1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 
10 #include <drm/drm_drv.h>
11 #include <drm/drm_gem_ttm_helper.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_device.h>
14 #include <drm/ttm/ttm_placement.h>
15 #include <drm/ttm/ttm_tt.h>
16 #include <uapi/drm/xe_drm.h>
17 
18 #include "xe_device.h"
19 #include "xe_dma_buf.h"
20 #include "xe_drm_client.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt.h"
23 #include "xe_map.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_preempt_fence.h"
27 #include "xe_res_cursor.h"
28 #include "xe_trace_bo.h"
29 #include "xe_ttm_stolen_mgr.h"
30 #include "xe_vm.h"
31 
32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
33 	[XE_PL_SYSTEM] = "system",
34 	[XE_PL_TT] = "gtt",
35 	[XE_PL_VRAM0] = "vram0",
36 	[XE_PL_VRAM1] = "vram1",
37 	[XE_PL_STOLEN] = "stolen"
38 };
39 
40 static const struct ttm_place sys_placement_flags = {
41 	.fpfn = 0,
42 	.lpfn = 0,
43 	.mem_type = XE_PL_SYSTEM,
44 	.flags = 0,
45 };
46 
47 static struct ttm_placement sys_placement = {
48 	.num_placement = 1,
49 	.placement = &sys_placement_flags,
50 };
51 
52 static const struct ttm_place tt_placement_flags[] = {
53 	{
54 		.fpfn = 0,
55 		.lpfn = 0,
56 		.mem_type = XE_PL_TT,
57 		.flags = TTM_PL_FLAG_DESIRED,
58 	},
59 	{
60 		.fpfn = 0,
61 		.lpfn = 0,
62 		.mem_type = XE_PL_SYSTEM,
63 		.flags = TTM_PL_FLAG_FALLBACK,
64 	}
65 };
66 
67 static struct ttm_placement tt_placement = {
68 	.num_placement = 2,
69 	.placement = tt_placement_flags,
70 };
71 
mem_type_is_vram(u32 mem_type)72 bool mem_type_is_vram(u32 mem_type)
73 {
74 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
75 }
76 
resource_is_stolen_vram(struct xe_device * xe,struct ttm_resource * res)77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
78 {
79 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
80 }
81 
resource_is_vram(struct ttm_resource * res)82 static bool resource_is_vram(struct ttm_resource *res)
83 {
84 	return mem_type_is_vram(res->mem_type);
85 }
86 
xe_bo_is_vram(struct xe_bo * bo)87 bool xe_bo_is_vram(struct xe_bo *bo)
88 {
89 	return resource_is_vram(bo->ttm.resource) ||
90 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
91 }
92 
xe_bo_is_stolen(struct xe_bo * bo)93 bool xe_bo_is_stolen(struct xe_bo *bo)
94 {
95 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
96 }
97 
98 /**
99  * xe_bo_has_single_placement - check if BO is placed only in one memory location
100  * @bo: The BO
101  *
102  * This function checks whether a given BO is placed in only one memory location.
103  *
104  * Returns: true if the BO is placed in a single memory location, false otherwise.
105  *
106  */
xe_bo_has_single_placement(struct xe_bo * bo)107 bool xe_bo_has_single_placement(struct xe_bo *bo)
108 {
109 	return bo->placement.num_placement == 1;
110 }
111 
112 /**
113  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
114  * @bo: The BO
115  *
116  * The stolen memory is accessed through the PCI BAR for both DGFX and some
117  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
118  *
119  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
120  */
xe_bo_is_stolen_devmem(struct xe_bo * bo)121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
122 {
123 	return xe_bo_is_stolen(bo) &&
124 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
125 }
126 
xe_bo_is_user(struct xe_bo * bo)127 static bool xe_bo_is_user(struct xe_bo *bo)
128 {
129 	return bo->flags & XE_BO_FLAG_USER;
130 }
131 
132 static struct xe_migrate *
mem_type_to_migrate(struct xe_device * xe,u32 mem_type)133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
134 {
135 	struct xe_tile *tile;
136 
137 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
138 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
139 	return tile->migrate;
140 }
141 
res_to_mem_region(struct ttm_resource * res)142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
143 {
144 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
145 	struct ttm_resource_manager *mgr;
146 
147 	xe_assert(xe, resource_is_vram(res));
148 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
149 	return to_xe_ttm_vram_mgr(mgr)->vram;
150 }
151 
try_add_system(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
153 			   u32 bo_flags, u32 *c)
154 {
155 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
156 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
157 
158 		bo->placements[*c] = (struct ttm_place) {
159 			.mem_type = XE_PL_TT,
160 		};
161 		*c += 1;
162 	}
163 }
164 
add_vram(struct xe_device * xe,struct xe_bo * bo,struct ttm_place * places,u32 bo_flags,u32 mem_type,u32 * c)165 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
166 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
167 {
168 	struct ttm_place place = { .mem_type = mem_type };
169 	struct xe_mem_region *vram;
170 	u64 io_size;
171 
172 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
173 
174 	vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
175 	xe_assert(xe, vram && vram->usable_size);
176 	io_size = vram->io_size;
177 
178 	/*
179 	 * For eviction / restore on suspend / resume objects
180 	 * pinned in VRAM must be contiguous
181 	 */
182 	if (bo_flags & (XE_BO_FLAG_PINNED |
183 			XE_BO_FLAG_GGTT))
184 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
185 
186 	if (io_size < vram->usable_size) {
187 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
188 			place.fpfn = 0;
189 			place.lpfn = io_size >> PAGE_SHIFT;
190 		} else {
191 			place.flags |= TTM_PL_FLAG_TOPDOWN;
192 		}
193 	}
194 	places[*c] = place;
195 	*c += 1;
196 }
197 
try_add_vram(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
199 			 u32 bo_flags, u32 *c)
200 {
201 	if (bo_flags & XE_BO_FLAG_VRAM0)
202 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
203 	if (bo_flags & XE_BO_FLAG_VRAM1)
204 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
205 }
206 
try_add_stolen(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
208 			   u32 bo_flags, u32 *c)
209 {
210 	if (bo_flags & XE_BO_FLAG_STOLEN) {
211 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
212 
213 		bo->placements[*c] = (struct ttm_place) {
214 			.mem_type = XE_PL_STOLEN,
215 			.flags = bo_flags & (XE_BO_FLAG_PINNED |
216 					     XE_BO_FLAG_GGTT) ?
217 				TTM_PL_FLAG_CONTIGUOUS : 0,
218 		};
219 		*c += 1;
220 	}
221 }
222 
__xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
224 				       u32 bo_flags)
225 {
226 	u32 c = 0;
227 
228 	try_add_vram(xe, bo, bo_flags, &c);
229 	try_add_system(xe, bo, bo_flags, &c);
230 	try_add_stolen(xe, bo, bo_flags, &c);
231 
232 	if (!c)
233 		return -EINVAL;
234 
235 	bo->placement = (struct ttm_placement) {
236 		.num_placement = c,
237 		.placement = bo->placements,
238 	};
239 
240 	return 0;
241 }
242 
xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
244 			      u32 bo_flags)
245 {
246 	xe_bo_assert_held(bo);
247 	return __xe_bo_placement_for_flags(xe, bo, bo_flags);
248 }
249 
xe_evict_flags(struct ttm_buffer_object * tbo,struct ttm_placement * placement)250 static void xe_evict_flags(struct ttm_buffer_object *tbo,
251 			   struct ttm_placement *placement)
252 {
253 	if (!xe_bo_is_xe_bo(tbo)) {
254 		/* Don't handle scatter gather BOs */
255 		if (tbo->type == ttm_bo_type_sg) {
256 			placement->num_placement = 0;
257 			return;
258 		}
259 
260 		*placement = sys_placement;
261 		return;
262 	}
263 
264 	/*
265 	 * For xe, sg bos that are evicted to system just triggers a
266 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
267 	 */
268 	switch (tbo->resource->mem_type) {
269 	case XE_PL_VRAM0:
270 	case XE_PL_VRAM1:
271 	case XE_PL_STOLEN:
272 		*placement = tt_placement;
273 		break;
274 	case XE_PL_TT:
275 	default:
276 		*placement = sys_placement;
277 		break;
278 	}
279 }
280 
281 struct xe_ttm_tt {
282 	struct ttm_tt ttm;
283 	struct device *dev;
284 	struct sg_table sgt;
285 	struct sg_table *sg;
286 };
287 
xe_tt_map_sg(struct ttm_tt * tt)288 static int xe_tt_map_sg(struct ttm_tt *tt)
289 {
290 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
291 	unsigned long num_pages = tt->num_pages;
292 	int ret;
293 
294 	XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
295 
296 	if (xe_tt->sg)
297 		return 0;
298 
299 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
300 						num_pages, 0,
301 						(u64)num_pages << PAGE_SHIFT,
302 						xe_sg_segment_size(xe_tt->dev),
303 						GFP_KERNEL);
304 	if (ret)
305 		return ret;
306 
307 	xe_tt->sg = &xe_tt->sgt;
308 	ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
309 			      DMA_ATTR_SKIP_CPU_SYNC);
310 	if (ret) {
311 		sg_free_table(xe_tt->sg);
312 		xe_tt->sg = NULL;
313 		return ret;
314 	}
315 
316 	return 0;
317 }
318 
xe_tt_unmap_sg(struct ttm_tt * tt)319 static void xe_tt_unmap_sg(struct ttm_tt *tt)
320 {
321 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
322 
323 	if (xe_tt->sg) {
324 		dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
325 				  DMA_BIDIRECTIONAL, 0);
326 		sg_free_table(xe_tt->sg);
327 		xe_tt->sg = NULL;
328 	}
329 }
330 
xe_bo_sg(struct xe_bo * bo)331 struct sg_table *xe_bo_sg(struct xe_bo *bo)
332 {
333 	struct ttm_tt *tt = bo->ttm.ttm;
334 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
335 
336 	return xe_tt->sg;
337 }
338 
xe_ttm_tt_create(struct ttm_buffer_object * ttm_bo,u32 page_flags)339 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
340 				       u32 page_flags)
341 {
342 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
343 	struct xe_device *xe = xe_bo_device(bo);
344 	struct xe_ttm_tt *tt;
345 	unsigned long extra_pages;
346 	enum ttm_caching caching = ttm_cached;
347 	int err;
348 
349 	tt = kzalloc(sizeof(*tt), GFP_KERNEL);
350 	if (!tt)
351 		return NULL;
352 
353 	tt->dev = xe->drm.dev;
354 
355 	extra_pages = 0;
356 	if (xe_bo_needs_ccs_pages(bo))
357 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
358 					   PAGE_SIZE);
359 
360 	/*
361 	 * DGFX system memory is always WB / ttm_cached, since
362 	 * other caching modes are only supported on x86. DGFX
363 	 * GPU system memory accesses are always coherent with the
364 	 * CPU.
365 	 */
366 	if (!IS_DGFX(xe)) {
367 		switch (bo->cpu_caching) {
368 		case DRM_XE_GEM_CPU_CACHING_WC:
369 			caching = ttm_write_combined;
370 			break;
371 		default:
372 			caching = ttm_cached;
373 			break;
374 		}
375 
376 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
377 
378 		/*
379 		 * Display scanout is always non-coherent with the CPU cache.
380 		 *
381 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
382 		 * non-coherent and require a CPU:WC mapping.
383 		 */
384 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
385 		    (xe->info.graphics_verx100 >= 1270 &&
386 		     bo->flags & XE_BO_FLAG_PAGETABLE))
387 			caching = ttm_write_combined;
388 	}
389 
390 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
391 		/*
392 		 * Valid only for internally-created buffers only, for
393 		 * which cpu_caching is never initialized.
394 		 */
395 		xe_assert(xe, bo->cpu_caching == 0);
396 		caching = ttm_uncached;
397 	}
398 
399 	err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
400 	if (err) {
401 		kfree(tt);
402 		return NULL;
403 	}
404 
405 	return &tt->ttm;
406 }
407 
xe_ttm_tt_populate(struct ttm_device * ttm_dev,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)408 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
409 			      struct ttm_operation_ctx *ctx)
410 {
411 	int err;
412 
413 	/*
414 	 * dma-bufs are not populated with pages, and the dma-
415 	 * addresses are set up when moved to XE_PL_TT.
416 	 */
417 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
418 		return 0;
419 
420 	err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
421 	if (err)
422 		return err;
423 
424 	return err;
425 }
426 
xe_ttm_tt_unpopulate(struct ttm_device * ttm_dev,struct ttm_tt * tt)427 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
428 {
429 	if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
430 		return;
431 
432 	xe_tt_unmap_sg(tt);
433 
434 	return ttm_pool_free(&ttm_dev->pool, tt);
435 }
436 
xe_ttm_tt_destroy(struct ttm_device * ttm_dev,struct ttm_tt * tt)437 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
438 {
439 	ttm_tt_fini(tt);
440 	kfree(tt);
441 }
442 
xe_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)443 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
444 				 struct ttm_resource *mem)
445 {
446 	struct xe_device *xe = ttm_to_xe_device(bdev);
447 
448 	switch (mem->mem_type) {
449 	case XE_PL_SYSTEM:
450 	case XE_PL_TT:
451 		return 0;
452 	case XE_PL_VRAM0:
453 	case XE_PL_VRAM1: {
454 		struct xe_ttm_vram_mgr_resource *vres =
455 			to_xe_ttm_vram_mgr_resource(mem);
456 		struct xe_mem_region *vram = res_to_mem_region(mem);
457 
458 		if (vres->used_visible_size < mem->size)
459 			return -EINVAL;
460 
461 		mem->bus.offset = mem->start << PAGE_SHIFT;
462 
463 		if (vram->mapping &&
464 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
465 			mem->bus.addr = (u8 __force *)vram->mapping +
466 				mem->bus.offset;
467 
468 		mem->bus.offset += vram->io_start;
469 		mem->bus.is_iomem = true;
470 
471 #if  !defined(CONFIG_X86)
472 		mem->bus.caching = ttm_write_combined;
473 #endif
474 		return 0;
475 	} case XE_PL_STOLEN:
476 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
477 	default:
478 		return -EINVAL;
479 	}
480 }
481 
xe_bo_trigger_rebind(struct xe_device * xe,struct xe_bo * bo,const struct ttm_operation_ctx * ctx)482 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
483 				const struct ttm_operation_ctx *ctx)
484 {
485 	struct dma_resv_iter cursor;
486 	struct dma_fence *fence;
487 	struct drm_gem_object *obj = &bo->ttm.base;
488 	struct drm_gpuvm_bo *vm_bo;
489 	bool idle = false;
490 	int ret = 0;
491 
492 	dma_resv_assert_held(bo->ttm.base.resv);
493 
494 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
495 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
496 				    DMA_RESV_USAGE_BOOKKEEP);
497 		dma_resv_for_each_fence_unlocked(&cursor, fence)
498 			dma_fence_enable_sw_signaling(fence);
499 		dma_resv_iter_end(&cursor);
500 	}
501 
502 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
503 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
504 		struct drm_gpuva *gpuva;
505 
506 		if (!xe_vm_in_fault_mode(vm)) {
507 			drm_gpuvm_bo_evict(vm_bo, true);
508 			continue;
509 		}
510 
511 		if (!idle) {
512 			long timeout;
513 
514 			if (ctx->no_wait_gpu &&
515 			    !dma_resv_test_signaled(bo->ttm.base.resv,
516 						    DMA_RESV_USAGE_BOOKKEEP))
517 				return -EBUSY;
518 
519 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
520 							DMA_RESV_USAGE_BOOKKEEP,
521 							ctx->interruptible,
522 							MAX_SCHEDULE_TIMEOUT);
523 			if (!timeout)
524 				return -ETIME;
525 			if (timeout < 0)
526 				return timeout;
527 
528 			idle = true;
529 		}
530 
531 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
532 			struct xe_vma *vma = gpuva_to_vma(gpuva);
533 
534 			trace_xe_vma_evict(vma);
535 			ret = xe_vm_invalidate_vma(vma);
536 			if (XE_WARN_ON(ret))
537 				return ret;
538 		}
539 	}
540 
541 	return ret;
542 }
543 
544 /*
545  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
546  * Note that unmapping the attachment is deferred to the next
547  * map_attachment time, or to bo destroy (after idling) whichever comes first.
548  * This is to avoid syncing before unmap_attachment(), assuming that the
549  * caller relies on idling the reservation object before moving the
550  * backing store out. Should that assumption not hold, then we will be able
551  * to unconditionally call unmap_attachment() when moving out to system.
552  */
xe_bo_move_dmabuf(struct ttm_buffer_object * ttm_bo,struct ttm_resource * new_res)553 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
554 			     struct ttm_resource *new_res)
555 {
556 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
557 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
558 					       ttm);
559 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
560 	struct sg_table *sg;
561 
562 	xe_assert(xe, attach);
563 	xe_assert(xe, ttm_bo->ttm);
564 
565 	if (new_res->mem_type == XE_PL_SYSTEM)
566 		goto out;
567 
568 	if (ttm_bo->sg) {
569 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
570 		ttm_bo->sg = NULL;
571 	}
572 
573 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
574 	if (IS_ERR(sg))
575 		return PTR_ERR(sg);
576 
577 	ttm_bo->sg = sg;
578 	xe_tt->sg = sg;
579 
580 out:
581 	ttm_bo_move_null(ttm_bo, new_res);
582 
583 	return 0;
584 }
585 
586 /**
587  * xe_bo_move_notify - Notify subsystems of a pending move
588  * @bo: The buffer object
589  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
590  *
591  * This function notifies subsystems of an upcoming buffer move.
592  * Upon receiving such a notification, subsystems should schedule
593  * halting access to the underlying pages and optionally add a fence
594  * to the buffer object's dma_resv object, that signals when access is
595  * stopped. The caller will wait on all dma_resv fences before
596  * starting the move.
597  *
598  * A subsystem may commence access to the object after obtaining
599  * bindings to the new backing memory under the object lock.
600  *
601  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
602  * negative error code on error.
603  */
xe_bo_move_notify(struct xe_bo * bo,const struct ttm_operation_ctx * ctx)604 static int xe_bo_move_notify(struct xe_bo *bo,
605 			     const struct ttm_operation_ctx *ctx)
606 {
607 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
608 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
609 	struct ttm_resource *old_mem = ttm_bo->resource;
610 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
611 	int ret;
612 
613 	/*
614 	 * If this starts to call into many components, consider
615 	 * using a notification chain here.
616 	 */
617 
618 	if (xe_bo_is_pinned(bo))
619 		return -EINVAL;
620 
621 	xe_bo_vunmap(bo);
622 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
623 	if (ret)
624 		return ret;
625 
626 	/* Don't call move_notify() for imported dma-bufs. */
627 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
628 		dma_buf_move_notify(ttm_bo->base.dma_buf);
629 
630 	/*
631 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
632 	 * so if we moved from VRAM make sure to unlink this from the userfault
633 	 * tracking.
634 	 */
635 	if (mem_type_is_vram(old_mem_type)) {
636 		mutex_lock(&xe->mem_access.vram_userfault.lock);
637 		if (!list_empty(&bo->vram_userfault_link))
638 			list_del_init(&bo->vram_userfault_link);
639 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
640 	}
641 
642 	return 0;
643 }
644 
xe_bo_move(struct ttm_buffer_object * ttm_bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)645 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
646 		      struct ttm_operation_ctx *ctx,
647 		      struct ttm_resource *new_mem,
648 		      struct ttm_place *hop)
649 {
650 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
651 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
652 	struct ttm_resource *old_mem = ttm_bo->resource;
653 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
654 	struct ttm_tt *ttm = ttm_bo->ttm;
655 	struct xe_migrate *migrate = NULL;
656 	struct dma_fence *fence;
657 	bool move_lacks_source;
658 	bool tt_has_data;
659 	bool needs_clear;
660 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
661 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
662 	int ret = 0;
663 
664 	/* Bo creation path, moving to system or TT. */
665 	if ((!old_mem && ttm) && !handle_system_ccs) {
666 		if (new_mem->mem_type == XE_PL_TT)
667 			ret = xe_tt_map_sg(ttm);
668 		if (!ret)
669 			ttm_bo_move_null(ttm_bo, new_mem);
670 		goto out;
671 	}
672 
673 	if (ttm_bo->type == ttm_bo_type_sg) {
674 		ret = xe_bo_move_notify(bo, ctx);
675 		if (!ret)
676 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
677 		return ret;
678 	}
679 
680 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
681 			      (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
682 
683 	move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
684 					 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
685 
686 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
687 		(!ttm && ttm_bo->type == ttm_bo_type_device);
688 
689 	if (new_mem->mem_type == XE_PL_TT) {
690 		ret = xe_tt_map_sg(ttm);
691 		if (ret)
692 			goto out;
693 	}
694 
695 	if ((move_lacks_source && !needs_clear)) {
696 		ttm_bo_move_null(ttm_bo, new_mem);
697 		goto out;
698 	}
699 
700 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
701 		ttm_bo_move_null(ttm_bo, new_mem);
702 		goto out;
703 	}
704 
705 	/*
706 	 * Failed multi-hop where the old_mem is still marked as
707 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
708 	 */
709 	if (old_mem_type == XE_PL_TT &&
710 	    new_mem->mem_type == XE_PL_TT) {
711 		ttm_bo_move_null(ttm_bo, new_mem);
712 		goto out;
713 	}
714 
715 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
716 		ret = xe_bo_move_notify(bo, ctx);
717 		if (ret)
718 			goto out;
719 	}
720 
721 	if (old_mem_type == XE_PL_TT &&
722 	    new_mem->mem_type == XE_PL_SYSTEM) {
723 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
724 						     DMA_RESV_USAGE_BOOKKEEP,
725 						     true,
726 						     MAX_SCHEDULE_TIMEOUT);
727 		if (timeout < 0) {
728 			ret = timeout;
729 			goto out;
730 		}
731 
732 		if (!handle_system_ccs) {
733 			ttm_bo_move_null(ttm_bo, new_mem);
734 			goto out;
735 		}
736 	}
737 
738 	if (!move_lacks_source &&
739 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
740 	     (mem_type_is_vram(old_mem_type) &&
741 	      new_mem->mem_type == XE_PL_SYSTEM))) {
742 		hop->fpfn = 0;
743 		hop->lpfn = 0;
744 		hop->mem_type = XE_PL_TT;
745 		hop->flags = TTM_PL_FLAG_TEMPORARY;
746 		ret = -EMULTIHOP;
747 		goto out;
748 	}
749 
750 	if (bo->tile)
751 		migrate = bo->tile->migrate;
752 	else if (resource_is_vram(new_mem))
753 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
754 	else if (mem_type_is_vram(old_mem_type))
755 		migrate = mem_type_to_migrate(xe, old_mem_type);
756 	else
757 		migrate = xe->tiles[0].migrate;
758 
759 	xe_assert(xe, migrate);
760 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
761 	if (xe_rpm_reclaim_safe(xe)) {
762 		/*
763 		 * We might be called through swapout in the validation path of
764 		 * another TTM device, so unconditionally acquire rpm here.
765 		 */
766 		xe_pm_runtime_get(xe);
767 	} else {
768 		drm_WARN_ON(&xe->drm, handle_system_ccs);
769 		xe_pm_runtime_get_noresume(xe);
770 	}
771 
772 	if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
773 		/*
774 		 * Kernel memory that is pinned should only be moved on suspend
775 		 * / resume, some of the pinned memory is required for the
776 		 * device to resume / use the GPU to move other evicted memory
777 		 * (user memory) around. This likely could be optimized a bit
778 		 * futher where we find the minimum set of pinned memory
779 		 * required for resume but for simplity doing a memcpy for all
780 		 * pinned memory.
781 		 */
782 		ret = xe_bo_vmap(bo);
783 		if (!ret) {
784 			ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
785 
786 			/* Create a new VMAP once kernel BO back in VRAM */
787 			if (!ret && resource_is_vram(new_mem)) {
788 				struct xe_mem_region *vram = res_to_mem_region(new_mem);
789 				void __iomem *new_addr = vram->mapping +
790 					(new_mem->start << PAGE_SHIFT);
791 
792 				if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
793 					ret = -EINVAL;
794 					xe_pm_runtime_put(xe);
795 					goto out;
796 				}
797 
798 				xe_assert(xe, new_mem->start ==
799 					  bo->placements->fpfn);
800 
801 				iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
802 			}
803 		}
804 	} else {
805 		if (move_lacks_source) {
806 			u32 flags = 0;
807 
808 			if (mem_type_is_vram(new_mem->mem_type))
809 				flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
810 			else if (handle_system_ccs)
811 				flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
812 
813 			fence = xe_migrate_clear(migrate, bo, new_mem, flags);
814 		}
815 		else
816 			fence = xe_migrate_copy(migrate, bo, bo, old_mem,
817 						new_mem, handle_system_ccs);
818 		if (IS_ERR(fence)) {
819 			ret = PTR_ERR(fence);
820 			xe_pm_runtime_put(xe);
821 			goto out;
822 		}
823 		if (!move_lacks_source) {
824 			ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
825 							true, new_mem);
826 			if (ret) {
827 				dma_fence_wait(fence, false);
828 				ttm_bo_move_null(ttm_bo, new_mem);
829 				ret = 0;
830 			}
831 		} else {
832 			/*
833 			 * ttm_bo_move_accel_cleanup() may blow up if
834 			 * bo->resource == NULL, so just attach the
835 			 * fence and set the new resource.
836 			 */
837 			dma_resv_add_fence(ttm_bo->base.resv, fence,
838 					   DMA_RESV_USAGE_KERNEL);
839 			ttm_bo_move_null(ttm_bo, new_mem);
840 		}
841 
842 		dma_fence_put(fence);
843 	}
844 
845 	xe_pm_runtime_put(xe);
846 
847 out:
848 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
849 	    ttm_bo->ttm)
850 		xe_tt_unmap_sg(ttm_bo->ttm);
851 
852 	return ret;
853 }
854 
855 /**
856  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
857  * @bo: The buffer object to move.
858  *
859  * On successful completion, the object memory will be moved to sytem memory.
860  *
861  * This is needed to for special handling of pinned VRAM object during
862  * suspend-resume.
863  *
864  * Return: 0 on success. Negative error code on failure.
865  */
xe_bo_evict_pinned(struct xe_bo * bo)866 int xe_bo_evict_pinned(struct xe_bo *bo)
867 {
868 	struct ttm_place place = {
869 		.mem_type = XE_PL_TT,
870 	};
871 	struct ttm_placement placement = {
872 		.placement = &place,
873 		.num_placement = 1,
874 	};
875 	struct ttm_operation_ctx ctx = {
876 		.interruptible = false,
877 	};
878 	struct ttm_resource *new_mem;
879 	int ret;
880 
881 	xe_bo_assert_held(bo);
882 
883 	if (WARN_ON(!bo->ttm.resource))
884 		return -EINVAL;
885 
886 	if (WARN_ON(!xe_bo_is_pinned(bo)))
887 		return -EINVAL;
888 
889 	if (!xe_bo_is_vram(bo))
890 		return 0;
891 
892 	ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
893 	if (ret)
894 		return ret;
895 
896 	if (!bo->ttm.ttm) {
897 		bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
898 		if (!bo->ttm.ttm) {
899 			ret = -ENOMEM;
900 			goto err_res_free;
901 		}
902 	}
903 
904 	ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
905 	if (ret)
906 		goto err_res_free;
907 
908 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
909 	if (ret)
910 		goto err_res_free;
911 
912 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
913 	if (ret)
914 		goto err_res_free;
915 
916 	return 0;
917 
918 err_res_free:
919 	ttm_resource_free(&bo->ttm, &new_mem);
920 	return ret;
921 }
922 
923 /**
924  * xe_bo_restore_pinned() - Restore a pinned VRAM object
925  * @bo: The buffer object to move.
926  *
927  * On successful completion, the object memory will be moved back to VRAM.
928  *
929  * This is needed to for special handling of pinned VRAM object during
930  * suspend-resume.
931  *
932  * Return: 0 on success. Negative error code on failure.
933  */
xe_bo_restore_pinned(struct xe_bo * bo)934 int xe_bo_restore_pinned(struct xe_bo *bo)
935 {
936 	struct ttm_operation_ctx ctx = {
937 		.interruptible = false,
938 	};
939 	struct ttm_resource *new_mem;
940 	struct ttm_place *place = &bo->placements[0];
941 	int ret;
942 
943 	xe_bo_assert_held(bo);
944 
945 	if (WARN_ON(!bo->ttm.resource))
946 		return -EINVAL;
947 
948 	if (WARN_ON(!xe_bo_is_pinned(bo)))
949 		return -EINVAL;
950 
951 	if (WARN_ON(xe_bo_is_vram(bo)))
952 		return -EINVAL;
953 
954 	if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo)))
955 		return -EINVAL;
956 
957 	if (!mem_type_is_vram(place->mem_type))
958 		return 0;
959 
960 	ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
961 	if (ret)
962 		return ret;
963 
964 	ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
965 	if (ret)
966 		goto err_res_free;
967 
968 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
969 	if (ret)
970 		goto err_res_free;
971 
972 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
973 	if (ret)
974 		goto err_res_free;
975 
976 	return 0;
977 
978 err_res_free:
979 	ttm_resource_free(&bo->ttm, &new_mem);
980 	return ret;
981 }
982 
xe_ttm_io_mem_pfn(struct ttm_buffer_object * ttm_bo,unsigned long page_offset)983 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
984 				       unsigned long page_offset)
985 {
986 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
987 	struct xe_res_cursor cursor;
988 	struct xe_mem_region *vram;
989 
990 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
991 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
992 
993 	vram = res_to_mem_region(ttm_bo->resource);
994 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
995 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
996 }
997 
998 static void __xe_bo_vunmap(struct xe_bo *bo);
999 
1000 /*
1001  * TODO: Move this function to TTM so we don't rely on how TTM does its
1002  * locking, thereby abusing TTM internals.
1003  */
xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object * ttm_bo)1004 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1005 {
1006 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1007 	bool locked;
1008 
1009 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1010 
1011 	/*
1012 	 * We can typically only race with TTM trylocking under the
1013 	 * lru_lock, which will immediately be unlocked again since
1014 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1015 	 * always succeed here, as long as we hold the lru lock.
1016 	 */
1017 	spin_lock(&ttm_bo->bdev->lru_lock);
1018 	locked = dma_resv_trylock(ttm_bo->base.resv);
1019 	spin_unlock(&ttm_bo->bdev->lru_lock);
1020 	xe_assert(xe, locked);
1021 
1022 	return locked;
1023 }
1024 
xe_ttm_bo_release_notify(struct ttm_buffer_object * ttm_bo)1025 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1026 {
1027 	struct dma_resv_iter cursor;
1028 	struct dma_fence *fence;
1029 	struct dma_fence *replacement = NULL;
1030 	struct xe_bo *bo;
1031 
1032 	if (!xe_bo_is_xe_bo(ttm_bo))
1033 		return;
1034 
1035 	bo = ttm_to_xe_bo(ttm_bo);
1036 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1037 
1038 	/*
1039 	 * Corner case where TTM fails to allocate memory and this BOs resv
1040 	 * still points the VMs resv
1041 	 */
1042 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1043 		return;
1044 
1045 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1046 		return;
1047 
1048 	/*
1049 	 * Scrub the preempt fences if any. The unbind fence is already
1050 	 * attached to the resv.
1051 	 * TODO: Don't do this for external bos once we scrub them after
1052 	 * unbind.
1053 	 */
1054 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1055 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1056 		if (xe_fence_is_xe_preempt(fence) &&
1057 		    !dma_fence_is_signaled(fence)) {
1058 			if (!replacement)
1059 				replacement = dma_fence_get_stub();
1060 
1061 			dma_resv_replace_fences(ttm_bo->base.resv,
1062 						fence->context,
1063 						replacement,
1064 						DMA_RESV_USAGE_BOOKKEEP);
1065 		}
1066 	}
1067 	dma_fence_put(replacement);
1068 
1069 	dma_resv_unlock(ttm_bo->base.resv);
1070 }
1071 
xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object * ttm_bo)1072 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1073 {
1074 	if (!xe_bo_is_xe_bo(ttm_bo))
1075 		return;
1076 
1077 	/*
1078 	 * Object is idle and about to be destroyed. Release the
1079 	 * dma-buf attachment.
1080 	 */
1081 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1082 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1083 						       struct xe_ttm_tt, ttm);
1084 
1085 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1086 					 DMA_BIDIRECTIONAL);
1087 		ttm_bo->sg = NULL;
1088 		xe_tt->sg = NULL;
1089 	}
1090 }
1091 
1092 const struct ttm_device_funcs xe_ttm_funcs = {
1093 	.ttm_tt_create = xe_ttm_tt_create,
1094 	.ttm_tt_populate = xe_ttm_tt_populate,
1095 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1096 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1097 	.evict_flags = xe_evict_flags,
1098 	.move = xe_bo_move,
1099 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1100 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1101 	.release_notify = xe_ttm_bo_release_notify,
1102 	.eviction_valuable = ttm_bo_eviction_valuable,
1103 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1104 };
1105 
xe_ttm_bo_destroy(struct ttm_buffer_object * ttm_bo)1106 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1107 {
1108 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1109 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1110 
1111 	if (bo->ttm.base.import_attach)
1112 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1113 	drm_gem_object_release(&bo->ttm.base);
1114 
1115 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1116 
1117 	if (bo->ggtt_node && bo->ggtt_node->base.size)
1118 		xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
1119 
1120 #ifdef CONFIG_PROC_FS
1121 	if (bo->client)
1122 		xe_drm_client_remove_bo(bo);
1123 #endif
1124 
1125 	if (bo->vm && xe_bo_is_user(bo))
1126 		xe_vm_put(bo->vm);
1127 
1128 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1129 	if (!list_empty(&bo->vram_userfault_link))
1130 		list_del(&bo->vram_userfault_link);
1131 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1132 
1133 	kfree(bo);
1134 }
1135 
xe_gem_object_free(struct drm_gem_object * obj)1136 static void xe_gem_object_free(struct drm_gem_object *obj)
1137 {
1138 	/* Our BO reference counting scheme works as follows:
1139 	 *
1140 	 * The gem object kref is typically used throughout the driver,
1141 	 * and the gem object holds a ttm_buffer_object refcount, so
1142 	 * that when the last gem object reference is put, which is when
1143 	 * we end up in this function, we put also that ttm_buffer_object
1144 	 * refcount. Anything using gem interfaces is then no longer
1145 	 * allowed to access the object in a way that requires a gem
1146 	 * refcount, including locking the object.
1147 	 *
1148 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1149 	 * refcount directly if needed.
1150 	 */
1151 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1152 	ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1153 }
1154 
xe_gem_object_close(struct drm_gem_object * obj,struct drm_file * file_priv)1155 static void xe_gem_object_close(struct drm_gem_object *obj,
1156 				struct drm_file *file_priv)
1157 {
1158 	struct xe_bo *bo = gem_to_xe_bo(obj);
1159 
1160 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1161 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1162 
1163 		xe_bo_lock(bo, false);
1164 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1165 		xe_bo_unlock(bo);
1166 	}
1167 }
1168 
xe_gem_fault(struct vm_fault * vmf)1169 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1170 {
1171 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1172 	struct drm_device *ddev = tbo->base.dev;
1173 	struct xe_device *xe = to_xe_device(ddev);
1174 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1175 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1176 	vm_fault_t ret;
1177 	int idx;
1178 
1179 	if (needs_rpm)
1180 		xe_pm_runtime_get(xe);
1181 
1182 	ret = ttm_bo_vm_reserve(tbo, vmf);
1183 	if (ret)
1184 		goto out;
1185 
1186 	if (drm_dev_enter(ddev, &idx)) {
1187 		trace_xe_bo_cpu_fault(bo);
1188 
1189 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1190 					       TTM_BO_VM_NUM_PREFAULT);
1191 		drm_dev_exit(idx);
1192 	} else {
1193 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1194 	}
1195 
1196 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1197 		goto out;
1198 	/*
1199 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1200 	 */
1201 	if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1202 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1203 		if (list_empty(&bo->vram_userfault_link))
1204 			list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1205 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1206 	}
1207 
1208 	dma_resv_unlock(tbo->base.resv);
1209 out:
1210 	if (needs_rpm)
1211 		xe_pm_runtime_put(xe);
1212 
1213 	return ret;
1214 }
1215 
1216 static const struct vm_operations_struct xe_gem_vm_ops = {
1217 	.fault = xe_gem_fault,
1218 	.open = ttm_bo_vm_open,
1219 	.close = ttm_bo_vm_close,
1220 	.access = ttm_bo_vm_access
1221 };
1222 
1223 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1224 	.free = xe_gem_object_free,
1225 	.close = xe_gem_object_close,
1226 	.mmap = drm_gem_ttm_mmap,
1227 	.export = xe_gem_prime_export,
1228 	.vm_ops = &xe_gem_vm_ops,
1229 };
1230 
1231 /**
1232  * xe_bo_alloc - Allocate storage for a struct xe_bo
1233  *
1234  * This funcition is intended to allocate storage to be used for input
1235  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1236  * created is needed before the call to __xe_bo_create_locked().
1237  * If __xe_bo_create_locked ends up never to be called, then the
1238  * storage allocated with this function needs to be freed using
1239  * xe_bo_free().
1240  *
1241  * Return: A pointer to an uninitialized struct xe_bo on success,
1242  * ERR_PTR(-ENOMEM) on error.
1243  */
xe_bo_alloc(void)1244 struct xe_bo *xe_bo_alloc(void)
1245 {
1246 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1247 
1248 	if (!bo)
1249 		return ERR_PTR(-ENOMEM);
1250 
1251 	return bo;
1252 }
1253 
1254 /**
1255  * xe_bo_free - Free storage allocated using xe_bo_alloc()
1256  * @bo: The buffer object storage.
1257  *
1258  * Refer to xe_bo_alloc() documentation for valid use-cases.
1259  */
xe_bo_free(struct xe_bo * bo)1260 void xe_bo_free(struct xe_bo *bo)
1261 {
1262 	kfree(bo);
1263 }
1264 
___xe_bo_create_locked(struct xe_device * xe,struct xe_bo * bo,struct xe_tile * tile,struct dma_resv * resv,struct ttm_lru_bulk_move * bulk,size_t size,u16 cpu_caching,enum ttm_bo_type type,u32 flags)1265 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1266 				     struct xe_tile *tile, struct dma_resv *resv,
1267 				     struct ttm_lru_bulk_move *bulk, size_t size,
1268 				     u16 cpu_caching, enum ttm_bo_type type,
1269 				     u32 flags)
1270 {
1271 	struct ttm_operation_ctx ctx = {
1272 		.interruptible = true,
1273 		.no_wait_gpu = false,
1274 	};
1275 	struct ttm_placement *placement;
1276 	uint32_t alignment;
1277 	size_t aligned_size;
1278 	int err;
1279 
1280 	/* Only kernel objects should set GT */
1281 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1282 
1283 	if (XE_WARN_ON(!size)) {
1284 		xe_bo_free(bo);
1285 		return ERR_PTR(-EINVAL);
1286 	}
1287 
1288 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1289 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1290 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1291 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1292 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1293 
1294 		aligned_size = ALIGN(size, align);
1295 		if (type != ttm_bo_type_device)
1296 			size = ALIGN(size, align);
1297 		flags |= XE_BO_FLAG_INTERNAL_64K;
1298 		alignment = align >> PAGE_SHIFT;
1299 	} else {
1300 		aligned_size = ALIGN(size, SZ_4K);
1301 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
1302 		alignment = SZ_4K >> PAGE_SHIFT;
1303 	}
1304 
1305 	if (type == ttm_bo_type_device && aligned_size != size)
1306 		return ERR_PTR(-EINVAL);
1307 
1308 	if (!bo) {
1309 		bo = xe_bo_alloc();
1310 		if (IS_ERR(bo))
1311 			return bo;
1312 	}
1313 
1314 	bo->ccs_cleared = false;
1315 	bo->tile = tile;
1316 	bo->size = size;
1317 	bo->flags = flags;
1318 	bo->cpu_caching = cpu_caching;
1319 	bo->ttm.base.funcs = &xe_gem_object_funcs;
1320 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1321 	INIT_LIST_HEAD(&bo->pinned_link);
1322 #ifdef CONFIG_PROC_FS
1323 	INIT_LIST_HEAD(&bo->client_link);
1324 #endif
1325 	INIT_LIST_HEAD(&bo->vram_userfault_link);
1326 
1327 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1328 
1329 	if (resv) {
1330 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1331 		ctx.resv = resv;
1332 	}
1333 
1334 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1335 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1336 		if (WARN_ON(err)) {
1337 			xe_ttm_bo_destroy(&bo->ttm);
1338 			return ERR_PTR(err);
1339 		}
1340 	}
1341 
1342 	/* Defer populating type_sg bos */
1343 	placement = (type == ttm_bo_type_sg ||
1344 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1345 		&bo->placement;
1346 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1347 				   placement, alignment,
1348 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
1349 	if (err)
1350 		return ERR_PTR(err);
1351 
1352 	/*
1353 	 * The VRAM pages underneath are potentially still being accessed by the
1354 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
1355 	 * sure to add any corresponding move/clear fences into the objects
1356 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1357 	 *
1358 	 * For KMD internal buffers we don't care about GPU clearing, however we
1359 	 * still need to handle async evictions, where the VRAM is still being
1360 	 * accessed by the GPU. Most internal callers are not expecting this,
1361 	 * since they are missing the required synchronisation before accessing
1362 	 * the memory. To keep things simple just sync wait any kernel fences
1363 	 * here, if the buffer is designated KMD internal.
1364 	 *
1365 	 * For normal userspace objects we should already have the required
1366 	 * pipelining or sync waiting elsewhere, since we already have to deal
1367 	 * with things like async GPU clearing.
1368 	 */
1369 	if (type == ttm_bo_type_kernel) {
1370 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1371 						     DMA_RESV_USAGE_KERNEL,
1372 						     ctx.interruptible,
1373 						     MAX_SCHEDULE_TIMEOUT);
1374 
1375 		if (timeout < 0) {
1376 			if (!resv)
1377 				dma_resv_unlock(bo->ttm.base.resv);
1378 			xe_bo_put(bo);
1379 			return ERR_PTR(timeout);
1380 		}
1381 	}
1382 
1383 	bo->created = true;
1384 	if (bulk)
1385 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
1386 	else
1387 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1388 
1389 	return bo;
1390 }
1391 
__xe_bo_fixed_placement(struct xe_device * xe,struct xe_bo * bo,u32 flags,u64 start,u64 end,u64 size)1392 static int __xe_bo_fixed_placement(struct xe_device *xe,
1393 				   struct xe_bo *bo,
1394 				   u32 flags,
1395 				   u64 start, u64 end, u64 size)
1396 {
1397 	struct ttm_place *place = bo->placements;
1398 
1399 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1400 		return -EINVAL;
1401 
1402 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
1403 	place->fpfn = start >> PAGE_SHIFT;
1404 	place->lpfn = end >> PAGE_SHIFT;
1405 
1406 	switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1407 	case XE_BO_FLAG_VRAM0:
1408 		place->mem_type = XE_PL_VRAM0;
1409 		break;
1410 	case XE_BO_FLAG_VRAM1:
1411 		place->mem_type = XE_PL_VRAM1;
1412 		break;
1413 	case XE_BO_FLAG_STOLEN:
1414 		place->mem_type = XE_PL_STOLEN;
1415 		break;
1416 
1417 	default:
1418 		/* 0 or multiple of the above set */
1419 		return -EINVAL;
1420 	}
1421 
1422 	bo->placement = (struct ttm_placement) {
1423 		.num_placement = 1,
1424 		.placement = place,
1425 	};
1426 
1427 	return 0;
1428 }
1429 
1430 static struct xe_bo *
__xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,u16 cpu_caching,enum ttm_bo_type type,u32 flags)1431 __xe_bo_create_locked(struct xe_device *xe,
1432 		      struct xe_tile *tile, struct xe_vm *vm,
1433 		      size_t size, u64 start, u64 end,
1434 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags)
1435 {
1436 	struct xe_bo *bo = NULL;
1437 	int err;
1438 
1439 	if (vm)
1440 		xe_vm_assert_held(vm);
1441 
1442 	if (start || end != ~0ULL) {
1443 		bo = xe_bo_alloc();
1444 		if (IS_ERR(bo))
1445 			return bo;
1446 
1447 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1448 		err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1449 		if (err) {
1450 			xe_bo_free(bo);
1451 			return ERR_PTR(err);
1452 		}
1453 	}
1454 
1455 	bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1456 				    vm && !xe_vm_in_fault_mode(vm) &&
1457 				    flags & XE_BO_FLAG_USER ?
1458 				    &vm->lru_bulk_move : NULL, size,
1459 				    cpu_caching, type, flags);
1460 	if (IS_ERR(bo))
1461 		return bo;
1462 
1463 	/*
1464 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1465 	 * to ensure the shared resv doesn't disappear under the bo, the bo
1466 	 * will keep a reference to the vm, and avoid circular references
1467 	 * by having all the vm's bo refereferences released at vm close
1468 	 * time.
1469 	 */
1470 	if (vm && xe_bo_is_user(bo))
1471 		xe_vm_get(vm);
1472 	bo->vm = vm;
1473 
1474 	if (bo->flags & XE_BO_FLAG_GGTT) {
1475 		if (!tile && flags & XE_BO_FLAG_STOLEN)
1476 			tile = xe_device_get_root_tile(xe);
1477 
1478 		xe_assert(xe, tile);
1479 
1480 		if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1481 			err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
1482 						   start + bo->size, U64_MAX);
1483 		} else {
1484 			err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
1485 		}
1486 		if (err)
1487 			goto err_unlock_put_bo;
1488 	}
1489 
1490 	return bo;
1491 
1492 err_unlock_put_bo:
1493 	__xe_bo_unset_bulk_move(bo);
1494 	xe_bo_unlock_vm_held(bo);
1495 	xe_bo_put(bo);
1496 	return ERR_PTR(err);
1497 }
1498 
1499 struct xe_bo *
xe_bo_create_locked_range(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,enum ttm_bo_type type,u32 flags)1500 xe_bo_create_locked_range(struct xe_device *xe,
1501 			  struct xe_tile *tile, struct xe_vm *vm,
1502 			  size_t size, u64 start, u64 end,
1503 			  enum ttm_bo_type type, u32 flags)
1504 {
1505 	return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags);
1506 }
1507 
xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1508 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1509 				  struct xe_vm *vm, size_t size,
1510 				  enum ttm_bo_type type, u32 flags)
1511 {
1512 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags);
1513 }
1514 
xe_bo_create_user(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u16 cpu_caching,u32 flags)1515 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1516 				struct xe_vm *vm, size_t size,
1517 				u16 cpu_caching,
1518 				u32 flags)
1519 {
1520 	struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1521 						 cpu_caching, ttm_bo_type_device,
1522 						 flags | XE_BO_FLAG_USER);
1523 	if (!IS_ERR(bo))
1524 		xe_bo_unlock_vm_held(bo);
1525 
1526 	return bo;
1527 }
1528 
xe_bo_create(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1529 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1530 			   struct xe_vm *vm, size_t size,
1531 			   enum ttm_bo_type type, u32 flags)
1532 {
1533 	struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1534 
1535 	if (!IS_ERR(bo))
1536 		xe_bo_unlock_vm_held(bo);
1537 
1538 	return bo;
1539 }
1540 
xe_bo_create_pin_map_at(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags)1541 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1542 				      struct xe_vm *vm,
1543 				      size_t size, u64 offset,
1544 				      enum ttm_bo_type type, u32 flags)
1545 {
1546 	struct xe_bo *bo;
1547 	int err;
1548 	u64 start = offset == ~0ull ? 0 : offset;
1549 	u64 end = offset == ~0ull ? offset : start + size;
1550 
1551 	if (flags & XE_BO_FLAG_STOLEN &&
1552 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1553 		flags |= XE_BO_FLAG_GGTT;
1554 
1555 	bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1556 				       flags | XE_BO_FLAG_NEEDS_CPU_ACCESS);
1557 	if (IS_ERR(bo))
1558 		return bo;
1559 
1560 	err = xe_bo_pin(bo);
1561 	if (err)
1562 		goto err_put;
1563 
1564 	err = xe_bo_vmap(bo);
1565 	if (err)
1566 		goto err_unpin;
1567 
1568 	xe_bo_unlock_vm_held(bo);
1569 
1570 	return bo;
1571 
1572 err_unpin:
1573 	xe_bo_unpin(bo);
1574 err_put:
1575 	xe_bo_unlock_vm_held(bo);
1576 	xe_bo_put(bo);
1577 	return ERR_PTR(err);
1578 }
1579 
xe_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1580 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1581 				   struct xe_vm *vm, size_t size,
1582 				   enum ttm_bo_type type, u32 flags)
1583 {
1584 	return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1585 }
1586 
xe_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,enum ttm_bo_type type,u32 flags)1587 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1588 				     const void *data, size_t size,
1589 				     enum ttm_bo_type type, u32 flags)
1590 {
1591 	struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1592 						ALIGN(size, PAGE_SIZE),
1593 						type, flags);
1594 	if (IS_ERR(bo))
1595 		return bo;
1596 
1597 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1598 
1599 	return bo;
1600 }
1601 
__xe_bo_unpin_map_no_vm(void * arg)1602 static void __xe_bo_unpin_map_no_vm(void *arg)
1603 {
1604 	xe_bo_unpin_map_no_vm(arg);
1605 }
1606 
xe_managed_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,size_t size,u32 flags)1607 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1608 					   size_t size, u32 flags)
1609 {
1610 	struct xe_bo *bo;
1611 	int ret;
1612 
1613 	bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
1614 	if (IS_ERR(bo))
1615 		return bo;
1616 
1617 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
1618 	if (ret)
1619 		return ERR_PTR(ret);
1620 
1621 	return bo;
1622 }
1623 
xe_managed_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,u32 flags)1624 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1625 					     const void *data, size_t size, u32 flags)
1626 {
1627 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
1628 
1629 	if (IS_ERR(bo))
1630 		return bo;
1631 
1632 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1633 
1634 	return bo;
1635 }
1636 
1637 /**
1638  * xe_managed_bo_reinit_in_vram
1639  * @xe: xe device
1640  * @tile: Tile where the new buffer will be created
1641  * @src: Managed buffer object allocated in system memory
1642  *
1643  * Replace a managed src buffer object allocated in system memory with a new
1644  * one allocated in vram, copying the data between them.
1645  * Buffer object in VRAM is not going to have the same GGTT address, the caller
1646  * is responsible for making sure that any old references to it are updated.
1647  *
1648  * Returns 0 for success, negative error code otherwise.
1649  */
xe_managed_bo_reinit_in_vram(struct xe_device * xe,struct xe_tile * tile,struct xe_bo ** src)1650 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
1651 {
1652 	struct xe_bo *bo;
1653 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
1654 
1655 	dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
1656 
1657 	xe_assert(xe, IS_DGFX(xe));
1658 	xe_assert(xe, !(*src)->vmap.is_iomem);
1659 
1660 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
1661 					    (*src)->size, dst_flags);
1662 	if (IS_ERR(bo))
1663 		return PTR_ERR(bo);
1664 
1665 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
1666 	*src = bo;
1667 
1668 	return 0;
1669 }
1670 
1671 /*
1672  * XXX: This is in the VM bind data path, likely should calculate this once and
1673  * store, with a recalculation if the BO is moved.
1674  */
vram_region_gpu_offset(struct ttm_resource * res)1675 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
1676 {
1677 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
1678 
1679 	if (res->mem_type == XE_PL_STOLEN)
1680 		return xe_ttm_stolen_gpu_offset(xe);
1681 
1682 	return res_to_mem_region(res)->dpa_base;
1683 }
1684 
1685 /**
1686  * xe_bo_pin_external - pin an external BO
1687  * @bo: buffer object to be pinned
1688  *
1689  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1690  * BO. Unique call compared to xe_bo_pin as this function has it own set of
1691  * asserts and code to ensure evict / restore on suspend / resume.
1692  *
1693  * Returns 0 for success, negative error code otherwise.
1694  */
xe_bo_pin_external(struct xe_bo * bo)1695 int xe_bo_pin_external(struct xe_bo *bo)
1696 {
1697 	struct xe_device *xe = xe_bo_device(bo);
1698 	int err;
1699 
1700 	xe_assert(xe, !bo->vm);
1701 	xe_assert(xe, xe_bo_is_user(bo));
1702 
1703 	if (!xe_bo_is_pinned(bo)) {
1704 		err = xe_bo_validate(bo, NULL, false);
1705 		if (err)
1706 			return err;
1707 
1708 		if (xe_bo_is_vram(bo)) {
1709 			spin_lock(&xe->pinned.lock);
1710 			list_add_tail(&bo->pinned_link,
1711 				      &xe->pinned.external_vram);
1712 			spin_unlock(&xe->pinned.lock);
1713 		}
1714 	}
1715 
1716 	ttm_bo_pin(&bo->ttm);
1717 
1718 	/*
1719 	 * FIXME: If we always use the reserve / unreserve functions for locking
1720 	 * we do not need this.
1721 	 */
1722 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1723 
1724 	return 0;
1725 }
1726 
xe_bo_pin(struct xe_bo * bo)1727 int xe_bo_pin(struct xe_bo *bo)
1728 {
1729 	struct ttm_place *place = &bo->placements[0];
1730 	struct xe_device *xe = xe_bo_device(bo);
1731 	int err;
1732 
1733 	/* We currently don't expect user BO to be pinned */
1734 	xe_assert(xe, !xe_bo_is_user(bo));
1735 
1736 	/* Pinned object must be in GGTT or have pinned flag */
1737 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
1738 				   XE_BO_FLAG_GGTT));
1739 
1740 	/*
1741 	 * No reason we can't support pinning imported dma-bufs we just don't
1742 	 * expect to pin an imported dma-buf.
1743 	 */
1744 	xe_assert(xe, !bo->ttm.base.import_attach);
1745 
1746 	/* We only expect at most 1 pin */
1747 	xe_assert(xe, !xe_bo_is_pinned(bo));
1748 
1749 	err = xe_bo_validate(bo, NULL, false);
1750 	if (err)
1751 		return err;
1752 
1753 	/*
1754 	 * For pinned objects in on DGFX, which are also in vram, we expect
1755 	 * these to be in contiguous VRAM memory. Required eviction / restore
1756 	 * during suspend / resume (force restore to same physical address).
1757 	 */
1758 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1759 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1760 		if (mem_type_is_vram(place->mem_type)) {
1761 			xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
1762 
1763 			place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
1764 				       vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
1765 			place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
1766 		}
1767 	}
1768 
1769 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
1770 		spin_lock(&xe->pinned.lock);
1771 		list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
1772 		spin_unlock(&xe->pinned.lock);
1773 	}
1774 
1775 	ttm_bo_pin(&bo->ttm);
1776 
1777 	/*
1778 	 * FIXME: If we always use the reserve / unreserve functions for locking
1779 	 * we do not need this.
1780 	 */
1781 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1782 
1783 	return 0;
1784 }
1785 
1786 /**
1787  * xe_bo_unpin_external - unpin an external BO
1788  * @bo: buffer object to be unpinned
1789  *
1790  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1791  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
1792  * asserts and code to ensure evict / restore on suspend / resume.
1793  *
1794  * Returns 0 for success, negative error code otherwise.
1795  */
xe_bo_unpin_external(struct xe_bo * bo)1796 void xe_bo_unpin_external(struct xe_bo *bo)
1797 {
1798 	struct xe_device *xe = xe_bo_device(bo);
1799 
1800 	xe_assert(xe, !bo->vm);
1801 	xe_assert(xe, xe_bo_is_pinned(bo));
1802 	xe_assert(xe, xe_bo_is_user(bo));
1803 
1804 	spin_lock(&xe->pinned.lock);
1805 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
1806 		list_del_init(&bo->pinned_link);
1807 	spin_unlock(&xe->pinned.lock);
1808 
1809 	ttm_bo_unpin(&bo->ttm);
1810 
1811 	/*
1812 	 * FIXME: If we always use the reserve / unreserve functions for locking
1813 	 * we do not need this.
1814 	 */
1815 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1816 }
1817 
xe_bo_unpin(struct xe_bo * bo)1818 void xe_bo_unpin(struct xe_bo *bo)
1819 {
1820 	struct ttm_place *place = &bo->placements[0];
1821 	struct xe_device *xe = xe_bo_device(bo);
1822 
1823 	xe_assert(xe, !bo->ttm.base.import_attach);
1824 	xe_assert(xe, xe_bo_is_pinned(bo));
1825 
1826 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
1827 		spin_lock(&xe->pinned.lock);
1828 		xe_assert(xe, !list_empty(&bo->pinned_link));
1829 		list_del_init(&bo->pinned_link);
1830 		spin_unlock(&xe->pinned.lock);
1831 	}
1832 	ttm_bo_unpin(&bo->ttm);
1833 }
1834 
1835 /**
1836  * xe_bo_validate() - Make sure the bo is in an allowed placement
1837  * @bo: The bo,
1838  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
1839  *      NULL. Used together with @allow_res_evict.
1840  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
1841  *                   reservation object.
1842  *
1843  * Make sure the bo is in allowed placement, migrating it if necessary. If
1844  * needed, other bos will be evicted. If bos selected for eviction shares
1845  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
1846  * set to true, otherwise they will be bypassed.
1847  *
1848  * Return: 0 on success, negative error code on failure. May return
1849  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
1850  */
xe_bo_validate(struct xe_bo * bo,struct xe_vm * vm,bool allow_res_evict)1851 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
1852 {
1853 	struct ttm_operation_ctx ctx = {
1854 		.interruptible = true,
1855 		.no_wait_gpu = false,
1856 	};
1857 
1858 	if (vm) {
1859 		lockdep_assert_held(&vm->lock);
1860 		xe_vm_assert_held(vm);
1861 
1862 		ctx.allow_res_evict = allow_res_evict;
1863 		ctx.resv = xe_vm_resv(vm);
1864 	}
1865 
1866 	return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
1867 }
1868 
xe_bo_is_xe_bo(struct ttm_buffer_object * bo)1869 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
1870 {
1871 	if (bo->destroy == &xe_ttm_bo_destroy)
1872 		return true;
1873 
1874 	return false;
1875 }
1876 
1877 /*
1878  * Resolve a BO address. There is no assert to check if the proper lock is held
1879  * so it should only be used in cases where it is not fatal to get the wrong
1880  * address, such as printing debug information, but not in cases where memory is
1881  * written based on this result.
1882  */
__xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)1883 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1884 {
1885 	struct xe_device *xe = xe_bo_device(bo);
1886 	struct xe_res_cursor cur;
1887 	u64 page;
1888 
1889 	xe_assert(xe, page_size <= PAGE_SIZE);
1890 	page = offset >> PAGE_SHIFT;
1891 	offset &= (PAGE_SIZE - 1);
1892 
1893 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
1894 		xe_assert(xe, bo->ttm.ttm);
1895 
1896 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
1897 				page_size, &cur);
1898 		return xe_res_dma(&cur) + offset;
1899 	} else {
1900 		struct xe_res_cursor cur;
1901 
1902 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
1903 			     page_size, &cur);
1904 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
1905 	}
1906 }
1907 
xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)1908 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1909 {
1910 	if (!READ_ONCE(bo->ttm.pin_count))
1911 		xe_bo_assert_held(bo);
1912 	return __xe_bo_addr(bo, offset, page_size);
1913 }
1914 
xe_bo_vmap(struct xe_bo * bo)1915 int xe_bo_vmap(struct xe_bo *bo)
1916 {
1917 	void *virtual;
1918 	bool is_iomem;
1919 	int ret;
1920 
1921 	xe_bo_assert_held(bo);
1922 
1923 	if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS))
1924 		return -EINVAL;
1925 
1926 	if (!iosys_map_is_null(&bo->vmap))
1927 		return 0;
1928 
1929 	/*
1930 	 * We use this more or less deprecated interface for now since
1931 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
1932 	 * single page bos, which is done here.
1933 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
1934 	 * to use struct iosys_map.
1935 	 */
1936 	ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
1937 	if (ret)
1938 		return ret;
1939 
1940 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
1941 	if (is_iomem)
1942 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
1943 	else
1944 		iosys_map_set_vaddr(&bo->vmap, virtual);
1945 
1946 	return 0;
1947 }
1948 
__xe_bo_vunmap(struct xe_bo * bo)1949 static void __xe_bo_vunmap(struct xe_bo *bo)
1950 {
1951 	if (!iosys_map_is_null(&bo->vmap)) {
1952 		iosys_map_clear(&bo->vmap);
1953 		ttm_bo_kunmap(&bo->kmap);
1954 	}
1955 }
1956 
xe_bo_vunmap(struct xe_bo * bo)1957 void xe_bo_vunmap(struct xe_bo *bo)
1958 {
1959 	xe_bo_assert_held(bo);
1960 	__xe_bo_vunmap(bo);
1961 }
1962 
xe_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1963 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
1964 			struct drm_file *file)
1965 {
1966 	struct xe_device *xe = to_xe_device(dev);
1967 	struct xe_file *xef = to_xe_file(file);
1968 	struct drm_xe_gem_create *args = data;
1969 	struct xe_vm *vm = NULL;
1970 	struct xe_bo *bo;
1971 	unsigned int bo_flags;
1972 	u32 handle;
1973 	int err;
1974 
1975 	if (XE_IOCTL_DBG(xe, args->extensions) ||
1976 	    XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
1977 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1978 		return -EINVAL;
1979 
1980 	/* at least one valid memory placement must be specified */
1981 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
1982 			 !args->placement))
1983 		return -EINVAL;
1984 
1985 	if (XE_IOCTL_DBG(xe, args->flags &
1986 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
1987 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
1988 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
1989 		return -EINVAL;
1990 
1991 	if (XE_IOCTL_DBG(xe, args->handle))
1992 		return -EINVAL;
1993 
1994 	if (XE_IOCTL_DBG(xe, !args->size))
1995 		return -EINVAL;
1996 
1997 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
1998 		return -EINVAL;
1999 
2000 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
2001 		return -EINVAL;
2002 
2003 	bo_flags = 0;
2004 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2005 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2006 
2007 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2008 		bo_flags |= XE_BO_FLAG_SCANOUT;
2009 
2010 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2011 
2012 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
2013 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2014 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
2015 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2016 	    IS_ALIGNED(args->size, SZ_64K))
2017 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
2018 
2019 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2020 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2021 			return -EINVAL;
2022 
2023 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2024 	}
2025 
2026 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2027 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2028 		return -EINVAL;
2029 
2030 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2031 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2032 		return -EINVAL;
2033 
2034 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2035 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2036 		return -EINVAL;
2037 
2038 	if (args->vm_id) {
2039 		vm = xe_vm_lookup(xef, args->vm_id);
2040 		if (XE_IOCTL_DBG(xe, !vm))
2041 			return -ENOENT;
2042 		err = xe_vm_lock(vm, true);
2043 		if (err)
2044 			goto out_vm;
2045 	}
2046 
2047 	bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2048 			       bo_flags);
2049 
2050 	if (vm)
2051 		xe_vm_unlock(vm);
2052 
2053 	if (IS_ERR(bo)) {
2054 		err = PTR_ERR(bo);
2055 		goto out_vm;
2056 	}
2057 
2058 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2059 	if (err)
2060 		goto out_bulk;
2061 
2062 	args->handle = handle;
2063 	goto out_put;
2064 
2065 out_bulk:
2066 	if (vm && !xe_vm_in_fault_mode(vm)) {
2067 		xe_vm_lock(vm, false);
2068 		__xe_bo_unset_bulk_move(bo);
2069 		xe_vm_unlock(vm);
2070 	}
2071 out_put:
2072 	xe_bo_put(bo);
2073 out_vm:
2074 	if (vm)
2075 		xe_vm_put(vm);
2076 
2077 	return err;
2078 }
2079 
xe_gem_mmap_offset_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2080 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2081 			     struct drm_file *file)
2082 {
2083 	struct xe_device *xe = to_xe_device(dev);
2084 	struct drm_xe_gem_mmap_offset *args = data;
2085 	struct drm_gem_object *gem_obj;
2086 
2087 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2088 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2089 		return -EINVAL;
2090 
2091 	if (XE_IOCTL_DBG(xe, args->flags))
2092 		return -EINVAL;
2093 
2094 	gem_obj = drm_gem_object_lookup(file, args->handle);
2095 	if (XE_IOCTL_DBG(xe, !gem_obj))
2096 		return -ENOENT;
2097 
2098 	/* The mmap offset was set up at BO allocation time. */
2099 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2100 
2101 	xe_bo_put(gem_to_xe_bo(gem_obj));
2102 	return 0;
2103 }
2104 
2105 /**
2106  * xe_bo_lock() - Lock the buffer object's dma_resv object
2107  * @bo: The struct xe_bo whose lock is to be taken
2108  * @intr: Whether to perform any wait interruptible
2109  *
2110  * Locks the buffer object's dma_resv object. If the buffer object is
2111  * pointing to a shared dma_resv object, that shared lock is locked.
2112  *
2113  * Return: 0 on success, -EINTR if @intr is true and the wait for a
2114  * contended lock was interrupted. If @intr is set to false, the
2115  * function always returns 0.
2116  */
xe_bo_lock(struct xe_bo * bo,bool intr)2117 int xe_bo_lock(struct xe_bo *bo, bool intr)
2118 {
2119 	if (intr)
2120 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2121 
2122 	dma_resv_lock(bo->ttm.base.resv, NULL);
2123 
2124 	return 0;
2125 }
2126 
2127 /**
2128  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2129  * @bo: The struct xe_bo whose lock is to be released.
2130  *
2131  * Unlock a buffer object lock that was locked by xe_bo_lock().
2132  */
xe_bo_unlock(struct xe_bo * bo)2133 void xe_bo_unlock(struct xe_bo *bo)
2134 {
2135 	dma_resv_unlock(bo->ttm.base.resv);
2136 }
2137 
2138 /**
2139  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2140  * @bo: The buffer object to migrate
2141  * @mem_type: The TTM memory type intended to migrate to
2142  *
2143  * Check whether the buffer object supports migration to the
2144  * given memory type. Note that pinning may affect the ability to migrate as
2145  * returned by this function.
2146  *
2147  * This function is primarily intended as a helper for checking the
2148  * possibility to migrate buffer objects and can be called without
2149  * the object lock held.
2150  *
2151  * Return: true if migration is possible, false otherwise.
2152  */
xe_bo_can_migrate(struct xe_bo * bo,u32 mem_type)2153 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2154 {
2155 	unsigned int cur_place;
2156 
2157 	if (bo->ttm.type == ttm_bo_type_kernel)
2158 		return true;
2159 
2160 	if (bo->ttm.type == ttm_bo_type_sg)
2161 		return false;
2162 
2163 	for (cur_place = 0; cur_place < bo->placement.num_placement;
2164 	     cur_place++) {
2165 		if (bo->placements[cur_place].mem_type == mem_type)
2166 			return true;
2167 	}
2168 
2169 	return false;
2170 }
2171 
xe_place_from_ttm_type(u32 mem_type,struct ttm_place * place)2172 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2173 {
2174 	memset(place, 0, sizeof(*place));
2175 	place->mem_type = mem_type;
2176 }
2177 
2178 /**
2179  * xe_bo_migrate - Migrate an object to the desired region id
2180  * @bo: The buffer object to migrate.
2181  * @mem_type: The TTM region type to migrate to.
2182  *
2183  * Attempt to migrate the buffer object to the desired memory region. The
2184  * buffer object may not be pinned, and must be locked.
2185  * On successful completion, the object memory type will be updated,
2186  * but an async migration task may not have completed yet, and to
2187  * accomplish that, the object's kernel fences must be signaled with
2188  * the object lock held.
2189  *
2190  * Return: 0 on success. Negative error code on failure. In particular may
2191  * return -EINTR or -ERESTARTSYS if signal pending.
2192  */
xe_bo_migrate(struct xe_bo * bo,u32 mem_type)2193 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2194 {
2195 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2196 	struct ttm_operation_ctx ctx = {
2197 		.interruptible = true,
2198 		.no_wait_gpu = false,
2199 	};
2200 	struct ttm_placement placement;
2201 	struct ttm_place requested;
2202 
2203 	xe_bo_assert_held(bo);
2204 
2205 	if (bo->ttm.resource->mem_type == mem_type)
2206 		return 0;
2207 
2208 	if (xe_bo_is_pinned(bo))
2209 		return -EBUSY;
2210 
2211 	if (!xe_bo_can_migrate(bo, mem_type))
2212 		return -EINVAL;
2213 
2214 	xe_place_from_ttm_type(mem_type, &requested);
2215 	placement.num_placement = 1;
2216 	placement.placement = &requested;
2217 
2218 	/*
2219 	 * Stolen needs to be handled like below VRAM handling if we ever need
2220 	 * to support it.
2221 	 */
2222 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2223 
2224 	if (mem_type_is_vram(mem_type)) {
2225 		u32 c = 0;
2226 
2227 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2228 	}
2229 
2230 	return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2231 }
2232 
2233 /**
2234  * xe_bo_evict - Evict an object to evict placement
2235  * @bo: The buffer object to migrate.
2236  * @force_alloc: Set force_alloc in ttm_operation_ctx
2237  *
2238  * On successful completion, the object memory will be moved to evict
2239  * placement. Ths function blocks until the object has been fully moved.
2240  *
2241  * Return: 0 on success. Negative error code on failure.
2242  */
xe_bo_evict(struct xe_bo * bo,bool force_alloc)2243 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2244 {
2245 	struct ttm_operation_ctx ctx = {
2246 		.interruptible = false,
2247 		.no_wait_gpu = false,
2248 		.force_alloc = force_alloc,
2249 	};
2250 	struct ttm_placement placement;
2251 	int ret;
2252 
2253 	xe_evict_flags(&bo->ttm, &placement);
2254 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2255 	if (ret)
2256 		return ret;
2257 
2258 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2259 			      false, MAX_SCHEDULE_TIMEOUT);
2260 
2261 	return 0;
2262 }
2263 
2264 /**
2265  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2266  * placed in system memory.
2267  * @bo: The xe_bo
2268  *
2269  * Return: true if extra pages need to be allocated, false otherwise.
2270  */
xe_bo_needs_ccs_pages(struct xe_bo * bo)2271 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2272 {
2273 	struct xe_device *xe = xe_bo_device(bo);
2274 
2275 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2276 		return false;
2277 
2278 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2279 		return false;
2280 
2281 	/* On discrete GPUs, if the GPU can access this buffer from
2282 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2283 	 * can't be used since there's no CCS storage associated with
2284 	 * non-VRAM addresses.
2285 	 */
2286 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2287 		return false;
2288 
2289 	return true;
2290 }
2291 
2292 /**
2293  * __xe_bo_release_dummy() - Dummy kref release function
2294  * @kref: The embedded struct kref.
2295  *
2296  * Dummy release function for xe_bo_put_deferred(). Keep off.
2297  */
__xe_bo_release_dummy(struct kref * kref)2298 void __xe_bo_release_dummy(struct kref *kref)
2299 {
2300 }
2301 
2302 /**
2303  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2304  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2305  *
2306  * Puts all bos whose put was deferred by xe_bo_put_deferred().
2307  * The @deferred list can be either an onstack local list or a global
2308  * shared list used by a workqueue.
2309  */
xe_bo_put_commit(struct llist_head * deferred)2310 void xe_bo_put_commit(struct llist_head *deferred)
2311 {
2312 	struct llist_node *freed;
2313 	struct xe_bo *bo, *next;
2314 
2315 	if (!deferred)
2316 		return;
2317 
2318 	freed = llist_del_all(deferred);
2319 	if (!freed)
2320 		return;
2321 
2322 	llist_for_each_entry_safe(bo, next, freed, freed)
2323 		drm_gem_object_free(&bo->ttm.base.refcount);
2324 }
2325 
xe_bo_put(struct xe_bo * bo)2326 void xe_bo_put(struct xe_bo *bo)
2327 {
2328 	might_sleep();
2329 	if (bo) {
2330 #ifdef CONFIG_PROC_FS
2331 		if (bo->client)
2332 			might_lock(&bo->client->bos_lock);
2333 #endif
2334 		if (bo->ggtt_node && bo->ggtt_node->ggtt)
2335 			might_lock(&bo->ggtt_node->ggtt->lock);
2336 		drm_gem_object_put(&bo->ttm.base);
2337 	}
2338 }
2339 
2340 /**
2341  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2342  * @file_priv: ...
2343  * @dev: ...
2344  * @args: ...
2345  *
2346  * See dumb_create() hook in include/drm/drm_drv.h
2347  *
2348  * Return: ...
2349  */
xe_bo_dumb_create(struct drm_file * file_priv,struct drm_device * dev,struct drm_mode_create_dumb * args)2350 int xe_bo_dumb_create(struct drm_file *file_priv,
2351 		      struct drm_device *dev,
2352 		      struct drm_mode_create_dumb *args)
2353 {
2354 	struct xe_device *xe = to_xe_device(dev);
2355 	struct xe_bo *bo;
2356 	uint32_t handle;
2357 	int cpp = DIV_ROUND_UP(args->bpp, 8);
2358 	int err;
2359 	u32 page_size = max_t(u32, PAGE_SIZE,
2360 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2361 
2362 	args->pitch = ALIGN(args->width * cpp, 64);
2363 	args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2364 			   page_size);
2365 
2366 	bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2367 			       DRM_XE_GEM_CPU_CACHING_WC,
2368 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2369 			       XE_BO_FLAG_SCANOUT |
2370 			       XE_BO_FLAG_NEEDS_CPU_ACCESS);
2371 	if (IS_ERR(bo))
2372 		return PTR_ERR(bo);
2373 
2374 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2375 	/* drop reference from allocate - handle holds it now */
2376 	drm_gem_object_put(&bo->ttm.base);
2377 	if (!err)
2378 		args->handle = handle;
2379 	return err;
2380 }
2381 
xe_bo_runtime_pm_release_mmap_offset(struct xe_bo * bo)2382 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2383 {
2384 	struct ttm_buffer_object *tbo = &bo->ttm;
2385 	struct ttm_device *bdev = tbo->bdev;
2386 
2387 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2388 
2389 	list_del_init(&bo->vram_userfault_link);
2390 }
2391 
2392 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2393 #include "tests/xe_bo.c"
2394 #endif
2395