1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/fs-writeback.c
4   *
5   * Copyright (C) 2002, Linus Torvalds.
6   *
7   * Contains all the functions related to writing back and waiting
8   * upon dirty inodes against superblocks, and writing back dirty
9   * pages against inodes.  ie: data writeback.  Writeout of the
10   * inode itself is not handled here.
11   *
12   * 10Apr2002	Andrew Morton
13   *		Split out of fs/inode.c
14   *		Additions for address_space-based writeback
15   */
16  
17  #include <linux/kernel.h>
18  #include <linux/export.h>
19  #include <linux/spinlock.h>
20  #include <linux/slab.h>
21  #include <linux/sched.h>
22  #include <linux/fs.h>
23  #include <linux/mm.h>
24  #include <linux/pagemap.h>
25  #include <linux/kthread.h>
26  #include <linux/writeback.h>
27  #include <linux/blkdev.h>
28  #include <linux/backing-dev.h>
29  #include <linux/tracepoint.h>
30  #include <linux/device.h>
31  #include <linux/memcontrol.h>
32  #include "internal.h"
33  
34  /*
35   * 4MB minimal write chunk size
36   */
37  #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38  
39  /*
40   * Passed into wb_writeback(), essentially a subset of writeback_control
41   */
42  struct wb_writeback_work {
43  	long nr_pages;
44  	struct super_block *sb;
45  	enum writeback_sync_modes sync_mode;
46  	unsigned int tagged_writepages:1;
47  	unsigned int for_kupdate:1;
48  	unsigned int range_cyclic:1;
49  	unsigned int for_background:1;
50  	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51  	unsigned int auto_free:1;	/* free on completion */
52  	enum wb_reason reason;		/* why was writeback initiated? */
53  
54  	struct list_head list;		/* pending work list */
55  	struct wb_completion *done;	/* set if the caller waits */
56  };
57  
58  /*
59   * If an inode is constantly having its pages dirtied, but then the
60   * updates stop dirtytime_expire_interval seconds in the past, it's
61   * possible for the worst case time between when an inode has its
62   * timestamps updated and when they finally get written out to be two
63   * dirtytime_expire_intervals.  We set the default to 12 hours (in
64   * seconds), which means most of the time inodes will have their
65   * timestamps written to disk after 12 hours, but in the worst case a
66   * few inodes might not their timestamps updated for 24 hours.
67   */
68  unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69  
wb_inode(struct list_head * head)70  static inline struct inode *wb_inode(struct list_head *head)
71  {
72  	return list_entry(head, struct inode, i_io_list);
73  }
74  
75  /*
76   * Include the creation of the trace points after defining the
77   * wb_writeback_work structure and inline functions so that the definition
78   * remains local to this file.
79   */
80  #define CREATE_TRACE_POINTS
81  #include <trace/events/writeback.h>
82  
83  EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84  
wb_io_lists_populated(struct bdi_writeback * wb)85  static bool wb_io_lists_populated(struct bdi_writeback *wb)
86  {
87  	if (wb_has_dirty_io(wb)) {
88  		return false;
89  	} else {
90  		set_bit(WB_has_dirty_io, &wb->state);
91  		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92  		atomic_long_add(wb->avg_write_bandwidth,
93  				&wb->bdi->tot_write_bandwidth);
94  		return true;
95  	}
96  }
97  
wb_io_lists_depopulated(struct bdi_writeback * wb)98  static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99  {
100  	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101  	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102  		clear_bit(WB_has_dirty_io, &wb->state);
103  		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104  					&wb->bdi->tot_write_bandwidth) < 0);
105  	}
106  }
107  
108  /**
109   * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110   * @inode: inode to be moved
111   * @wb: target bdi_writeback
112   * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113   *
114   * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115   * Returns %true if @inode is the first occupant of the !dirty_time IO
116   * lists; otherwise, %false.
117   */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118  static bool inode_io_list_move_locked(struct inode *inode,
119  				      struct bdi_writeback *wb,
120  				      struct list_head *head)
121  {
122  	assert_spin_locked(&wb->list_lock);
123  	assert_spin_locked(&inode->i_lock);
124  	WARN_ON_ONCE(inode->i_state & I_FREEING);
125  
126  	list_move(&inode->i_io_list, head);
127  
128  	/* dirty_time doesn't count as dirty_io until expiration */
129  	if (head != &wb->b_dirty_time)
130  		return wb_io_lists_populated(wb);
131  
132  	wb_io_lists_depopulated(wb);
133  	return false;
134  }
135  
wb_wakeup(struct bdi_writeback * wb)136  static void wb_wakeup(struct bdi_writeback *wb)
137  {
138  	spin_lock_irq(&wb->work_lock);
139  	if (test_bit(WB_registered, &wb->state))
140  		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141  	spin_unlock_irq(&wb->work_lock);
142  }
143  
144  /*
145   * This function is used when the first inode for this wb is marked dirty. It
146   * wakes-up the corresponding bdi thread which should then take care of the
147   * periodic background write-out of dirty inodes. Since the write-out would
148   * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149   * set up a timer which wakes the bdi thread up later.
150   *
151   * Note, we wouldn't bother setting up the timer, but this function is on the
152   * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153   * by delaying the wake-up.
154   *
155   * We have to be careful not to postpone flush work if it is scheduled for
156   * earlier. Thus we use queue_delayed_work().
157   */
wb_wakeup_delayed(struct bdi_writeback * wb)158  static void wb_wakeup_delayed(struct bdi_writeback *wb)
159  {
160  	unsigned long timeout;
161  
162  	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163  	spin_lock_irq(&wb->work_lock);
164  	if (test_bit(WB_registered, &wb->state))
165  		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166  	spin_unlock_irq(&wb->work_lock);
167  }
168  
finish_writeback_work(struct wb_writeback_work * work)169  static void finish_writeback_work(struct wb_writeback_work *work)
170  {
171  	struct wb_completion *done = work->done;
172  
173  	if (work->auto_free)
174  		kfree(work);
175  	if (done) {
176  		wait_queue_head_t *waitq = done->waitq;
177  
178  		/* @done can't be accessed after the following dec */
179  		if (atomic_dec_and_test(&done->cnt))
180  			wake_up_all(waitq);
181  	}
182  }
183  
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)184  static void wb_queue_work(struct bdi_writeback *wb,
185  			  struct wb_writeback_work *work)
186  {
187  	trace_writeback_queue(wb, work);
188  
189  	if (work->done)
190  		atomic_inc(&work->done->cnt);
191  
192  	spin_lock_irq(&wb->work_lock);
193  
194  	if (test_bit(WB_registered, &wb->state)) {
195  		list_add_tail(&work->list, &wb->work_list);
196  		mod_delayed_work(bdi_wq, &wb->dwork, 0);
197  	} else
198  		finish_writeback_work(work);
199  
200  	spin_unlock_irq(&wb->work_lock);
201  }
202  
203  /**
204   * wb_wait_for_completion - wait for completion of bdi_writeback_works
205   * @done: target wb_completion
206   *
207   * Wait for one or more work items issued to @bdi with their ->done field
208   * set to @done, which should have been initialized with
209   * DEFINE_WB_COMPLETION().  This function returns after all such work items
210   * are completed.  Work items which are waited upon aren't freed
211   * automatically on completion.
212   */
wb_wait_for_completion(struct wb_completion * done)213  void wb_wait_for_completion(struct wb_completion *done)
214  {
215  	atomic_dec(&done->cnt);		/* put down the initial count */
216  	wait_event(*done->waitq, !atomic_read(&done->cnt));
217  }
218  
219  #ifdef CONFIG_CGROUP_WRITEBACK
220  
221  /*
222   * Parameters for foreign inode detection, see wbc_detach_inode() to see
223   * how they're used.
224   *
225   * These paramters are inherently heuristical as the detection target
226   * itself is fuzzy.  All we want to do is detaching an inode from the
227   * current owner if it's being written to by some other cgroups too much.
228   *
229   * The current cgroup writeback is built on the assumption that multiple
230   * cgroups writing to the same inode concurrently is very rare and a mode
231   * of operation which isn't well supported.  As such, the goal is not
232   * taking too long when a different cgroup takes over an inode while
233   * avoiding too aggressive flip-flops from occasional foreign writes.
234   *
235   * We record, very roughly, 2s worth of IO time history and if more than
236   * half of that is foreign, trigger the switch.  The recording is quantized
237   * to 16 slots.  To avoid tiny writes from swinging the decision too much,
238   * writes smaller than 1/8 of avg size are ignored.
239   */
240  #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
241  #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
242  #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
243  #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
244  
245  #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
246  #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
247  					/* each slot's duration is 2s / 16 */
248  #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
249  					/* if foreign slots >= 8, switch */
250  #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
251  					/* one round can affect upto 5 slots */
252  #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
253  
254  /*
255   * Maximum inodes per isw.  A specific value has been chosen to make
256   * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
257   */
258  #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
259                                  / sizeof(struct inode *))
260  
261  static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
262  static struct workqueue_struct *isw_wq;
263  
__inode_attach_wb(struct inode * inode,struct folio * folio)264  void __inode_attach_wb(struct inode *inode, struct folio *folio)
265  {
266  	struct backing_dev_info *bdi = inode_to_bdi(inode);
267  	struct bdi_writeback *wb = NULL;
268  
269  	if (inode_cgwb_enabled(inode)) {
270  		struct cgroup_subsys_state *memcg_css;
271  
272  		if (folio) {
273  			memcg_css = mem_cgroup_css_from_folio(folio);
274  			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
275  		} else {
276  			/* must pin memcg_css, see wb_get_create() */
277  			memcg_css = task_get_css(current, memory_cgrp_id);
278  			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
279  			css_put(memcg_css);
280  		}
281  	}
282  
283  	if (!wb)
284  		wb = &bdi->wb;
285  
286  	/*
287  	 * There may be multiple instances of this function racing to
288  	 * update the same inode.  Use cmpxchg() to tell the winner.
289  	 */
290  	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
291  		wb_put(wb);
292  }
293  EXPORT_SYMBOL_GPL(__inode_attach_wb);
294  
295  /**
296   * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
297   * @inode: inode of interest with i_lock held
298   * @wb: target bdi_writeback
299   *
300   * Remove the inode from wb's io lists and if necessarily put onto b_attached
301   * list.  Only inodes attached to cgwb's are kept on this list.
302   */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)303  static void inode_cgwb_move_to_attached(struct inode *inode,
304  					struct bdi_writeback *wb)
305  {
306  	assert_spin_locked(&wb->list_lock);
307  	assert_spin_locked(&inode->i_lock);
308  	WARN_ON_ONCE(inode->i_state & I_FREEING);
309  
310  	inode->i_state &= ~I_SYNC_QUEUED;
311  	if (wb != &wb->bdi->wb)
312  		list_move(&inode->i_io_list, &wb->b_attached);
313  	else
314  		list_del_init(&inode->i_io_list);
315  	wb_io_lists_depopulated(wb);
316  }
317  
318  /**
319   * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
320   * @inode: inode of interest with i_lock held
321   *
322   * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
323   * held on entry and is released on return.  The returned wb is guaranteed
324   * to stay @inode's associated wb until its list_lock is released.
325   */
326  static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)327  locked_inode_to_wb_and_lock_list(struct inode *inode)
328  	__releases(&inode->i_lock)
329  	__acquires(&wb->list_lock)
330  {
331  	while (true) {
332  		struct bdi_writeback *wb = inode_to_wb(inode);
333  
334  		/*
335  		 * inode_to_wb() association is protected by both
336  		 * @inode->i_lock and @wb->list_lock but list_lock nests
337  		 * outside i_lock.  Drop i_lock and verify that the
338  		 * association hasn't changed after acquiring list_lock.
339  		 */
340  		wb_get(wb);
341  		spin_unlock(&inode->i_lock);
342  		spin_lock(&wb->list_lock);
343  
344  		/* i_wb may have changed inbetween, can't use inode_to_wb() */
345  		if (likely(wb == inode->i_wb)) {
346  			wb_put(wb);	/* @inode already has ref */
347  			return wb;
348  		}
349  
350  		spin_unlock(&wb->list_lock);
351  		wb_put(wb);
352  		cpu_relax();
353  		spin_lock(&inode->i_lock);
354  	}
355  }
356  
357  /**
358   * inode_to_wb_and_lock_list - determine an inode's wb and lock it
359   * @inode: inode of interest
360   *
361   * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
362   * on entry.
363   */
inode_to_wb_and_lock_list(struct inode * inode)364  static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
365  	__acquires(&wb->list_lock)
366  {
367  	spin_lock(&inode->i_lock);
368  	return locked_inode_to_wb_and_lock_list(inode);
369  }
370  
371  struct inode_switch_wbs_context {
372  	struct rcu_work		work;
373  
374  	/*
375  	 * Multiple inodes can be switched at once.  The switching procedure
376  	 * consists of two parts, separated by a RCU grace period.  To make
377  	 * sure that the second part is executed for each inode gone through
378  	 * the first part, all inode pointers are placed into a NULL-terminated
379  	 * array embedded into struct inode_switch_wbs_context.  Otherwise
380  	 * an inode could be left in a non-consistent state.
381  	 */
382  	struct bdi_writeback	*new_wb;
383  	struct inode		*inodes[];
384  };
385  
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)386  static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
387  {
388  	down_write(&bdi->wb_switch_rwsem);
389  }
390  
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)391  static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
392  {
393  	up_write(&bdi->wb_switch_rwsem);
394  }
395  
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)396  static bool inode_do_switch_wbs(struct inode *inode,
397  				struct bdi_writeback *old_wb,
398  				struct bdi_writeback *new_wb)
399  {
400  	struct address_space *mapping = inode->i_mapping;
401  	XA_STATE(xas, &mapping->i_pages, 0);
402  	struct folio *folio;
403  	bool switched = false;
404  
405  	spin_lock(&inode->i_lock);
406  	xa_lock_irq(&mapping->i_pages);
407  
408  	/*
409  	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
410  	 * path owns the inode and we shouldn't modify ->i_io_list.
411  	 */
412  	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
413  		goto skip_switch;
414  
415  	trace_inode_switch_wbs(inode, old_wb, new_wb);
416  
417  	/*
418  	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
419  	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
420  	 * folios actually under writeback.
421  	 */
422  	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
423  		if (folio_test_dirty(folio)) {
424  			long nr = folio_nr_pages(folio);
425  			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
426  			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
427  		}
428  	}
429  
430  	xas_set(&xas, 0);
431  	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
432  		long nr = folio_nr_pages(folio);
433  		WARN_ON_ONCE(!folio_test_writeback(folio));
434  		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
435  		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
436  	}
437  
438  	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
439  		atomic_dec(&old_wb->writeback_inodes);
440  		atomic_inc(&new_wb->writeback_inodes);
441  	}
442  
443  	wb_get(new_wb);
444  
445  	/*
446  	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
447  	 * the specific list @inode was on is ignored and the @inode is put on
448  	 * ->b_dirty which is always correct including from ->b_dirty_time.
449  	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
450  	 * was clean, it means it was on the b_attached list, so move it onto
451  	 * the b_attached list of @new_wb.
452  	 */
453  	if (!list_empty(&inode->i_io_list)) {
454  		inode->i_wb = new_wb;
455  
456  		if (inode->i_state & I_DIRTY_ALL) {
457  			struct inode *pos;
458  
459  			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
460  				if (time_after_eq(inode->dirtied_when,
461  						  pos->dirtied_when))
462  					break;
463  			inode_io_list_move_locked(inode, new_wb,
464  						  pos->i_io_list.prev);
465  		} else {
466  			inode_cgwb_move_to_attached(inode, new_wb);
467  		}
468  	} else {
469  		inode->i_wb = new_wb;
470  	}
471  
472  	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
473  	inode->i_wb_frn_winner = 0;
474  	inode->i_wb_frn_avg_time = 0;
475  	inode->i_wb_frn_history = 0;
476  	switched = true;
477  skip_switch:
478  	/*
479  	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
480  	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
481  	 */
482  	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
483  
484  	xa_unlock_irq(&mapping->i_pages);
485  	spin_unlock(&inode->i_lock);
486  
487  	return switched;
488  }
489  
inode_switch_wbs_work_fn(struct work_struct * work)490  static void inode_switch_wbs_work_fn(struct work_struct *work)
491  {
492  	struct inode_switch_wbs_context *isw =
493  		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
494  	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
495  	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
496  	struct bdi_writeback *new_wb = isw->new_wb;
497  	unsigned long nr_switched = 0;
498  	struct inode **inodep;
499  
500  	/*
501  	 * If @inode switches cgwb membership while sync_inodes_sb() is
502  	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
503  	 */
504  	down_read(&bdi->wb_switch_rwsem);
505  
506  	/*
507  	 * By the time control reaches here, RCU grace period has passed
508  	 * since I_WB_SWITCH assertion and all wb stat update transactions
509  	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
510  	 * synchronizing against the i_pages lock.
511  	 *
512  	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
513  	 * gives us exclusion against all wb related operations on @inode
514  	 * including IO list manipulations and stat updates.
515  	 */
516  	if (old_wb < new_wb) {
517  		spin_lock(&old_wb->list_lock);
518  		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
519  	} else {
520  		spin_lock(&new_wb->list_lock);
521  		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
522  	}
523  
524  	for (inodep = isw->inodes; *inodep; inodep++) {
525  		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
526  		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
527  			nr_switched++;
528  	}
529  
530  	spin_unlock(&new_wb->list_lock);
531  	spin_unlock(&old_wb->list_lock);
532  
533  	up_read(&bdi->wb_switch_rwsem);
534  
535  	if (nr_switched) {
536  		wb_wakeup(new_wb);
537  		wb_put_many(old_wb, nr_switched);
538  	}
539  
540  	for (inodep = isw->inodes; *inodep; inodep++)
541  		iput(*inodep);
542  	wb_put(new_wb);
543  	kfree(isw);
544  	atomic_dec(&isw_nr_in_flight);
545  }
546  
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)547  static bool inode_prepare_wbs_switch(struct inode *inode,
548  				     struct bdi_writeback *new_wb)
549  {
550  	/*
551  	 * Paired with smp_mb() in cgroup_writeback_umount().
552  	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
553  	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
554  	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
555  	 */
556  	smp_mb();
557  
558  	if (IS_DAX(inode))
559  		return false;
560  
561  	/* while holding I_WB_SWITCH, no one else can update the association */
562  	spin_lock(&inode->i_lock);
563  	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
564  	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
565  	    inode_to_wb(inode) == new_wb) {
566  		spin_unlock(&inode->i_lock);
567  		return false;
568  	}
569  	inode->i_state |= I_WB_SWITCH;
570  	__iget(inode);
571  	spin_unlock(&inode->i_lock);
572  
573  	return true;
574  }
575  
576  /**
577   * inode_switch_wbs - change the wb association of an inode
578   * @inode: target inode
579   * @new_wb_id: ID of the new wb
580   *
581   * Switch @inode's wb association to the wb identified by @new_wb_id.  The
582   * switching is performed asynchronously and may fail silently.
583   */
inode_switch_wbs(struct inode * inode,int new_wb_id)584  static void inode_switch_wbs(struct inode *inode, int new_wb_id)
585  {
586  	struct backing_dev_info *bdi = inode_to_bdi(inode);
587  	struct cgroup_subsys_state *memcg_css;
588  	struct inode_switch_wbs_context *isw;
589  
590  	/* noop if seems to be already in progress */
591  	if (inode->i_state & I_WB_SWITCH)
592  		return;
593  
594  	/* avoid queueing a new switch if too many are already in flight */
595  	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
596  		return;
597  
598  	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
599  	if (!isw)
600  		return;
601  
602  	atomic_inc(&isw_nr_in_flight);
603  
604  	/* find and pin the new wb */
605  	rcu_read_lock();
606  	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
607  	if (memcg_css && !css_tryget(memcg_css))
608  		memcg_css = NULL;
609  	rcu_read_unlock();
610  	if (!memcg_css)
611  		goto out_free;
612  
613  	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
614  	css_put(memcg_css);
615  	if (!isw->new_wb)
616  		goto out_free;
617  
618  	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
619  		goto out_free;
620  
621  	isw->inodes[0] = inode;
622  
623  	/*
624  	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
625  	 * the RCU protected stat update paths to grab the i_page
626  	 * lock so that stat transfer can synchronize against them.
627  	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
628  	 */
629  	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
630  	queue_rcu_work(isw_wq, &isw->work);
631  	return;
632  
633  out_free:
634  	atomic_dec(&isw_nr_in_flight);
635  	if (isw->new_wb)
636  		wb_put(isw->new_wb);
637  	kfree(isw);
638  }
639  
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)640  static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
641  				   struct list_head *list, int *nr)
642  {
643  	struct inode *inode;
644  
645  	list_for_each_entry(inode, list, i_io_list) {
646  		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647  			continue;
648  
649  		isw->inodes[*nr] = inode;
650  		(*nr)++;
651  
652  		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
653  			return true;
654  	}
655  	return false;
656  }
657  
658  /**
659   * cleanup_offline_cgwb - detach associated inodes
660   * @wb: target wb
661   *
662   * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
663   * to eventually release the dying @wb.  Returns %true if not all inodes were
664   * switched and the function has to be restarted.
665   */
cleanup_offline_cgwb(struct bdi_writeback * wb)666  bool cleanup_offline_cgwb(struct bdi_writeback *wb)
667  {
668  	struct cgroup_subsys_state *memcg_css;
669  	struct inode_switch_wbs_context *isw;
670  	int nr;
671  	bool restart = false;
672  
673  	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
674  		      GFP_KERNEL);
675  	if (!isw)
676  		return restart;
677  
678  	atomic_inc(&isw_nr_in_flight);
679  
680  	for (memcg_css = wb->memcg_css->parent; memcg_css;
681  	     memcg_css = memcg_css->parent) {
682  		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
683  		if (isw->new_wb)
684  			break;
685  	}
686  	if (unlikely(!isw->new_wb))
687  		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
688  
689  	nr = 0;
690  	spin_lock(&wb->list_lock);
691  	/*
692  	 * In addition to the inodes that have completed writeback, also switch
693  	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
694  	 * inodes won't be written back for a long time when lazytime is
695  	 * enabled, and thus pinning the dying cgwbs. It won't break the
696  	 * bandwidth restrictions, as writeback of inode metadata is not
697  	 * accounted for.
698  	 */
699  	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
700  	if (!restart)
701  		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
702  	spin_unlock(&wb->list_lock);
703  
704  	/* no attached inodes? bail out */
705  	if (nr == 0) {
706  		atomic_dec(&isw_nr_in_flight);
707  		wb_put(isw->new_wb);
708  		kfree(isw);
709  		return restart;
710  	}
711  
712  	/*
713  	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
714  	 * the RCU protected stat update paths to grab the i_page
715  	 * lock so that stat transfer can synchronize against them.
716  	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
717  	 */
718  	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
719  	queue_rcu_work(isw_wq, &isw->work);
720  
721  	return restart;
722  }
723  
724  /**
725   * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
726   * @wbc: writeback_control of interest
727   * @inode: target inode
728   *
729   * @inode is locked and about to be written back under the control of @wbc.
730   * Record @inode's writeback context into @wbc and unlock the i_lock.  On
731   * writeback completion, wbc_detach_inode() should be called.  This is used
732   * to track the cgroup writeback context.
733   */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)734  void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
735  				 struct inode *inode)
736  {
737  	if (!inode_cgwb_enabled(inode)) {
738  		spin_unlock(&inode->i_lock);
739  		return;
740  	}
741  
742  	wbc->wb = inode_to_wb(inode);
743  	wbc->inode = inode;
744  
745  	wbc->wb_id = wbc->wb->memcg_css->id;
746  	wbc->wb_lcand_id = inode->i_wb_frn_winner;
747  	wbc->wb_tcand_id = 0;
748  	wbc->wb_bytes = 0;
749  	wbc->wb_lcand_bytes = 0;
750  	wbc->wb_tcand_bytes = 0;
751  
752  	wb_get(wbc->wb);
753  	spin_unlock(&inode->i_lock);
754  
755  	/*
756  	 * A dying wb indicates that either the blkcg associated with the
757  	 * memcg changed or the associated memcg is dying.  In the first
758  	 * case, a replacement wb should already be available and we should
759  	 * refresh the wb immediately.  In the second case, trying to
760  	 * refresh will keep failing.
761  	 */
762  	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
763  		inode_switch_wbs(inode, wbc->wb_id);
764  }
765  EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
766  
767  /**
768   * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
769   * @wbc: writeback_control of the just finished writeback
770   *
771   * To be called after a writeback attempt of an inode finishes and undoes
772   * wbc_attach_and_unlock_inode().  Can be called under any context.
773   *
774   * As concurrent write sharing of an inode is expected to be very rare and
775   * memcg only tracks page ownership on first-use basis severely confining
776   * the usefulness of such sharing, cgroup writeback tracks ownership
777   * per-inode.  While the support for concurrent write sharing of an inode
778   * is deemed unnecessary, an inode being written to by different cgroups at
779   * different points in time is a lot more common, and, more importantly,
780   * charging only by first-use can too readily lead to grossly incorrect
781   * behaviors (single foreign page can lead to gigabytes of writeback to be
782   * incorrectly attributed).
783   *
784   * To resolve this issue, cgroup writeback detects the majority dirtier of
785   * an inode and transfers the ownership to it.  To avoid unnecessary
786   * oscillation, the detection mechanism keeps track of history and gives
787   * out the switch verdict only if the foreign usage pattern is stable over
788   * a certain amount of time and/or writeback attempts.
789   *
790   * On each writeback attempt, @wbc tries to detect the majority writer
791   * using Boyer-Moore majority vote algorithm.  In addition to the byte
792   * count from the majority voting, it also counts the bytes written for the
793   * current wb and the last round's winner wb (max of last round's current
794   * wb, the winner from two rounds ago, and the last round's majority
795   * candidate).  Keeping track of the historical winner helps the algorithm
796   * to semi-reliably detect the most active writer even when it's not the
797   * absolute majority.
798   *
799   * Once the winner of the round is determined, whether the winner is
800   * foreign or not and how much IO time the round consumed is recorded in
801   * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
802   * over a certain threshold, the switch verdict is given.
803   */
wbc_detach_inode(struct writeback_control * wbc)804  void wbc_detach_inode(struct writeback_control *wbc)
805  {
806  	struct bdi_writeback *wb = wbc->wb;
807  	struct inode *inode = wbc->inode;
808  	unsigned long avg_time, max_bytes, max_time;
809  	u16 history;
810  	int max_id;
811  
812  	if (!wb)
813  		return;
814  
815  	history = inode->i_wb_frn_history;
816  	avg_time = inode->i_wb_frn_avg_time;
817  
818  	/* pick the winner of this round */
819  	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
820  	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
821  		max_id = wbc->wb_id;
822  		max_bytes = wbc->wb_bytes;
823  	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
824  		max_id = wbc->wb_lcand_id;
825  		max_bytes = wbc->wb_lcand_bytes;
826  	} else {
827  		max_id = wbc->wb_tcand_id;
828  		max_bytes = wbc->wb_tcand_bytes;
829  	}
830  
831  	/*
832  	 * Calculate the amount of IO time the winner consumed and fold it
833  	 * into the running average kept per inode.  If the consumed IO
834  	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
835  	 * deciding whether to switch or not.  This is to prevent one-off
836  	 * small dirtiers from skewing the verdict.
837  	 */
838  	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
839  				wb->avg_write_bandwidth);
840  	if (avg_time)
841  		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
842  			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
843  	else
844  		avg_time = max_time;	/* immediate catch up on first run */
845  
846  	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
847  		int slots;
848  
849  		/*
850  		 * The switch verdict is reached if foreign wb's consume
851  		 * more than a certain proportion of IO time in a
852  		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
853  		 * history mask where each bit represents one sixteenth of
854  		 * the period.  Determine the number of slots to shift into
855  		 * history from @max_time.
856  		 */
857  		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
858  			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
859  		history <<= slots;
860  		if (wbc->wb_id != max_id)
861  			history |= (1U << slots) - 1;
862  
863  		if (history)
864  			trace_inode_foreign_history(inode, wbc, history);
865  
866  		/*
867  		 * Switch if the current wb isn't the consistent winner.
868  		 * If there are multiple closely competing dirtiers, the
869  		 * inode may switch across them repeatedly over time, which
870  		 * is okay.  The main goal is avoiding keeping an inode on
871  		 * the wrong wb for an extended period of time.
872  		 */
873  		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
874  			inode_switch_wbs(inode, max_id);
875  	}
876  
877  	/*
878  	 * Multiple instances of this function may race to update the
879  	 * following fields but we don't mind occassional inaccuracies.
880  	 */
881  	inode->i_wb_frn_winner = max_id;
882  	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
883  	inode->i_wb_frn_history = history;
884  
885  	wb_put(wbc->wb);
886  	wbc->wb = NULL;
887  }
888  EXPORT_SYMBOL_GPL(wbc_detach_inode);
889  
890  /**
891   * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
892   * @wbc: writeback_control of the writeback in progress
893   * @page: page being written out
894   * @bytes: number of bytes being written out
895   *
896   * @bytes from @page are about to written out during the writeback
897   * controlled by @wbc.  Keep the book for foreign inode detection.  See
898   * wbc_detach_inode().
899   */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)900  void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
901  			      size_t bytes)
902  {
903  	struct folio *folio;
904  	struct cgroup_subsys_state *css;
905  	int id;
906  
907  	/*
908  	 * pageout() path doesn't attach @wbc to the inode being written
909  	 * out.  This is intentional as we don't want the function to block
910  	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
911  	 * regular writeback instead of writing things out itself.
912  	 */
913  	if (!wbc->wb || wbc->no_cgroup_owner)
914  		return;
915  
916  	folio = page_folio(page);
917  	css = mem_cgroup_css_from_folio(folio);
918  	/* dead cgroups shouldn't contribute to inode ownership arbitration */
919  	if (!(css->flags & CSS_ONLINE))
920  		return;
921  
922  	id = css->id;
923  
924  	if (id == wbc->wb_id) {
925  		wbc->wb_bytes += bytes;
926  		return;
927  	}
928  
929  	if (id == wbc->wb_lcand_id)
930  		wbc->wb_lcand_bytes += bytes;
931  
932  	/* Boyer-Moore majority vote algorithm */
933  	if (!wbc->wb_tcand_bytes)
934  		wbc->wb_tcand_id = id;
935  	if (id == wbc->wb_tcand_id)
936  		wbc->wb_tcand_bytes += bytes;
937  	else
938  		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
939  }
940  EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
941  
942  /**
943   * wb_split_bdi_pages - split nr_pages to write according to bandwidth
944   * @wb: target bdi_writeback to split @nr_pages to
945   * @nr_pages: number of pages to write for the whole bdi
946   *
947   * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
948   * relation to the total write bandwidth of all wb's w/ dirty inodes on
949   * @wb->bdi.
950   */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)951  static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
952  {
953  	unsigned long this_bw = wb->avg_write_bandwidth;
954  	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
955  
956  	if (nr_pages == LONG_MAX)
957  		return LONG_MAX;
958  
959  	/*
960  	 * This may be called on clean wb's and proportional distribution
961  	 * may not make sense, just use the original @nr_pages in those
962  	 * cases.  In general, we wanna err on the side of writing more.
963  	 */
964  	if (!tot_bw || this_bw >= tot_bw)
965  		return nr_pages;
966  	else
967  		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
968  }
969  
970  /**
971   * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
972   * @bdi: target backing_dev_info
973   * @base_work: wb_writeback_work to issue
974   * @skip_if_busy: skip wb's which already have writeback in progress
975   *
976   * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
977   * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
978   * distributed to the busy wbs according to each wb's proportion in the
979   * total active write bandwidth of @bdi.
980   */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)981  static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
982  				  struct wb_writeback_work *base_work,
983  				  bool skip_if_busy)
984  {
985  	struct bdi_writeback *last_wb = NULL;
986  	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
987  					      struct bdi_writeback, bdi_node);
988  
989  	might_sleep();
990  restart:
991  	rcu_read_lock();
992  	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
993  		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
994  		struct wb_writeback_work fallback_work;
995  		struct wb_writeback_work *work;
996  		long nr_pages;
997  
998  		if (last_wb) {
999  			wb_put(last_wb);
1000  			last_wb = NULL;
1001  		}
1002  
1003  		/* SYNC_ALL writes out I_DIRTY_TIME too */
1004  		if (!wb_has_dirty_io(wb) &&
1005  		    (base_work->sync_mode == WB_SYNC_NONE ||
1006  		     list_empty(&wb->b_dirty_time)))
1007  			continue;
1008  		if (skip_if_busy && writeback_in_progress(wb))
1009  			continue;
1010  
1011  		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1012  
1013  		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014  		if (work) {
1015  			*work = *base_work;
1016  			work->nr_pages = nr_pages;
1017  			work->auto_free = 1;
1018  			wb_queue_work(wb, work);
1019  			continue;
1020  		}
1021  
1022  		/*
1023  		 * If wb_tryget fails, the wb has been shutdown, skip it.
1024  		 *
1025  		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1026  		 * continuing iteration from @wb after dropping and
1027  		 * regrabbing rcu read lock.
1028  		 */
1029  		if (!wb_tryget(wb))
1030  			continue;
1031  
1032  		/* alloc failed, execute synchronously using on-stack fallback */
1033  		work = &fallback_work;
1034  		*work = *base_work;
1035  		work->nr_pages = nr_pages;
1036  		work->auto_free = 0;
1037  		work->done = &fallback_work_done;
1038  
1039  		wb_queue_work(wb, work);
1040  		last_wb = wb;
1041  
1042  		rcu_read_unlock();
1043  		wb_wait_for_completion(&fallback_work_done);
1044  		goto restart;
1045  	}
1046  	rcu_read_unlock();
1047  
1048  	if (last_wb)
1049  		wb_put(last_wb);
1050  }
1051  
1052  /**
1053   * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1054   * @bdi_id: target bdi id
1055   * @memcg_id: target memcg css id
1056   * @reason: reason why some writeback work initiated
1057   * @done: target wb_completion
1058   *
1059   * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1060   * with the specified parameters.
1061   */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1062  int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1063  			   enum wb_reason reason, struct wb_completion *done)
1064  {
1065  	struct backing_dev_info *bdi;
1066  	struct cgroup_subsys_state *memcg_css;
1067  	struct bdi_writeback *wb;
1068  	struct wb_writeback_work *work;
1069  	unsigned long dirty;
1070  	int ret;
1071  
1072  	/* lookup bdi and memcg */
1073  	bdi = bdi_get_by_id(bdi_id);
1074  	if (!bdi)
1075  		return -ENOENT;
1076  
1077  	rcu_read_lock();
1078  	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1079  	if (memcg_css && !css_tryget(memcg_css))
1080  		memcg_css = NULL;
1081  	rcu_read_unlock();
1082  	if (!memcg_css) {
1083  		ret = -ENOENT;
1084  		goto out_bdi_put;
1085  	}
1086  
1087  	/*
1088  	 * And find the associated wb.  If the wb isn't there already
1089  	 * there's nothing to flush, don't create one.
1090  	 */
1091  	wb = wb_get_lookup(bdi, memcg_css);
1092  	if (!wb) {
1093  		ret = -ENOENT;
1094  		goto out_css_put;
1095  	}
1096  
1097  	/*
1098  	 * The caller is attempting to write out most of
1099  	 * the currently dirty pages.  Let's take the current dirty page
1100  	 * count and inflate it by 25% which should be large enough to
1101  	 * flush out most dirty pages while avoiding getting livelocked by
1102  	 * concurrent dirtiers.
1103  	 *
1104  	 * BTW the memcg stats are flushed periodically and this is best-effort
1105  	 * estimation, so some potential error is ok.
1106  	 */
1107  	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1108  	dirty = dirty * 10 / 8;
1109  
1110  	/* issue the writeback work */
1111  	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1112  	if (work) {
1113  		work->nr_pages = dirty;
1114  		work->sync_mode = WB_SYNC_NONE;
1115  		work->range_cyclic = 1;
1116  		work->reason = reason;
1117  		work->done = done;
1118  		work->auto_free = 1;
1119  		wb_queue_work(wb, work);
1120  		ret = 0;
1121  	} else {
1122  		ret = -ENOMEM;
1123  	}
1124  
1125  	wb_put(wb);
1126  out_css_put:
1127  	css_put(memcg_css);
1128  out_bdi_put:
1129  	bdi_put(bdi);
1130  	return ret;
1131  }
1132  
1133  /**
1134   * cgroup_writeback_umount - flush inode wb switches for umount
1135   * @sb: target super_block
1136   *
1137   * This function is called when a super_block is about to be destroyed and
1138   * flushes in-flight inode wb switches.  An inode wb switch goes through
1139   * RCU and then workqueue, so the two need to be flushed in order to ensure
1140   * that all previously scheduled switches are finished.  As wb switches are
1141   * rare occurrences and synchronize_rcu() can take a while, perform
1142   * flushing iff wb switches are in flight.
1143   */
cgroup_writeback_umount(struct super_block * sb)1144  void cgroup_writeback_umount(struct super_block *sb)
1145  {
1146  
1147  	if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1148  		return;
1149  
1150  	/*
1151  	 * SB_ACTIVE should be reliably cleared before checking
1152  	 * isw_nr_in_flight, see generic_shutdown_super().
1153  	 */
1154  	smp_mb();
1155  
1156  	if (atomic_read(&isw_nr_in_flight)) {
1157  		/*
1158  		 * Use rcu_barrier() to wait for all pending callbacks to
1159  		 * ensure that all in-flight wb switches are in the workqueue.
1160  		 */
1161  		rcu_barrier();
1162  		flush_workqueue(isw_wq);
1163  	}
1164  }
1165  
cgroup_writeback_init(void)1166  static int __init cgroup_writeback_init(void)
1167  {
1168  	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1169  	if (!isw_wq)
1170  		return -ENOMEM;
1171  	return 0;
1172  }
1173  fs_initcall(cgroup_writeback_init);
1174  
1175  #else	/* CONFIG_CGROUP_WRITEBACK */
1176  
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1177  static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1178  static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1179  
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1180  static void inode_cgwb_move_to_attached(struct inode *inode,
1181  					struct bdi_writeback *wb)
1182  {
1183  	assert_spin_locked(&wb->list_lock);
1184  	assert_spin_locked(&inode->i_lock);
1185  	WARN_ON_ONCE(inode->i_state & I_FREEING);
1186  
1187  	inode->i_state &= ~I_SYNC_QUEUED;
1188  	list_del_init(&inode->i_io_list);
1189  	wb_io_lists_depopulated(wb);
1190  }
1191  
1192  static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1193  locked_inode_to_wb_and_lock_list(struct inode *inode)
1194  	__releases(&inode->i_lock)
1195  	__acquires(&wb->list_lock)
1196  {
1197  	struct bdi_writeback *wb = inode_to_wb(inode);
1198  
1199  	spin_unlock(&inode->i_lock);
1200  	spin_lock(&wb->list_lock);
1201  	return wb;
1202  }
1203  
inode_to_wb_and_lock_list(struct inode * inode)1204  static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1205  	__acquires(&wb->list_lock)
1206  {
1207  	struct bdi_writeback *wb = inode_to_wb(inode);
1208  
1209  	spin_lock(&wb->list_lock);
1210  	return wb;
1211  }
1212  
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1213  static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1214  {
1215  	return nr_pages;
1216  }
1217  
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1218  static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1219  				  struct wb_writeback_work *base_work,
1220  				  bool skip_if_busy)
1221  {
1222  	might_sleep();
1223  
1224  	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1225  		base_work->auto_free = 0;
1226  		wb_queue_work(&bdi->wb, base_work);
1227  	}
1228  }
1229  
1230  #endif	/* CONFIG_CGROUP_WRITEBACK */
1231  
1232  /*
1233   * Add in the number of potentially dirty inodes, because each inode
1234   * write can dirty pagecache in the underlying blockdev.
1235   */
get_nr_dirty_pages(void)1236  static unsigned long get_nr_dirty_pages(void)
1237  {
1238  	return global_node_page_state(NR_FILE_DIRTY) +
1239  		get_nr_dirty_inodes();
1240  }
1241  
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1242  static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1243  {
1244  	if (!wb_has_dirty_io(wb))
1245  		return;
1246  
1247  	/*
1248  	 * All callers of this function want to start writeback of all
1249  	 * dirty pages. Places like vmscan can call this at a very
1250  	 * high frequency, causing pointless allocations of tons of
1251  	 * work items and keeping the flusher threads busy retrieving
1252  	 * that work. Ensure that we only allow one of them pending and
1253  	 * inflight at the time.
1254  	 */
1255  	if (test_bit(WB_start_all, &wb->state) ||
1256  	    test_and_set_bit(WB_start_all, &wb->state))
1257  		return;
1258  
1259  	wb->start_all_reason = reason;
1260  	wb_wakeup(wb);
1261  }
1262  
1263  /**
1264   * wb_start_background_writeback - start background writeback
1265   * @wb: bdi_writback to write from
1266   *
1267   * Description:
1268   *   This makes sure WB_SYNC_NONE background writeback happens. When
1269   *   this function returns, it is only guaranteed that for given wb
1270   *   some IO is happening if we are over background dirty threshold.
1271   *   Caller need not hold sb s_umount semaphore.
1272   */
wb_start_background_writeback(struct bdi_writeback * wb)1273  void wb_start_background_writeback(struct bdi_writeback *wb)
1274  {
1275  	/*
1276  	 * We just wake up the flusher thread. It will perform background
1277  	 * writeback as soon as there is no other work to do.
1278  	 */
1279  	trace_writeback_wake_background(wb);
1280  	wb_wakeup(wb);
1281  }
1282  
1283  /*
1284   * Remove the inode from the writeback list it is on.
1285   */
inode_io_list_del(struct inode * inode)1286  void inode_io_list_del(struct inode *inode)
1287  {
1288  	struct bdi_writeback *wb;
1289  
1290  	wb = inode_to_wb_and_lock_list(inode);
1291  	spin_lock(&inode->i_lock);
1292  
1293  	inode->i_state &= ~I_SYNC_QUEUED;
1294  	list_del_init(&inode->i_io_list);
1295  	wb_io_lists_depopulated(wb);
1296  
1297  	spin_unlock(&inode->i_lock);
1298  	spin_unlock(&wb->list_lock);
1299  }
1300  EXPORT_SYMBOL(inode_io_list_del);
1301  
1302  /*
1303   * mark an inode as under writeback on the sb
1304   */
sb_mark_inode_writeback(struct inode * inode)1305  void sb_mark_inode_writeback(struct inode *inode)
1306  {
1307  	struct super_block *sb = inode->i_sb;
1308  	unsigned long flags;
1309  
1310  	if (list_empty(&inode->i_wb_list)) {
1311  		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1312  		if (list_empty(&inode->i_wb_list)) {
1313  			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1314  			trace_sb_mark_inode_writeback(inode);
1315  		}
1316  		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1317  	}
1318  }
1319  
1320  /*
1321   * clear an inode as under writeback on the sb
1322   */
sb_clear_inode_writeback(struct inode * inode)1323  void sb_clear_inode_writeback(struct inode *inode)
1324  {
1325  	struct super_block *sb = inode->i_sb;
1326  	unsigned long flags;
1327  
1328  	if (!list_empty(&inode->i_wb_list)) {
1329  		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1330  		if (!list_empty(&inode->i_wb_list)) {
1331  			list_del_init(&inode->i_wb_list);
1332  			trace_sb_clear_inode_writeback(inode);
1333  		}
1334  		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1335  	}
1336  }
1337  
1338  /*
1339   * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1340   * furthest end of its superblock's dirty-inode list.
1341   *
1342   * Before stamping the inode's ->dirtied_when, we check to see whether it is
1343   * already the most-recently-dirtied inode on the b_dirty list.  If that is
1344   * the case then the inode must have been redirtied while it was being written
1345   * out and we don't reset its dirtied_when.
1346   */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1347  static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1348  {
1349  	assert_spin_locked(&inode->i_lock);
1350  
1351  	inode->i_state &= ~I_SYNC_QUEUED;
1352  	/*
1353  	 * When the inode is being freed just don't bother with dirty list
1354  	 * tracking. Flush worker will ignore this inode anyway and it will
1355  	 * trigger assertions in inode_io_list_move_locked().
1356  	 */
1357  	if (inode->i_state & I_FREEING) {
1358  		list_del_init(&inode->i_io_list);
1359  		wb_io_lists_depopulated(wb);
1360  		return;
1361  	}
1362  	if (!list_empty(&wb->b_dirty)) {
1363  		struct inode *tail;
1364  
1365  		tail = wb_inode(wb->b_dirty.next);
1366  		if (time_before(inode->dirtied_when, tail->dirtied_when))
1367  			inode->dirtied_when = jiffies;
1368  	}
1369  	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1370  }
1371  
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1372  static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1373  {
1374  	spin_lock(&inode->i_lock);
1375  	redirty_tail_locked(inode, wb);
1376  	spin_unlock(&inode->i_lock);
1377  }
1378  
1379  /*
1380   * requeue inode for re-scanning after bdi->b_io list is exhausted.
1381   */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1382  static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1383  {
1384  	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1385  }
1386  
inode_sync_complete(struct inode * inode)1387  static void inode_sync_complete(struct inode *inode)
1388  {
1389  	assert_spin_locked(&inode->i_lock);
1390  
1391  	inode->i_state &= ~I_SYNC;
1392  	/* If inode is clean an unused, put it into LRU now... */
1393  	inode_add_lru(inode);
1394  	/* Called with inode->i_lock which ensures memory ordering. */
1395  	inode_wake_up_bit(inode, __I_SYNC);
1396  }
1397  
inode_dirtied_after(struct inode * inode,unsigned long t)1398  static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1399  {
1400  	bool ret = time_after(inode->dirtied_when, t);
1401  #ifndef CONFIG_64BIT
1402  	/*
1403  	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1404  	 * It _appears_ to be in the future, but is actually in distant past.
1405  	 * This test is necessary to prevent such wrapped-around relative times
1406  	 * from permanently stopping the whole bdi writeback.
1407  	 */
1408  	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1409  #endif
1410  	return ret;
1411  }
1412  
1413  /*
1414   * Move expired (dirtied before dirtied_before) dirty inodes from
1415   * @delaying_queue to @dispatch_queue.
1416   */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1417  static int move_expired_inodes(struct list_head *delaying_queue,
1418  			       struct list_head *dispatch_queue,
1419  			       unsigned long dirtied_before)
1420  {
1421  	LIST_HEAD(tmp);
1422  	struct list_head *pos, *node;
1423  	struct super_block *sb = NULL;
1424  	struct inode *inode;
1425  	int do_sb_sort = 0;
1426  	int moved = 0;
1427  
1428  	while (!list_empty(delaying_queue)) {
1429  		inode = wb_inode(delaying_queue->prev);
1430  		if (inode_dirtied_after(inode, dirtied_before))
1431  			break;
1432  		spin_lock(&inode->i_lock);
1433  		list_move(&inode->i_io_list, &tmp);
1434  		moved++;
1435  		inode->i_state |= I_SYNC_QUEUED;
1436  		spin_unlock(&inode->i_lock);
1437  		if (sb_is_blkdev_sb(inode->i_sb))
1438  			continue;
1439  		if (sb && sb != inode->i_sb)
1440  			do_sb_sort = 1;
1441  		sb = inode->i_sb;
1442  	}
1443  
1444  	/* just one sb in list, splice to dispatch_queue and we're done */
1445  	if (!do_sb_sort) {
1446  		list_splice(&tmp, dispatch_queue);
1447  		goto out;
1448  	}
1449  
1450  	/*
1451  	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1452  	 * we don't take inode->i_lock here because it is just a pointless overhead.
1453  	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1454  	 * fully under our control.
1455  	 */
1456  	while (!list_empty(&tmp)) {
1457  		sb = wb_inode(tmp.prev)->i_sb;
1458  		list_for_each_prev_safe(pos, node, &tmp) {
1459  			inode = wb_inode(pos);
1460  			if (inode->i_sb == sb)
1461  				list_move(&inode->i_io_list, dispatch_queue);
1462  		}
1463  	}
1464  out:
1465  	return moved;
1466  }
1467  
1468  /*
1469   * Queue all expired dirty inodes for io, eldest first.
1470   * Before
1471   *         newly dirtied     b_dirty    b_io    b_more_io
1472   *         =============>    gf         edc     BA
1473   * After
1474   *         newly dirtied     b_dirty    b_io    b_more_io
1475   *         =============>    g          fBAedc
1476   *                                           |
1477   *                                           +--> dequeue for IO
1478   */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1479  static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1480  		     unsigned long dirtied_before)
1481  {
1482  	int moved;
1483  	unsigned long time_expire_jif = dirtied_before;
1484  
1485  	assert_spin_locked(&wb->list_lock);
1486  	list_splice_init(&wb->b_more_io, &wb->b_io);
1487  	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1488  	if (!work->for_sync)
1489  		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1490  	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1491  				     time_expire_jif);
1492  	if (moved)
1493  		wb_io_lists_populated(wb);
1494  	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1495  }
1496  
write_inode(struct inode * inode,struct writeback_control * wbc)1497  static int write_inode(struct inode *inode, struct writeback_control *wbc)
1498  {
1499  	int ret;
1500  
1501  	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1502  		trace_writeback_write_inode_start(inode, wbc);
1503  		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1504  		trace_writeback_write_inode(inode, wbc);
1505  		return ret;
1506  	}
1507  	return 0;
1508  }
1509  
1510  /*
1511   * Wait for writeback on an inode to complete. Called with i_lock held.
1512   * Caller must make sure inode cannot go away when we drop i_lock.
1513   */
inode_wait_for_writeback(struct inode * inode)1514  void inode_wait_for_writeback(struct inode *inode)
1515  {
1516  	struct wait_bit_queue_entry wqe;
1517  	struct wait_queue_head *wq_head;
1518  
1519  	assert_spin_locked(&inode->i_lock);
1520  
1521  	if (!(inode->i_state & I_SYNC))
1522  		return;
1523  
1524  	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1525  	for (;;) {
1526  		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1527  		/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1528  		if (!(inode->i_state & I_SYNC))
1529  			break;
1530  		spin_unlock(&inode->i_lock);
1531  		schedule();
1532  		spin_lock(&inode->i_lock);
1533  	}
1534  	finish_wait(wq_head, &wqe.wq_entry);
1535  }
1536  
1537  /*
1538   * Sleep until I_SYNC is cleared. This function must be called with i_lock
1539   * held and drops it. It is aimed for callers not holding any inode reference
1540   * so once i_lock is dropped, inode can go away.
1541   */
inode_sleep_on_writeback(struct inode * inode)1542  static void inode_sleep_on_writeback(struct inode *inode)
1543  	__releases(inode->i_lock)
1544  {
1545  	struct wait_bit_queue_entry wqe;
1546  	struct wait_queue_head *wq_head;
1547  	bool sleep;
1548  
1549  	assert_spin_locked(&inode->i_lock);
1550  
1551  	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1552  	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1553  	/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1554  	sleep = !!(inode->i_state & I_SYNC);
1555  	spin_unlock(&inode->i_lock);
1556  	if (sleep)
1557  		schedule();
1558  	finish_wait(wq_head, &wqe.wq_entry);
1559  }
1560  
1561  /*
1562   * Find proper writeback list for the inode depending on its current state and
1563   * possibly also change of its state while we were doing writeback.  Here we
1564   * handle things such as livelock prevention or fairness of writeback among
1565   * inodes. This function can be called only by flusher thread - noone else
1566   * processes all inodes in writeback lists and requeueing inodes behind flusher
1567   * thread's back can have unexpected consequences.
1568   */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc,unsigned long dirtied_before)1569  static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1570  			  struct writeback_control *wbc,
1571  			  unsigned long dirtied_before)
1572  {
1573  	if (inode->i_state & I_FREEING)
1574  		return;
1575  
1576  	/*
1577  	 * Sync livelock prevention. Each inode is tagged and synced in one
1578  	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1579  	 * the dirty time to prevent enqueue and sync it again.
1580  	 */
1581  	if ((inode->i_state & I_DIRTY) &&
1582  	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1583  		inode->dirtied_when = jiffies;
1584  
1585  	if (wbc->pages_skipped) {
1586  		/*
1587  		 * Writeback is not making progress due to locked buffers.
1588  		 * Skip this inode for now. Although having skipped pages
1589  		 * is odd for clean inodes, it can happen for some
1590  		 * filesystems so handle that gracefully.
1591  		 */
1592  		if (inode->i_state & I_DIRTY_ALL)
1593  			redirty_tail_locked(inode, wb);
1594  		else
1595  			inode_cgwb_move_to_attached(inode, wb);
1596  		return;
1597  	}
1598  
1599  	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1600  		/*
1601  		 * We didn't write back all the pages.  nfs_writepages()
1602  		 * sometimes bales out without doing anything.
1603  		 */
1604  		if (wbc->nr_to_write <= 0 &&
1605  		    !inode_dirtied_after(inode, dirtied_before)) {
1606  			/* Slice used up. Queue for next turn. */
1607  			requeue_io(inode, wb);
1608  		} else {
1609  			/*
1610  			 * Writeback blocked by something other than
1611  			 * congestion. Delay the inode for some time to
1612  			 * avoid spinning on the CPU (100% iowait)
1613  			 * retrying writeback of the dirty page/inode
1614  			 * that cannot be performed immediately.
1615  			 */
1616  			redirty_tail_locked(inode, wb);
1617  		}
1618  	} else if (inode->i_state & I_DIRTY) {
1619  		/*
1620  		 * Filesystems can dirty the inode during writeback operations,
1621  		 * such as delayed allocation during submission or metadata
1622  		 * updates after data IO completion.
1623  		 */
1624  		redirty_tail_locked(inode, wb);
1625  	} else if (inode->i_state & I_DIRTY_TIME) {
1626  		inode->dirtied_when = jiffies;
1627  		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1628  		inode->i_state &= ~I_SYNC_QUEUED;
1629  	} else {
1630  		/* The inode is clean. Remove from writeback lists. */
1631  		inode_cgwb_move_to_attached(inode, wb);
1632  	}
1633  }
1634  
1635  /*
1636   * Write out an inode and its dirty pages (or some of its dirty pages, depending
1637   * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1638   *
1639   * This doesn't remove the inode from the writeback list it is on, except
1640   * potentially to move it from b_dirty_time to b_dirty due to timestamp
1641   * expiration.  The caller is otherwise responsible for writeback list handling.
1642   *
1643   * The caller is also responsible for setting the I_SYNC flag beforehand and
1644   * calling inode_sync_complete() to clear it afterwards.
1645   */
1646  static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1647  __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1648  {
1649  	struct address_space *mapping = inode->i_mapping;
1650  	long nr_to_write = wbc->nr_to_write;
1651  	unsigned dirty;
1652  	int ret;
1653  
1654  	WARN_ON(!(inode->i_state & I_SYNC));
1655  
1656  	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1657  
1658  	ret = do_writepages(mapping, wbc);
1659  
1660  	/*
1661  	 * Make sure to wait on the data before writing out the metadata.
1662  	 * This is important for filesystems that modify metadata on data
1663  	 * I/O completion. We don't do it for sync(2) writeback because it has a
1664  	 * separate, external IO completion path and ->sync_fs for guaranteeing
1665  	 * inode metadata is written back correctly.
1666  	 */
1667  	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1668  		int err = filemap_fdatawait(mapping);
1669  		if (ret == 0)
1670  			ret = err;
1671  	}
1672  
1673  	/*
1674  	 * If the inode has dirty timestamps and we need to write them, call
1675  	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1676  	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1677  	 */
1678  	if ((inode->i_state & I_DIRTY_TIME) &&
1679  	    (wbc->sync_mode == WB_SYNC_ALL ||
1680  	     time_after(jiffies, inode->dirtied_time_when +
1681  			dirtytime_expire_interval * HZ))) {
1682  		trace_writeback_lazytime(inode);
1683  		mark_inode_dirty_sync(inode);
1684  	}
1685  
1686  	/*
1687  	 * Get and clear the dirty flags from i_state.  This needs to be done
1688  	 * after calling writepages because some filesystems may redirty the
1689  	 * inode during writepages due to delalloc.  It also needs to be done
1690  	 * after handling timestamp expiration, as that may dirty the inode too.
1691  	 */
1692  	spin_lock(&inode->i_lock);
1693  	dirty = inode->i_state & I_DIRTY;
1694  	inode->i_state &= ~dirty;
1695  
1696  	/*
1697  	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1698  	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1699  	 * either they see the I_DIRTY bits cleared or we see the dirtied
1700  	 * inode.
1701  	 *
1702  	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1703  	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1704  	 * necessary.  This guarantees that either __mark_inode_dirty()
1705  	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1706  	 */
1707  	smp_mb();
1708  
1709  	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1710  		inode->i_state |= I_DIRTY_PAGES;
1711  	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1712  		if (!(inode->i_state & I_DIRTY_PAGES)) {
1713  			inode->i_state &= ~I_PINNING_NETFS_WB;
1714  			wbc->unpinned_netfs_wb = true;
1715  			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1716  		}
1717  	}
1718  
1719  	spin_unlock(&inode->i_lock);
1720  
1721  	/* Don't write the inode if only I_DIRTY_PAGES was set */
1722  	if (dirty & ~I_DIRTY_PAGES) {
1723  		int err = write_inode(inode, wbc);
1724  		if (ret == 0)
1725  			ret = err;
1726  	}
1727  	wbc->unpinned_netfs_wb = false;
1728  	trace_writeback_single_inode(inode, wbc, nr_to_write);
1729  	return ret;
1730  }
1731  
1732  /*
1733   * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1734   * the regular batched writeback done by the flusher threads in
1735   * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1736   * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1737   *
1738   * To prevent the inode from going away, either the caller must have a reference
1739   * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1740   */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1741  static int writeback_single_inode(struct inode *inode,
1742  				  struct writeback_control *wbc)
1743  {
1744  	struct bdi_writeback *wb;
1745  	int ret = 0;
1746  
1747  	spin_lock(&inode->i_lock);
1748  	if (!atomic_read(&inode->i_count))
1749  		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1750  	else
1751  		WARN_ON(inode->i_state & I_WILL_FREE);
1752  
1753  	if (inode->i_state & I_SYNC) {
1754  		/*
1755  		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1756  		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1757  		 * must wait for the existing writeback to complete, then do
1758  		 * writeback again if there's anything left.
1759  		 */
1760  		if (wbc->sync_mode != WB_SYNC_ALL)
1761  			goto out;
1762  		inode_wait_for_writeback(inode);
1763  	}
1764  	WARN_ON(inode->i_state & I_SYNC);
1765  	/*
1766  	 * If the inode is already fully clean, then there's nothing to do.
1767  	 *
1768  	 * For data-integrity syncs we also need to check whether any pages are
1769  	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1770  	 * there are any such pages, we'll need to wait for them.
1771  	 */
1772  	if (!(inode->i_state & I_DIRTY_ALL) &&
1773  	    (wbc->sync_mode != WB_SYNC_ALL ||
1774  	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1775  		goto out;
1776  	inode->i_state |= I_SYNC;
1777  	wbc_attach_and_unlock_inode(wbc, inode);
1778  
1779  	ret = __writeback_single_inode(inode, wbc);
1780  
1781  	wbc_detach_inode(wbc);
1782  
1783  	wb = inode_to_wb_and_lock_list(inode);
1784  	spin_lock(&inode->i_lock);
1785  	/*
1786  	 * If the inode is freeing, its i_io_list shoudn't be updated
1787  	 * as it can be finally deleted at this moment.
1788  	 */
1789  	if (!(inode->i_state & I_FREEING)) {
1790  		/*
1791  		 * If the inode is now fully clean, then it can be safely
1792  		 * removed from its writeback list (if any). Otherwise the
1793  		 * flusher threads are responsible for the writeback lists.
1794  		 */
1795  		if (!(inode->i_state & I_DIRTY_ALL))
1796  			inode_cgwb_move_to_attached(inode, wb);
1797  		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1798  			if ((inode->i_state & I_DIRTY))
1799  				redirty_tail_locked(inode, wb);
1800  			else if (inode->i_state & I_DIRTY_TIME) {
1801  				inode->dirtied_when = jiffies;
1802  				inode_io_list_move_locked(inode,
1803  							  wb,
1804  							  &wb->b_dirty_time);
1805  			}
1806  		}
1807  	}
1808  
1809  	spin_unlock(&wb->list_lock);
1810  	inode_sync_complete(inode);
1811  out:
1812  	spin_unlock(&inode->i_lock);
1813  	return ret;
1814  }
1815  
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1816  static long writeback_chunk_size(struct bdi_writeback *wb,
1817  				 struct wb_writeback_work *work)
1818  {
1819  	long pages;
1820  
1821  	/*
1822  	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1823  	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1824  	 * here avoids calling into writeback_inodes_wb() more than once.
1825  	 *
1826  	 * The intended call sequence for WB_SYNC_ALL writeback is:
1827  	 *
1828  	 *      wb_writeback()
1829  	 *          writeback_sb_inodes()       <== called only once
1830  	 *              write_cache_pages()     <== called once for each inode
1831  	 *                   (quickly) tag currently dirty pages
1832  	 *                   (maybe slowly) sync all tagged pages
1833  	 */
1834  	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1835  		pages = LONG_MAX;
1836  	else {
1837  		pages = min(wb->avg_write_bandwidth / 2,
1838  			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1839  		pages = min(pages, work->nr_pages);
1840  		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1841  				   MIN_WRITEBACK_PAGES);
1842  	}
1843  
1844  	return pages;
1845  }
1846  
1847  /*
1848   * Write a portion of b_io inodes which belong to @sb.
1849   *
1850   * Return the number of pages and/or inodes written.
1851   *
1852   * NOTE! This is called with wb->list_lock held, and will
1853   * unlock and relock that for each inode it ends up doing
1854   * IO for.
1855   */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1856  static long writeback_sb_inodes(struct super_block *sb,
1857  				struct bdi_writeback *wb,
1858  				struct wb_writeback_work *work)
1859  {
1860  	struct writeback_control wbc = {
1861  		.sync_mode		= work->sync_mode,
1862  		.tagged_writepages	= work->tagged_writepages,
1863  		.for_kupdate		= work->for_kupdate,
1864  		.for_background		= work->for_background,
1865  		.for_sync		= work->for_sync,
1866  		.range_cyclic		= work->range_cyclic,
1867  		.range_start		= 0,
1868  		.range_end		= LLONG_MAX,
1869  	};
1870  	unsigned long start_time = jiffies;
1871  	long write_chunk;
1872  	long total_wrote = 0;  /* count both pages and inodes */
1873  	unsigned long dirtied_before = jiffies;
1874  
1875  	if (work->for_kupdate)
1876  		dirtied_before = jiffies -
1877  			msecs_to_jiffies(dirty_expire_interval * 10);
1878  
1879  	while (!list_empty(&wb->b_io)) {
1880  		struct inode *inode = wb_inode(wb->b_io.prev);
1881  		struct bdi_writeback *tmp_wb;
1882  		long wrote;
1883  
1884  		if (inode->i_sb != sb) {
1885  			if (work->sb) {
1886  				/*
1887  				 * We only want to write back data for this
1888  				 * superblock, move all inodes not belonging
1889  				 * to it back onto the dirty list.
1890  				 */
1891  				redirty_tail(inode, wb);
1892  				continue;
1893  			}
1894  
1895  			/*
1896  			 * The inode belongs to a different superblock.
1897  			 * Bounce back to the caller to unpin this and
1898  			 * pin the next superblock.
1899  			 */
1900  			break;
1901  		}
1902  
1903  		/*
1904  		 * Don't bother with new inodes or inodes being freed, first
1905  		 * kind does not need periodic writeout yet, and for the latter
1906  		 * kind writeout is handled by the freer.
1907  		 */
1908  		spin_lock(&inode->i_lock);
1909  		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1910  			redirty_tail_locked(inode, wb);
1911  			spin_unlock(&inode->i_lock);
1912  			continue;
1913  		}
1914  		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1915  			/*
1916  			 * If this inode is locked for writeback and we are not
1917  			 * doing writeback-for-data-integrity, move it to
1918  			 * b_more_io so that writeback can proceed with the
1919  			 * other inodes on s_io.
1920  			 *
1921  			 * We'll have another go at writing back this inode
1922  			 * when we completed a full scan of b_io.
1923  			 */
1924  			requeue_io(inode, wb);
1925  			spin_unlock(&inode->i_lock);
1926  			trace_writeback_sb_inodes_requeue(inode);
1927  			continue;
1928  		}
1929  		spin_unlock(&wb->list_lock);
1930  
1931  		/*
1932  		 * We already requeued the inode if it had I_SYNC set and we
1933  		 * are doing WB_SYNC_NONE writeback. So this catches only the
1934  		 * WB_SYNC_ALL case.
1935  		 */
1936  		if (inode->i_state & I_SYNC) {
1937  			/* Wait for I_SYNC. This function drops i_lock... */
1938  			inode_sleep_on_writeback(inode);
1939  			/* Inode may be gone, start again */
1940  			spin_lock(&wb->list_lock);
1941  			continue;
1942  		}
1943  		inode->i_state |= I_SYNC;
1944  		wbc_attach_and_unlock_inode(&wbc, inode);
1945  
1946  		write_chunk = writeback_chunk_size(wb, work);
1947  		wbc.nr_to_write = write_chunk;
1948  		wbc.pages_skipped = 0;
1949  
1950  		/*
1951  		 * We use I_SYNC to pin the inode in memory. While it is set
1952  		 * evict_inode() will wait so the inode cannot be freed.
1953  		 */
1954  		__writeback_single_inode(inode, &wbc);
1955  
1956  		wbc_detach_inode(&wbc);
1957  		work->nr_pages -= write_chunk - wbc.nr_to_write;
1958  		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1959  		wrote = wrote < 0 ? 0 : wrote;
1960  		total_wrote += wrote;
1961  
1962  		if (need_resched()) {
1963  			/*
1964  			 * We're trying to balance between building up a nice
1965  			 * long list of IOs to improve our merge rate, and
1966  			 * getting those IOs out quickly for anyone throttling
1967  			 * in balance_dirty_pages().  cond_resched() doesn't
1968  			 * unplug, so get our IOs out the door before we
1969  			 * give up the CPU.
1970  			 */
1971  			blk_flush_plug(current->plug, false);
1972  			cond_resched();
1973  		}
1974  
1975  		/*
1976  		 * Requeue @inode if still dirty.  Be careful as @inode may
1977  		 * have been switched to another wb in the meantime.
1978  		 */
1979  		tmp_wb = inode_to_wb_and_lock_list(inode);
1980  		spin_lock(&inode->i_lock);
1981  		if (!(inode->i_state & I_DIRTY_ALL))
1982  			total_wrote++;
1983  		requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
1984  		inode_sync_complete(inode);
1985  		spin_unlock(&inode->i_lock);
1986  
1987  		if (unlikely(tmp_wb != wb)) {
1988  			spin_unlock(&tmp_wb->list_lock);
1989  			spin_lock(&wb->list_lock);
1990  		}
1991  
1992  		/*
1993  		 * bail out to wb_writeback() often enough to check
1994  		 * background threshold and other termination conditions.
1995  		 */
1996  		if (total_wrote) {
1997  			if (time_is_before_jiffies(start_time + HZ / 10UL))
1998  				break;
1999  			if (work->nr_pages <= 0)
2000  				break;
2001  		}
2002  	}
2003  	return total_wrote;
2004  }
2005  
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)2006  static long __writeback_inodes_wb(struct bdi_writeback *wb,
2007  				  struct wb_writeback_work *work)
2008  {
2009  	unsigned long start_time = jiffies;
2010  	long wrote = 0;
2011  
2012  	while (!list_empty(&wb->b_io)) {
2013  		struct inode *inode = wb_inode(wb->b_io.prev);
2014  		struct super_block *sb = inode->i_sb;
2015  
2016  		if (!super_trylock_shared(sb)) {
2017  			/*
2018  			 * super_trylock_shared() may fail consistently due to
2019  			 * s_umount being grabbed by someone else. Don't use
2020  			 * requeue_io() to avoid busy retrying the inode/sb.
2021  			 */
2022  			redirty_tail(inode, wb);
2023  			continue;
2024  		}
2025  		wrote += writeback_sb_inodes(sb, wb, work);
2026  		up_read(&sb->s_umount);
2027  
2028  		/* refer to the same tests at the end of writeback_sb_inodes */
2029  		if (wrote) {
2030  			if (time_is_before_jiffies(start_time + HZ / 10UL))
2031  				break;
2032  			if (work->nr_pages <= 0)
2033  				break;
2034  		}
2035  	}
2036  	/* Leave any unwritten inodes on b_io */
2037  	return wrote;
2038  }
2039  
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2040  static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2041  				enum wb_reason reason)
2042  {
2043  	struct wb_writeback_work work = {
2044  		.nr_pages	= nr_pages,
2045  		.sync_mode	= WB_SYNC_NONE,
2046  		.range_cyclic	= 1,
2047  		.reason		= reason,
2048  	};
2049  	struct blk_plug plug;
2050  
2051  	blk_start_plug(&plug);
2052  	spin_lock(&wb->list_lock);
2053  	if (list_empty(&wb->b_io))
2054  		queue_io(wb, &work, jiffies);
2055  	__writeback_inodes_wb(wb, &work);
2056  	spin_unlock(&wb->list_lock);
2057  	blk_finish_plug(&plug);
2058  
2059  	return nr_pages - work.nr_pages;
2060  }
2061  
2062  /*
2063   * Explicit flushing or periodic writeback of "old" data.
2064   *
2065   * Define "old": the first time one of an inode's pages is dirtied, we mark the
2066   * dirtying-time in the inode's address_space.  So this periodic writeback code
2067   * just walks the superblock inode list, writing back any inodes which are
2068   * older than a specific point in time.
2069   *
2070   * Try to run once per dirty_writeback_interval.  But if a writeback event
2071   * takes longer than a dirty_writeback_interval interval, then leave a
2072   * one-second gap.
2073   *
2074   * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2075   * all dirty pages if they are all attached to "old" mappings.
2076   */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2077  static long wb_writeback(struct bdi_writeback *wb,
2078  			 struct wb_writeback_work *work)
2079  {
2080  	long nr_pages = work->nr_pages;
2081  	unsigned long dirtied_before = jiffies;
2082  	struct inode *inode;
2083  	long progress;
2084  	struct blk_plug plug;
2085  	bool queued = false;
2086  
2087  	blk_start_plug(&plug);
2088  	for (;;) {
2089  		/*
2090  		 * Stop writeback when nr_pages has been consumed
2091  		 */
2092  		if (work->nr_pages <= 0)
2093  			break;
2094  
2095  		/*
2096  		 * Background writeout and kupdate-style writeback may
2097  		 * run forever. Stop them if there is other work to do
2098  		 * so that e.g. sync can proceed. They'll be restarted
2099  		 * after the other works are all done.
2100  		 */
2101  		if ((work->for_background || work->for_kupdate) &&
2102  		    !list_empty(&wb->work_list))
2103  			break;
2104  
2105  		/*
2106  		 * For background writeout, stop when we are below the
2107  		 * background dirty threshold
2108  		 */
2109  		if (work->for_background && !wb_over_bg_thresh(wb))
2110  			break;
2111  
2112  
2113  		spin_lock(&wb->list_lock);
2114  
2115  		trace_writeback_start(wb, work);
2116  		if (list_empty(&wb->b_io)) {
2117  			/*
2118  			 * Kupdate and background works are special and we want
2119  			 * to include all inodes that need writing. Livelock
2120  			 * avoidance is handled by these works yielding to any
2121  			 * other work so we are safe.
2122  			 */
2123  			if (work->for_kupdate) {
2124  				dirtied_before = jiffies -
2125  					msecs_to_jiffies(dirty_expire_interval *
2126  							 10);
2127  			} else if (work->for_background)
2128  				dirtied_before = jiffies;
2129  
2130  			queue_io(wb, work, dirtied_before);
2131  			queued = true;
2132  		}
2133  		if (work->sb)
2134  			progress = writeback_sb_inodes(work->sb, wb, work);
2135  		else
2136  			progress = __writeback_inodes_wb(wb, work);
2137  		trace_writeback_written(wb, work);
2138  
2139  		/*
2140  		 * Did we write something? Try for more
2141  		 *
2142  		 * Dirty inodes are moved to b_io for writeback in batches.
2143  		 * The completion of the current batch does not necessarily
2144  		 * mean the overall work is done. So we keep looping as long
2145  		 * as made some progress on cleaning pages or inodes.
2146  		 */
2147  		if (progress || !queued) {
2148  			spin_unlock(&wb->list_lock);
2149  			continue;
2150  		}
2151  
2152  		/*
2153  		 * No more inodes for IO, bail
2154  		 */
2155  		if (list_empty(&wb->b_more_io)) {
2156  			spin_unlock(&wb->list_lock);
2157  			break;
2158  		}
2159  
2160  		/*
2161  		 * Nothing written. Wait for some inode to
2162  		 * become available for writeback. Otherwise
2163  		 * we'll just busyloop.
2164  		 */
2165  		trace_writeback_wait(wb, work);
2166  		inode = wb_inode(wb->b_more_io.prev);
2167  		spin_lock(&inode->i_lock);
2168  		spin_unlock(&wb->list_lock);
2169  		/* This function drops i_lock... */
2170  		inode_sleep_on_writeback(inode);
2171  	}
2172  	blk_finish_plug(&plug);
2173  
2174  	return nr_pages - work->nr_pages;
2175  }
2176  
2177  /*
2178   * Return the next wb_writeback_work struct that hasn't been processed yet.
2179   */
get_next_work_item(struct bdi_writeback * wb)2180  static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2181  {
2182  	struct wb_writeback_work *work = NULL;
2183  
2184  	spin_lock_irq(&wb->work_lock);
2185  	if (!list_empty(&wb->work_list)) {
2186  		work = list_entry(wb->work_list.next,
2187  				  struct wb_writeback_work, list);
2188  		list_del_init(&work->list);
2189  	}
2190  	spin_unlock_irq(&wb->work_lock);
2191  	return work;
2192  }
2193  
wb_check_background_flush(struct bdi_writeback * wb)2194  static long wb_check_background_flush(struct bdi_writeback *wb)
2195  {
2196  	if (wb_over_bg_thresh(wb)) {
2197  
2198  		struct wb_writeback_work work = {
2199  			.nr_pages	= LONG_MAX,
2200  			.sync_mode	= WB_SYNC_NONE,
2201  			.for_background	= 1,
2202  			.range_cyclic	= 1,
2203  			.reason		= WB_REASON_BACKGROUND,
2204  		};
2205  
2206  		return wb_writeback(wb, &work);
2207  	}
2208  
2209  	return 0;
2210  }
2211  
wb_check_old_data_flush(struct bdi_writeback * wb)2212  static long wb_check_old_data_flush(struct bdi_writeback *wb)
2213  {
2214  	unsigned long expired;
2215  	long nr_pages;
2216  
2217  	/*
2218  	 * When set to zero, disable periodic writeback
2219  	 */
2220  	if (!dirty_writeback_interval)
2221  		return 0;
2222  
2223  	expired = wb->last_old_flush +
2224  			msecs_to_jiffies(dirty_writeback_interval * 10);
2225  	if (time_before(jiffies, expired))
2226  		return 0;
2227  
2228  	wb->last_old_flush = jiffies;
2229  	nr_pages = get_nr_dirty_pages();
2230  
2231  	if (nr_pages) {
2232  		struct wb_writeback_work work = {
2233  			.nr_pages	= nr_pages,
2234  			.sync_mode	= WB_SYNC_NONE,
2235  			.for_kupdate	= 1,
2236  			.range_cyclic	= 1,
2237  			.reason		= WB_REASON_PERIODIC,
2238  		};
2239  
2240  		return wb_writeback(wb, &work);
2241  	}
2242  
2243  	return 0;
2244  }
2245  
wb_check_start_all(struct bdi_writeback * wb)2246  static long wb_check_start_all(struct bdi_writeback *wb)
2247  {
2248  	long nr_pages;
2249  
2250  	if (!test_bit(WB_start_all, &wb->state))
2251  		return 0;
2252  
2253  	nr_pages = get_nr_dirty_pages();
2254  	if (nr_pages) {
2255  		struct wb_writeback_work work = {
2256  			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2257  			.sync_mode	= WB_SYNC_NONE,
2258  			.range_cyclic	= 1,
2259  			.reason		= wb->start_all_reason,
2260  		};
2261  
2262  		nr_pages = wb_writeback(wb, &work);
2263  	}
2264  
2265  	clear_bit(WB_start_all, &wb->state);
2266  	return nr_pages;
2267  }
2268  
2269  
2270  /*
2271   * Retrieve work items and do the writeback they describe
2272   */
wb_do_writeback(struct bdi_writeback * wb)2273  static long wb_do_writeback(struct bdi_writeback *wb)
2274  {
2275  	struct wb_writeback_work *work;
2276  	long wrote = 0;
2277  
2278  	set_bit(WB_writeback_running, &wb->state);
2279  	while ((work = get_next_work_item(wb)) != NULL) {
2280  		trace_writeback_exec(wb, work);
2281  		wrote += wb_writeback(wb, work);
2282  		finish_writeback_work(work);
2283  	}
2284  
2285  	/*
2286  	 * Check for a flush-everything request
2287  	 */
2288  	wrote += wb_check_start_all(wb);
2289  
2290  	/*
2291  	 * Check for periodic writeback, kupdated() style
2292  	 */
2293  	wrote += wb_check_old_data_flush(wb);
2294  	wrote += wb_check_background_flush(wb);
2295  	clear_bit(WB_writeback_running, &wb->state);
2296  
2297  	return wrote;
2298  }
2299  
2300  /*
2301   * Handle writeback of dirty data for the device backed by this bdi. Also
2302   * reschedules periodically and does kupdated style flushing.
2303   */
wb_workfn(struct work_struct * work)2304  void wb_workfn(struct work_struct *work)
2305  {
2306  	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2307  						struct bdi_writeback, dwork);
2308  	long pages_written;
2309  
2310  	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2311  
2312  	if (likely(!current_is_workqueue_rescuer() ||
2313  		   !test_bit(WB_registered, &wb->state))) {
2314  		/*
2315  		 * The normal path.  Keep writing back @wb until its
2316  		 * work_list is empty.  Note that this path is also taken
2317  		 * if @wb is shutting down even when we're running off the
2318  		 * rescuer as work_list needs to be drained.
2319  		 */
2320  		do {
2321  			pages_written = wb_do_writeback(wb);
2322  			trace_writeback_pages_written(pages_written);
2323  		} while (!list_empty(&wb->work_list));
2324  	} else {
2325  		/*
2326  		 * bdi_wq can't get enough workers and we're running off
2327  		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2328  		 * enough for efficient IO.
2329  		 */
2330  		pages_written = writeback_inodes_wb(wb, 1024,
2331  						    WB_REASON_FORKER_THREAD);
2332  		trace_writeback_pages_written(pages_written);
2333  	}
2334  
2335  	if (!list_empty(&wb->work_list))
2336  		wb_wakeup(wb);
2337  	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2338  		wb_wakeup_delayed(wb);
2339  }
2340  
2341  /*
2342   * Start writeback of all dirty pages on this bdi.
2343   */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2344  static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2345  					 enum wb_reason reason)
2346  {
2347  	struct bdi_writeback *wb;
2348  
2349  	if (!bdi_has_dirty_io(bdi))
2350  		return;
2351  
2352  	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2353  		wb_start_writeback(wb, reason);
2354  }
2355  
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2356  void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2357  				enum wb_reason reason)
2358  {
2359  	rcu_read_lock();
2360  	__wakeup_flusher_threads_bdi(bdi, reason);
2361  	rcu_read_unlock();
2362  }
2363  
2364  /*
2365   * Wakeup the flusher threads to start writeback of all currently dirty pages
2366   */
wakeup_flusher_threads(enum wb_reason reason)2367  void wakeup_flusher_threads(enum wb_reason reason)
2368  {
2369  	struct backing_dev_info *bdi;
2370  
2371  	/*
2372  	 * If we are expecting writeback progress we must submit plugged IO.
2373  	 */
2374  	blk_flush_plug(current->plug, true);
2375  
2376  	rcu_read_lock();
2377  	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2378  		__wakeup_flusher_threads_bdi(bdi, reason);
2379  	rcu_read_unlock();
2380  }
2381  
2382  /*
2383   * Wake up bdi's periodically to make sure dirtytime inodes gets
2384   * written back periodically.  We deliberately do *not* check the
2385   * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2386   * kernel to be constantly waking up once there are any dirtytime
2387   * inodes on the system.  So instead we define a separate delayed work
2388   * function which gets called much more rarely.  (By default, only
2389   * once every 12 hours.)
2390   *
2391   * If there is any other write activity going on in the file system,
2392   * this function won't be necessary.  But if the only thing that has
2393   * happened on the file system is a dirtytime inode caused by an atime
2394   * update, we need this infrastructure below to make sure that inode
2395   * eventually gets pushed out to disk.
2396   */
2397  static void wakeup_dirtytime_writeback(struct work_struct *w);
2398  static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2399  
wakeup_dirtytime_writeback(struct work_struct * w)2400  static void wakeup_dirtytime_writeback(struct work_struct *w)
2401  {
2402  	struct backing_dev_info *bdi;
2403  
2404  	rcu_read_lock();
2405  	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2406  		struct bdi_writeback *wb;
2407  
2408  		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2409  			if (!list_empty(&wb->b_dirty_time))
2410  				wb_wakeup(wb);
2411  	}
2412  	rcu_read_unlock();
2413  	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2414  }
2415  
start_dirtytime_writeback(void)2416  static int __init start_dirtytime_writeback(void)
2417  {
2418  	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2419  	return 0;
2420  }
2421  __initcall(start_dirtytime_writeback);
2422  
dirtytime_interval_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2423  int dirtytime_interval_handler(const struct ctl_table *table, int write,
2424  			       void *buffer, size_t *lenp, loff_t *ppos)
2425  {
2426  	int ret;
2427  
2428  	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2429  	if (ret == 0 && write)
2430  		mod_delayed_work(system_wq, &dirtytime_work, 0);
2431  	return ret;
2432  }
2433  
2434  /**
2435   * __mark_inode_dirty -	internal function to mark an inode dirty
2436   *
2437   * @inode: inode to mark
2438   * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2439   *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2440   *	   with I_DIRTY_PAGES.
2441   *
2442   * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2443   * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2444   *
2445   * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2446   * instead of calling this directly.
2447   *
2448   * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2449   * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2450   * even if they are later hashed, as they will have been marked dirty already.
2451   *
2452   * In short, ensure you hash any inodes _before_ you start marking them dirty.
2453   *
2454   * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2455   * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2456   * the kernel-internal blockdev inode represents the dirtying time of the
2457   * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2458   * page->mapping->host, so the page-dirtying time is recorded in the internal
2459   * blockdev inode.
2460   */
__mark_inode_dirty(struct inode * inode,int flags)2461  void __mark_inode_dirty(struct inode *inode, int flags)
2462  {
2463  	struct super_block *sb = inode->i_sb;
2464  	int dirtytime = 0;
2465  	struct bdi_writeback *wb = NULL;
2466  
2467  	trace_writeback_mark_inode_dirty(inode, flags);
2468  
2469  	if (flags & I_DIRTY_INODE) {
2470  		/*
2471  		 * Inode timestamp update will piggback on this dirtying.
2472  		 * We tell ->dirty_inode callback that timestamps need to
2473  		 * be updated by setting I_DIRTY_TIME in flags.
2474  		 */
2475  		if (inode->i_state & I_DIRTY_TIME) {
2476  			spin_lock(&inode->i_lock);
2477  			if (inode->i_state & I_DIRTY_TIME) {
2478  				inode->i_state &= ~I_DIRTY_TIME;
2479  				flags |= I_DIRTY_TIME;
2480  			}
2481  			spin_unlock(&inode->i_lock);
2482  		}
2483  
2484  		/*
2485  		 * Notify the filesystem about the inode being dirtied, so that
2486  		 * (if needed) it can update on-disk fields and journal the
2487  		 * inode.  This is only needed when the inode itself is being
2488  		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2489  		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2490  		 */
2491  		trace_writeback_dirty_inode_start(inode, flags);
2492  		if (sb->s_op->dirty_inode)
2493  			sb->s_op->dirty_inode(inode,
2494  				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2495  		trace_writeback_dirty_inode(inode, flags);
2496  
2497  		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2498  		flags &= ~I_DIRTY_TIME;
2499  	} else {
2500  		/*
2501  		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2502  		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2503  		 * in one call to __mark_inode_dirty().)
2504  		 */
2505  		dirtytime = flags & I_DIRTY_TIME;
2506  		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2507  	}
2508  
2509  	/*
2510  	 * Paired with smp_mb() in __writeback_single_inode() for the
2511  	 * following lockless i_state test.  See there for details.
2512  	 */
2513  	smp_mb();
2514  
2515  	if ((inode->i_state & flags) == flags)
2516  		return;
2517  
2518  	spin_lock(&inode->i_lock);
2519  	if ((inode->i_state & flags) != flags) {
2520  		const int was_dirty = inode->i_state & I_DIRTY;
2521  
2522  		inode_attach_wb(inode, NULL);
2523  
2524  		inode->i_state |= flags;
2525  
2526  		/*
2527  		 * Grab inode's wb early because it requires dropping i_lock and we
2528  		 * need to make sure following checks happen atomically with dirty
2529  		 * list handling so that we don't move inodes under flush worker's
2530  		 * hands.
2531  		 */
2532  		if (!was_dirty) {
2533  			wb = locked_inode_to_wb_and_lock_list(inode);
2534  			spin_lock(&inode->i_lock);
2535  		}
2536  
2537  		/*
2538  		 * If the inode is queued for writeback by flush worker, just
2539  		 * update its dirty state. Once the flush worker is done with
2540  		 * the inode it will place it on the appropriate superblock
2541  		 * list, based upon its state.
2542  		 */
2543  		if (inode->i_state & I_SYNC_QUEUED)
2544  			goto out_unlock;
2545  
2546  		/*
2547  		 * Only add valid (hashed) inodes to the superblock's
2548  		 * dirty list.  Add blockdev inodes as well.
2549  		 */
2550  		if (!S_ISBLK(inode->i_mode)) {
2551  			if (inode_unhashed(inode))
2552  				goto out_unlock;
2553  		}
2554  		if (inode->i_state & I_FREEING)
2555  			goto out_unlock;
2556  
2557  		/*
2558  		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2559  		 * reposition it (that would break b_dirty time-ordering).
2560  		 */
2561  		if (!was_dirty) {
2562  			struct list_head *dirty_list;
2563  			bool wakeup_bdi = false;
2564  
2565  			inode->dirtied_when = jiffies;
2566  			if (dirtytime)
2567  				inode->dirtied_time_when = jiffies;
2568  
2569  			if (inode->i_state & I_DIRTY)
2570  				dirty_list = &wb->b_dirty;
2571  			else
2572  				dirty_list = &wb->b_dirty_time;
2573  
2574  			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2575  							       dirty_list);
2576  
2577  			spin_unlock(&wb->list_lock);
2578  			spin_unlock(&inode->i_lock);
2579  			trace_writeback_dirty_inode_enqueue(inode);
2580  
2581  			/*
2582  			 * If this is the first dirty inode for this bdi,
2583  			 * we have to wake-up the corresponding bdi thread
2584  			 * to make sure background write-back happens
2585  			 * later.
2586  			 */
2587  			if (wakeup_bdi &&
2588  			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2589  				wb_wakeup_delayed(wb);
2590  			return;
2591  		}
2592  	}
2593  out_unlock:
2594  	if (wb)
2595  		spin_unlock(&wb->list_lock);
2596  	spin_unlock(&inode->i_lock);
2597  }
2598  EXPORT_SYMBOL(__mark_inode_dirty);
2599  
2600  /*
2601   * The @s_sync_lock is used to serialise concurrent sync operations
2602   * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2603   * Concurrent callers will block on the s_sync_lock rather than doing contending
2604   * walks. The queueing maintains sync(2) required behaviour as all the IO that
2605   * has been issued up to the time this function is enter is guaranteed to be
2606   * completed by the time we have gained the lock and waited for all IO that is
2607   * in progress regardless of the order callers are granted the lock.
2608   */
wait_sb_inodes(struct super_block * sb)2609  static void wait_sb_inodes(struct super_block *sb)
2610  {
2611  	LIST_HEAD(sync_list);
2612  
2613  	/*
2614  	 * We need to be protected against the filesystem going from
2615  	 * r/o to r/w or vice versa.
2616  	 */
2617  	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2618  
2619  	mutex_lock(&sb->s_sync_lock);
2620  
2621  	/*
2622  	 * Splice the writeback list onto a temporary list to avoid waiting on
2623  	 * inodes that have started writeback after this point.
2624  	 *
2625  	 * Use rcu_read_lock() to keep the inodes around until we have a
2626  	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2627  	 * the local list because inodes can be dropped from either by writeback
2628  	 * completion.
2629  	 */
2630  	rcu_read_lock();
2631  	spin_lock_irq(&sb->s_inode_wblist_lock);
2632  	list_splice_init(&sb->s_inodes_wb, &sync_list);
2633  
2634  	/*
2635  	 * Data integrity sync. Must wait for all pages under writeback, because
2636  	 * there may have been pages dirtied before our sync call, but which had
2637  	 * writeout started before we write it out.  In which case, the inode
2638  	 * may not be on the dirty list, but we still have to wait for that
2639  	 * writeout.
2640  	 */
2641  	while (!list_empty(&sync_list)) {
2642  		struct inode *inode = list_first_entry(&sync_list, struct inode,
2643  						       i_wb_list);
2644  		struct address_space *mapping = inode->i_mapping;
2645  
2646  		/*
2647  		 * Move each inode back to the wb list before we drop the lock
2648  		 * to preserve consistency between i_wb_list and the mapping
2649  		 * writeback tag. Writeback completion is responsible to remove
2650  		 * the inode from either list once the writeback tag is cleared.
2651  		 */
2652  		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2653  
2654  		/*
2655  		 * The mapping can appear untagged while still on-list since we
2656  		 * do not have the mapping lock. Skip it here, wb completion
2657  		 * will remove it.
2658  		 */
2659  		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2660  			continue;
2661  
2662  		spin_unlock_irq(&sb->s_inode_wblist_lock);
2663  
2664  		spin_lock(&inode->i_lock);
2665  		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2666  			spin_unlock(&inode->i_lock);
2667  
2668  			spin_lock_irq(&sb->s_inode_wblist_lock);
2669  			continue;
2670  		}
2671  		__iget(inode);
2672  		spin_unlock(&inode->i_lock);
2673  		rcu_read_unlock();
2674  
2675  		/*
2676  		 * We keep the error status of individual mapping so that
2677  		 * applications can catch the writeback error using fsync(2).
2678  		 * See filemap_fdatawait_keep_errors() for details.
2679  		 */
2680  		filemap_fdatawait_keep_errors(mapping);
2681  
2682  		cond_resched();
2683  
2684  		iput(inode);
2685  
2686  		rcu_read_lock();
2687  		spin_lock_irq(&sb->s_inode_wblist_lock);
2688  	}
2689  	spin_unlock_irq(&sb->s_inode_wblist_lock);
2690  	rcu_read_unlock();
2691  	mutex_unlock(&sb->s_sync_lock);
2692  }
2693  
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2694  static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2695  				     enum wb_reason reason, bool skip_if_busy)
2696  {
2697  	struct backing_dev_info *bdi = sb->s_bdi;
2698  	DEFINE_WB_COMPLETION(done, bdi);
2699  	struct wb_writeback_work work = {
2700  		.sb			= sb,
2701  		.sync_mode		= WB_SYNC_NONE,
2702  		.tagged_writepages	= 1,
2703  		.done			= &done,
2704  		.nr_pages		= nr,
2705  		.reason			= reason,
2706  	};
2707  
2708  	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2709  		return;
2710  	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2711  
2712  	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2713  	wb_wait_for_completion(&done);
2714  }
2715  
2716  /**
2717   * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2718   * @sb: the superblock
2719   * @nr: the number of pages to write
2720   * @reason: reason why some writeback work initiated
2721   *
2722   * Start writeback on some inodes on this super_block. No guarantees are made
2723   * on how many (if any) will be written, and this function does not wait
2724   * for IO completion of submitted IO.
2725   */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2726  void writeback_inodes_sb_nr(struct super_block *sb,
2727  			    unsigned long nr,
2728  			    enum wb_reason reason)
2729  {
2730  	__writeback_inodes_sb_nr(sb, nr, reason, false);
2731  }
2732  EXPORT_SYMBOL(writeback_inodes_sb_nr);
2733  
2734  /**
2735   * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2736   * @sb: the superblock
2737   * @reason: reason why some writeback work was initiated
2738   *
2739   * Start writeback on some inodes on this super_block. No guarantees are made
2740   * on how many (if any) will be written, and this function does not wait
2741   * for IO completion of submitted IO.
2742   */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2743  void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2744  {
2745  	writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2746  }
2747  EXPORT_SYMBOL(writeback_inodes_sb);
2748  
2749  /**
2750   * try_to_writeback_inodes_sb - try to start writeback if none underway
2751   * @sb: the superblock
2752   * @reason: reason why some writeback work was initiated
2753   *
2754   * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2755   */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2756  void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2757  {
2758  	if (!down_read_trylock(&sb->s_umount))
2759  		return;
2760  
2761  	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2762  	up_read(&sb->s_umount);
2763  }
2764  EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2765  
2766  /**
2767   * sync_inodes_sb	-	sync sb inode pages
2768   * @sb: the superblock
2769   *
2770   * This function writes and waits on any dirty inode belonging to this
2771   * super_block.
2772   */
sync_inodes_sb(struct super_block * sb)2773  void sync_inodes_sb(struct super_block *sb)
2774  {
2775  	struct backing_dev_info *bdi = sb->s_bdi;
2776  	DEFINE_WB_COMPLETION(done, bdi);
2777  	struct wb_writeback_work work = {
2778  		.sb		= sb,
2779  		.sync_mode	= WB_SYNC_ALL,
2780  		.nr_pages	= LONG_MAX,
2781  		.range_cyclic	= 0,
2782  		.done		= &done,
2783  		.reason		= WB_REASON_SYNC,
2784  		.for_sync	= 1,
2785  	};
2786  
2787  	/*
2788  	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2789  	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2790  	 * bdi_has_dirty() need to be written out too.
2791  	 */
2792  	if (bdi == &noop_backing_dev_info)
2793  		return;
2794  	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2795  
2796  	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2797  	bdi_down_write_wb_switch_rwsem(bdi);
2798  	bdi_split_work_to_wbs(bdi, &work, false);
2799  	wb_wait_for_completion(&done);
2800  	bdi_up_write_wb_switch_rwsem(bdi);
2801  
2802  	wait_sb_inodes(sb);
2803  }
2804  EXPORT_SYMBOL(sync_inodes_sb);
2805  
2806  /**
2807   * write_inode_now	-	write an inode to disk
2808   * @inode: inode to write to disk
2809   * @sync: whether the write should be synchronous or not
2810   *
2811   * This function commits an inode to disk immediately if it is dirty. This is
2812   * primarily needed by knfsd.
2813   *
2814   * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2815   */
write_inode_now(struct inode * inode,int sync)2816  int write_inode_now(struct inode *inode, int sync)
2817  {
2818  	struct writeback_control wbc = {
2819  		.nr_to_write = LONG_MAX,
2820  		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2821  		.range_start = 0,
2822  		.range_end = LLONG_MAX,
2823  	};
2824  
2825  	if (!mapping_can_writeback(inode->i_mapping))
2826  		wbc.nr_to_write = 0;
2827  
2828  	might_sleep();
2829  	return writeback_single_inode(inode, &wbc);
2830  }
2831  EXPORT_SYMBOL(write_inode_now);
2832  
2833  /**
2834   * sync_inode_metadata - write an inode to disk
2835   * @inode: the inode to sync
2836   * @wait: wait for I/O to complete.
2837   *
2838   * Write an inode to disk and adjust its dirty state after completion.
2839   *
2840   * Note: only writes the actual inode, no associated data or other metadata.
2841   */
sync_inode_metadata(struct inode * inode,int wait)2842  int sync_inode_metadata(struct inode *inode, int wait)
2843  {
2844  	struct writeback_control wbc = {
2845  		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2846  		.nr_to_write = 0, /* metadata-only */
2847  	};
2848  
2849  	return writeback_single_inode(inode, &wbc);
2850  }
2851  EXPORT_SYMBOL(sync_inode_metadata);
2852