE=0 until an application
637 * request differently using a ioctl like madvise.
638 */
639 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) {
640 if (xe_vm_in_lr_mode(xe_vma_vm(vma))) {
641 if (bo && xe_bo_has_single_placement(bo))
642 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
643 /**
644 * If a SMEM+LMEM allocation is backed by SMEM, a device
645 * atomics will cause a gpu page fault and which then
646 * gets migrated to LMEM, bind such allocations with
647 * device atomics enabled.
648 */
649 else if (is_devmem && !xe_bo_has_single_placement(bo))
650 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
651 } else {
652 xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE;
653 }
654
655 /**
656 * Unset AE if the platform(PVC) doesn't support it on an
657 * allocation
658 */
659 if (!xe->info.has_device_atomics_on_smem && !is_devmem)
660 xe_walk.default_pte &= ~XE_USM_PPGTT_PTE_AE;
661 }
662
663 if (is_devmem) {
664 xe_walk.default_pte |= XE_PPGTT_PTE_DM;
665 xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource);
666 }
667
668 if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo))
669 xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo));
670
671 xe_bo_assert_held(bo);
672
673 if (!xe_vma_is_null(vma)) {
674 if (xe_vma_is_userptr(vma))
675 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
676 xe_vma_size(vma), &curs);
677 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
678 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
679 xe_vma_size(vma), &curs);
680 else
681 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
682 xe_vma_size(vma), &curs);
683 } else {
684 curs.size = xe_vma_size(vma);
685 }
686
687 ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma),
688 xe_vma_end(vma), &xe_walk.base);
689
690 *num_entries = xe_walk.wupd.num_used_entries;
691 return ret;
692 }
693
694 /**
695 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
696 * shared pagetable.
697 * @addr: The start address within the non-shared pagetable.
698 * @end: The end address within the non-shared pagetable.
699 * @level: The level of the non-shared pagetable.
700 * @walk: Walk info. The function adjusts the walk action.
701 * @action: next action to perform (see enum page_walk_action)
702 * @offset: Ignored on input, First non-shared entry on output.
703 * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
704 *
705 * A non-shared page-table has some entries that belong to the address range
706 * and others that don't. This function determines the entries that belong
707 * fully to the address range. Depending on level, some entries may
708 * partially belong to the address range (that can't happen at level 0).
709 * The function detects that and adjust those offsets to not include those
710 * partial entries. Iff it does detect partial entries, we know that there must
711 * be shared page tables also at lower levels, so it adjusts the walk action
712 * accordingly.
713 *
714 * Return: true if there were non-shared entries, false otherwise.
715 */
xe_pt_nonshared_offsets(u64 addr,u64 end,unsigned int level,struct xe_pt_walk * walk,enum page_walk_action * action,pgoff_t * offset,pgoff_t * end_offset)716 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
717 struct xe_pt_walk *walk,
718 enum page_walk_action *action,
719 pgoff_t *offset, pgoff_t *end_offset)
720 {
721 u64 size = 1ull << walk->shifts[level];
722
723 *offset = xe_pt_offset(addr, level, walk);
724 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
725
726 if (!level)
727 return true;
728
729 /*
730 * If addr or next are not size aligned, there are shared pts at lower
731 * level, so in that case traverse down the subtree
732 */
733 *action = ACTION_CONTINUE;
734 if (!IS_ALIGNED(addr, size)) {
735 *action = ACTION_SUBTREE;
736 (*offset)++;
737 }
738
739 if (!IS_ALIGNED(end, size)) {
740 *action = ACTION_SUBTREE;
741 (*end_offset)--;
742 }
743
744 return *end_offset > *offset;
745 }
746
747 struct xe_pt_zap_ptes_walk {
748 /** @base: The walk base-class */
749 struct xe_pt_walk base;
750
751 /* Input parameters for the walk */
752 /** @tile: The tile we're building for */
753 struct xe_tile *tile;
754
755 /* Output */
756 /** @needs_invalidate: Whether we need to invalidate TLB*/
757 bool needs_invalidate;
758 };
759
xe_pt_zap_ptes_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)760 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
761 unsigned int level, u64 addr, u64 next,
762 struct xe_ptw **child,
763 enum page_walk_action *action,
764 struct xe_pt_walk *walk)
765 {
766 struct xe_pt_zap_ptes_walk *xe_walk =
767 container_of(walk, typeof(*xe_walk), base);
768 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
769 pgoff_t end_offset;
770
771 XE_WARN_ON(!*child);
772 XE_WARN_ON(!level);
773
774 /*
775 * Note that we're called from an entry callback, and we're dealing
776 * with the child of that entry rather than the parent, so need to
777 * adjust level down.
778 */
779 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
780 &end_offset)) {
781 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
782 offset * sizeof(u64), 0,
783 (end_offset - offset) * sizeof(u64));
784 xe_walk->needs_invalidate = true;
785 }
786
787 return 0;
788 }
789
790 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
791 .pt_entry = xe_pt_zap_ptes_entry,
792 };
793
794 /**
795 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
796 * @tile: The tile we're zapping for.
797 * @vma: GPU VMA detailing address range.
798 *
799 * Eviction and Userptr invalidation needs to be able to zap the
800 * gpu ptes of a given address range in pagefaulting mode.
801 * In order to be able to do that, that function needs access to the shared
802 * page-table entrieaso it can either clear the leaf PTEs or
803 * clear the pointers to lower-level page-tables. The caller is required
804 * to hold the necessary locks to ensure neither the page-table connectivity
805 * nor the page-table entries of the range is updated from under us.
806 *
807 * Return: Whether ptes were actually updated and a TLB invalidation is
808 * required.
809 */
xe_pt_zap_ptes(struct xe_tile * tile,struct xe_vma * vma)810 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
811 {
812 struct xe_pt_zap_ptes_walk xe_walk = {
813 .base = {
814 .ops = &xe_pt_zap_ptes_ops,
815 .shifts = xe_normal_pt_shifts,
816 .max_level = XE_PT_HIGHEST_LEVEL,
817 },
818 .tile = tile,
819 };
820 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
821 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated);
822
823 if (!(pt_mask & BIT(tile->id)))
824 return false;
825
826 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
827 xe_vma_end(vma), &xe_walk.base);
828
829 return xe_walk.needs_invalidate;
830 }
831
832 static void
xe_vm_populate_pgtable(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * data,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)833 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
834 struct iosys_map *map, void *data,
835 u32 qword_ofs, u32 num_qwords,
836 const struct xe_vm_pgtable_update *update)
837 {
838 struct xe_pt_entry *ptes = update->pt_entries;
839 u64 *ptr = data;
840 u32 i;
841
842 for (i = 0; i < num_qwords; i++) {
843 if (map)
844 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
845 sizeof(u64), u64, ptes[i].pte);
846 else
847 ptr[i] = ptes[i].pte;
848 }
849 }
850
xe_pt_cancel_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)851 static void xe_pt_cancel_bind(struct xe_vma *vma,
852 struct xe_vm_pgtable_update *entries,
853 u32 num_entries)
854 {
855 u32 i, j;
856
857 for (i = 0; i < num_entries; i++) {
858 struct xe_pt *pt = entries[i].pt;
859
860 if (!pt)
861 continue;
862
863 if (pt->level) {
864 for (j = 0; j < entries[i].qwords; j++)
865 xe_pt_destroy(entries[i].pt_entries[j].pt,
866 xe_vma_vm(vma)->flags, NULL);
867 }
868
869 kfree(entries[i].pt_entries);
870 entries[i].pt_entries = NULL;
871 entries[i].qwords = 0;
872 }
873 }
874
xe_pt_commit_locks_assert(struct xe_vma * vma)875 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
876 {
877 struct xe_vm *vm = xe_vma_vm(vma);
878
879 lockdep_assert_held(&vm->lock);
880
881 if (!xe_vma_is_userptr(vma) && !xe_vma_is_null(vma))
882 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
883
884 xe_vm_assert_held(vm);
885 }
886
xe_pt_commit(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,struct llist_head * deferred)887 static void xe_pt_commit(struct xe_vma *vma,
888 struct xe_vm_pgtable_update *entries,
889 u32 num_entries, struct llist_head *deferred)
890 {
891 u32 i, j;
892
893 xe_pt_commit_locks_assert(vma);
894
895 for (i = 0; i < num_entries; i++) {
896 struct xe_pt *pt = entries[i].pt;
897
898 if (!pt->level)
899 continue;
900
901 for (j = 0; j < entries[i].qwords; j++) {
902 struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
903
904 xe_pt_destroy(oldpte, xe_vma_vm(vma)->flags, deferred);
905 }
906 }
907 }
908
xe_pt_abort_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind)909 static void xe_pt_abort_bind(struct xe_vma *vma,
910 struct xe_vm_pgtable_update *entries,
911 u32 num_entries, bool rebind)
912 {
913 int i, j;
914
915 xe_pt_commit_locks_assert(vma);
916
917 for (i = num_entries - 1; i >= 0; --i) {
918 struct xe_pt *pt = entries[i].pt;
919 struct xe_pt_dir *pt_dir;
920
921 if (!rebind)
922 pt->num_live -= entries[i].qwords;
923
924 if (!pt->level)
925 continue;
926
927 pt_dir = as_xe_pt_dir(pt);
928 for (j = 0; j < entries[i].qwords; j++) {
929 u32 j_ = j + entries[i].ofs;
930 struct xe_pt *newpte = xe_pt_entry(pt_dir, j_);
931 struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
932
933 pt_dir->children[j_] = oldpte ? &oldpte->base : 0;
934 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL);
935 }
936 }
937 }
938
xe_pt_commit_prepare_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind)939 static void xe_pt_commit_prepare_bind(struct xe_vma *vma,
940 struct xe_vm_pgtable_update *entries,
941 u32 num_entries, bool rebind)
942 {
943 u32 i, j;
944
945 xe_pt_commit_locks_assert(vma);
946
947 for (i = 0; i < num_entries; i++) {
948 struct xe_pt *pt = entries[i].pt;
949 struct xe_pt_dir *pt_dir;
950
951 if (!rebind)
952 pt->num_live += entries[i].qwords;
953
954 if (!pt->level)
955 continue;
956
957 pt_dir = as_xe_pt_dir(pt);
958 for (j = 0; j < entries[i].qwords; j++) {
959 u32 j_ = j + entries[i].ofs;
960 struct xe_pt *newpte = entries[i].pt_entries[j].pt;
961 struct xe_pt *oldpte = NULL;
962
963 if (xe_pt_entry(pt_dir, j_))
964 oldpte = xe_pt_entry(pt_dir, j_);
965
966 pt_dir->children[j_] = &newpte->base;
967 entries[i].pt_entries[j].pt = oldpte;
968 }
969 }
970 }
971
xe_pt_free_bind(struct xe_vm_pgtable_update * entries,u32 num_entries)972 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries,
973 u32 num_entries)
974 {
975 u32 i;
976
977 for (i = 0; i < num_entries; i++)
978 kfree(entries[i].pt_entries);
979 }
980
981 static int
xe_pt_prepare_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 * num_entries)982 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
983 struct xe_vm_pgtable_update *entries, u32 *num_entries)
984 {
985 int err;
986
987 *num_entries = 0;
988 err = xe_pt_stage_bind(tile, vma, entries, num_entries);
989 if (!err)
990 xe_tile_assert(tile, *num_entries);
991
992 return err;
993 }
994
xe_vm_dbg_print_entries(struct xe_device * xe,const struct xe_vm_pgtable_update * entries,unsigned int num_entries,bool bind)995 static void xe_vm_dbg_print_entries(struct xe_device *xe,
996 const struct xe_vm_pgtable_update *entries,
997 unsigned int num_entries, bool bind)
998 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
999 {
1000 unsigned int i;
1001
1002 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind",
1003 num_entries);
1004 for (i = 0; i < num_entries; i++) {
1005 const struct xe_vm_pgtable_update *entry = &entries[i];
1006 struct xe_pt *xe_pt = entry->pt;
1007 u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
1008 u64 end;
1009 u64 start;
1010
1011 xe_assert(xe, !entry->pt->is_compact);
1012 start = entry->ofs * page_size;
1013 end = start + page_size * entry->qwords;
1014 vm_dbg(&xe->drm,
1015 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
1016 i, xe_pt->level, entry->ofs, entry->qwords,
1017 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
1018 }
1019 }
1020 #else
1021 {}
1022 #endif
1023
no_in_syncs(struct xe_sync_entry * syncs,u32 num_syncs)1024 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs)
1025 {
1026 int i;
1027
1028 for (i = 0; i < num_syncs; i++) {
1029 struct dma_fence *fence = syncs[i].fence;
1030
1031 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1032 &fence->flags))
1033 return false;
1034 }
1035
1036 return true;
1037 }
1038
job_test_add_deps(struct xe_sched_job * job,struct dma_resv * resv,enum dma_resv_usage usage)1039 static int job_test_add_deps(struct xe_sched_job *job,
1040 struct dma_resv *resv,
1041 enum dma_resv_usage usage)
1042 {
1043 if (!job) {
1044 if (!dma_resv_test_signaled(resv, usage))
1045 return -ETIME;
1046
1047 return 0;
1048 }
1049
1050 return xe_sched_job_add_deps(job, resv, usage);
1051 }
1052
vma_add_deps(struct xe_vma * vma,struct xe_sched_job * job)1053 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job)
1054 {
1055 struct xe_bo *bo = xe_vma_bo(vma);
1056
1057 xe_bo_assert_held(bo);
1058
1059 if (bo && !bo->vm)
1060 return job_test_add_deps(job, bo->ttm.base.resv,
1061 DMA_RESV_USAGE_KERNEL);
1062
1063 return 0;
1064 }
1065
op_add_deps(struct xe_vm * vm,struct xe_vma_op * op,struct xe_sched_job * job)1066 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op,
1067 struct xe_sched_job *job)
1068 {
1069 int err = 0;
1070
1071 switch (op->base.op) {
1072 case DRM_GPUVA_OP_MAP:
1073 if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1074 break;
1075
1076 err = vma_add_deps(op->map.vma, job);
1077 break;
1078 case DRM_GPUVA_OP_REMAP:
1079 if (op->remap.prev)
1080 err = vma_add_deps(op->remap.prev, job);
1081 if (!err && op->remap.next)
1082 err = vma_add_deps(op->remap.next, job);
1083 break;
1084 case DRM_GPUVA_OP_UNMAP:
1085 break;
1086 case DRM_GPUVA_OP_PREFETCH:
1087 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job);
1088 break;
1089 default:
1090 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1091 }
1092
1093 return err;
1094 }
1095
xe_pt_vm_dependencies(struct xe_sched_job * job,struct xe_vm * vm,struct xe_vma_ops * vops,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_range_fence_tree * rftree)1096 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
1097 struct xe_vm *vm,
1098 struct xe_vma_ops *vops,
1099 struct xe_vm_pgtable_update_ops *pt_update_ops,
1100 struct xe_range_fence_tree *rftree)
1101 {
1102 struct xe_range_fence *rtfence;
1103 struct dma_fence *fence;
1104 struct xe_vma_op *op;
1105 int err = 0, i;
1106
1107 xe_vm_assert_held(vm);
1108
1109 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs))
1110 return -ETIME;
1111
1112 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q))
1113 return -ETIME;
1114
1115 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) {
1116 err = job_test_add_deps(job, xe_vm_resv(vm),
1117 pt_update_ops->wait_vm_bookkeep ?
1118 DMA_RESV_USAGE_BOOKKEEP :
1119 DMA_RESV_USAGE_KERNEL);
1120 if (err)
1121 return err;
1122 }
1123
1124 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start,
1125 pt_update_ops->last);
1126 while (rtfence) {
1127 fence = rtfence->fence;
1128
1129 if (!dma_fence_is_signaled(fence)) {
1130 /*
1131 * Is this a CPU update? GPU is busy updating, so return
1132 * an error
1133 */
1134 if (!job)
1135 return -ETIME;
1136
1137 dma_fence_get(fence);
1138 err = drm_sched_job_add_dependency(&job->drm, fence);
1139 if (err)
1140 return err;
1141 }
1142
1143 rtfence = xe_range_fence_tree_next(rtfence,
1144 pt_update_ops->start,
1145 pt_update_ops->last);
1146 }
1147
1148 list_for_each_entry(op, &vops->list, link) {
1149 err = op_add_deps(vm, op, job);
1150 if (err)
1151 return err;
1152 }
1153
1154 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) {
1155 if (job)
1156 err = xe_sched_job_last_fence_add_dep(job, vm);
1157 else
1158 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm);
1159 }
1160
1161 for (i = 0; job && !err && i < vops->num_syncs; i++)
1162 err = xe_sync_entry_add_deps(&vops->syncs[i], job);
1163
1164 return err;
1165 }
1166
xe_pt_pre_commit(struct xe_migrate_pt_update * pt_update)1167 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1168 {
1169 struct xe_vma_ops *vops = pt_update->vops;
1170 struct xe_vm *vm = vops->vm;
1171 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id];
1172 struct xe_vm_pgtable_update_ops *pt_update_ops =
1173 &vops->pt_update_ops[pt_update->tile_id];
1174
1175 return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops,
1176 pt_update_ops, rftree);
1177 }
1178
1179 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
1180
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)1181 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1182 {
1183 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
1184 static u32 count;
1185
1186 if (count++ % divisor == divisor - 1) {
1187 uvma->userptr.divisor = divisor << 1;
1188 return true;
1189 }
1190
1191 return false;
1192 }
1193
1194 #else
1195
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)1196 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1197 {
1198 return false;
1199 }
1200
1201 #endif
1202
vma_check_userptr(struct xe_vm * vm,struct xe_vma * vma,struct xe_vm_pgtable_update_ops * pt_update)1203 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma,
1204 struct xe_vm_pgtable_update_ops *pt_update)
1205 {
1206 struct xe_userptr_vma *uvma;
1207 unsigned long notifier_seq;
1208
1209 lockdep_assert_held_read(&vm->userptr.notifier_lock);
1210
1211 if (!xe_vma_is_userptr(vma))
1212 return 0;
1213
1214 uvma = to_userptr_vma(vma);
1215 notifier_seq = uvma->userptr.notifier_seq;
1216
1217 if (uvma->userptr.initial_bind && !xe_vm_in_fault_mode(vm))
1218 return 0;
1219
1220 if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1221 notifier_seq) &&
1222 !xe_pt_userptr_inject_eagain(uvma))
1223 return 0;
1224
1225 if (xe_vm_in_fault_mode(vm)) {
1226 return -EAGAIN;
1227 } else {
1228 spin_lock(&vm->userptr.invalidated_lock);
1229 list_move_tail(&uvma->userptr.invalidate_link,
1230 &vm->userptr.invalidated);
1231 spin_unlock(&vm->userptr.invalidated_lock);
1232
1233 if (xe_vm_in_preempt_fence_mode(vm)) {
1234 struct dma_resv_iter cursor;
1235 struct dma_fence *fence;
1236 long err;
1237
1238 dma_resv_iter_begin(&cursor, xe_vm_resv(vm),
1239 DMA_RESV_USAGE_BOOKKEEP);
1240 dma_resv_for_each_fence_unlocked(&cursor, fence)
1241 dma_fence_enable_sw_signaling(fence);
1242 dma_resv_iter_end(&cursor);
1243
1244 err = dma_resv_wait_timeout(xe_vm_resv(vm),
1245 DMA_RESV_USAGE_BOOKKEEP,
1246 false, MAX_SCHEDULE_TIMEOUT);
1247 XE_WARN_ON(err <= 0);
1248 }
1249 }
1250
1251 return 0;
1252 }
1253
op_check_userptr(struct xe_vm * vm,struct xe_vma_op * op,struct xe_vm_pgtable_update_ops * pt_update)1254 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op,
1255 struct xe_vm_pgtable_update_ops *pt_update)
1256 {
1257 int err = 0;
1258
1259 lockdep_assert_held_read(&vm->userptr.notifier_lock);
1260
1261 switch (op->base.op) {
1262 case DRM_GPUVA_OP_MAP:
1263 if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1264 break;
1265
1266 err = vma_check_userptr(vm, op->map.vma, pt_update);
1267 break;
1268 case DRM_GPUVA_OP_REMAP:
1269 if (op->remap.prev)
1270 err = vma_check_userptr(vm, op->remap.prev, pt_update);
1271 if (!err && op->remap.next)
1272 err = vma_check_userptr(vm, op->remap.next, pt_update);
1273 break;
1274 case DRM_GPUVA_OP_UNMAP:
1275 break;
1276 case DRM_GPUVA_OP_PREFETCH:
1277 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va),
1278 pt_update);
1279 break;
1280 default:
1281 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1282 }
1283
1284 return err;
1285 }
1286
xe_pt_userptr_pre_commit(struct xe_migrate_pt_update * pt_update)1287 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1288 {
1289 struct xe_vm *vm = pt_update->vops->vm;
1290 struct xe_vma_ops *vops = pt_update->vops;
1291 struct xe_vm_pgtable_update_ops *pt_update_ops =
1292 &vops->pt_update_ops[pt_update->tile_id];
1293 struct xe_vma_op *op;
1294 int err;
1295
1296 err = xe_pt_pre_commit(pt_update);
1297 if (err)
1298 return err;
1299
1300 down_read(&vm->userptr.notifier_lock);
1301
1302 list_for_each_entry(op, &vops->list, link) {
1303 err = op_check_userptr(vm, op, pt_update_ops);
1304 if (err) {
1305 up_read(&vm->userptr.notifier_lock);
1306 break;
1307 }
1308 }
1309
1310 return err;
1311 }
1312
1313 struct invalidation_fence {
1314 struct xe_gt_tlb_invalidation_fence base;
1315 struct xe_gt *gt;
1316 struct dma_fence *fence;
1317 struct dma_fence_cb cb;
1318 struct work_struct work;
1319 u64 start;
1320 u64 end;
1321 u32 asid;
1322 };
1323
invalidation_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)1324 static void invalidation_fence_cb(struct dma_fence *fence,
1325 struct dma_fence_cb *cb)
1326 {
1327 struct invalidation_fence *ifence =
1328 container_of(cb, struct invalidation_fence, cb);
1329 struct xe_device *xe = gt_to_xe(ifence->gt);
1330
1331 trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base);
1332 if (!ifence->fence->error) {
1333 queue_work(system_wq, &ifence->work);
1334 } else {
1335 ifence->base.base.error = ifence->fence->error;
1336 dma_fence_signal(&ifence->base.base);
1337 dma_fence_put(&ifence->base.base);
1338 }
1339 dma_fence_put(ifence->fence);
1340 }
1341
invalidation_fence_work_func(struct work_struct * w)1342 static void invalidation_fence_work_func(struct work_struct *w)
1343 {
1344 struct invalidation_fence *ifence =
1345 container_of(w, struct invalidation_fence, work);
1346 struct xe_device *xe = gt_to_xe(ifence->gt);
1347
1348 trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base);
1349 xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start,
1350 ifence->end, ifence->asid);
1351 }
1352
invalidation_fence_init(struct xe_gt * gt,struct invalidation_fence * ifence,struct dma_fence * fence,u64 start,u64 end,u32 asid)1353 static void invalidation_fence_init(struct xe_gt *gt,
1354 struct invalidation_fence *ifence,
1355 struct dma_fence *fence,
1356 u64 start, u64 end, u32 asid)
1357 {
1358 int ret;
1359
1360 trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base);
1361
1362 xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false);
1363
1364 ifence->fence = fence;
1365 ifence->gt = gt;
1366 ifence->start = start;
1367 ifence->end = end;
1368 ifence->asid = asid;
1369
1370 INIT_WORK(&ifence->work, invalidation_fence_work_func);
1371 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1372 if (ret == -ENOENT) {
1373 dma_fence_put(ifence->fence); /* Usually dropped in CB */
1374 invalidation_fence_work_func(&ifence->work);
1375 } else if (ret) {
1376 dma_fence_put(&ifence->base.base); /* Caller ref */
1377 dma_fence_put(&ifence->base.base); /* Creation ref */
1378 }
1379
1380 xe_gt_assert(gt, !ret || ret == -ENOENT);
1381 }
1382
1383 struct xe_pt_stage_unbind_walk {
1384 /** @base: The pagewalk base-class. */
1385 struct xe_pt_walk base;
1386
1387 /* Input parameters for the walk */
1388 /** @tile: The tile we're unbinding from. */
1389 struct xe_tile *tile;
1390
1391 /**
1392 * @modified_start: Walk range start, modified to include any
1393 * shared pagetables that we're the only user of and can thus
1394 * treat as private.
1395 */
1396 u64 modified_start;
1397 /** @modified_end: Walk range start, modified like @modified_start. */
1398 u64 modified_end;
1399
1400 /* Output */
1401 /* @wupd: Structure to track the page-table updates we're building */
1402 struct xe_walk_update wupd;
1403 };
1404
1405 /*
1406 * Check whether this range is the only one populating this pagetable,
1407 * and in that case, update the walk range checks so that higher levels don't
1408 * view us as a shared pagetable.
1409 */
xe_pt_check_kill(u64 addr,u64 next,unsigned int level,const struct xe_pt * child,enum page_walk_action * action,struct xe_pt_walk * walk)1410 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1411 const struct xe_pt *child,
1412 enum page_walk_action *action,
1413 struct xe_pt_walk *walk)
1414 {
1415 struct xe_pt_stage_unbind_walk *xe_walk =
1416 container_of(walk, typeof(*xe_walk), base);
1417 unsigned int shift = walk->shifts[level];
1418 u64 size = 1ull << shift;
1419
1420 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1421 ((next - addr) >> shift) == child->num_live) {
1422 u64 size = 1ull << walk->shifts[level + 1];
1423
1424 *action = ACTION_CONTINUE;
1425
1426 if (xe_walk->modified_start >= addr)
1427 xe_walk->modified_start = round_down(addr, size);
1428 if (xe_walk->modified_end <= next)
1429 xe_walk->modified_end = round_up(next, size);
1430
1431 return true;
1432 }
1433
1434 return false;
1435 }
1436
xe_pt_stage_unbind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1437 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1438 unsigned int level, u64 addr, u64 next,
1439 struct xe_ptw **child,
1440 enum page_walk_action *action,
1441 struct xe_pt_walk *walk)
1442 {
1443 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1444
1445 XE_WARN_ON(!*child);
1446 XE_WARN_ON(!level);
1447
1448 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1449
1450 return 0;
1451 }
1452
1453 static int
xe_pt_stage_unbind_post_descend(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1454 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1455 unsigned int level, u64 addr, u64 next,
1456 struct xe_ptw **child,
1457 enum page_walk_action *action,
1458 struct xe_pt_walk *walk)
1459 {
1460 struct xe_pt_stage_unbind_walk *xe_walk =
1461 container_of(walk, typeof(*xe_walk), base);
1462 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1463 pgoff_t end_offset;
1464 u64 size = 1ull << walk->shifts[--level];
1465 int err;
1466
1467 if (!IS_ALIGNED(addr, size))
1468 addr = xe_walk->modified_start;
1469 if (!IS_ALIGNED(next, size))
1470 next = xe_walk->modified_end;
1471
1472 /* Parent == *child is the root pt. Don't kill it. */
1473 if (parent != *child &&
1474 xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1475 return 0;
1476
1477 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1478 &end_offset))
1479 return 0;
1480
1481 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true);
1482 if (err)
1483 return err;
1484
1485 xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1486
1487 return 0;
1488 }
1489
1490 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1491 .pt_entry = xe_pt_stage_unbind_entry,
1492 .pt_post_descend = xe_pt_stage_unbind_post_descend,
1493 };
1494
1495 /**
1496 * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1497 * operation
1498 * @tile: The tile we're unbinding for.
1499 * @vma: The vma we're unbinding.
1500 * @entries: Caller-provided storage for the update structures.
1501 *
1502 * Builds page-table update structures for an unbind operation. The function
1503 * will attempt to remove all page-tables that we're the only user
1504 * of, and for that to work, the unbind operation must be committed in the
1505 * same critical section that blocks racing binds to the same page-table tree.
1506 *
1507 * Return: The number of entries used.
1508 */
xe_pt_stage_unbind(struct xe_tile * tile,struct xe_vma * vma,struct xe_vm_pgtable_update * entries)1509 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma,
1510 struct xe_vm_pgtable_update *entries)
1511 {
1512 struct xe_pt_stage_unbind_walk xe_walk = {
1513 .base = {
1514 .ops = &xe_pt_stage_unbind_ops,
1515 .shifts = xe_normal_pt_shifts,
1516 .max_level = XE_PT_HIGHEST_LEVEL,
1517 },
1518 .tile = tile,
1519 .modified_start = xe_vma_start(vma),
1520 .modified_end = xe_vma_end(vma),
1521 .wupd.entries = entries,
1522 };
1523 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
1524
1525 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
1526 xe_vma_end(vma), &xe_walk.base);
1527
1528 return xe_walk.wupd.num_used_entries;
1529 }
1530
1531 static void
xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * ptr,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)1532 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1533 struct xe_tile *tile, struct iosys_map *map,
1534 void *ptr, u32 qword_ofs, u32 num_qwords,
1535 const struct xe_vm_pgtable_update *update)
1536 {
1537 struct xe_vm *vm = pt_update->vops->vm;
1538 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level);
1539 int i;
1540
1541 if (map && map->is_iomem)
1542 for (i = 0; i < num_qwords; ++i)
1543 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1544 sizeof(u64), u64, empty);
1545 else if (map)
1546 memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1547 num_qwords);
1548 else
1549 memset64(ptr, empty, num_qwords);
1550 }
1551
xe_pt_abort_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1552 static void xe_pt_abort_unbind(struct xe_vma *vma,
1553 struct xe_vm_pgtable_update *entries,
1554 u32 num_entries)
1555 {
1556 int i, j;
1557
1558 xe_pt_commit_locks_assert(vma);
1559
1560 for (i = num_entries - 1; i >= 0; --i) {
1561 struct xe_vm_pgtable_update *entry = &entries[i];
1562 struct xe_pt *pt = entry->pt;
1563 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1564
1565 pt->num_live += entry->qwords;
1566
1567 if (!pt->level)
1568 continue;
1569
1570 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++)
1571 pt_dir->children[j] =
1572 entries[i].pt_entries[j - entry->ofs].pt ?
1573 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL;
1574 }
1575 }
1576
1577 static void
xe_pt_commit_prepare_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1578 xe_pt_commit_prepare_unbind(struct xe_vma *vma,
1579 struct xe_vm_pgtable_update *entries,
1580 u32 num_entries)
1581 {
1582 int i, j;
1583
1584 xe_pt_commit_locks_assert(vma);
1585
1586 for (i = 0; i < num_entries; ++i) {
1587 struct xe_vm_pgtable_update *entry = &entries[i];
1588 struct xe_pt *pt = entry->pt;
1589 struct xe_pt_dir *pt_dir;
1590
1591 pt->num_live -= entry->qwords;
1592 if (!pt->level)
1593 continue;
1594
1595 pt_dir = as_xe_pt_dir(pt);
1596 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) {
1597 entry->pt_entries[j - entry->ofs].pt =
1598 xe_pt_entry(pt_dir, j);
1599 pt_dir->children[j] = NULL;
1600 }
1601 }
1602 }
1603
1604 static void
xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma)1605 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops,
1606 struct xe_vma *vma)
1607 {
1608 u32 current_op = pt_update_ops->current_op;
1609 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1610 int i, level = 0;
1611 u64 start, last;
1612
1613 for (i = 0; i < pt_op->num_entries; i++) {
1614 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i];
1615
1616 if (entry->pt->level > level)
1617 level = entry->pt->level;
1618 }
1619
1620 /* Greedy (non-optimal) calculation but simple */
1621 start = ALIGN_DOWN(xe_vma_start(vma), 0x1ull << xe_pt_shift(level));
1622 last = ALIGN(xe_vma_end(vma), 0x1ull << xe_pt_shift(level)) - 1;
1623
1624 if (start < pt_update_ops->start)
1625 pt_update_ops->start = start;
1626 if (last > pt_update_ops->last)
1627 pt_update_ops->last = last;
1628 }
1629
vma_reserve_fences(struct xe_device * xe,struct xe_vma * vma)1630 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma)
1631 {
1632 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0;
1633
1634 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1635 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv,
1636 xe->info.tile_count << shift);
1637
1638 return 0;
1639 }
1640
bind_op_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma)1641 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile,
1642 struct xe_vm_pgtable_update_ops *pt_update_ops,
1643 struct xe_vma *vma)
1644 {
1645 u32 current_op = pt_update_ops->current_op;
1646 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1647 int err;
1648
1649 xe_bo_assert_held(xe_vma_bo(vma));
1650
1651 vm_dbg(&xe_vma_vm(vma)->xe->drm,
1652 "Preparing bind, with range [%llx...%llx)\n",
1653 xe_vma_start(vma), xe_vma_end(vma) - 1);
1654
1655 pt_op->vma = NULL;
1656 pt_op->bind = true;
1657 pt_op->rebind = BIT(tile->id) & vma->tile_present;
1658
1659 err = vma_reserve_fences(tile_to_xe(tile), vma);
1660 if (err)
1661 return err;
1662
1663 err = xe_pt_prepare_bind(tile, vma, pt_op->entries,
1664 &pt_op->num_entries);
1665 if (!err) {
1666 xe_tile_assert(tile, pt_op->num_entries <=
1667 ARRAY_SIZE(pt_op->entries));
1668 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1669 pt_op->num_entries, true);
1670
1671 xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1672 ++pt_update_ops->current_op;
1673 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1674
1675 /*
1676 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1677 * cached PTEs point to freed memory. On LR vms this is done
1678 * automatically when the context is re-enabled by the rebind worker,
1679 * or in fault mode it was invalidated on PTE zapping.
1680 *
1681 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1682 * PTE is already cached in the TLB so it needs to be invalidated.
1683 * On !LR VMs this is done in the ring ops preceding a batch, but on
1684 * non-faulting LR, in particular on user-space batch buffer chaining,
1685 * it needs to be done here.
1686 */
1687 if ((!pt_op->rebind && xe_vm_has_scratch(vm) &&
1688 xe_vm_in_preempt_fence_mode(vm)))
1689 pt_update_ops->needs_invalidation = true;
1690 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm))
1691 /* We bump also if batch_invalidate_tlb is true */
1692 vm->tlb_flush_seqno++;
1693
1694 vma->tile_staged |= BIT(tile->id);
1695 pt_op->vma = vma;
1696 xe_pt_commit_prepare_bind(vma, pt_op->entries,
1697 pt_op->num_entries, pt_op->rebind);
1698 } else {
1699 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1700 }
1701
1702 return err;
1703 }
1704
unbind_op_prepare(struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma)1705 static int unbind_op_prepare(struct xe_tile *tile,
1706 struct xe_vm_pgtable_update_ops *pt_update_ops,
1707 struct xe_vma *vma)
1708 {
1709 u32 current_op = pt_update_ops->current_op;
1710 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1711 int err;
1712
1713 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id)))
1714 return 0;
1715
1716 xe_bo_assert_held(xe_vma_bo(vma));
1717
1718 vm_dbg(&xe_vma_vm(vma)->xe->drm,
1719 "Preparing unbind, with range [%llx...%llx)\n",
1720 xe_vma_start(vma), xe_vma_end(vma) - 1);
1721
1722 /*
1723 * Wait for invalidation to complete. Can corrupt internal page table
1724 * state if an invalidation is running while preparing an unbind.
1725 */
1726 if (xe_vma_is_userptr(vma) && xe_vm_in_fault_mode(xe_vma_vm(vma)))
1727 mmu_interval_read_begin(&to_userptr_vma(vma)->userptr.notifier);
1728
1729 pt_op->vma = vma;
1730 pt_op->bind = false;
1731 pt_op->rebind = false;
1732
1733 err = vma_reserve_fences(tile_to_xe(tile), vma);
1734 if (err)
1735 return err;
1736
1737 pt_op->num_entries = xe_pt_stage_unbind(tile, vma, pt_op->entries);
1738
1739 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1740 pt_op->num_entries, false);
1741 xe_pt_update_ops_rfence_interval(pt_update_ops, vma);
1742 ++pt_update_ops->current_op;
1743 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1744 pt_update_ops->needs_invalidation = true;
1745
1746 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries);
1747
1748 return 0;
1749 }
1750
op_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma_op * op)1751 static int op_prepare(struct xe_vm *vm,
1752 struct xe_tile *tile,
1753 struct xe_vm_pgtable_update_ops *pt_update_ops,
1754 struct xe_vma_op *op)
1755 {
1756 int err = 0;
1757
1758 xe_vm_assert_held(vm);
1759
1760 switch (op->base.op) {
1761 case DRM_GPUVA_OP_MAP:
1762 if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1763 break;
1764
1765 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma);
1766 pt_update_ops->wait_vm_kernel = true;
1767 break;
1768 case DRM_GPUVA_OP_REMAP:
1769 err = unbind_op_prepare(tile, pt_update_ops,
1770 gpuva_to_vma(op->base.remap.unmap->va));
1771
1772 if (!err && op->remap.prev) {
1773 err = bind_op_prepare(vm, tile, pt_update_ops,
1774 op->remap.prev);
1775 pt_update_ops->wait_vm_bookkeep = true;
1776 }
1777 if (!err && op->remap.next) {
1778 err = bind_op_prepare(vm, tile, pt_update_ops,
1779 op->remap.next);
1780 pt_update_ops->wait_vm_bookkeep = true;
1781 }
1782 break;
1783 case DRM_GPUVA_OP_UNMAP:
1784 err = unbind_op_prepare(tile, pt_update_ops,
1785 gpuva_to_vma(op->base.unmap.va));
1786 break;
1787 case DRM_GPUVA_OP_PREFETCH:
1788 err = bind_op_prepare(vm, tile, pt_update_ops,
1789 gpuva_to_vma(op->base.prefetch.va));
1790 pt_update_ops->wait_vm_kernel = true;
1791 break;
1792 default:
1793 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1794 }
1795
1796 return err;
1797 }
1798
1799 static void
xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops * pt_update_ops)1800 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops)
1801 {
1802 init_llist_head(&pt_update_ops->deferred);
1803 pt_update_ops->start = ~0x0ull;
1804 pt_update_ops->last = 0x0ull;
1805 }
1806
1807 /**
1808 * xe_pt_update_ops_prepare() - Prepare PT update operations
1809 * @tile: Tile of PT update operations
1810 * @vops: VMA operationa
1811 *
1812 * Prepare PT update operations which includes updating internal PT state,
1813 * allocate memory for page tables, populate page table being pruned in, and
1814 * create PT update operations for leaf insertion / removal.
1815 *
1816 * Return: 0 on success, negative error code on error.
1817 */
xe_pt_update_ops_prepare(struct xe_tile * tile,struct xe_vma_ops * vops)1818 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops)
1819 {
1820 struct xe_vm_pgtable_update_ops *pt_update_ops =
1821 &vops->pt_update_ops[tile->id];
1822 struct xe_vma_op *op;
1823 int shift = tile->media_gt ? 1 : 0;
1824 int err;
1825
1826 lockdep_assert_held(&vops->vm->lock);
1827 xe_vm_assert_held(vops->vm);
1828
1829 xe_pt_update_ops_init(pt_update_ops);
1830
1831 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm),
1832 tile_to_xe(tile)->info.tile_count << shift);
1833 if (err)
1834 return err;
1835
1836 list_for_each_entry(op, &vops->list, link) {
1837 err = op_prepare(vops->vm, tile, pt_update_ops, op);
1838
1839 if (err)
1840 return err;
1841 }
1842
1843 xe_tile_assert(tile, pt_update_ops->current_op <=
1844 pt_update_ops->num_ops);
1845
1846 #ifdef TEST_VM_OPS_ERROR
1847 if (vops->inject_error &&
1848 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE)
1849 return -ENOSPC;
1850 #endif
1851
1852 return 0;
1853 }
1854
bind_op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct dma_fence * fence,struct dma_fence * fence2)1855 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1856 struct xe_vm_pgtable_update_ops *pt_update_ops,
1857 struct xe_vma *vma, struct dma_fence *fence,
1858 struct dma_fence *fence2)
1859 {
1860 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
1861 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1862 pt_update_ops->wait_vm_bookkeep ?
1863 DMA_RESV_USAGE_KERNEL :
1864 DMA_RESV_USAGE_BOOKKEEP);
1865 if (fence2)
1866 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
1867 pt_update_ops->wait_vm_bookkeep ?
1868 DMA_RESV_USAGE_KERNEL :
1869 DMA_RESV_USAGE_BOOKKEEP);
1870 }
1871 vma->tile_present |= BIT(tile->id);
1872 vma->tile_staged &= ~BIT(tile->id);
1873 if (xe_vma_is_userptr(vma)) {
1874 lockdep_assert_held_read(&vm->userptr.notifier_lock);
1875 to_userptr_vma(vma)->userptr.initial_bind = true;
1876 }
1877
1878 /*
1879 * Kick rebind worker if this bind triggers preempt fences and not in
1880 * the rebind worker
1881 */
1882 if (pt_update_ops->wait_vm_bookkeep &&
1883 xe_vm_in_preempt_fence_mode(vm) &&
1884 !current->mm)
1885 xe_vm_queue_rebind_worker(vm);
1886 }
1887
unbind_op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct dma_fence * fence,struct dma_fence * fence2)1888 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
1889 struct xe_vm_pgtable_update_ops *pt_update_ops,
1890 struct xe_vma *vma, struct dma_fence *fence,
1891 struct dma_fence *fence2)
1892 {
1893 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
1894 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
1895 pt_update_ops->wait_vm_bookkeep ?
1896 DMA_RESV_USAGE_KERNEL :
1897 DMA_RESV_USAGE_BOOKKEEP);
1898 if (fence2)
1899 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
1900 pt_update_ops->wait_vm_bookkeep ?
1901 DMA_RESV_USAGE_KERNEL :
1902 DMA_RESV_USAGE_BOOKKEEP);
1903 }
1904 vma->tile_present &= ~BIT(tile->id);
1905 if (!vma->tile_present) {
1906 list_del_init(&vma->combined_links.rebind);
1907 if (xe_vma_is_userptr(vma)) {
1908 lockdep_assert_held_read(&vm->userptr.notifier_lock);
1909
1910 spin_lock(&vm->userptr.invalidated_lock);
1911 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
1912 spin_unlock(&vm->userptr.invalidated_lock);
1913 }
1914 }
1915 }
1916
op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma_op * op,struct dma_fence * fence,struct dma_fence * fence2)1917 static void op_commit(struct xe_vm *vm,
1918 struct xe_tile *tile,
1919 struct xe_vm_pgtable_update_ops *pt_update_ops,
1920 struct xe_vma_op *op, struct dma_fence *fence,
1921 struct dma_fence *fence2)
1922 {
1923 xe_vm_assert_held(vm);
1924
1925 switch (op->base.op) {
1926 case DRM_GPUVA_OP_MAP:
1927 if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1928 break;
1929
1930 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence,
1931 fence2);
1932 break;
1933 case DRM_GPUVA_OP_REMAP:
1934 unbind_op_commit(vm, tile, pt_update_ops,
1935 gpuva_to_vma(op->base.remap.unmap->va), fence,
1936 fence2);
1937
1938 if (op->remap.prev)
1939 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev,
1940 fence, fence2);
1941 if (op->remap.next)
1942 bind_op_commit(vm, tile, pt_update_ops, op->remap.next,
1943 fence, fence2);
1944 break;
1945 case DRM_GPUVA_OP_UNMAP:
1946 unbind_op_commit(vm, tile, pt_update_ops,
1947 gpuva_to_vma(op->base.unmap.va), fence, fence2);
1948 break;
1949 case DRM_GPUVA_OP_PREFETCH:
1950 bind_op_commit(vm, tile, pt_update_ops,
1951 gpuva_to_vma(op->base.prefetch.va), fence, fence2);
1952 break;
1953 default:
1954 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1955 }
1956 }
1957
1958 static const struct xe_migrate_pt_update_ops migrate_ops = {
1959 .populate = xe_vm_populate_pgtable,
1960 .clear = xe_migrate_clear_pgtable_callback,
1961 .pre_commit = xe_pt_pre_commit,
1962 };
1963
1964 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = {
1965 .populate = xe_vm_populate_pgtable,
1966 .clear = xe_migrate_clear_pgtable_callback,
1967 .pre_commit = xe_pt_userptr_pre_commit,
1968 };
1969
1970 /**
1971 * xe_pt_update_ops_run() - Run PT update operations
1972 * @tile: Tile of PT update operations
1973 * @vops: VMA operationa
1974 *
1975 * Run PT update operations which includes committing internal PT state changes,
1976 * creating job for PT update operations for leaf insertion / removal, and
1977 * installing job fence in various places.
1978 *
1979 * Return: fence on success, negative ERR_PTR on error.
1980 */
1981 struct dma_fence *
xe_pt_update_ops_run(struct xe_tile * tile,struct xe_vma_ops * vops)1982 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops)
1983 {
1984 struct xe_vm *vm = vops->vm;
1985 struct xe_vm_pgtable_update_ops *pt_update_ops =
1986 &vops->pt_update_ops[tile->id];
1987 struct dma_fence *fence;
1988 struct invalidation_fence *ifence = NULL, *mfence = NULL;
1989 struct dma_fence **fences = NULL;
1990 struct dma_fence_array *cf = NULL;
1991 struct xe_range_fence *rfence;
1992 struct xe_vma_op *op;
1993 int err = 0, i;
1994 struct xe_migrate_pt_update update = {
1995 .ops = pt_update_ops->needs_userptr_lock ?
1996 &userptr_migrate_ops :
1997 &migrate_ops,
1998 .vops = vops,
1999 .tile_id = tile->id,
2000 };
2001
2002 lockdep_assert_held(&vm->lock);
2003 xe_vm_assert_held(vm);
2004
2005 if (!pt_update_ops->current_op) {
2006 xe_tile_assert(tile, xe_vm_in_fault_mode(vm));
2007
2008 return dma_fence_get_stub();
2009 }
2010
2011 #ifdef TEST_VM_OPS_ERROR
2012 if (vops->inject_error &&
2013 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN)
2014 return ERR_PTR(-ENOSPC);
2015 #endif
2016
2017 if (pt_update_ops->needs_invalidation) {
2018 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2019 if (!ifence) {
2020 err = -ENOMEM;
2021 goto kill_vm_tile1;
2022 }
2023 if (tile->media_gt) {
2024 mfence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2025 if (!mfence) {
2026 err = -ENOMEM;
2027 goto free_ifence;
2028 }
2029 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL);
2030 if (!fences) {
2031 err = -ENOMEM;
2032 goto free_ifence;
2033 }
2034 cf = dma_fence_array_alloc(2);
2035 if (!cf) {
2036 err = -ENOMEM;
2037 goto free_ifence;
2038 }
2039 }
2040 }
2041
2042 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
2043 if (!rfence) {
2044 err = -ENOMEM;
2045 goto free_ifence;
2046 }
2047
2048 fence = xe_migrate_update_pgtables(tile->migrate, &update);
2049 if (IS_ERR(fence)) {
2050 err = PTR_ERR(fence);
2051 goto free_rfence;
2052 }
2053
2054 /* Point of no return - VM killed if failure after this */
2055 for (i = 0; i < pt_update_ops->current_op; ++i) {
2056 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2057
2058 xe_pt_commit(pt_op->vma, pt_op->entries,
2059 pt_op->num_entries, &pt_update_ops->deferred);
2060 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */
2061 }
2062
2063 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence,
2064 &xe_range_fence_kfree_ops,
2065 pt_update_ops->start,
2066 pt_update_ops->last, fence))
2067 dma_fence_wait(fence, false);
2068
2069 /* tlb invalidation must be done before signaling rebind */
2070 if (ifence) {
2071 if (mfence)
2072 dma_fence_get(fence);
2073 invalidation_fence_init(tile->primary_gt, ifence, fence,
2074 pt_update_ops->start,
2075 pt_update_ops->last, vm->usm.asid);
2076 if (mfence) {
2077 invalidation_fence_init(tile->media_gt, mfence, fence,
2078 pt_update_ops->start,
2079 pt_update_ops->last, vm->usm.asid);
2080 fences[0] = &ifence->base.base;
2081 fences[1] = &mfence->base.base;
2082 dma_fence_array_init(cf, 2, fences,
2083 vm->composite_fence_ctx,
2084 vm->composite_fence_seqno++,
2085 false);
2086 fence = &cf->base;
2087 } else {
2088 fence = &ifence->base.base;
2089 }
2090 }
2091
2092 if (!mfence) {
2093 dma_resv_add_fence(xe_vm_resv(vm), fence,
2094 pt_update_ops->wait_vm_bookkeep ?
2095 DMA_RESV_USAGE_KERNEL :
2096 DMA_RESV_USAGE_BOOKKEEP);
2097
2098 list_for_each_entry(op, &vops->list, link)
2099 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL);
2100 } else {
2101 dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base,
2102 pt_update_ops->wait_vm_bookkeep ?
2103 DMA_RESV_USAGE_KERNEL :
2104 DMA_RESV_USAGE_BOOKKEEP);
2105
2106 dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base,
2107 pt_update_ops->wait_vm_bookkeep ?
2108 DMA_RESV_USAGE_KERNEL :
2109 DMA_RESV_USAGE_BOOKKEEP);
2110
2111 list_for_each_entry(op, &vops->list, link)
2112 op_commit(vops->vm, tile, pt_update_ops, op,
2113 &ifence->base.base, &mfence->base.base);
2114 }
2115
2116 if (pt_update_ops->needs_userptr_lock)
2117 up_read(&vm->userptr.notifier_lock);
2118
2119 return fence;
2120
2121 free_rfence:
2122 kfree(rfence);
2123 free_ifence:
2124 kfree(cf);
2125 kfree(fences);
2126 kfree(mfence);
2127 kfree(ifence);
2128 kill_vm_tile1:
2129 if (err != -EAGAIN && tile->id)
2130 xe_vm_kill(vops->vm, false);
2131
2132 return ERR_PTR(err);
2133 }
2134
2135 /**
2136 * xe_pt_update_ops_fini() - Finish PT update operations
2137 * @tile: Tile of PT update operations
2138 * @vops: VMA operations
2139 *
2140 * Finish PT update operations by committing to destroy page table memory
2141 */
xe_pt_update_ops_fini(struct xe_tile * tile,struct xe_vma_ops * vops)2142 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops)
2143 {
2144 struct xe_vm_pgtable_update_ops *pt_update_ops =
2145 &vops->pt_update_ops[tile->id];
2146 int i;
2147
2148 lockdep_assert_held(&vops->vm->lock);
2149 xe_vm_assert_held(vops->vm);
2150
2151 for (i = 0; i < pt_update_ops->current_op; ++i) {
2152 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2153
2154 xe_pt_free_bind(pt_op->entries, pt_op->num_entries);
2155 }
2156 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2157 }
2158
2159 /**
2160 * xe_pt_update_ops_abort() - Abort PT update operations
2161 * @tile: Tile of PT update operations
2162 * @vops: VMA operationa
2163 *
2164 * Abort PT update operations by unwinding internal PT state
2165 */
xe_pt_update_ops_abort(struct xe_tile * tile,struct xe_vma_ops * vops)2166 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops)
2167 {
2168 struct xe_vm_pgtable_update_ops *pt_update_ops =
2169 &vops->pt_update_ops[tile->id];
2170 int i;
2171
2172 lockdep_assert_held(&vops->vm->lock);
2173 xe_vm_assert_held(vops->vm);
2174
2175 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) {
2176 struct xe_vm_pgtable_update_op *pt_op =
2177 &pt_update_ops->ops[i];
2178
2179 if (!pt_op->vma || i >= pt_update_ops->current_op)
2180 continue;
2181
2182 if (pt_op->bind)
2183 xe_pt_abort_bind(pt_op->vma, pt_op->entries,
2184 pt_op->num_entries,
2185 pt_op->rebind);
2186 else
2187 xe_pt_abort_unbind(pt_op->vma, pt_op->entries,
2188 pt_op->num_entries);
2189 }
2190
2191 xe_pt_update_ops_fini(tile, vops);
2192 }
2193