1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /* include/net/xdp.h
3   *
4   * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5   */
6  #ifndef __LINUX_NET_XDP_H__
7  #define __LINUX_NET_XDP_H__
8  
9  #include <linux/bitfield.h>
10  #include <linux/filter.h>
11  #include <linux/netdevice.h>
12  #include <linux/skbuff.h> /* skb_shared_info */
13  
14  /**
15   * DOC: XDP RX-queue information
16   *
17   * The XDP RX-queue info (xdp_rxq_info) is associated with the driver
18   * level RX-ring queues.  It is information that is specific to how
19   * the driver has configured a given RX-ring queue.
20   *
21   * Each xdp_buff frame received in the driver carries a (pointer)
22   * reference to this xdp_rxq_info structure.  This provides the XDP
23   * data-path read-access to RX-info for both kernel and bpf-side
24   * (limited subset).
25   *
26   * For now, direct access is only safe while running in NAPI/softirq
27   * context.  Contents are read-mostly and must not be updated during
28   * driver NAPI/softirq poll.
29   *
30   * The driver usage API is a register and unregister API.
31   *
32   * The struct is not directly tied to the XDP prog.  A new XDP prog
33   * can be attached as long as it doesn't change the underlying
34   * RX-ring.  If the RX-ring does change significantly, the NIC driver
35   * naturally needs to stop the RX-ring before purging and reallocating
36   * memory.  In that process the driver MUST call unregister (which
37   * also applies for driver shutdown and unload).  The register API is
38   * also mandatory during RX-ring setup.
39   */
40  
41  enum xdp_mem_type {
42  	MEM_TYPE_PAGE_SHARED = 0, /* Split-page refcnt based model */
43  	MEM_TYPE_PAGE_ORDER0,     /* Orig XDP full page model */
44  	MEM_TYPE_PAGE_POOL,
45  	MEM_TYPE_XSK_BUFF_POOL,
46  	MEM_TYPE_MAX,
47  };
48  
49  /* XDP flags for ndo_xdp_xmit */
50  #define XDP_XMIT_FLUSH		(1U << 0)	/* doorbell signal consumer */
51  #define XDP_XMIT_FLAGS_MASK	XDP_XMIT_FLUSH
52  
53  struct xdp_mem_info {
54  	u32 type; /* enum xdp_mem_type, but known size type */
55  	u32 id;
56  };
57  
58  struct page_pool;
59  
60  struct xdp_rxq_info {
61  	struct net_device *dev;
62  	u32 queue_index;
63  	u32 reg_state;
64  	struct xdp_mem_info mem;
65  	unsigned int napi_id;
66  	u32 frag_size;
67  } ____cacheline_aligned; /* perf critical, avoid false-sharing */
68  
69  struct xdp_txq_info {
70  	struct net_device *dev;
71  };
72  
73  enum xdp_buff_flags {
74  	XDP_FLAGS_HAS_FRAGS		= BIT(0), /* non-linear xdp buff */
75  	XDP_FLAGS_FRAGS_PF_MEMALLOC	= BIT(1), /* xdp paged memory is under
76  						   * pressure
77  						   */
78  };
79  
80  struct xdp_buff {
81  	void *data;
82  	void *data_end;
83  	void *data_meta;
84  	void *data_hard_start;
85  	struct xdp_rxq_info *rxq;
86  	struct xdp_txq_info *txq;
87  	u32 frame_sz; /* frame size to deduce data_hard_end/reserved tailroom*/
88  	u32 flags; /* supported values defined in xdp_buff_flags */
89  };
90  
xdp_buff_has_frags(struct xdp_buff * xdp)91  static __always_inline bool xdp_buff_has_frags(struct xdp_buff *xdp)
92  {
93  	return !!(xdp->flags & XDP_FLAGS_HAS_FRAGS);
94  }
95  
xdp_buff_set_frags_flag(struct xdp_buff * xdp)96  static __always_inline void xdp_buff_set_frags_flag(struct xdp_buff *xdp)
97  {
98  	xdp->flags |= XDP_FLAGS_HAS_FRAGS;
99  }
100  
xdp_buff_clear_frags_flag(struct xdp_buff * xdp)101  static __always_inline void xdp_buff_clear_frags_flag(struct xdp_buff *xdp)
102  {
103  	xdp->flags &= ~XDP_FLAGS_HAS_FRAGS;
104  }
105  
xdp_buff_is_frag_pfmemalloc(struct xdp_buff * xdp)106  static __always_inline bool xdp_buff_is_frag_pfmemalloc(struct xdp_buff *xdp)
107  {
108  	return !!(xdp->flags & XDP_FLAGS_FRAGS_PF_MEMALLOC);
109  }
110  
xdp_buff_set_frag_pfmemalloc(struct xdp_buff * xdp)111  static __always_inline void xdp_buff_set_frag_pfmemalloc(struct xdp_buff *xdp)
112  {
113  	xdp->flags |= XDP_FLAGS_FRAGS_PF_MEMALLOC;
114  }
115  
116  static __always_inline void
xdp_init_buff(struct xdp_buff * xdp,u32 frame_sz,struct xdp_rxq_info * rxq)117  xdp_init_buff(struct xdp_buff *xdp, u32 frame_sz, struct xdp_rxq_info *rxq)
118  {
119  	xdp->frame_sz = frame_sz;
120  	xdp->rxq = rxq;
121  	xdp->flags = 0;
122  }
123  
124  static __always_inline void
xdp_prepare_buff(struct xdp_buff * xdp,unsigned char * hard_start,int headroom,int data_len,const bool meta_valid)125  xdp_prepare_buff(struct xdp_buff *xdp, unsigned char *hard_start,
126  		 int headroom, int data_len, const bool meta_valid)
127  {
128  	unsigned char *data = hard_start + headroom;
129  
130  	xdp->data_hard_start = hard_start;
131  	xdp->data = data;
132  	xdp->data_end = data + data_len;
133  	xdp->data_meta = meta_valid ? data : data + 1;
134  }
135  
136  /* Reserve memory area at end-of data area.
137   *
138   * This macro reserves tailroom in the XDP buffer by limiting the
139   * XDP/BPF data access to data_hard_end.  Notice same area (and size)
140   * is used for XDP_PASS, when constructing the SKB via build_skb().
141   */
142  #define xdp_data_hard_end(xdp)				\
143  	((xdp)->data_hard_start + (xdp)->frame_sz -	\
144  	 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
145  
146  static inline struct skb_shared_info *
xdp_get_shared_info_from_buff(struct xdp_buff * xdp)147  xdp_get_shared_info_from_buff(struct xdp_buff *xdp)
148  {
149  	return (struct skb_shared_info *)xdp_data_hard_end(xdp);
150  }
151  
xdp_get_buff_len(struct xdp_buff * xdp)152  static __always_inline unsigned int xdp_get_buff_len(struct xdp_buff *xdp)
153  {
154  	unsigned int len = xdp->data_end - xdp->data;
155  	struct skb_shared_info *sinfo;
156  
157  	if (likely(!xdp_buff_has_frags(xdp)))
158  		goto out;
159  
160  	sinfo = xdp_get_shared_info_from_buff(xdp);
161  	len += sinfo->xdp_frags_size;
162  out:
163  	return len;
164  }
165  
166  struct xdp_frame {
167  	void *data;
168  	u16 len;
169  	u16 headroom;
170  	u32 metasize; /* uses lower 8-bits */
171  	/* Lifetime of xdp_rxq_info is limited to NAPI/enqueue time,
172  	 * while mem info is valid on remote CPU.
173  	 */
174  	struct xdp_mem_info mem;
175  	struct net_device *dev_rx; /* used by cpumap */
176  	u32 frame_sz;
177  	u32 flags; /* supported values defined in xdp_buff_flags */
178  };
179  
xdp_frame_has_frags(struct xdp_frame * frame)180  static __always_inline bool xdp_frame_has_frags(struct xdp_frame *frame)
181  {
182  	return !!(frame->flags & XDP_FLAGS_HAS_FRAGS);
183  }
184  
xdp_frame_is_frag_pfmemalloc(struct xdp_frame * frame)185  static __always_inline bool xdp_frame_is_frag_pfmemalloc(struct xdp_frame *frame)
186  {
187  	return !!(frame->flags & XDP_FLAGS_FRAGS_PF_MEMALLOC);
188  }
189  
190  #define XDP_BULK_QUEUE_SIZE	16
191  struct xdp_frame_bulk {
192  	int count;
193  	void *xa;
194  	void *q[XDP_BULK_QUEUE_SIZE];
195  };
196  
xdp_frame_bulk_init(struct xdp_frame_bulk * bq)197  static __always_inline void xdp_frame_bulk_init(struct xdp_frame_bulk *bq)
198  {
199  	/* bq->count will be zero'ed when bq->xa gets updated */
200  	bq->xa = NULL;
201  }
202  
203  static inline struct skb_shared_info *
xdp_get_shared_info_from_frame(struct xdp_frame * frame)204  xdp_get_shared_info_from_frame(struct xdp_frame *frame)
205  {
206  	void *data_hard_start = frame->data - frame->headroom - sizeof(*frame);
207  
208  	return (struct skb_shared_info *)(data_hard_start + frame->frame_sz -
209  				SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
210  }
211  
212  struct xdp_cpumap_stats {
213  	unsigned int redirect;
214  	unsigned int pass;
215  	unsigned int drop;
216  };
217  
218  /* Clear kernel pointers in xdp_frame */
xdp_scrub_frame(struct xdp_frame * frame)219  static inline void xdp_scrub_frame(struct xdp_frame *frame)
220  {
221  	frame->data = NULL;
222  	frame->dev_rx = NULL;
223  }
224  
225  static inline void
xdp_update_skb_shared_info(struct sk_buff * skb,u8 nr_frags,unsigned int size,unsigned int truesize,bool pfmemalloc)226  xdp_update_skb_shared_info(struct sk_buff *skb, u8 nr_frags,
227  			   unsigned int size, unsigned int truesize,
228  			   bool pfmemalloc)
229  {
230  	skb_shinfo(skb)->nr_frags = nr_frags;
231  
232  	skb->len += size;
233  	skb->data_len += size;
234  	skb->truesize += truesize;
235  	skb->pfmemalloc |= pfmemalloc;
236  }
237  
238  /* Avoids inlining WARN macro in fast-path */
239  void xdp_warn(const char *msg, const char *func, const int line);
240  #define XDP_WARN(msg) xdp_warn(msg, __func__, __LINE__)
241  
242  struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp);
243  struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf,
244  					   struct sk_buff *skb,
245  					   struct net_device *dev);
246  struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf,
247  					 struct net_device *dev);
248  int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp);
249  struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf);
250  
251  static inline
xdp_convert_frame_to_buff(struct xdp_frame * frame,struct xdp_buff * xdp)252  void xdp_convert_frame_to_buff(struct xdp_frame *frame, struct xdp_buff *xdp)
253  {
254  	xdp->data_hard_start = frame->data - frame->headroom - sizeof(*frame);
255  	xdp->data = frame->data;
256  	xdp->data_end = frame->data + frame->len;
257  	xdp->data_meta = frame->data - frame->metasize;
258  	xdp->frame_sz = frame->frame_sz;
259  	xdp->flags = frame->flags;
260  }
261  
262  static inline
xdp_update_frame_from_buff(struct xdp_buff * xdp,struct xdp_frame * xdp_frame)263  int xdp_update_frame_from_buff(struct xdp_buff *xdp,
264  			       struct xdp_frame *xdp_frame)
265  {
266  	int metasize, headroom;
267  
268  	/* Assure headroom is available for storing info */
269  	headroom = xdp->data - xdp->data_hard_start;
270  	metasize = xdp->data - xdp->data_meta;
271  	metasize = metasize > 0 ? metasize : 0;
272  	if (unlikely((headroom - metasize) < sizeof(*xdp_frame)))
273  		return -ENOSPC;
274  
275  	/* Catch if driver didn't reserve tailroom for skb_shared_info */
276  	if (unlikely(xdp->data_end > xdp_data_hard_end(xdp))) {
277  		XDP_WARN("Driver BUG: missing reserved tailroom");
278  		return -ENOSPC;
279  	}
280  
281  	xdp_frame->data = xdp->data;
282  	xdp_frame->len  = xdp->data_end - xdp->data;
283  	xdp_frame->headroom = headroom - sizeof(*xdp_frame);
284  	xdp_frame->metasize = metasize;
285  	xdp_frame->frame_sz = xdp->frame_sz;
286  	xdp_frame->flags = xdp->flags;
287  
288  	return 0;
289  }
290  
291  /* Convert xdp_buff to xdp_frame */
292  static inline
xdp_convert_buff_to_frame(struct xdp_buff * xdp)293  struct xdp_frame *xdp_convert_buff_to_frame(struct xdp_buff *xdp)
294  {
295  	struct xdp_frame *xdp_frame;
296  
297  	if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
298  		return xdp_convert_zc_to_xdp_frame(xdp);
299  
300  	/* Store info in top of packet */
301  	xdp_frame = xdp->data_hard_start;
302  	if (unlikely(xdp_update_frame_from_buff(xdp, xdp_frame) < 0))
303  		return NULL;
304  
305  	/* rxq only valid until napi_schedule ends, convert to xdp_mem_info */
306  	xdp_frame->mem = xdp->rxq->mem;
307  
308  	return xdp_frame;
309  }
310  
311  void __xdp_return(void *data, struct xdp_mem_info *mem, bool napi_direct,
312  		  struct xdp_buff *xdp);
313  void xdp_return_frame(struct xdp_frame *xdpf);
314  void xdp_return_frame_rx_napi(struct xdp_frame *xdpf);
315  void xdp_return_buff(struct xdp_buff *xdp);
316  void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq);
317  void xdp_return_frame_bulk(struct xdp_frame *xdpf,
318  			   struct xdp_frame_bulk *bq);
319  
xdp_get_frame_len(struct xdp_frame * xdpf)320  static __always_inline unsigned int xdp_get_frame_len(struct xdp_frame *xdpf)
321  {
322  	struct skb_shared_info *sinfo;
323  	unsigned int len = xdpf->len;
324  
325  	if (likely(!xdp_frame_has_frags(xdpf)))
326  		goto out;
327  
328  	sinfo = xdp_get_shared_info_from_frame(xdpf);
329  	len += sinfo->xdp_frags_size;
330  out:
331  	return len;
332  }
333  
334  int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
335  		       struct net_device *dev, u32 queue_index,
336  		       unsigned int napi_id, u32 frag_size);
337  static inline int
xdp_rxq_info_reg(struct xdp_rxq_info * xdp_rxq,struct net_device * dev,u32 queue_index,unsigned int napi_id)338  xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
339  		 struct net_device *dev, u32 queue_index,
340  		 unsigned int napi_id)
341  {
342  	return __xdp_rxq_info_reg(xdp_rxq, dev, queue_index, napi_id, 0);
343  }
344  
345  void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq);
346  void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq);
347  bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq);
348  int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq,
349  			       enum xdp_mem_type type, void *allocator);
350  void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq);
351  int xdp_reg_mem_model(struct xdp_mem_info *mem,
352  		      enum xdp_mem_type type, void *allocator);
353  void xdp_unreg_mem_model(struct xdp_mem_info *mem);
354  
355  /* Drivers not supporting XDP metadata can use this helper, which
356   * rejects any room expansion for metadata as a result.
357   */
358  static __always_inline void
xdp_set_data_meta_invalid(struct xdp_buff * xdp)359  xdp_set_data_meta_invalid(struct xdp_buff *xdp)
360  {
361  	xdp->data_meta = xdp->data + 1;
362  }
363  
364  static __always_inline bool
xdp_data_meta_unsupported(const struct xdp_buff * xdp)365  xdp_data_meta_unsupported(const struct xdp_buff *xdp)
366  {
367  	return unlikely(xdp->data_meta > xdp->data);
368  }
369  
xdp_metalen_invalid(unsigned long metalen)370  static inline bool xdp_metalen_invalid(unsigned long metalen)
371  {
372  	unsigned long meta_max;
373  
374  	meta_max = type_max(typeof_member(struct skb_shared_info, meta_len));
375  	BUILD_BUG_ON(!__builtin_constant_p(meta_max));
376  
377  	return !IS_ALIGNED(metalen, sizeof(u32)) || metalen > meta_max;
378  }
379  
380  struct xdp_attachment_info {
381  	struct bpf_prog *prog;
382  	u32 flags;
383  };
384  
385  struct netdev_bpf;
386  void xdp_attachment_setup(struct xdp_attachment_info *info,
387  			  struct netdev_bpf *bpf);
388  
389  #define DEV_MAP_BULK_SIZE XDP_BULK_QUEUE_SIZE
390  
391  /* Define the relationship between xdp-rx-metadata kfunc and
392   * various other entities:
393   * - xdp_rx_metadata enum
394   * - netdev netlink enum (Documentation/netlink/specs/netdev.yaml)
395   * - kfunc name
396   * - xdp_metadata_ops field
397   */
398  #define XDP_METADATA_KFUNC_xxx	\
399  	XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_TIMESTAMP, \
400  			   NETDEV_XDP_RX_METADATA_TIMESTAMP, \
401  			   bpf_xdp_metadata_rx_timestamp, \
402  			   xmo_rx_timestamp) \
403  	XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_HASH, \
404  			   NETDEV_XDP_RX_METADATA_HASH, \
405  			   bpf_xdp_metadata_rx_hash, \
406  			   xmo_rx_hash) \
407  	XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_VLAN_TAG, \
408  			   NETDEV_XDP_RX_METADATA_VLAN_TAG, \
409  			   bpf_xdp_metadata_rx_vlan_tag, \
410  			   xmo_rx_vlan_tag) \
411  
412  enum xdp_rx_metadata {
413  #define XDP_METADATA_KFUNC(name, _, __, ___) name,
414  XDP_METADATA_KFUNC_xxx
415  #undef XDP_METADATA_KFUNC
416  MAX_XDP_METADATA_KFUNC,
417  };
418  
419  enum xdp_rss_hash_type {
420  	/* First part: Individual bits for L3/L4 types */
421  	XDP_RSS_L3_IPV4		= BIT(0),
422  	XDP_RSS_L3_IPV6		= BIT(1),
423  
424  	/* The fixed (L3) IPv4 and IPv6 headers can both be followed by
425  	 * variable/dynamic headers, IPv4 called Options and IPv6 called
426  	 * Extension Headers. HW RSS type can contain this info.
427  	 */
428  	XDP_RSS_L3_DYNHDR	= BIT(2),
429  
430  	/* When RSS hash covers L4 then drivers MUST set XDP_RSS_L4 bit in
431  	 * addition to the protocol specific bit.  This ease interaction with
432  	 * SKBs and avoids reserving a fixed mask for future L4 protocol bits.
433  	 */
434  	XDP_RSS_L4		= BIT(3), /* L4 based hash, proto can be unknown */
435  	XDP_RSS_L4_TCP		= BIT(4),
436  	XDP_RSS_L4_UDP		= BIT(5),
437  	XDP_RSS_L4_SCTP		= BIT(6),
438  	XDP_RSS_L4_IPSEC	= BIT(7), /* L4 based hash include IPSEC SPI */
439  	XDP_RSS_L4_ICMP		= BIT(8),
440  
441  	/* Second part: RSS hash type combinations used for driver HW mapping */
442  	XDP_RSS_TYPE_NONE            = 0,
443  	XDP_RSS_TYPE_L2              = XDP_RSS_TYPE_NONE,
444  
445  	XDP_RSS_TYPE_L3_IPV4         = XDP_RSS_L3_IPV4,
446  	XDP_RSS_TYPE_L3_IPV6         = XDP_RSS_L3_IPV6,
447  	XDP_RSS_TYPE_L3_IPV4_OPT     = XDP_RSS_L3_IPV4 | XDP_RSS_L3_DYNHDR,
448  	XDP_RSS_TYPE_L3_IPV6_EX      = XDP_RSS_L3_IPV6 | XDP_RSS_L3_DYNHDR,
449  
450  	XDP_RSS_TYPE_L4_ANY          = XDP_RSS_L4,
451  	XDP_RSS_TYPE_L4_IPV4_TCP     = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_TCP,
452  	XDP_RSS_TYPE_L4_IPV4_UDP     = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_UDP,
453  	XDP_RSS_TYPE_L4_IPV4_SCTP    = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_SCTP,
454  	XDP_RSS_TYPE_L4_IPV4_IPSEC   = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_IPSEC,
455  	XDP_RSS_TYPE_L4_IPV4_ICMP    = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_ICMP,
456  
457  	XDP_RSS_TYPE_L4_IPV6_TCP     = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_TCP,
458  	XDP_RSS_TYPE_L4_IPV6_UDP     = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_UDP,
459  	XDP_RSS_TYPE_L4_IPV6_SCTP    = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_SCTP,
460  	XDP_RSS_TYPE_L4_IPV6_IPSEC   = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_IPSEC,
461  	XDP_RSS_TYPE_L4_IPV6_ICMP    = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_ICMP,
462  
463  	XDP_RSS_TYPE_L4_IPV6_TCP_EX  = XDP_RSS_TYPE_L4_IPV6_TCP  | XDP_RSS_L3_DYNHDR,
464  	XDP_RSS_TYPE_L4_IPV6_UDP_EX  = XDP_RSS_TYPE_L4_IPV6_UDP  | XDP_RSS_L3_DYNHDR,
465  	XDP_RSS_TYPE_L4_IPV6_SCTP_EX = XDP_RSS_TYPE_L4_IPV6_SCTP | XDP_RSS_L3_DYNHDR,
466  };
467  
468  struct xdp_metadata_ops {
469  	int	(*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp);
470  	int	(*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash,
471  			       enum xdp_rss_hash_type *rss_type);
472  	int	(*xmo_rx_vlan_tag)(const struct xdp_md *ctx, __be16 *vlan_proto,
473  				   u16 *vlan_tci);
474  };
475  
476  #ifdef CONFIG_NET
477  u32 bpf_xdp_metadata_kfunc_id(int id);
478  bool bpf_dev_bound_kfunc_id(u32 btf_id);
479  void xdp_set_features_flag(struct net_device *dev, xdp_features_t val);
480  void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg);
481  void xdp_features_clear_redirect_target(struct net_device *dev);
482  #else
bpf_xdp_metadata_kfunc_id(int id)483  static inline u32 bpf_xdp_metadata_kfunc_id(int id) { return 0; }
bpf_dev_bound_kfunc_id(u32 btf_id)484  static inline bool bpf_dev_bound_kfunc_id(u32 btf_id) { return false; }
485  
486  static inline void
xdp_set_features_flag(struct net_device * dev,xdp_features_t val)487  xdp_set_features_flag(struct net_device *dev, xdp_features_t val)
488  {
489  }
490  
491  static inline void
xdp_features_set_redirect_target(struct net_device * dev,bool support_sg)492  xdp_features_set_redirect_target(struct net_device *dev, bool support_sg)
493  {
494  }
495  
496  static inline void
xdp_features_clear_redirect_target(struct net_device * dev)497  xdp_features_clear_redirect_target(struct net_device *dev)
498  {
499  }
500  #endif
501  
xdp_clear_features_flag(struct net_device * dev)502  static inline void xdp_clear_features_flag(struct net_device *dev)
503  {
504  	xdp_set_features_flag(dev, 0);
505  }
506  
bpf_prog_run_xdp(const struct bpf_prog * prog,struct xdp_buff * xdp)507  static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
508  					    struct xdp_buff *xdp)
509  {
510  	/* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
511  	 * under local_bh_disable(), which provides the needed RCU protection
512  	 * for accessing map entries.
513  	 */
514  	u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
515  
516  	if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
517  		if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
518  			act = xdp_master_redirect(xdp);
519  	}
520  
521  	return act;
522  }
523  #endif /* __LINUX_NET_XDP_H__ */
524