1  // SPDX-License-Identifier: MIT
2  /*
3   * Copyright © 2022 Intel Corporation
4   */
5  
6  #include "xe_guc_pc.h"
7  
8  #include <linux/delay.h>
9  
10  #include <drm/drm_managed.h>
11  #include <generated/xe_wa_oob.h>
12  
13  #include "abi/guc_actions_slpc_abi.h"
14  #include "regs/xe_gt_regs.h"
15  #include "regs/xe_regs.h"
16  #include "xe_bo.h"
17  #include "xe_device.h"
18  #include "xe_force_wake.h"
19  #include "xe_gt.h"
20  #include "xe_gt_idle.h"
21  #include "xe_gt_printk.h"
22  #include "xe_gt_types.h"
23  #include "xe_guc.h"
24  #include "xe_guc_ct.h"
25  #include "xe_map.h"
26  #include "xe_mmio.h"
27  #include "xe_pcode.h"
28  #include "xe_pm.h"
29  #include "xe_sriov.h"
30  #include "xe_wa.h"
31  
32  #define MCHBAR_MIRROR_BASE_SNB	0x140000
33  
34  #define RP_STATE_CAP		XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998)
35  #define   RP0_MASK		REG_GENMASK(7, 0)
36  #define   RP1_MASK		REG_GENMASK(15, 8)
37  #define   RPN_MASK		REG_GENMASK(23, 16)
38  
39  #define FREQ_INFO_REC	XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0)
40  #define   RPE_MASK		REG_GENMASK(15, 8)
41  
42  #define GT_PERF_STATUS		XE_REG(0x1381b4)
43  #define   CAGF_MASK	REG_GENMASK(19, 11)
44  
45  #define GT_FREQUENCY_MULTIPLIER	50
46  #define GT_FREQUENCY_SCALER	3
47  
48  #define LNL_MERT_FREQ_CAP	800
49  #define BMG_MERT_FREQ_CAP	2133
50  
51  /**
52   * DOC: GuC Power Conservation (PC)
53   *
54   * GuC Power Conservation (PC) supports multiple features for the most
55   * efficient and performing use of the GT when GuC submission is enabled,
56   * including frequency management, Render-C states management, and various
57   * algorithms for power balancing.
58   *
59   * Single Loop Power Conservation (SLPC) is the name given to the suite of
60   * connected power conservation features in the GuC firmware. The firmware
61   * exposes a programming interface to the host for the control of SLPC.
62   *
63   * Frequency management:
64   * =====================
65   *
66   * Xe driver enables SLPC with all of its defaults features and frequency
67   * selection, which varies per platform.
68   *
69   * Render-C States:
70   * ================
71   *
72   * Render-C states is also a GuC PC feature that is now enabled in Xe for
73   * all platforms.
74   *
75   */
76  
pc_to_guc(struct xe_guc_pc * pc)77  static struct xe_guc *pc_to_guc(struct xe_guc_pc *pc)
78  {
79  	return container_of(pc, struct xe_guc, pc);
80  }
81  
pc_to_ct(struct xe_guc_pc * pc)82  static struct xe_guc_ct *pc_to_ct(struct xe_guc_pc *pc)
83  {
84  	return &pc_to_guc(pc)->ct;
85  }
86  
pc_to_gt(struct xe_guc_pc * pc)87  static struct xe_gt *pc_to_gt(struct xe_guc_pc *pc)
88  {
89  	return guc_to_gt(pc_to_guc(pc));
90  }
91  
pc_to_xe(struct xe_guc_pc * pc)92  static struct xe_device *pc_to_xe(struct xe_guc_pc *pc)
93  {
94  	return guc_to_xe(pc_to_guc(pc));
95  }
96  
pc_to_maps(struct xe_guc_pc * pc)97  static struct iosys_map *pc_to_maps(struct xe_guc_pc *pc)
98  {
99  	return &pc->bo->vmap;
100  }
101  
102  #define slpc_shared_data_read(pc_, field_) \
103  	xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
104  			struct slpc_shared_data, field_)
105  
106  #define slpc_shared_data_write(pc_, field_, val_) \
107  	xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \
108  			struct slpc_shared_data, field_, val_)
109  
110  #define SLPC_EVENT(id, count) \
111  	(FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \
112  	 FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count))
113  
wait_for_pc_state(struct xe_guc_pc * pc,enum slpc_global_state state)114  static int wait_for_pc_state(struct xe_guc_pc *pc,
115  			     enum slpc_global_state state)
116  {
117  	int timeout_us = 5000; /* rought 5ms, but no need for precision */
118  	int slept, wait = 10;
119  
120  	xe_device_assert_mem_access(pc_to_xe(pc));
121  
122  	for (slept = 0; slept < timeout_us;) {
123  		if (slpc_shared_data_read(pc, header.global_state) == state)
124  			return 0;
125  
126  		usleep_range(wait, wait << 1);
127  		slept += wait;
128  		wait <<= 1;
129  		if (slept + wait > timeout_us)
130  			wait = timeout_us - slept;
131  	}
132  
133  	return -ETIMEDOUT;
134  }
135  
pc_action_reset(struct xe_guc_pc * pc)136  static int pc_action_reset(struct xe_guc_pc *pc)
137  {
138  	struct xe_guc_ct *ct = pc_to_ct(pc);
139  	u32 action[] = {
140  		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
141  		SLPC_EVENT(SLPC_EVENT_RESET, 2),
142  		xe_bo_ggtt_addr(pc->bo),
143  		0,
144  	};
145  	int ret;
146  
147  	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
148  	if (ret)
149  		xe_gt_err(pc_to_gt(pc), "GuC PC reset failed: %pe\n",
150  			  ERR_PTR(ret));
151  
152  	return ret;
153  }
154  
pc_action_query_task_state(struct xe_guc_pc * pc)155  static int pc_action_query_task_state(struct xe_guc_pc *pc)
156  {
157  	struct xe_guc_ct *ct = pc_to_ct(pc);
158  	u32 action[] = {
159  		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
160  		SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
161  		xe_bo_ggtt_addr(pc->bo),
162  		0,
163  	};
164  	int ret;
165  
166  	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
167  		return -EAGAIN;
168  
169  	/* Blocking here to ensure the results are ready before reading them */
170  	ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action));
171  	if (ret)
172  		xe_gt_err(pc_to_gt(pc), "GuC PC query task state failed: %pe\n",
173  			  ERR_PTR(ret));
174  
175  	return ret;
176  }
177  
pc_action_set_param(struct xe_guc_pc * pc,u8 id,u32 value)178  static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value)
179  {
180  	struct xe_guc_ct *ct = pc_to_ct(pc);
181  	u32 action[] = {
182  		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
183  		SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
184  		id,
185  		value,
186  	};
187  	int ret;
188  
189  	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
190  		return -EAGAIN;
191  
192  	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
193  	if (ret)
194  		xe_gt_err(pc_to_gt(pc), "GuC PC set param[%u]=%u failed: %pe\n",
195  			  id, value, ERR_PTR(ret));
196  
197  	return ret;
198  }
199  
pc_action_unset_param(struct xe_guc_pc * pc,u8 id)200  static int pc_action_unset_param(struct xe_guc_pc *pc, u8 id)
201  {
202  	u32 action[] = {
203  		GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
204  		SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1),
205  		id,
206  	};
207  	struct xe_guc_ct *ct = &pc_to_guc(pc)->ct;
208  	int ret;
209  
210  	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING))
211  		return -EAGAIN;
212  
213  	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
214  	if (ret)
215  		xe_gt_err(pc_to_gt(pc), "GuC PC unset param failed: %pe",
216  			  ERR_PTR(ret));
217  
218  	return ret;
219  }
220  
pc_action_setup_gucrc(struct xe_guc_pc * pc,u32 mode)221  static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode)
222  {
223  	struct xe_guc_ct *ct = pc_to_ct(pc);
224  	u32 action[] = {
225  		GUC_ACTION_HOST2GUC_SETUP_PC_GUCRC,
226  		mode,
227  	};
228  	int ret;
229  
230  	ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0);
231  	if (ret)
232  		xe_gt_err(pc_to_gt(pc), "GuC RC enable mode=%u failed: %pe\n",
233  			  mode, ERR_PTR(ret));
234  	return ret;
235  }
236  
decode_freq(u32 raw)237  static u32 decode_freq(u32 raw)
238  {
239  	return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER,
240  				 GT_FREQUENCY_SCALER);
241  }
242  
encode_freq(u32 freq)243  static u32 encode_freq(u32 freq)
244  {
245  	return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER,
246  				 GT_FREQUENCY_MULTIPLIER);
247  }
248  
pc_get_min_freq(struct xe_guc_pc * pc)249  static u32 pc_get_min_freq(struct xe_guc_pc *pc)
250  {
251  	u32 freq;
252  
253  	freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
254  			 slpc_shared_data_read(pc, task_state_data.freq));
255  
256  	return decode_freq(freq);
257  }
258  
pc_set_manual_rp_ctrl(struct xe_guc_pc * pc,bool enable)259  static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable)
260  {
261  	struct xe_gt *gt = pc_to_gt(pc);
262  	u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE;
263  
264  	/* Allow/Disallow punit to process software freq requests */
265  	xe_mmio_write32(gt, RP_CONTROL, state);
266  }
267  
pc_set_cur_freq(struct xe_guc_pc * pc,u32 freq)268  static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq)
269  {
270  	struct xe_gt *gt = pc_to_gt(pc);
271  	u32 rpnswreq;
272  
273  	pc_set_manual_rp_ctrl(pc, true);
274  
275  	/* Req freq is in units of 16.66 Mhz */
276  	rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq));
277  	xe_mmio_write32(gt, RPNSWREQ, rpnswreq);
278  
279  	/* Sleep for a small time to allow pcode to respond */
280  	usleep_range(100, 300);
281  
282  	pc_set_manual_rp_ctrl(pc, false);
283  }
284  
pc_set_min_freq(struct xe_guc_pc * pc,u32 freq)285  static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
286  {
287  	/*
288  	 * Let's only check for the rpn-rp0 range. If max < min,
289  	 * min becomes a fixed request.
290  	 */
291  	if (freq < pc->rpn_freq || freq > pc->rp0_freq)
292  		return -EINVAL;
293  
294  	/*
295  	 * GuC policy is to elevate minimum frequency to the efficient levels
296  	 * Our goal is to have the admin choices respected.
297  	 */
298  	pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
299  			    freq < pc->rpe_freq);
300  
301  	return pc_action_set_param(pc,
302  				   SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
303  				   freq);
304  }
305  
pc_get_max_freq(struct xe_guc_pc * pc)306  static int pc_get_max_freq(struct xe_guc_pc *pc)
307  {
308  	u32 freq;
309  
310  	freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
311  			 slpc_shared_data_read(pc, task_state_data.freq));
312  
313  	return decode_freq(freq);
314  }
315  
pc_set_max_freq(struct xe_guc_pc * pc,u32 freq)316  static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
317  {
318  	/*
319  	 * Let's only check for the rpn-rp0 range. If max < min,
320  	 * min becomes a fixed request.
321  	 * Also, overclocking is not supported.
322  	 */
323  	if (freq < pc->rpn_freq || freq > pc->rp0_freq)
324  		return -EINVAL;
325  
326  	return pc_action_set_param(pc,
327  				   SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
328  				   freq);
329  }
330  
mtl_update_rpe_value(struct xe_guc_pc * pc)331  static void mtl_update_rpe_value(struct xe_guc_pc *pc)
332  {
333  	struct xe_gt *gt = pc_to_gt(pc);
334  	u32 reg;
335  
336  	if (xe_gt_is_media_type(gt))
337  		reg = xe_mmio_read32(gt, MTL_MPE_FREQUENCY);
338  	else
339  		reg = xe_mmio_read32(gt, MTL_GT_RPE_FREQUENCY);
340  
341  	pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg));
342  }
343  
tgl_update_rpe_value(struct xe_guc_pc * pc)344  static void tgl_update_rpe_value(struct xe_guc_pc *pc)
345  {
346  	struct xe_gt *gt = pc_to_gt(pc);
347  	struct xe_device *xe = gt_to_xe(gt);
348  	u32 reg;
349  
350  	/*
351  	 * For PVC we still need to use fused RP1 as the approximation for RPe
352  	 * For other platforms than PVC we get the resolved RPe directly from
353  	 * PCODE at a different register
354  	 */
355  	if (xe->info.platform == XE_PVC)
356  		reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP);
357  	else
358  		reg = xe_mmio_read32(gt, FREQ_INFO_REC);
359  
360  	pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
361  }
362  
pc_update_rp_values(struct xe_guc_pc * pc)363  static void pc_update_rp_values(struct xe_guc_pc *pc)
364  {
365  	struct xe_gt *gt = pc_to_gt(pc);
366  	struct xe_device *xe = gt_to_xe(gt);
367  
368  	if (GRAPHICS_VERx100(xe) >= 1270)
369  		mtl_update_rpe_value(pc);
370  	else
371  		tgl_update_rpe_value(pc);
372  
373  	/*
374  	 * RPe is decided at runtime by PCODE. In the rare case where that's
375  	 * smaller than the fused min, we will trust the PCODE and use that
376  	 * as our minimum one.
377  	 */
378  	pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq);
379  }
380  
381  /**
382   * xe_guc_pc_get_act_freq - Get Actual running frequency
383   * @pc: The GuC PC
384   *
385   * Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6).
386   */
xe_guc_pc_get_act_freq(struct xe_guc_pc * pc)387  u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc)
388  {
389  	struct xe_gt *gt = pc_to_gt(pc);
390  	struct xe_device *xe = gt_to_xe(gt);
391  	u32 freq;
392  
393  	/* When in RC6, actual frequency reported will be 0. */
394  	if (GRAPHICS_VERx100(xe) >= 1270) {
395  		freq = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1);
396  		freq = REG_FIELD_GET(MTL_CAGF_MASK, freq);
397  	} else {
398  		freq = xe_mmio_read32(gt, GT_PERF_STATUS);
399  		freq = REG_FIELD_GET(CAGF_MASK, freq);
400  	}
401  
402  	freq = decode_freq(freq);
403  
404  	return freq;
405  }
406  
407  /**
408   * xe_guc_pc_get_cur_freq - Get Current requested frequency
409   * @pc: The GuC PC
410   * @freq: A pointer to a u32 where the freq value will be returned
411   *
412   * Returns: 0 on success,
413   *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
414   */
xe_guc_pc_get_cur_freq(struct xe_guc_pc * pc,u32 * freq)415  int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq)
416  {
417  	struct xe_gt *gt = pc_to_gt(pc);
418  	int ret;
419  
420  	/*
421  	 * GuC SLPC plays with cur freq request when GuCRC is enabled
422  	 * Block RC6 for a more reliable read.
423  	 */
424  	ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
425  	if (ret)
426  		return ret;
427  
428  	*freq = xe_mmio_read32(gt, RPNSWREQ);
429  
430  	*freq = REG_FIELD_GET(REQ_RATIO_MASK, *freq);
431  	*freq = decode_freq(*freq);
432  
433  	XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
434  	return 0;
435  }
436  
437  /**
438   * xe_guc_pc_get_rp0_freq - Get the RP0 freq
439   * @pc: The GuC PC
440   *
441   * Returns: RP0 freq.
442   */
xe_guc_pc_get_rp0_freq(struct xe_guc_pc * pc)443  u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc)
444  {
445  	return pc->rp0_freq;
446  }
447  
448  /**
449   * xe_guc_pc_get_rpe_freq - Get the RPe freq
450   * @pc: The GuC PC
451   *
452   * Returns: RPe freq.
453   */
xe_guc_pc_get_rpe_freq(struct xe_guc_pc * pc)454  u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc)
455  {
456  	pc_update_rp_values(pc);
457  
458  	return pc->rpe_freq;
459  }
460  
461  /**
462   * xe_guc_pc_get_rpn_freq - Get the RPn freq
463   * @pc: The GuC PC
464   *
465   * Returns: RPn freq.
466   */
xe_guc_pc_get_rpn_freq(struct xe_guc_pc * pc)467  u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc)
468  {
469  	return pc->rpn_freq;
470  }
471  
472  /**
473   * xe_guc_pc_get_min_freq - Get the min operational frequency
474   * @pc: The GuC PC
475   * @freq: A pointer to a u32 where the freq value will be returned
476   *
477   * Returns: 0 on success,
478   *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
479   */
xe_guc_pc_get_min_freq(struct xe_guc_pc * pc,u32 * freq)480  int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq)
481  {
482  	struct xe_gt *gt = pc_to_gt(pc);
483  	int ret;
484  
485  	mutex_lock(&pc->freq_lock);
486  	if (!pc->freq_ready) {
487  		/* Might be in the middle of a gt reset */
488  		ret = -EAGAIN;
489  		goto out;
490  	}
491  
492  	/*
493  	 * GuC SLPC plays with min freq request when GuCRC is enabled
494  	 * Block RC6 for a more reliable read.
495  	 */
496  	ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
497  	if (ret)
498  		goto out;
499  
500  	ret = pc_action_query_task_state(pc);
501  	if (ret)
502  		goto fw;
503  
504  	*freq = pc_get_min_freq(pc);
505  
506  fw:
507  	XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
508  out:
509  	mutex_unlock(&pc->freq_lock);
510  	return ret;
511  }
512  
513  /**
514   * xe_guc_pc_set_min_freq - Set the minimal operational frequency
515   * @pc: The GuC PC
516   * @freq: The selected minimal frequency
517   *
518   * Returns: 0 on success,
519   *         -EAGAIN if GuC PC not ready (likely in middle of a reset),
520   *         -EINVAL if value out of bounds.
521   */
xe_guc_pc_set_min_freq(struct xe_guc_pc * pc,u32 freq)522  int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq)
523  {
524  	int ret;
525  
526  	mutex_lock(&pc->freq_lock);
527  	if (!pc->freq_ready) {
528  		/* Might be in the middle of a gt reset */
529  		ret = -EAGAIN;
530  		goto out;
531  	}
532  
533  	ret = pc_set_min_freq(pc, freq);
534  	if (ret)
535  		goto out;
536  
537  	pc->user_requested_min = freq;
538  
539  out:
540  	mutex_unlock(&pc->freq_lock);
541  	return ret;
542  }
543  
544  /**
545   * xe_guc_pc_get_max_freq - Get Maximum operational frequency
546   * @pc: The GuC PC
547   * @freq: A pointer to a u32 where the freq value will be returned
548   *
549   * Returns: 0 on success,
550   *         -EAGAIN if GuC PC not ready (likely in middle of a reset).
551   */
xe_guc_pc_get_max_freq(struct xe_guc_pc * pc,u32 * freq)552  int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq)
553  {
554  	int ret;
555  
556  	mutex_lock(&pc->freq_lock);
557  	if (!pc->freq_ready) {
558  		/* Might be in the middle of a gt reset */
559  		ret = -EAGAIN;
560  		goto out;
561  	}
562  
563  	ret = pc_action_query_task_state(pc);
564  	if (ret)
565  		goto out;
566  
567  	*freq = pc_get_max_freq(pc);
568  
569  out:
570  	mutex_unlock(&pc->freq_lock);
571  	return ret;
572  }
573  
574  /**
575   * xe_guc_pc_set_max_freq - Set the maximum operational frequency
576   * @pc: The GuC PC
577   * @freq: The selected maximum frequency value
578   *
579   * Returns: 0 on success,
580   *         -EAGAIN if GuC PC not ready (likely in middle of a reset),
581   *         -EINVAL if value out of bounds.
582   */
xe_guc_pc_set_max_freq(struct xe_guc_pc * pc,u32 freq)583  int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq)
584  {
585  	int ret;
586  
587  	mutex_lock(&pc->freq_lock);
588  	if (!pc->freq_ready) {
589  		/* Might be in the middle of a gt reset */
590  		ret = -EAGAIN;
591  		goto out;
592  	}
593  
594  	ret = pc_set_max_freq(pc, freq);
595  	if (ret)
596  		goto out;
597  
598  	pc->user_requested_max = freq;
599  
600  out:
601  	mutex_unlock(&pc->freq_lock);
602  	return ret;
603  }
604  
605  /**
606   * xe_guc_pc_c_status - get the current GT C state
607   * @pc: XE_GuC_PC instance
608   */
xe_guc_pc_c_status(struct xe_guc_pc * pc)609  enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc)
610  {
611  	struct xe_gt *gt = pc_to_gt(pc);
612  	u32 reg, gt_c_state;
613  
614  	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
615  		reg = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1);
616  		gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg);
617  	} else {
618  		reg = xe_mmio_read32(gt, GT_CORE_STATUS);
619  		gt_c_state = REG_FIELD_GET(RCN_MASK, reg);
620  	}
621  
622  	switch (gt_c_state) {
623  	case GT_C6:
624  		return GT_IDLE_C6;
625  	case GT_C0:
626  		return GT_IDLE_C0;
627  	default:
628  		return GT_IDLE_UNKNOWN;
629  	}
630  }
631  
632  /**
633   * xe_guc_pc_rc6_residency - rc6 residency counter
634   * @pc: Xe_GuC_PC instance
635   */
xe_guc_pc_rc6_residency(struct xe_guc_pc * pc)636  u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc)
637  {
638  	struct xe_gt *gt = pc_to_gt(pc);
639  	u32 reg;
640  
641  	reg = xe_mmio_read32(gt, GT_GFX_RC6);
642  
643  	return reg;
644  }
645  
646  /**
647   * xe_guc_pc_mc6_residency - mc6 residency counter
648   * @pc: Xe_GuC_PC instance
649   */
xe_guc_pc_mc6_residency(struct xe_guc_pc * pc)650  u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc)
651  {
652  	struct xe_gt *gt = pc_to_gt(pc);
653  	u64 reg;
654  
655  	reg = xe_mmio_read32(gt, MTL_MEDIA_MC6);
656  
657  	return reg;
658  }
659  
mtl_init_fused_rp_values(struct xe_guc_pc * pc)660  static void mtl_init_fused_rp_values(struct xe_guc_pc *pc)
661  {
662  	struct xe_gt *gt = pc_to_gt(pc);
663  	u32 reg;
664  
665  	xe_device_assert_mem_access(pc_to_xe(pc));
666  
667  	if (xe_gt_is_media_type(gt))
668  		reg = xe_mmio_read32(gt, MTL_MEDIAP_STATE_CAP);
669  	else
670  		reg = xe_mmio_read32(gt, MTL_RP_STATE_CAP);
671  
672  	pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg));
673  
674  	pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg));
675  }
676  
tgl_init_fused_rp_values(struct xe_guc_pc * pc)677  static void tgl_init_fused_rp_values(struct xe_guc_pc *pc)
678  {
679  	struct xe_gt *gt = pc_to_gt(pc);
680  	struct xe_device *xe = gt_to_xe(gt);
681  	u32 reg;
682  
683  	xe_device_assert_mem_access(pc_to_xe(pc));
684  
685  	if (xe->info.platform == XE_PVC)
686  		reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP);
687  	else
688  		reg = xe_mmio_read32(gt, RP_STATE_CAP);
689  	pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
690  	pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER;
691  }
692  
pc_init_fused_rp_values(struct xe_guc_pc * pc)693  static void pc_init_fused_rp_values(struct xe_guc_pc *pc)
694  {
695  	struct xe_gt *gt = pc_to_gt(pc);
696  	struct xe_device *xe = gt_to_xe(gt);
697  
698  	if (GRAPHICS_VERx100(xe) >= 1270)
699  		mtl_init_fused_rp_values(pc);
700  	else
701  		tgl_init_fused_rp_values(pc);
702  }
703  
pc_max_freq_cap(struct xe_guc_pc * pc)704  static u32 pc_max_freq_cap(struct xe_guc_pc *pc)
705  {
706  	struct xe_gt *gt = pc_to_gt(pc);
707  
708  	if (XE_WA(gt, 22019338487)) {
709  		if (xe_gt_is_media_type(gt))
710  			return min(LNL_MERT_FREQ_CAP, pc->rp0_freq);
711  		else
712  			return min(BMG_MERT_FREQ_CAP, pc->rp0_freq);
713  	} else {
714  		return pc->rp0_freq;
715  	}
716  }
717  
718  /**
719   * xe_guc_pc_raise_unslice - Initialize RPx values and request a higher GT
720   * frequency to allow faster GuC load times
721   * @pc: Xe_GuC_PC instance
722   */
xe_guc_pc_raise_unslice(struct xe_guc_pc * pc)723  void xe_guc_pc_raise_unslice(struct xe_guc_pc *pc)
724  {
725  	struct xe_gt *gt = pc_to_gt(pc);
726  
727  	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
728  	pc_set_cur_freq(pc, pc_max_freq_cap(pc));
729  }
730  
731  /**
732   * xe_guc_pc_init_early - Initialize RPx values
733   * @pc: Xe_GuC_PC instance
734   */
xe_guc_pc_init_early(struct xe_guc_pc * pc)735  void xe_guc_pc_init_early(struct xe_guc_pc *pc)
736  {
737  	struct xe_gt *gt = pc_to_gt(pc);
738  
739  	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
740  	pc_init_fused_rp_values(pc);
741  }
742  
pc_adjust_freq_bounds(struct xe_guc_pc * pc)743  static int pc_adjust_freq_bounds(struct xe_guc_pc *pc)
744  {
745  	int ret;
746  
747  	lockdep_assert_held(&pc->freq_lock);
748  
749  	ret = pc_action_query_task_state(pc);
750  	if (ret)
751  		goto out;
752  
753  	/*
754  	 * GuC defaults to some RPmax that is not actually achievable without
755  	 * overclocking. Let's adjust it to the Hardware RP0, which is the
756  	 * regular maximum
757  	 */
758  	if (pc_get_max_freq(pc) > pc->rp0_freq) {
759  		ret = pc_set_max_freq(pc, pc->rp0_freq);
760  		if (ret)
761  			goto out;
762  	}
763  
764  	/*
765  	 * Same thing happens for Server platforms where min is listed as
766  	 * RPMax
767  	 */
768  	if (pc_get_min_freq(pc) > pc->rp0_freq)
769  		ret = pc_set_min_freq(pc, pc->rp0_freq);
770  
771  out:
772  	return ret;
773  }
774  
pc_adjust_requested_freq(struct xe_guc_pc * pc)775  static int pc_adjust_requested_freq(struct xe_guc_pc *pc)
776  {
777  	int ret = 0;
778  
779  	lockdep_assert_held(&pc->freq_lock);
780  
781  	if (pc->user_requested_min != 0) {
782  		ret = pc_set_min_freq(pc, pc->user_requested_min);
783  		if (ret)
784  			return ret;
785  	}
786  
787  	if (pc->user_requested_max != 0) {
788  		ret = pc_set_max_freq(pc, pc->user_requested_max);
789  		if (ret)
790  			return ret;
791  	}
792  
793  	return ret;
794  }
795  
pc_set_mert_freq_cap(struct xe_guc_pc * pc)796  static int pc_set_mert_freq_cap(struct xe_guc_pc *pc)
797  {
798  	int ret = 0;
799  
800  	if (XE_WA(pc_to_gt(pc), 22019338487)) {
801  		/*
802  		 * Get updated min/max and stash them.
803  		 */
804  		ret = xe_guc_pc_get_min_freq(pc, &pc->stashed_min_freq);
805  		if (!ret)
806  			ret = xe_guc_pc_get_max_freq(pc, &pc->stashed_max_freq);
807  		if (ret)
808  			return ret;
809  
810  		/*
811  		 * Ensure min and max are bound by MERT_FREQ_CAP until driver loads.
812  		 */
813  		mutex_lock(&pc->freq_lock);
814  		ret = pc_set_min_freq(pc, min(pc->rpe_freq, pc_max_freq_cap(pc)));
815  		if (!ret)
816  			ret = pc_set_max_freq(pc, min(pc->rp0_freq, pc_max_freq_cap(pc)));
817  		mutex_unlock(&pc->freq_lock);
818  	}
819  
820  	return ret;
821  }
822  
823  /**
824   * xe_guc_pc_restore_stashed_freq - Set min/max back to stashed values
825   * @pc: The GuC PC
826   *
827   * Returns: 0 on success,
828   *          error code on failure
829   */
xe_guc_pc_restore_stashed_freq(struct xe_guc_pc * pc)830  int xe_guc_pc_restore_stashed_freq(struct xe_guc_pc *pc)
831  {
832  	int ret = 0;
833  
834  	if (IS_SRIOV_VF(pc_to_xe(pc)) || pc_to_xe(pc)->info.skip_guc_pc)
835  		return 0;
836  
837  	mutex_lock(&pc->freq_lock);
838  	ret = pc_set_max_freq(pc, pc->stashed_max_freq);
839  	if (!ret)
840  		ret = pc_set_min_freq(pc, pc->stashed_min_freq);
841  	mutex_unlock(&pc->freq_lock);
842  
843  	return ret;
844  }
845  
846  /**
847   * xe_guc_pc_gucrc_disable - Disable GuC RC
848   * @pc: Xe_GuC_PC instance
849   *
850   * Disables GuC RC by taking control of RC6 back from GuC.
851   *
852   * Return: 0 on success, negative error code on error.
853   */
xe_guc_pc_gucrc_disable(struct xe_guc_pc * pc)854  int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc)
855  {
856  	struct xe_device *xe = pc_to_xe(pc);
857  	struct xe_gt *gt = pc_to_gt(pc);
858  	int ret = 0;
859  
860  	if (xe->info.skip_guc_pc)
861  		return 0;
862  
863  	ret = pc_action_setup_gucrc(pc, GUCRC_HOST_CONTROL);
864  	if (ret)
865  		return ret;
866  
867  	ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
868  	if (ret)
869  		return ret;
870  
871  	xe_gt_idle_disable_c6(gt);
872  
873  	XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
874  
875  	return 0;
876  }
877  
878  /**
879   * xe_guc_pc_override_gucrc_mode - override GUCRC mode
880   * @pc: Xe_GuC_PC instance
881   * @mode: new value of the mode.
882   *
883   * Return: 0 on success, negative error code on error
884   */
xe_guc_pc_override_gucrc_mode(struct xe_guc_pc * pc,enum slpc_gucrc_mode mode)885  int xe_guc_pc_override_gucrc_mode(struct xe_guc_pc *pc, enum slpc_gucrc_mode mode)
886  {
887  	int ret;
888  
889  	xe_pm_runtime_get(pc_to_xe(pc));
890  	ret = pc_action_set_param(pc, SLPC_PARAM_PWRGATE_RC_MODE, mode);
891  	xe_pm_runtime_put(pc_to_xe(pc));
892  
893  	return ret;
894  }
895  
896  /**
897   * xe_guc_pc_unset_gucrc_mode - unset GUCRC mode override
898   * @pc: Xe_GuC_PC instance
899   *
900   * Return: 0 on success, negative error code on error
901   */
xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc * pc)902  int xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc *pc)
903  {
904  	int ret;
905  
906  	xe_pm_runtime_get(pc_to_xe(pc));
907  	ret = pc_action_unset_param(pc, SLPC_PARAM_PWRGATE_RC_MODE);
908  	xe_pm_runtime_put(pc_to_xe(pc));
909  
910  	return ret;
911  }
912  
pc_init_pcode_freq(struct xe_guc_pc * pc)913  static void pc_init_pcode_freq(struct xe_guc_pc *pc)
914  {
915  	u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER);
916  	u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER);
917  
918  	XE_WARN_ON(xe_pcode_init_min_freq_table(gt_to_tile(pc_to_gt(pc)), min, max));
919  }
920  
pc_init_freqs(struct xe_guc_pc * pc)921  static int pc_init_freqs(struct xe_guc_pc *pc)
922  {
923  	int ret;
924  
925  	mutex_lock(&pc->freq_lock);
926  
927  	ret = pc_adjust_freq_bounds(pc);
928  	if (ret)
929  		goto out;
930  
931  	ret = pc_adjust_requested_freq(pc);
932  	if (ret)
933  		goto out;
934  
935  	pc_update_rp_values(pc);
936  
937  	pc_init_pcode_freq(pc);
938  
939  	/*
940  	 * The frequencies are really ready for use only after the user
941  	 * requested ones got restored.
942  	 */
943  	pc->freq_ready = true;
944  
945  out:
946  	mutex_unlock(&pc->freq_lock);
947  	return ret;
948  }
949  
950  /**
951   * xe_guc_pc_start - Start GuC's Power Conservation component
952   * @pc: Xe_GuC_PC instance
953   */
xe_guc_pc_start(struct xe_guc_pc * pc)954  int xe_guc_pc_start(struct xe_guc_pc *pc)
955  {
956  	struct xe_device *xe = pc_to_xe(pc);
957  	struct xe_gt *gt = pc_to_gt(pc);
958  	u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
959  	int ret;
960  
961  	xe_gt_assert(gt, xe_device_uc_enabled(xe));
962  
963  	ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
964  	if (ret)
965  		return ret;
966  
967  	if (xe->info.skip_guc_pc) {
968  		if (xe->info.platform != XE_PVC)
969  			xe_gt_idle_enable_c6(gt);
970  
971  		/* Request max possible since dynamic freq mgmt is not enabled */
972  		pc_set_cur_freq(pc, UINT_MAX);
973  
974  		ret = 0;
975  		goto out;
976  	}
977  
978  	memset(pc->bo->vmap.vaddr, 0, size);
979  	slpc_shared_data_write(pc, header.size, size);
980  
981  	ret = pc_action_reset(pc);
982  	if (ret)
983  		goto out;
984  
985  	if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) {
986  		xe_gt_err(gt, "GuC PC Start failed\n");
987  		ret = -EIO;
988  		goto out;
989  	}
990  
991  	ret = pc_init_freqs(pc);
992  	if (ret)
993  		goto out;
994  
995  	ret = pc_set_mert_freq_cap(pc);
996  	if (ret)
997  		goto out;
998  
999  	if (xe->info.platform == XE_PVC) {
1000  		xe_guc_pc_gucrc_disable(pc);
1001  		ret = 0;
1002  		goto out;
1003  	}
1004  
1005  	ret = pc_action_setup_gucrc(pc, GUCRC_FIRMWARE_CONTROL);
1006  
1007  out:
1008  	XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
1009  	return ret;
1010  }
1011  
1012  /**
1013   * xe_guc_pc_stop - Stop GuC's Power Conservation component
1014   * @pc: Xe_GuC_PC instance
1015   */
xe_guc_pc_stop(struct xe_guc_pc * pc)1016  int xe_guc_pc_stop(struct xe_guc_pc *pc)
1017  {
1018  	struct xe_device *xe = pc_to_xe(pc);
1019  
1020  	if (xe->info.skip_guc_pc) {
1021  		xe_gt_idle_disable_c6(pc_to_gt(pc));
1022  		return 0;
1023  	}
1024  
1025  	mutex_lock(&pc->freq_lock);
1026  	pc->freq_ready = false;
1027  	mutex_unlock(&pc->freq_lock);
1028  
1029  	return 0;
1030  }
1031  
1032  /**
1033   * xe_guc_pc_fini_hw - Finalize GuC's Power Conservation component
1034   * @arg: opaque pointer that should point to Xe_GuC_PC instance
1035   */
xe_guc_pc_fini_hw(void * arg)1036  static void xe_guc_pc_fini_hw(void *arg)
1037  {
1038  	struct xe_guc_pc *pc = arg;
1039  	struct xe_device *xe = pc_to_xe(pc);
1040  
1041  	if (xe_device_wedged(xe))
1042  		return;
1043  
1044  	XE_WARN_ON(xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL));
1045  	xe_guc_pc_gucrc_disable(pc);
1046  	XE_WARN_ON(xe_guc_pc_stop(pc));
1047  
1048  	/* Bind requested freq to mert_freq_cap before unload */
1049  	pc_set_cur_freq(pc, min(pc_max_freq_cap(pc), pc->rpe_freq));
1050  
1051  	xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL);
1052  }
1053  
1054  /**
1055   * xe_guc_pc_init - Initialize GuC's Power Conservation component
1056   * @pc: Xe_GuC_PC instance
1057   */
xe_guc_pc_init(struct xe_guc_pc * pc)1058  int xe_guc_pc_init(struct xe_guc_pc *pc)
1059  {
1060  	struct xe_gt *gt = pc_to_gt(pc);
1061  	struct xe_tile *tile = gt_to_tile(gt);
1062  	struct xe_device *xe = gt_to_xe(gt);
1063  	struct xe_bo *bo;
1064  	u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
1065  	int err;
1066  
1067  	if (xe->info.skip_guc_pc)
1068  		return 0;
1069  
1070  	err = drmm_mutex_init(&xe->drm, &pc->freq_lock);
1071  	if (err)
1072  		return err;
1073  
1074  	bo = xe_managed_bo_create_pin_map(xe, tile, size,
1075  					  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
1076  					  XE_BO_FLAG_GGTT |
1077  					  XE_BO_FLAG_GGTT_INVALIDATE);
1078  	if (IS_ERR(bo))
1079  		return PTR_ERR(bo);
1080  
1081  	pc->bo = bo;
1082  
1083  	return devm_add_action_or_reset(xe->drm.dev, xe_guc_pc_fini_hw, pc);
1084  }
1085