1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * VMware vSockets Driver
4   *
5   * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6   */
7  
8  /* Implementation notes:
9   *
10   * - There are two kinds of sockets: those created by user action (such as
11   * calling socket(2)) and those created by incoming connection request packets.
12   *
13   * - There are two "global" tables, one for bound sockets (sockets that have
14   * specified an address that they are responsible for) and one for connected
15   * sockets (sockets that have established a connection with another socket).
16   * These tables are "global" in that all sockets on the system are placed
17   * within them. - Note, though, that the bound table contains an extra entry
18   * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19   * that list. The bound table is used solely for lookup of sockets when packets
20   * are received and that's not necessary for SOCK_DGRAM sockets since we create
21   * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22   * sockets out of the bound hash buckets will reduce the chance of collisions
23   * when looking for SOCK_STREAM sockets and prevents us from having to check the
24   * socket type in the hash table lookups.
25   *
26   * - Sockets created by user action will either be "client" sockets that
27   * initiate a connection or "server" sockets that listen for connections; we do
28   * not support simultaneous connects (two "client" sockets connecting).
29   *
30   * - "Server" sockets are referred to as listener sockets throughout this
31   * implementation because they are in the TCP_LISTEN state.  When a
32   * connection request is received (the second kind of socket mentioned above),
33   * we create a new socket and refer to it as a pending socket.  These pending
34   * sockets are placed on the pending connection list of the listener socket.
35   * When future packets are received for the address the listener socket is
36   * bound to, we check if the source of the packet is from one that has an
37   * existing pending connection.  If it does, we process the packet for the
38   * pending socket.  When that socket reaches the connected state, it is removed
39   * from the listener socket's pending list and enqueued in the listener
40   * socket's accept queue.  Callers of accept(2) will accept connected sockets
41   * from the listener socket's accept queue.  If the socket cannot be accepted
42   * for some reason then it is marked rejected.  Once the connection is
43   * accepted, it is owned by the user process and the responsibility for cleanup
44   * falls with that user process.
45   *
46   * - It is possible that these pending sockets will never reach the connected
47   * state; in fact, we may never receive another packet after the connection
48   * request.  Because of this, we must schedule a cleanup function to run in the
49   * future, after some amount of time passes where a connection should have been
50   * established.  This function ensures that the socket is off all lists so it
51   * cannot be retrieved, then drops all references to the socket so it is cleaned
52   * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53   * function will also cleanup rejected sockets, those that reach the connected
54   * state but leave it before they have been accepted.
55   *
56   * - Lock ordering for pending or accept queue sockets is:
57   *
58   *     lock_sock(listener);
59   *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60   *
61   * Using explicit nested locking keeps lockdep happy since normally only one
62   * lock of a given class may be taken at a time.
63   *
64   * - Sockets created by user action will be cleaned up when the user process
65   * calls close(2), causing our release implementation to be called. Our release
66   * implementation will perform some cleanup then drop the last reference so our
67   * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68   * perform additional cleanup that's common for both types of sockets.
69   *
70   * - A socket's reference count is what ensures that the structure won't be
71   * freed.  Each entry in a list (such as the "global" bound and connected tables
72   * and the listener socket's pending list and connected queue) ensures a
73   * reference.  When we defer work until process context and pass a socket as our
74   * argument, we must ensure the reference count is increased to ensure the
75   * socket isn't freed before the function is run; the deferred function will
76   * then drop the reference.
77   *
78   * - sk->sk_state uses the TCP state constants because they are widely used by
79   * other address families and exposed to userspace tools like ss(8):
80   *
81   *   TCP_CLOSE - unconnected
82   *   TCP_SYN_SENT - connecting
83   *   TCP_ESTABLISHED - connected
84   *   TCP_CLOSING - disconnecting
85   *   TCP_LISTEN - listening
86   */
87  
88  #include <linux/compat.h>
89  #include <linux/types.h>
90  #include <linux/bitops.h>
91  #include <linux/cred.h>
92  #include <linux/errqueue.h>
93  #include <linux/init.h>
94  #include <linux/io.h>
95  #include <linux/kernel.h>
96  #include <linux/sched/signal.h>
97  #include <linux/kmod.h>
98  #include <linux/list.h>
99  #include <linux/miscdevice.h>
100  #include <linux/module.h>
101  #include <linux/mutex.h>
102  #include <linux/net.h>
103  #include <linux/poll.h>
104  #include <linux/random.h>
105  #include <linux/skbuff.h>
106  #include <linux/smp.h>
107  #include <linux/socket.h>
108  #include <linux/stddef.h>
109  #include <linux/unistd.h>
110  #include <linux/wait.h>
111  #include <linux/workqueue.h>
112  #include <net/sock.h>
113  #include <net/af_vsock.h>
114  #include <uapi/linux/vm_sockets.h>
115  #include <uapi/asm-generic/ioctls.h>
116  
117  static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118  static void vsock_sk_destruct(struct sock *sk);
119  static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120  
121  /* Protocol family. */
122  struct proto vsock_proto = {
123  	.name = "AF_VSOCK",
124  	.owner = THIS_MODULE,
125  	.obj_size = sizeof(struct vsock_sock),
126  #ifdef CONFIG_BPF_SYSCALL
127  	.psock_update_sk_prot = vsock_bpf_update_proto,
128  #endif
129  };
130  
131  /* The default peer timeout indicates how long we will wait for a peer response
132   * to a control message.
133   */
134  #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
135  
136  #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
137  #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
138  #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
139  
140  /* Transport used for host->guest communication */
141  static const struct vsock_transport *transport_h2g;
142  /* Transport used for guest->host communication */
143  static const struct vsock_transport *transport_g2h;
144  /* Transport used for DGRAM communication */
145  static const struct vsock_transport *transport_dgram;
146  /* Transport used for local communication */
147  static const struct vsock_transport *transport_local;
148  static DEFINE_MUTEX(vsock_register_mutex);
149  
150  /**** UTILS ****/
151  
152  /* Each bound VSocket is stored in the bind hash table and each connected
153   * VSocket is stored in the connected hash table.
154   *
155   * Unbound sockets are all put on the same list attached to the end of the hash
156   * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
157   * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158   * represents the list that addr hashes to).
159   *
160   * Specifically, we initialize the vsock_bind_table array to a size of
161   * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162   * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163   * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
164   * mods with VSOCK_HASH_SIZE to ensure this.
165   */
166  #define MAX_PORT_RETRIES        24
167  
168  #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
169  #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170  #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
171  
172  /* XXX This can probably be implemented in a better way. */
173  #define VSOCK_CONN_HASH(src, dst)				\
174  	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
175  #define vsock_connected_sockets(src, dst)		\
176  	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177  #define vsock_connected_sockets_vsk(vsk)				\
178  	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179  
180  struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181  EXPORT_SYMBOL_GPL(vsock_bind_table);
182  struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183  EXPORT_SYMBOL_GPL(vsock_connected_table);
184  DEFINE_SPINLOCK(vsock_table_lock);
185  EXPORT_SYMBOL_GPL(vsock_table_lock);
186  
187  /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)188  static int vsock_auto_bind(struct vsock_sock *vsk)
189  {
190  	struct sock *sk = sk_vsock(vsk);
191  	struct sockaddr_vm local_addr;
192  
193  	if (vsock_addr_bound(&vsk->local_addr))
194  		return 0;
195  	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196  	return __vsock_bind(sk, &local_addr);
197  }
198  
vsock_init_tables(void)199  static void vsock_init_tables(void)
200  {
201  	int i;
202  
203  	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204  		INIT_LIST_HEAD(&vsock_bind_table[i]);
205  
206  	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207  		INIT_LIST_HEAD(&vsock_connected_table[i]);
208  }
209  
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)210  static void __vsock_insert_bound(struct list_head *list,
211  				 struct vsock_sock *vsk)
212  {
213  	sock_hold(&vsk->sk);
214  	list_add(&vsk->bound_table, list);
215  }
216  
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)217  static void __vsock_insert_connected(struct list_head *list,
218  				     struct vsock_sock *vsk)
219  {
220  	sock_hold(&vsk->sk);
221  	list_add(&vsk->connected_table, list);
222  }
223  
__vsock_remove_bound(struct vsock_sock * vsk)224  static void __vsock_remove_bound(struct vsock_sock *vsk)
225  {
226  	list_del_init(&vsk->bound_table);
227  	sock_put(&vsk->sk);
228  }
229  
__vsock_remove_connected(struct vsock_sock * vsk)230  static void __vsock_remove_connected(struct vsock_sock *vsk)
231  {
232  	list_del_init(&vsk->connected_table);
233  	sock_put(&vsk->sk);
234  }
235  
__vsock_find_bound_socket(struct sockaddr_vm * addr)236  static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
237  {
238  	struct vsock_sock *vsk;
239  
240  	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
241  		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
242  			return sk_vsock(vsk);
243  
244  		if (addr->svm_port == vsk->local_addr.svm_port &&
245  		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
246  		     addr->svm_cid == VMADDR_CID_ANY))
247  			return sk_vsock(vsk);
248  	}
249  
250  	return NULL;
251  }
252  
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)253  static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
254  						  struct sockaddr_vm *dst)
255  {
256  	struct vsock_sock *vsk;
257  
258  	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
259  			    connected_table) {
260  		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
261  		    dst->svm_port == vsk->local_addr.svm_port) {
262  			return sk_vsock(vsk);
263  		}
264  	}
265  
266  	return NULL;
267  }
268  
vsock_insert_unbound(struct vsock_sock * vsk)269  static void vsock_insert_unbound(struct vsock_sock *vsk)
270  {
271  	spin_lock_bh(&vsock_table_lock);
272  	__vsock_insert_bound(vsock_unbound_sockets, vsk);
273  	spin_unlock_bh(&vsock_table_lock);
274  }
275  
vsock_insert_connected(struct vsock_sock * vsk)276  void vsock_insert_connected(struct vsock_sock *vsk)
277  {
278  	struct list_head *list = vsock_connected_sockets(
279  		&vsk->remote_addr, &vsk->local_addr);
280  
281  	spin_lock_bh(&vsock_table_lock);
282  	__vsock_insert_connected(list, vsk);
283  	spin_unlock_bh(&vsock_table_lock);
284  }
285  EXPORT_SYMBOL_GPL(vsock_insert_connected);
286  
vsock_remove_bound(struct vsock_sock * vsk)287  void vsock_remove_bound(struct vsock_sock *vsk)
288  {
289  	spin_lock_bh(&vsock_table_lock);
290  	if (__vsock_in_bound_table(vsk))
291  		__vsock_remove_bound(vsk);
292  	spin_unlock_bh(&vsock_table_lock);
293  }
294  EXPORT_SYMBOL_GPL(vsock_remove_bound);
295  
vsock_remove_connected(struct vsock_sock * vsk)296  void vsock_remove_connected(struct vsock_sock *vsk)
297  {
298  	spin_lock_bh(&vsock_table_lock);
299  	if (__vsock_in_connected_table(vsk))
300  		__vsock_remove_connected(vsk);
301  	spin_unlock_bh(&vsock_table_lock);
302  }
303  EXPORT_SYMBOL_GPL(vsock_remove_connected);
304  
vsock_find_bound_socket(struct sockaddr_vm * addr)305  struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
306  {
307  	struct sock *sk;
308  
309  	spin_lock_bh(&vsock_table_lock);
310  	sk = __vsock_find_bound_socket(addr);
311  	if (sk)
312  		sock_hold(sk);
313  
314  	spin_unlock_bh(&vsock_table_lock);
315  
316  	return sk;
317  }
318  EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
319  
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)320  struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
321  					 struct sockaddr_vm *dst)
322  {
323  	struct sock *sk;
324  
325  	spin_lock_bh(&vsock_table_lock);
326  	sk = __vsock_find_connected_socket(src, dst);
327  	if (sk)
328  		sock_hold(sk);
329  
330  	spin_unlock_bh(&vsock_table_lock);
331  
332  	return sk;
333  }
334  EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
335  
vsock_remove_sock(struct vsock_sock * vsk)336  void vsock_remove_sock(struct vsock_sock *vsk)
337  {
338  	vsock_remove_bound(vsk);
339  	vsock_remove_connected(vsk);
340  }
341  EXPORT_SYMBOL_GPL(vsock_remove_sock);
342  
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))343  void vsock_for_each_connected_socket(struct vsock_transport *transport,
344  				     void (*fn)(struct sock *sk))
345  {
346  	int i;
347  
348  	spin_lock_bh(&vsock_table_lock);
349  
350  	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
351  		struct vsock_sock *vsk;
352  		list_for_each_entry(vsk, &vsock_connected_table[i],
353  				    connected_table) {
354  			if (vsk->transport != transport)
355  				continue;
356  
357  			fn(sk_vsock(vsk));
358  		}
359  	}
360  
361  	spin_unlock_bh(&vsock_table_lock);
362  }
363  EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
364  
vsock_add_pending(struct sock * listener,struct sock * pending)365  void vsock_add_pending(struct sock *listener, struct sock *pending)
366  {
367  	struct vsock_sock *vlistener;
368  	struct vsock_sock *vpending;
369  
370  	vlistener = vsock_sk(listener);
371  	vpending = vsock_sk(pending);
372  
373  	sock_hold(pending);
374  	sock_hold(listener);
375  	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
376  }
377  EXPORT_SYMBOL_GPL(vsock_add_pending);
378  
vsock_remove_pending(struct sock * listener,struct sock * pending)379  void vsock_remove_pending(struct sock *listener, struct sock *pending)
380  {
381  	struct vsock_sock *vpending = vsock_sk(pending);
382  
383  	list_del_init(&vpending->pending_links);
384  	sock_put(listener);
385  	sock_put(pending);
386  }
387  EXPORT_SYMBOL_GPL(vsock_remove_pending);
388  
vsock_enqueue_accept(struct sock * listener,struct sock * connected)389  void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
390  {
391  	struct vsock_sock *vlistener;
392  	struct vsock_sock *vconnected;
393  
394  	vlistener = vsock_sk(listener);
395  	vconnected = vsock_sk(connected);
396  
397  	sock_hold(connected);
398  	sock_hold(listener);
399  	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
400  }
401  EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
402  
vsock_use_local_transport(unsigned int remote_cid)403  static bool vsock_use_local_transport(unsigned int remote_cid)
404  {
405  	if (!transport_local)
406  		return false;
407  
408  	if (remote_cid == VMADDR_CID_LOCAL)
409  		return true;
410  
411  	if (transport_g2h) {
412  		return remote_cid == transport_g2h->get_local_cid();
413  	} else {
414  		return remote_cid == VMADDR_CID_HOST;
415  	}
416  }
417  
vsock_deassign_transport(struct vsock_sock * vsk)418  static void vsock_deassign_transport(struct vsock_sock *vsk)
419  {
420  	if (!vsk->transport)
421  		return;
422  
423  	vsk->transport->destruct(vsk);
424  	module_put(vsk->transport->module);
425  	vsk->transport = NULL;
426  }
427  
428  /* Assign a transport to a socket and call the .init transport callback.
429   *
430   * Note: for connection oriented socket this must be called when vsk->remote_addr
431   * is set (e.g. during the connect() or when a connection request on a listener
432   * socket is received).
433   * The vsk->remote_addr is used to decide which transport to use:
434   *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
435   *    g2h is not loaded, will use local transport;
436   *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
437   *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
438   *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
439   */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)440  int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
441  {
442  	const struct vsock_transport *new_transport;
443  	struct sock *sk = sk_vsock(vsk);
444  	unsigned int remote_cid = vsk->remote_addr.svm_cid;
445  	__u8 remote_flags;
446  	int ret;
447  
448  	/* If the packet is coming with the source and destination CIDs higher
449  	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
450  	 * forwarded to the host should be established. Then the host will
451  	 * need to forward the packets to the guest.
452  	 *
453  	 * The flag is set on the (listen) receive path (psk is not NULL). On
454  	 * the connect path the flag can be set by the user space application.
455  	 */
456  	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
457  	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
458  		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
459  
460  	remote_flags = vsk->remote_addr.svm_flags;
461  
462  	switch (sk->sk_type) {
463  	case SOCK_DGRAM:
464  		new_transport = transport_dgram;
465  		break;
466  	case SOCK_STREAM:
467  	case SOCK_SEQPACKET:
468  		if (vsock_use_local_transport(remote_cid))
469  			new_transport = transport_local;
470  		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
471  			 (remote_flags & VMADDR_FLAG_TO_HOST))
472  			new_transport = transport_g2h;
473  		else
474  			new_transport = transport_h2g;
475  		break;
476  	default:
477  		return -ESOCKTNOSUPPORT;
478  	}
479  
480  	if (vsk->transport) {
481  		if (vsk->transport == new_transport)
482  			return 0;
483  
484  		/* transport->release() must be called with sock lock acquired.
485  		 * This path can only be taken during vsock_connect(), where we
486  		 * have already held the sock lock. In the other cases, this
487  		 * function is called on a new socket which is not assigned to
488  		 * any transport.
489  		 */
490  		vsk->transport->release(vsk);
491  		vsock_deassign_transport(vsk);
492  	}
493  
494  	/* We increase the module refcnt to prevent the transport unloading
495  	 * while there are open sockets assigned to it.
496  	 */
497  	if (!new_transport || !try_module_get(new_transport->module))
498  		return -ENODEV;
499  
500  	if (sk->sk_type == SOCK_SEQPACKET) {
501  		if (!new_transport->seqpacket_allow ||
502  		    !new_transport->seqpacket_allow(remote_cid)) {
503  			module_put(new_transport->module);
504  			return -ESOCKTNOSUPPORT;
505  		}
506  	}
507  
508  	ret = new_transport->init(vsk, psk);
509  	if (ret) {
510  		module_put(new_transport->module);
511  		return ret;
512  	}
513  
514  	vsk->transport = new_transport;
515  
516  	return 0;
517  }
518  EXPORT_SYMBOL_GPL(vsock_assign_transport);
519  
vsock_find_cid(unsigned int cid)520  bool vsock_find_cid(unsigned int cid)
521  {
522  	if (transport_g2h && cid == transport_g2h->get_local_cid())
523  		return true;
524  
525  	if (transport_h2g && cid == VMADDR_CID_HOST)
526  		return true;
527  
528  	if (transport_local && cid == VMADDR_CID_LOCAL)
529  		return true;
530  
531  	return false;
532  }
533  EXPORT_SYMBOL_GPL(vsock_find_cid);
534  
vsock_dequeue_accept(struct sock * listener)535  static struct sock *vsock_dequeue_accept(struct sock *listener)
536  {
537  	struct vsock_sock *vlistener;
538  	struct vsock_sock *vconnected;
539  
540  	vlistener = vsock_sk(listener);
541  
542  	if (list_empty(&vlistener->accept_queue))
543  		return NULL;
544  
545  	vconnected = list_entry(vlistener->accept_queue.next,
546  				struct vsock_sock, accept_queue);
547  
548  	list_del_init(&vconnected->accept_queue);
549  	sock_put(listener);
550  	/* The caller will need a reference on the connected socket so we let
551  	 * it call sock_put().
552  	 */
553  
554  	return sk_vsock(vconnected);
555  }
556  
vsock_is_accept_queue_empty(struct sock * sk)557  static bool vsock_is_accept_queue_empty(struct sock *sk)
558  {
559  	struct vsock_sock *vsk = vsock_sk(sk);
560  	return list_empty(&vsk->accept_queue);
561  }
562  
vsock_is_pending(struct sock * sk)563  static bool vsock_is_pending(struct sock *sk)
564  {
565  	struct vsock_sock *vsk = vsock_sk(sk);
566  	return !list_empty(&vsk->pending_links);
567  }
568  
vsock_send_shutdown(struct sock * sk,int mode)569  static int vsock_send_shutdown(struct sock *sk, int mode)
570  {
571  	struct vsock_sock *vsk = vsock_sk(sk);
572  
573  	if (!vsk->transport)
574  		return -ENODEV;
575  
576  	return vsk->transport->shutdown(vsk, mode);
577  }
578  
vsock_pending_work(struct work_struct * work)579  static void vsock_pending_work(struct work_struct *work)
580  {
581  	struct sock *sk;
582  	struct sock *listener;
583  	struct vsock_sock *vsk;
584  	bool cleanup;
585  
586  	vsk = container_of(work, struct vsock_sock, pending_work.work);
587  	sk = sk_vsock(vsk);
588  	listener = vsk->listener;
589  	cleanup = true;
590  
591  	lock_sock(listener);
592  	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
593  
594  	if (vsock_is_pending(sk)) {
595  		vsock_remove_pending(listener, sk);
596  
597  		sk_acceptq_removed(listener);
598  	} else if (!vsk->rejected) {
599  		/* We are not on the pending list and accept() did not reject
600  		 * us, so we must have been accepted by our user process.  We
601  		 * just need to drop our references to the sockets and be on
602  		 * our way.
603  		 */
604  		cleanup = false;
605  		goto out;
606  	}
607  
608  	/* We need to remove ourself from the global connected sockets list so
609  	 * incoming packets can't find this socket, and to reduce the reference
610  	 * count.
611  	 */
612  	vsock_remove_connected(vsk);
613  
614  	sk->sk_state = TCP_CLOSE;
615  
616  out:
617  	release_sock(sk);
618  	release_sock(listener);
619  	if (cleanup)
620  		sock_put(sk);
621  
622  	sock_put(sk);
623  	sock_put(listener);
624  }
625  
626  /**** SOCKET OPERATIONS ****/
627  
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)628  static int __vsock_bind_connectible(struct vsock_sock *vsk,
629  				    struct sockaddr_vm *addr)
630  {
631  	static u32 port;
632  	struct sockaddr_vm new_addr;
633  
634  	if (!port)
635  		port = get_random_u32_above(LAST_RESERVED_PORT);
636  
637  	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
638  
639  	if (addr->svm_port == VMADDR_PORT_ANY) {
640  		bool found = false;
641  		unsigned int i;
642  
643  		for (i = 0; i < MAX_PORT_RETRIES; i++) {
644  			if (port <= LAST_RESERVED_PORT)
645  				port = LAST_RESERVED_PORT + 1;
646  
647  			new_addr.svm_port = port++;
648  
649  			if (!__vsock_find_bound_socket(&new_addr)) {
650  				found = true;
651  				break;
652  			}
653  		}
654  
655  		if (!found)
656  			return -EADDRNOTAVAIL;
657  	} else {
658  		/* If port is in reserved range, ensure caller
659  		 * has necessary privileges.
660  		 */
661  		if (addr->svm_port <= LAST_RESERVED_PORT &&
662  		    !capable(CAP_NET_BIND_SERVICE)) {
663  			return -EACCES;
664  		}
665  
666  		if (__vsock_find_bound_socket(&new_addr))
667  			return -EADDRINUSE;
668  	}
669  
670  	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
671  
672  	/* Remove connection oriented sockets from the unbound list and add them
673  	 * to the hash table for easy lookup by its address.  The unbound list
674  	 * is simply an extra entry at the end of the hash table, a trick used
675  	 * by AF_UNIX.
676  	 */
677  	__vsock_remove_bound(vsk);
678  	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
679  
680  	return 0;
681  }
682  
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)683  static int __vsock_bind_dgram(struct vsock_sock *vsk,
684  			      struct sockaddr_vm *addr)
685  {
686  	return vsk->transport->dgram_bind(vsk, addr);
687  }
688  
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)689  static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
690  {
691  	struct vsock_sock *vsk = vsock_sk(sk);
692  	int retval;
693  
694  	/* First ensure this socket isn't already bound. */
695  	if (vsock_addr_bound(&vsk->local_addr))
696  		return -EINVAL;
697  
698  	/* Now bind to the provided address or select appropriate values if
699  	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
700  	 * like AF_INET prevents binding to a non-local IP address (in most
701  	 * cases), we only allow binding to a local CID.
702  	 */
703  	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
704  		return -EADDRNOTAVAIL;
705  
706  	switch (sk->sk_socket->type) {
707  	case SOCK_STREAM:
708  	case SOCK_SEQPACKET:
709  		spin_lock_bh(&vsock_table_lock);
710  		retval = __vsock_bind_connectible(vsk, addr);
711  		spin_unlock_bh(&vsock_table_lock);
712  		break;
713  
714  	case SOCK_DGRAM:
715  		retval = __vsock_bind_dgram(vsk, addr);
716  		break;
717  
718  	default:
719  		retval = -EINVAL;
720  		break;
721  	}
722  
723  	return retval;
724  }
725  
726  static void vsock_connect_timeout(struct work_struct *work);
727  
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)728  static struct sock *__vsock_create(struct net *net,
729  				   struct socket *sock,
730  				   struct sock *parent,
731  				   gfp_t priority,
732  				   unsigned short type,
733  				   int kern)
734  {
735  	struct sock *sk;
736  	struct vsock_sock *psk;
737  	struct vsock_sock *vsk;
738  
739  	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
740  	if (!sk)
741  		return NULL;
742  
743  	sock_init_data(sock, sk);
744  
745  	/* sk->sk_type is normally set in sock_init_data, but only if sock is
746  	 * non-NULL. We make sure that our sockets always have a type by
747  	 * setting it here if needed.
748  	 */
749  	if (!sock)
750  		sk->sk_type = type;
751  
752  	vsk = vsock_sk(sk);
753  	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
754  	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
755  
756  	sk->sk_destruct = vsock_sk_destruct;
757  	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
758  	sock_reset_flag(sk, SOCK_DONE);
759  
760  	INIT_LIST_HEAD(&vsk->bound_table);
761  	INIT_LIST_HEAD(&vsk->connected_table);
762  	vsk->listener = NULL;
763  	INIT_LIST_HEAD(&vsk->pending_links);
764  	INIT_LIST_HEAD(&vsk->accept_queue);
765  	vsk->rejected = false;
766  	vsk->sent_request = false;
767  	vsk->ignore_connecting_rst = false;
768  	vsk->peer_shutdown = 0;
769  	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
770  	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
771  
772  	psk = parent ? vsock_sk(parent) : NULL;
773  	if (parent) {
774  		vsk->trusted = psk->trusted;
775  		vsk->owner = get_cred(psk->owner);
776  		vsk->connect_timeout = psk->connect_timeout;
777  		vsk->buffer_size = psk->buffer_size;
778  		vsk->buffer_min_size = psk->buffer_min_size;
779  		vsk->buffer_max_size = psk->buffer_max_size;
780  		security_sk_clone(parent, sk);
781  	} else {
782  		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
783  		vsk->owner = get_current_cred();
784  		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
785  		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
786  		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
787  		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
788  	}
789  
790  	return sk;
791  }
792  
sock_type_connectible(u16 type)793  static bool sock_type_connectible(u16 type)
794  {
795  	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
796  }
797  
__vsock_release(struct sock * sk,int level)798  static void __vsock_release(struct sock *sk, int level)
799  {
800  	if (sk) {
801  		struct sock *pending;
802  		struct vsock_sock *vsk;
803  
804  		vsk = vsock_sk(sk);
805  		pending = NULL;	/* Compiler warning. */
806  
807  		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
808  		 * version to avoid the warning "possible recursive locking
809  		 * detected". When "level" is 0, lock_sock_nested(sk, level)
810  		 * is the same as lock_sock(sk).
811  		 */
812  		lock_sock_nested(sk, level);
813  
814  		if (vsk->transport)
815  			vsk->transport->release(vsk);
816  		else if (sock_type_connectible(sk->sk_type))
817  			vsock_remove_sock(vsk);
818  
819  		sock_orphan(sk);
820  		sk->sk_shutdown = SHUTDOWN_MASK;
821  
822  		skb_queue_purge(&sk->sk_receive_queue);
823  
824  		/* Clean up any sockets that never were accepted. */
825  		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
826  			__vsock_release(pending, SINGLE_DEPTH_NESTING);
827  			sock_put(pending);
828  		}
829  
830  		release_sock(sk);
831  		sock_put(sk);
832  	}
833  }
834  
vsock_sk_destruct(struct sock * sk)835  static void vsock_sk_destruct(struct sock *sk)
836  {
837  	struct vsock_sock *vsk = vsock_sk(sk);
838  
839  	/* Flush MSG_ZEROCOPY leftovers. */
840  	__skb_queue_purge(&sk->sk_error_queue);
841  
842  	vsock_deassign_transport(vsk);
843  
844  	/* When clearing these addresses, there's no need to set the family and
845  	 * possibly register the address family with the kernel.
846  	 */
847  	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
848  	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
849  
850  	put_cred(vsk->owner);
851  }
852  
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)853  static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
854  {
855  	int err;
856  
857  	err = sock_queue_rcv_skb(sk, skb);
858  	if (err)
859  		kfree_skb(skb);
860  
861  	return err;
862  }
863  
vsock_create_connected(struct sock * parent)864  struct sock *vsock_create_connected(struct sock *parent)
865  {
866  	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
867  			      parent->sk_type, 0);
868  }
869  EXPORT_SYMBOL_GPL(vsock_create_connected);
870  
vsock_stream_has_data(struct vsock_sock * vsk)871  s64 vsock_stream_has_data(struct vsock_sock *vsk)
872  {
873  	return vsk->transport->stream_has_data(vsk);
874  }
875  EXPORT_SYMBOL_GPL(vsock_stream_has_data);
876  
vsock_connectible_has_data(struct vsock_sock * vsk)877  s64 vsock_connectible_has_data(struct vsock_sock *vsk)
878  {
879  	struct sock *sk = sk_vsock(vsk);
880  
881  	if (sk->sk_type == SOCK_SEQPACKET)
882  		return vsk->transport->seqpacket_has_data(vsk);
883  	else
884  		return vsock_stream_has_data(vsk);
885  }
886  EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
887  
vsock_stream_has_space(struct vsock_sock * vsk)888  s64 vsock_stream_has_space(struct vsock_sock *vsk)
889  {
890  	return vsk->transport->stream_has_space(vsk);
891  }
892  EXPORT_SYMBOL_GPL(vsock_stream_has_space);
893  
vsock_data_ready(struct sock * sk)894  void vsock_data_ready(struct sock *sk)
895  {
896  	struct vsock_sock *vsk = vsock_sk(sk);
897  
898  	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
899  	    sock_flag(sk, SOCK_DONE))
900  		sk->sk_data_ready(sk);
901  }
902  EXPORT_SYMBOL_GPL(vsock_data_ready);
903  
vsock_release(struct socket * sock)904  static int vsock_release(struct socket *sock)
905  {
906  	__vsock_release(sock->sk, 0);
907  	sock->sk = NULL;
908  	sock->state = SS_FREE;
909  
910  	return 0;
911  }
912  
913  static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)914  vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
915  {
916  	int err;
917  	struct sock *sk;
918  	struct sockaddr_vm *vm_addr;
919  
920  	sk = sock->sk;
921  
922  	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
923  		return -EINVAL;
924  
925  	lock_sock(sk);
926  	err = __vsock_bind(sk, vm_addr);
927  	release_sock(sk);
928  
929  	return err;
930  }
931  
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)932  static int vsock_getname(struct socket *sock,
933  			 struct sockaddr *addr, int peer)
934  {
935  	int err;
936  	struct sock *sk;
937  	struct vsock_sock *vsk;
938  	struct sockaddr_vm *vm_addr;
939  
940  	sk = sock->sk;
941  	vsk = vsock_sk(sk);
942  	err = 0;
943  
944  	lock_sock(sk);
945  
946  	if (peer) {
947  		if (sock->state != SS_CONNECTED) {
948  			err = -ENOTCONN;
949  			goto out;
950  		}
951  		vm_addr = &vsk->remote_addr;
952  	} else {
953  		vm_addr = &vsk->local_addr;
954  	}
955  
956  	if (!vm_addr) {
957  		err = -EINVAL;
958  		goto out;
959  	}
960  
961  	/* sys_getsockname() and sys_getpeername() pass us a
962  	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
963  	 * that macro is defined in socket.c instead of .h, so we hardcode its
964  	 * value here.
965  	 */
966  	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
967  	memcpy(addr, vm_addr, sizeof(*vm_addr));
968  	err = sizeof(*vm_addr);
969  
970  out:
971  	release_sock(sk);
972  	return err;
973  }
974  
vsock_shutdown(struct socket * sock,int mode)975  static int vsock_shutdown(struct socket *sock, int mode)
976  {
977  	int err;
978  	struct sock *sk;
979  
980  	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
981  	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
982  	 * here like the other address families do.  Note also that the
983  	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
984  	 * which is what we want.
985  	 */
986  	mode++;
987  
988  	if ((mode & ~SHUTDOWN_MASK) || !mode)
989  		return -EINVAL;
990  
991  	/* If this is a connection oriented socket and it is not connected then
992  	 * bail out immediately.  If it is a DGRAM socket then we must first
993  	 * kick the socket so that it wakes up from any sleeping calls, for
994  	 * example recv(), and then afterwards return the error.
995  	 */
996  
997  	sk = sock->sk;
998  
999  	lock_sock(sk);
1000  	if (sock->state == SS_UNCONNECTED) {
1001  		err = -ENOTCONN;
1002  		if (sock_type_connectible(sk->sk_type))
1003  			goto out;
1004  	} else {
1005  		sock->state = SS_DISCONNECTING;
1006  		err = 0;
1007  	}
1008  
1009  	/* Receive and send shutdowns are treated alike. */
1010  	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1011  	if (mode) {
1012  		sk->sk_shutdown |= mode;
1013  		sk->sk_state_change(sk);
1014  
1015  		if (sock_type_connectible(sk->sk_type)) {
1016  			sock_reset_flag(sk, SOCK_DONE);
1017  			vsock_send_shutdown(sk, mode);
1018  		}
1019  	}
1020  
1021  out:
1022  	release_sock(sk);
1023  	return err;
1024  }
1025  
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1026  static __poll_t vsock_poll(struct file *file, struct socket *sock,
1027  			       poll_table *wait)
1028  {
1029  	struct sock *sk;
1030  	__poll_t mask;
1031  	struct vsock_sock *vsk;
1032  
1033  	sk = sock->sk;
1034  	vsk = vsock_sk(sk);
1035  
1036  	poll_wait(file, sk_sleep(sk), wait);
1037  	mask = 0;
1038  
1039  	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1040  		/* Signify that there has been an error on this socket. */
1041  		mask |= EPOLLERR;
1042  
1043  	/* INET sockets treat local write shutdown and peer write shutdown as a
1044  	 * case of EPOLLHUP set.
1045  	 */
1046  	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1047  	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1048  	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1049  		mask |= EPOLLHUP;
1050  	}
1051  
1052  	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1053  	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1054  		mask |= EPOLLRDHUP;
1055  	}
1056  
1057  	if (sock->type == SOCK_DGRAM) {
1058  		/* For datagram sockets we can read if there is something in
1059  		 * the queue and write as long as the socket isn't shutdown for
1060  		 * sending.
1061  		 */
1062  		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1063  		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1064  			mask |= EPOLLIN | EPOLLRDNORM;
1065  		}
1066  
1067  		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1068  			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1069  
1070  	} else if (sock_type_connectible(sk->sk_type)) {
1071  		const struct vsock_transport *transport;
1072  
1073  		lock_sock(sk);
1074  
1075  		transport = vsk->transport;
1076  
1077  		/* Listening sockets that have connections in their accept
1078  		 * queue can be read.
1079  		 */
1080  		if (sk->sk_state == TCP_LISTEN
1081  		    && !vsock_is_accept_queue_empty(sk))
1082  			mask |= EPOLLIN | EPOLLRDNORM;
1083  
1084  		/* If there is something in the queue then we can read. */
1085  		if (transport && transport->stream_is_active(vsk) &&
1086  		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1087  			bool data_ready_now = false;
1088  			int target = sock_rcvlowat(sk, 0, INT_MAX);
1089  			int ret = transport->notify_poll_in(
1090  					vsk, target, &data_ready_now);
1091  			if (ret < 0) {
1092  				mask |= EPOLLERR;
1093  			} else {
1094  				if (data_ready_now)
1095  					mask |= EPOLLIN | EPOLLRDNORM;
1096  
1097  			}
1098  		}
1099  
1100  		/* Sockets whose connections have been closed, reset, or
1101  		 * terminated should also be considered read, and we check the
1102  		 * shutdown flag for that.
1103  		 */
1104  		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1105  		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1106  			mask |= EPOLLIN | EPOLLRDNORM;
1107  		}
1108  
1109  		/* Connected sockets that can produce data can be written. */
1110  		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1111  			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1112  				bool space_avail_now = false;
1113  				int ret = transport->notify_poll_out(
1114  						vsk, 1, &space_avail_now);
1115  				if (ret < 0) {
1116  					mask |= EPOLLERR;
1117  				} else {
1118  					if (space_avail_now)
1119  						/* Remove EPOLLWRBAND since INET
1120  						 * sockets are not setting it.
1121  						 */
1122  						mask |= EPOLLOUT | EPOLLWRNORM;
1123  
1124  				}
1125  			}
1126  		}
1127  
1128  		/* Simulate INET socket poll behaviors, which sets
1129  		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1130  		 * but local send is not shutdown.
1131  		 */
1132  		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1133  			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1134  				mask |= EPOLLOUT | EPOLLWRNORM;
1135  
1136  		}
1137  
1138  		release_sock(sk);
1139  	}
1140  
1141  	return mask;
1142  }
1143  
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1144  static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1145  {
1146  	struct vsock_sock *vsk = vsock_sk(sk);
1147  
1148  	return vsk->transport->read_skb(vsk, read_actor);
1149  }
1150  
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1151  static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1152  			       size_t len)
1153  {
1154  	int err;
1155  	struct sock *sk;
1156  	struct vsock_sock *vsk;
1157  	struct sockaddr_vm *remote_addr;
1158  	const struct vsock_transport *transport;
1159  
1160  	if (msg->msg_flags & MSG_OOB)
1161  		return -EOPNOTSUPP;
1162  
1163  	/* For now, MSG_DONTWAIT is always assumed... */
1164  	err = 0;
1165  	sk = sock->sk;
1166  	vsk = vsock_sk(sk);
1167  
1168  	lock_sock(sk);
1169  
1170  	transport = vsk->transport;
1171  
1172  	err = vsock_auto_bind(vsk);
1173  	if (err)
1174  		goto out;
1175  
1176  
1177  	/* If the provided message contains an address, use that.  Otherwise
1178  	 * fall back on the socket's remote handle (if it has been connected).
1179  	 */
1180  	if (msg->msg_name &&
1181  	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1182  			    &remote_addr) == 0) {
1183  		/* Ensure this address is of the right type and is a valid
1184  		 * destination.
1185  		 */
1186  
1187  		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1188  			remote_addr->svm_cid = transport->get_local_cid();
1189  
1190  		if (!vsock_addr_bound(remote_addr)) {
1191  			err = -EINVAL;
1192  			goto out;
1193  		}
1194  	} else if (sock->state == SS_CONNECTED) {
1195  		remote_addr = &vsk->remote_addr;
1196  
1197  		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1198  			remote_addr->svm_cid = transport->get_local_cid();
1199  
1200  		/* XXX Should connect() or this function ensure remote_addr is
1201  		 * bound?
1202  		 */
1203  		if (!vsock_addr_bound(&vsk->remote_addr)) {
1204  			err = -EINVAL;
1205  			goto out;
1206  		}
1207  	} else {
1208  		err = -EINVAL;
1209  		goto out;
1210  	}
1211  
1212  	if (!transport->dgram_allow(remote_addr->svm_cid,
1213  				    remote_addr->svm_port)) {
1214  		err = -EINVAL;
1215  		goto out;
1216  	}
1217  
1218  	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1219  
1220  out:
1221  	release_sock(sk);
1222  	return err;
1223  }
1224  
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1225  static int vsock_dgram_connect(struct socket *sock,
1226  			       struct sockaddr *addr, int addr_len, int flags)
1227  {
1228  	int err;
1229  	struct sock *sk;
1230  	struct vsock_sock *vsk;
1231  	struct sockaddr_vm *remote_addr;
1232  
1233  	sk = sock->sk;
1234  	vsk = vsock_sk(sk);
1235  
1236  	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1237  	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1238  		lock_sock(sk);
1239  		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1240  				VMADDR_PORT_ANY);
1241  		sock->state = SS_UNCONNECTED;
1242  		release_sock(sk);
1243  		return 0;
1244  	} else if (err != 0)
1245  		return -EINVAL;
1246  
1247  	lock_sock(sk);
1248  
1249  	err = vsock_auto_bind(vsk);
1250  	if (err)
1251  		goto out;
1252  
1253  	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1254  					 remote_addr->svm_port)) {
1255  		err = -EINVAL;
1256  		goto out;
1257  	}
1258  
1259  	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1260  	sock->state = SS_CONNECTED;
1261  
1262  	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1263  	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1264  	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1265  	 *
1266  	 * This doesn't seem to be abnormal state for datagram sockets, as the
1267  	 * same approach can be see in other datagram socket types as well
1268  	 * (such as unix sockets).
1269  	 */
1270  	sk->sk_state = TCP_ESTABLISHED;
1271  
1272  out:
1273  	release_sock(sk);
1274  	return err;
1275  }
1276  
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1277  int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1278  			  size_t len, int flags)
1279  {
1280  	struct sock *sk = sock->sk;
1281  	struct vsock_sock *vsk = vsock_sk(sk);
1282  
1283  	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1284  }
1285  
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1286  int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1287  			size_t len, int flags)
1288  {
1289  #ifdef CONFIG_BPF_SYSCALL
1290  	struct sock *sk = sock->sk;
1291  	const struct proto *prot;
1292  
1293  	prot = READ_ONCE(sk->sk_prot);
1294  	if (prot != &vsock_proto)
1295  		return prot->recvmsg(sk, msg, len, flags, NULL);
1296  #endif
1297  
1298  	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1299  }
1300  EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1301  
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1302  static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1303  			  int __user *arg)
1304  {
1305  	struct sock *sk = sock->sk;
1306  	struct vsock_sock *vsk;
1307  	int ret;
1308  
1309  	vsk = vsock_sk(sk);
1310  
1311  	switch (cmd) {
1312  	case SIOCOUTQ: {
1313  		ssize_t n_bytes;
1314  
1315  		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1316  			ret = -EOPNOTSUPP;
1317  			break;
1318  		}
1319  
1320  		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1321  			ret = -EINVAL;
1322  			break;
1323  		}
1324  
1325  		n_bytes = vsk->transport->unsent_bytes(vsk);
1326  		if (n_bytes < 0) {
1327  			ret = n_bytes;
1328  			break;
1329  		}
1330  
1331  		ret = put_user(n_bytes, arg);
1332  		break;
1333  	}
1334  	default:
1335  		ret = -ENOIOCTLCMD;
1336  	}
1337  
1338  	return ret;
1339  }
1340  
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1341  static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1342  		       unsigned long arg)
1343  {
1344  	int ret;
1345  
1346  	lock_sock(sock->sk);
1347  	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1348  	release_sock(sock->sk);
1349  
1350  	return ret;
1351  }
1352  
1353  static const struct proto_ops vsock_dgram_ops = {
1354  	.family = PF_VSOCK,
1355  	.owner = THIS_MODULE,
1356  	.release = vsock_release,
1357  	.bind = vsock_bind,
1358  	.connect = vsock_dgram_connect,
1359  	.socketpair = sock_no_socketpair,
1360  	.accept = sock_no_accept,
1361  	.getname = vsock_getname,
1362  	.poll = vsock_poll,
1363  	.ioctl = vsock_ioctl,
1364  	.listen = sock_no_listen,
1365  	.shutdown = vsock_shutdown,
1366  	.sendmsg = vsock_dgram_sendmsg,
1367  	.recvmsg = vsock_dgram_recvmsg,
1368  	.mmap = sock_no_mmap,
1369  	.read_skb = vsock_read_skb,
1370  };
1371  
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1372  static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1373  {
1374  	const struct vsock_transport *transport = vsk->transport;
1375  
1376  	if (!transport || !transport->cancel_pkt)
1377  		return -EOPNOTSUPP;
1378  
1379  	return transport->cancel_pkt(vsk);
1380  }
1381  
vsock_connect_timeout(struct work_struct * work)1382  static void vsock_connect_timeout(struct work_struct *work)
1383  {
1384  	struct sock *sk;
1385  	struct vsock_sock *vsk;
1386  
1387  	vsk = container_of(work, struct vsock_sock, connect_work.work);
1388  	sk = sk_vsock(vsk);
1389  
1390  	lock_sock(sk);
1391  	if (sk->sk_state == TCP_SYN_SENT &&
1392  	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1393  		sk->sk_state = TCP_CLOSE;
1394  		sk->sk_socket->state = SS_UNCONNECTED;
1395  		sk->sk_err = ETIMEDOUT;
1396  		sk_error_report(sk);
1397  		vsock_transport_cancel_pkt(vsk);
1398  	}
1399  	release_sock(sk);
1400  
1401  	sock_put(sk);
1402  }
1403  
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1404  static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1405  			 int addr_len, int flags)
1406  {
1407  	int err;
1408  	struct sock *sk;
1409  	struct vsock_sock *vsk;
1410  	const struct vsock_transport *transport;
1411  	struct sockaddr_vm *remote_addr;
1412  	long timeout;
1413  	DEFINE_WAIT(wait);
1414  
1415  	err = 0;
1416  	sk = sock->sk;
1417  	vsk = vsock_sk(sk);
1418  
1419  	lock_sock(sk);
1420  
1421  	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1422  	switch (sock->state) {
1423  	case SS_CONNECTED:
1424  		err = -EISCONN;
1425  		goto out;
1426  	case SS_DISCONNECTING:
1427  		err = -EINVAL;
1428  		goto out;
1429  	case SS_CONNECTING:
1430  		/* This continues on so we can move sock into the SS_CONNECTED
1431  		 * state once the connection has completed (at which point err
1432  		 * will be set to zero also).  Otherwise, we will either wait
1433  		 * for the connection or return -EALREADY should this be a
1434  		 * non-blocking call.
1435  		 */
1436  		err = -EALREADY;
1437  		if (flags & O_NONBLOCK)
1438  			goto out;
1439  		break;
1440  	default:
1441  		if ((sk->sk_state == TCP_LISTEN) ||
1442  		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1443  			err = -EINVAL;
1444  			goto out;
1445  		}
1446  
1447  		/* Set the remote address that we are connecting to. */
1448  		memcpy(&vsk->remote_addr, remote_addr,
1449  		       sizeof(vsk->remote_addr));
1450  
1451  		err = vsock_assign_transport(vsk, NULL);
1452  		if (err)
1453  			goto out;
1454  
1455  		transport = vsk->transport;
1456  
1457  		/* The hypervisor and well-known contexts do not have socket
1458  		 * endpoints.
1459  		 */
1460  		if (!transport ||
1461  		    !transport->stream_allow(remote_addr->svm_cid,
1462  					     remote_addr->svm_port)) {
1463  			err = -ENETUNREACH;
1464  			goto out;
1465  		}
1466  
1467  		if (vsock_msgzerocopy_allow(transport)) {
1468  			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1469  		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1470  			/* If this option was set before 'connect()',
1471  			 * when transport was unknown, check that this
1472  			 * feature is supported here.
1473  			 */
1474  			err = -EOPNOTSUPP;
1475  			goto out;
1476  		}
1477  
1478  		err = vsock_auto_bind(vsk);
1479  		if (err)
1480  			goto out;
1481  
1482  		sk->sk_state = TCP_SYN_SENT;
1483  
1484  		err = transport->connect(vsk);
1485  		if (err < 0)
1486  			goto out;
1487  
1488  		/* Mark sock as connecting and set the error code to in
1489  		 * progress in case this is a non-blocking connect.
1490  		 */
1491  		sock->state = SS_CONNECTING;
1492  		err = -EINPROGRESS;
1493  	}
1494  
1495  	/* The receive path will handle all communication until we are able to
1496  	 * enter the connected state.  Here we wait for the connection to be
1497  	 * completed or a notification of an error.
1498  	 */
1499  	timeout = vsk->connect_timeout;
1500  	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1501  
1502  	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1503  		if (flags & O_NONBLOCK) {
1504  			/* If we're not going to block, we schedule a timeout
1505  			 * function to generate a timeout on the connection
1506  			 * attempt, in case the peer doesn't respond in a
1507  			 * timely manner. We hold on to the socket until the
1508  			 * timeout fires.
1509  			 */
1510  			sock_hold(sk);
1511  
1512  			/* If the timeout function is already scheduled,
1513  			 * reschedule it, then ungrab the socket refcount to
1514  			 * keep it balanced.
1515  			 */
1516  			if (mod_delayed_work(system_wq, &vsk->connect_work,
1517  					     timeout))
1518  				sock_put(sk);
1519  
1520  			/* Skip ahead to preserve error code set above. */
1521  			goto out_wait;
1522  		}
1523  
1524  		release_sock(sk);
1525  		timeout = schedule_timeout(timeout);
1526  		lock_sock(sk);
1527  
1528  		if (signal_pending(current)) {
1529  			err = sock_intr_errno(timeout);
1530  			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1531  			sock->state = SS_UNCONNECTED;
1532  			vsock_transport_cancel_pkt(vsk);
1533  			vsock_remove_connected(vsk);
1534  			goto out_wait;
1535  		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1536  			err = -ETIMEDOUT;
1537  			sk->sk_state = TCP_CLOSE;
1538  			sock->state = SS_UNCONNECTED;
1539  			vsock_transport_cancel_pkt(vsk);
1540  			goto out_wait;
1541  		}
1542  
1543  		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1544  	}
1545  
1546  	if (sk->sk_err) {
1547  		err = -sk->sk_err;
1548  		sk->sk_state = TCP_CLOSE;
1549  		sock->state = SS_UNCONNECTED;
1550  	} else {
1551  		err = 0;
1552  	}
1553  
1554  out_wait:
1555  	finish_wait(sk_sleep(sk), &wait);
1556  out:
1557  	release_sock(sk);
1558  	return err;
1559  }
1560  
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1561  static int vsock_accept(struct socket *sock, struct socket *newsock,
1562  			struct proto_accept_arg *arg)
1563  {
1564  	struct sock *listener;
1565  	int err;
1566  	struct sock *connected;
1567  	struct vsock_sock *vconnected;
1568  	long timeout;
1569  	DEFINE_WAIT(wait);
1570  
1571  	err = 0;
1572  	listener = sock->sk;
1573  
1574  	lock_sock(listener);
1575  
1576  	if (!sock_type_connectible(sock->type)) {
1577  		err = -EOPNOTSUPP;
1578  		goto out;
1579  	}
1580  
1581  	if (listener->sk_state != TCP_LISTEN) {
1582  		err = -EINVAL;
1583  		goto out;
1584  	}
1585  
1586  	/* Wait for children sockets to appear; these are the new sockets
1587  	 * created upon connection establishment.
1588  	 */
1589  	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1590  	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1591  
1592  	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1593  	       listener->sk_err == 0) {
1594  		release_sock(listener);
1595  		timeout = schedule_timeout(timeout);
1596  		finish_wait(sk_sleep(listener), &wait);
1597  		lock_sock(listener);
1598  
1599  		if (signal_pending(current)) {
1600  			err = sock_intr_errno(timeout);
1601  			goto out;
1602  		} else if (timeout == 0) {
1603  			err = -EAGAIN;
1604  			goto out;
1605  		}
1606  
1607  		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1608  	}
1609  	finish_wait(sk_sleep(listener), &wait);
1610  
1611  	if (listener->sk_err)
1612  		err = -listener->sk_err;
1613  
1614  	if (connected) {
1615  		sk_acceptq_removed(listener);
1616  
1617  		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1618  		vconnected = vsock_sk(connected);
1619  
1620  		/* If the listener socket has received an error, then we should
1621  		 * reject this socket and return.  Note that we simply mark the
1622  		 * socket rejected, drop our reference, and let the cleanup
1623  		 * function handle the cleanup; the fact that we found it in
1624  		 * the listener's accept queue guarantees that the cleanup
1625  		 * function hasn't run yet.
1626  		 */
1627  		if (err) {
1628  			vconnected->rejected = true;
1629  		} else {
1630  			newsock->state = SS_CONNECTED;
1631  			sock_graft(connected, newsock);
1632  			if (vsock_msgzerocopy_allow(vconnected->transport))
1633  				set_bit(SOCK_SUPPORT_ZC,
1634  					&connected->sk_socket->flags);
1635  		}
1636  
1637  		release_sock(connected);
1638  		sock_put(connected);
1639  	}
1640  
1641  out:
1642  	release_sock(listener);
1643  	return err;
1644  }
1645  
vsock_listen(struct socket * sock,int backlog)1646  static int vsock_listen(struct socket *sock, int backlog)
1647  {
1648  	int err;
1649  	struct sock *sk;
1650  	struct vsock_sock *vsk;
1651  
1652  	sk = sock->sk;
1653  
1654  	lock_sock(sk);
1655  
1656  	if (!sock_type_connectible(sk->sk_type)) {
1657  		err = -EOPNOTSUPP;
1658  		goto out;
1659  	}
1660  
1661  	if (sock->state != SS_UNCONNECTED) {
1662  		err = -EINVAL;
1663  		goto out;
1664  	}
1665  
1666  	vsk = vsock_sk(sk);
1667  
1668  	if (!vsock_addr_bound(&vsk->local_addr)) {
1669  		err = -EINVAL;
1670  		goto out;
1671  	}
1672  
1673  	sk->sk_max_ack_backlog = backlog;
1674  	sk->sk_state = TCP_LISTEN;
1675  
1676  	err = 0;
1677  
1678  out:
1679  	release_sock(sk);
1680  	return err;
1681  }
1682  
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1683  static void vsock_update_buffer_size(struct vsock_sock *vsk,
1684  				     const struct vsock_transport *transport,
1685  				     u64 val)
1686  {
1687  	if (val > vsk->buffer_max_size)
1688  		val = vsk->buffer_max_size;
1689  
1690  	if (val < vsk->buffer_min_size)
1691  		val = vsk->buffer_min_size;
1692  
1693  	if (val != vsk->buffer_size &&
1694  	    transport && transport->notify_buffer_size)
1695  		transport->notify_buffer_size(vsk, &val);
1696  
1697  	vsk->buffer_size = val;
1698  }
1699  
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1700  static int vsock_connectible_setsockopt(struct socket *sock,
1701  					int level,
1702  					int optname,
1703  					sockptr_t optval,
1704  					unsigned int optlen)
1705  {
1706  	int err;
1707  	struct sock *sk;
1708  	struct vsock_sock *vsk;
1709  	const struct vsock_transport *transport;
1710  	u64 val;
1711  
1712  	if (level != AF_VSOCK && level != SOL_SOCKET)
1713  		return -ENOPROTOOPT;
1714  
1715  #define COPY_IN(_v)                                       \
1716  	do {						  \
1717  		if (optlen < sizeof(_v)) {		  \
1718  			err = -EINVAL;			  \
1719  			goto exit;			  \
1720  		}					  \
1721  		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1722  			err = -EFAULT;					\
1723  			goto exit;					\
1724  		}							\
1725  	} while (0)
1726  
1727  	err = 0;
1728  	sk = sock->sk;
1729  	vsk = vsock_sk(sk);
1730  
1731  	lock_sock(sk);
1732  
1733  	transport = vsk->transport;
1734  
1735  	if (level == SOL_SOCKET) {
1736  		int zerocopy;
1737  
1738  		if (optname != SO_ZEROCOPY) {
1739  			release_sock(sk);
1740  			return sock_setsockopt(sock, level, optname, optval, optlen);
1741  		}
1742  
1743  		/* Use 'int' type here, because variable to
1744  		 * set this option usually has this type.
1745  		 */
1746  		COPY_IN(zerocopy);
1747  
1748  		if (zerocopy < 0 || zerocopy > 1) {
1749  			err = -EINVAL;
1750  			goto exit;
1751  		}
1752  
1753  		if (transport && !vsock_msgzerocopy_allow(transport)) {
1754  			err = -EOPNOTSUPP;
1755  			goto exit;
1756  		}
1757  
1758  		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1759  		goto exit;
1760  	}
1761  
1762  	switch (optname) {
1763  	case SO_VM_SOCKETS_BUFFER_SIZE:
1764  		COPY_IN(val);
1765  		vsock_update_buffer_size(vsk, transport, val);
1766  		break;
1767  
1768  	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1769  		COPY_IN(val);
1770  		vsk->buffer_max_size = val;
1771  		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1772  		break;
1773  
1774  	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1775  		COPY_IN(val);
1776  		vsk->buffer_min_size = val;
1777  		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1778  		break;
1779  
1780  	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1781  	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1782  		struct __kernel_sock_timeval tv;
1783  
1784  		err = sock_copy_user_timeval(&tv, optval, optlen,
1785  					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1786  		if (err)
1787  			break;
1788  		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1789  		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1790  			vsk->connect_timeout = tv.tv_sec * HZ +
1791  				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1792  			if (vsk->connect_timeout == 0)
1793  				vsk->connect_timeout =
1794  				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1795  
1796  		} else {
1797  			err = -ERANGE;
1798  		}
1799  		break;
1800  	}
1801  
1802  	default:
1803  		err = -ENOPROTOOPT;
1804  		break;
1805  	}
1806  
1807  #undef COPY_IN
1808  
1809  exit:
1810  	release_sock(sk);
1811  	return err;
1812  }
1813  
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1814  static int vsock_connectible_getsockopt(struct socket *sock,
1815  					int level, int optname,
1816  					char __user *optval,
1817  					int __user *optlen)
1818  {
1819  	struct sock *sk = sock->sk;
1820  	struct vsock_sock *vsk = vsock_sk(sk);
1821  
1822  	union {
1823  		u64 val64;
1824  		struct old_timeval32 tm32;
1825  		struct __kernel_old_timeval tm;
1826  		struct  __kernel_sock_timeval stm;
1827  	} v;
1828  
1829  	int lv = sizeof(v.val64);
1830  	int len;
1831  
1832  	if (level != AF_VSOCK)
1833  		return -ENOPROTOOPT;
1834  
1835  	if (get_user(len, optlen))
1836  		return -EFAULT;
1837  
1838  	memset(&v, 0, sizeof(v));
1839  
1840  	switch (optname) {
1841  	case SO_VM_SOCKETS_BUFFER_SIZE:
1842  		v.val64 = vsk->buffer_size;
1843  		break;
1844  
1845  	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1846  		v.val64 = vsk->buffer_max_size;
1847  		break;
1848  
1849  	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1850  		v.val64 = vsk->buffer_min_size;
1851  		break;
1852  
1853  	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1854  	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1855  		lv = sock_get_timeout(vsk->connect_timeout, &v,
1856  				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1857  		break;
1858  
1859  	default:
1860  		return -ENOPROTOOPT;
1861  	}
1862  
1863  	if (len < lv)
1864  		return -EINVAL;
1865  	if (len > lv)
1866  		len = lv;
1867  	if (copy_to_user(optval, &v, len))
1868  		return -EFAULT;
1869  
1870  	if (put_user(len, optlen))
1871  		return -EFAULT;
1872  
1873  	return 0;
1874  }
1875  
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1876  static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1877  				     size_t len)
1878  {
1879  	struct sock *sk;
1880  	struct vsock_sock *vsk;
1881  	const struct vsock_transport *transport;
1882  	ssize_t total_written;
1883  	long timeout;
1884  	int err;
1885  	struct vsock_transport_send_notify_data send_data;
1886  	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1887  
1888  	sk = sock->sk;
1889  	vsk = vsock_sk(sk);
1890  	total_written = 0;
1891  	err = 0;
1892  
1893  	if (msg->msg_flags & MSG_OOB)
1894  		return -EOPNOTSUPP;
1895  
1896  	lock_sock(sk);
1897  
1898  	transport = vsk->transport;
1899  
1900  	/* Callers should not provide a destination with connection oriented
1901  	 * sockets.
1902  	 */
1903  	if (msg->msg_namelen) {
1904  		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1905  		goto out;
1906  	}
1907  
1908  	/* Send data only if both sides are not shutdown in the direction. */
1909  	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1910  	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1911  		err = -EPIPE;
1912  		goto out;
1913  	}
1914  
1915  	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1916  	    !vsock_addr_bound(&vsk->local_addr)) {
1917  		err = -ENOTCONN;
1918  		goto out;
1919  	}
1920  
1921  	if (!vsock_addr_bound(&vsk->remote_addr)) {
1922  		err = -EDESTADDRREQ;
1923  		goto out;
1924  	}
1925  
1926  	if (msg->msg_flags & MSG_ZEROCOPY &&
1927  	    !vsock_msgzerocopy_allow(transport)) {
1928  		err = -EOPNOTSUPP;
1929  		goto out;
1930  	}
1931  
1932  	/* Wait for room in the produce queue to enqueue our user's data. */
1933  	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1934  
1935  	err = transport->notify_send_init(vsk, &send_data);
1936  	if (err < 0)
1937  		goto out;
1938  
1939  	while (total_written < len) {
1940  		ssize_t written;
1941  
1942  		add_wait_queue(sk_sleep(sk), &wait);
1943  		while (vsock_stream_has_space(vsk) == 0 &&
1944  		       sk->sk_err == 0 &&
1945  		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1946  		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1947  
1948  			/* Don't wait for non-blocking sockets. */
1949  			if (timeout == 0) {
1950  				err = -EAGAIN;
1951  				remove_wait_queue(sk_sleep(sk), &wait);
1952  				goto out_err;
1953  			}
1954  
1955  			err = transport->notify_send_pre_block(vsk, &send_data);
1956  			if (err < 0) {
1957  				remove_wait_queue(sk_sleep(sk), &wait);
1958  				goto out_err;
1959  			}
1960  
1961  			release_sock(sk);
1962  			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1963  			lock_sock(sk);
1964  			if (signal_pending(current)) {
1965  				err = sock_intr_errno(timeout);
1966  				remove_wait_queue(sk_sleep(sk), &wait);
1967  				goto out_err;
1968  			} else if (timeout == 0) {
1969  				err = -EAGAIN;
1970  				remove_wait_queue(sk_sleep(sk), &wait);
1971  				goto out_err;
1972  			}
1973  		}
1974  		remove_wait_queue(sk_sleep(sk), &wait);
1975  
1976  		/* These checks occur both as part of and after the loop
1977  		 * conditional since we need to check before and after
1978  		 * sleeping.
1979  		 */
1980  		if (sk->sk_err) {
1981  			err = -sk->sk_err;
1982  			goto out_err;
1983  		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1984  			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1985  			err = -EPIPE;
1986  			goto out_err;
1987  		}
1988  
1989  		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1990  		if (err < 0)
1991  			goto out_err;
1992  
1993  		/* Note that enqueue will only write as many bytes as are free
1994  		 * in the produce queue, so we don't need to ensure len is
1995  		 * smaller than the queue size.  It is the caller's
1996  		 * responsibility to check how many bytes we were able to send.
1997  		 */
1998  
1999  		if (sk->sk_type == SOCK_SEQPACKET) {
2000  			written = transport->seqpacket_enqueue(vsk,
2001  						msg, len - total_written);
2002  		} else {
2003  			written = transport->stream_enqueue(vsk,
2004  					msg, len - total_written);
2005  		}
2006  
2007  		if (written < 0) {
2008  			err = written;
2009  			goto out_err;
2010  		}
2011  
2012  		total_written += written;
2013  
2014  		err = transport->notify_send_post_enqueue(
2015  				vsk, written, &send_data);
2016  		if (err < 0)
2017  			goto out_err;
2018  
2019  	}
2020  
2021  out_err:
2022  	if (total_written > 0) {
2023  		/* Return number of written bytes only if:
2024  		 * 1) SOCK_STREAM socket.
2025  		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2026  		 */
2027  		if (sk->sk_type == SOCK_STREAM || total_written == len)
2028  			err = total_written;
2029  	}
2030  out:
2031  	if (sk->sk_type == SOCK_STREAM)
2032  		err = sk_stream_error(sk, msg->msg_flags, err);
2033  
2034  	release_sock(sk);
2035  	return err;
2036  }
2037  
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2038  static int vsock_connectible_wait_data(struct sock *sk,
2039  				       struct wait_queue_entry *wait,
2040  				       long timeout,
2041  				       struct vsock_transport_recv_notify_data *recv_data,
2042  				       size_t target)
2043  {
2044  	const struct vsock_transport *transport;
2045  	struct vsock_sock *vsk;
2046  	s64 data;
2047  	int err;
2048  
2049  	vsk = vsock_sk(sk);
2050  	err = 0;
2051  	transport = vsk->transport;
2052  
2053  	while (1) {
2054  		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2055  		data = vsock_connectible_has_data(vsk);
2056  		if (data != 0)
2057  			break;
2058  
2059  		if (sk->sk_err != 0 ||
2060  		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2061  		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2062  			break;
2063  		}
2064  
2065  		/* Don't wait for non-blocking sockets. */
2066  		if (timeout == 0) {
2067  			err = -EAGAIN;
2068  			break;
2069  		}
2070  
2071  		if (recv_data) {
2072  			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2073  			if (err < 0)
2074  				break;
2075  		}
2076  
2077  		release_sock(sk);
2078  		timeout = schedule_timeout(timeout);
2079  		lock_sock(sk);
2080  
2081  		if (signal_pending(current)) {
2082  			err = sock_intr_errno(timeout);
2083  			break;
2084  		} else if (timeout == 0) {
2085  			err = -EAGAIN;
2086  			break;
2087  		}
2088  	}
2089  
2090  	finish_wait(sk_sleep(sk), wait);
2091  
2092  	if (err)
2093  		return err;
2094  
2095  	/* Internal transport error when checking for available
2096  	 * data. XXX This should be changed to a connection
2097  	 * reset in a later change.
2098  	 */
2099  	if (data < 0)
2100  		return -ENOMEM;
2101  
2102  	return data;
2103  }
2104  
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2105  static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2106  				  size_t len, int flags)
2107  {
2108  	struct vsock_transport_recv_notify_data recv_data;
2109  	const struct vsock_transport *transport;
2110  	struct vsock_sock *vsk;
2111  	ssize_t copied;
2112  	size_t target;
2113  	long timeout;
2114  	int err;
2115  
2116  	DEFINE_WAIT(wait);
2117  
2118  	vsk = vsock_sk(sk);
2119  	transport = vsk->transport;
2120  
2121  	/* We must not copy less than target bytes into the user's buffer
2122  	 * before returning successfully, so we wait for the consume queue to
2123  	 * have that much data to consume before dequeueing.  Note that this
2124  	 * makes it impossible to handle cases where target is greater than the
2125  	 * queue size.
2126  	 */
2127  	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2128  	if (target >= transport->stream_rcvhiwat(vsk)) {
2129  		err = -ENOMEM;
2130  		goto out;
2131  	}
2132  	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2133  	copied = 0;
2134  
2135  	err = transport->notify_recv_init(vsk, target, &recv_data);
2136  	if (err < 0)
2137  		goto out;
2138  
2139  
2140  	while (1) {
2141  		ssize_t read;
2142  
2143  		err = vsock_connectible_wait_data(sk, &wait, timeout,
2144  						  &recv_data, target);
2145  		if (err <= 0)
2146  			break;
2147  
2148  		err = transport->notify_recv_pre_dequeue(vsk, target,
2149  							 &recv_data);
2150  		if (err < 0)
2151  			break;
2152  
2153  		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2154  		if (read < 0) {
2155  			err = read;
2156  			break;
2157  		}
2158  
2159  		copied += read;
2160  
2161  		err = transport->notify_recv_post_dequeue(vsk, target, read,
2162  						!(flags & MSG_PEEK), &recv_data);
2163  		if (err < 0)
2164  			goto out;
2165  
2166  		if (read >= target || flags & MSG_PEEK)
2167  			break;
2168  
2169  		target -= read;
2170  	}
2171  
2172  	if (sk->sk_err)
2173  		err = -sk->sk_err;
2174  	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2175  		err = 0;
2176  
2177  	if (copied > 0)
2178  		err = copied;
2179  
2180  out:
2181  	return err;
2182  }
2183  
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2184  static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2185  				     size_t len, int flags)
2186  {
2187  	const struct vsock_transport *transport;
2188  	struct vsock_sock *vsk;
2189  	ssize_t msg_len;
2190  	long timeout;
2191  	int err = 0;
2192  	DEFINE_WAIT(wait);
2193  
2194  	vsk = vsock_sk(sk);
2195  	transport = vsk->transport;
2196  
2197  	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2198  
2199  	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2200  	if (err <= 0)
2201  		goto out;
2202  
2203  	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2204  
2205  	if (msg_len < 0) {
2206  		err = msg_len;
2207  		goto out;
2208  	}
2209  
2210  	if (sk->sk_err) {
2211  		err = -sk->sk_err;
2212  	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2213  		err = 0;
2214  	} else {
2215  		/* User sets MSG_TRUNC, so return real length of
2216  		 * packet.
2217  		 */
2218  		if (flags & MSG_TRUNC)
2219  			err = msg_len;
2220  		else
2221  			err = len - msg_data_left(msg);
2222  
2223  		/* Always set MSG_TRUNC if real length of packet is
2224  		 * bigger than user's buffer.
2225  		 */
2226  		if (msg_len > len)
2227  			msg->msg_flags |= MSG_TRUNC;
2228  	}
2229  
2230  out:
2231  	return err;
2232  }
2233  
2234  int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2235  __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2236  			    int flags)
2237  {
2238  	struct sock *sk;
2239  	struct vsock_sock *vsk;
2240  	const struct vsock_transport *transport;
2241  	int err;
2242  
2243  	sk = sock->sk;
2244  
2245  	if (unlikely(flags & MSG_ERRQUEUE))
2246  		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2247  
2248  	vsk = vsock_sk(sk);
2249  	err = 0;
2250  
2251  	lock_sock(sk);
2252  
2253  	transport = vsk->transport;
2254  
2255  	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2256  		/* Recvmsg is supposed to return 0 if a peer performs an
2257  		 * orderly shutdown. Differentiate between that case and when a
2258  		 * peer has not connected or a local shutdown occurred with the
2259  		 * SOCK_DONE flag.
2260  		 */
2261  		if (sock_flag(sk, SOCK_DONE))
2262  			err = 0;
2263  		else
2264  			err = -ENOTCONN;
2265  
2266  		goto out;
2267  	}
2268  
2269  	if (flags & MSG_OOB) {
2270  		err = -EOPNOTSUPP;
2271  		goto out;
2272  	}
2273  
2274  	/* We don't check peer_shutdown flag here since peer may actually shut
2275  	 * down, but there can be data in the queue that a local socket can
2276  	 * receive.
2277  	 */
2278  	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2279  		err = 0;
2280  		goto out;
2281  	}
2282  
2283  	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2284  	 * is not an error.  We may as well bail out now.
2285  	 */
2286  	if (!len) {
2287  		err = 0;
2288  		goto out;
2289  	}
2290  
2291  	if (sk->sk_type == SOCK_STREAM)
2292  		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2293  	else
2294  		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2295  
2296  out:
2297  	release_sock(sk);
2298  	return err;
2299  }
2300  
2301  int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2302  vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2303  			  int flags)
2304  {
2305  #ifdef CONFIG_BPF_SYSCALL
2306  	struct sock *sk = sock->sk;
2307  	const struct proto *prot;
2308  
2309  	prot = READ_ONCE(sk->sk_prot);
2310  	if (prot != &vsock_proto)
2311  		return prot->recvmsg(sk, msg, len, flags, NULL);
2312  #endif
2313  
2314  	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2315  }
2316  EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2317  
vsock_set_rcvlowat(struct sock * sk,int val)2318  static int vsock_set_rcvlowat(struct sock *sk, int val)
2319  {
2320  	const struct vsock_transport *transport;
2321  	struct vsock_sock *vsk;
2322  
2323  	vsk = vsock_sk(sk);
2324  
2325  	if (val > vsk->buffer_size)
2326  		return -EINVAL;
2327  
2328  	transport = vsk->transport;
2329  
2330  	if (transport && transport->notify_set_rcvlowat) {
2331  		int err;
2332  
2333  		err = transport->notify_set_rcvlowat(vsk, val);
2334  		if (err)
2335  			return err;
2336  	}
2337  
2338  	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2339  	return 0;
2340  }
2341  
2342  static const struct proto_ops vsock_stream_ops = {
2343  	.family = PF_VSOCK,
2344  	.owner = THIS_MODULE,
2345  	.release = vsock_release,
2346  	.bind = vsock_bind,
2347  	.connect = vsock_connect,
2348  	.socketpair = sock_no_socketpair,
2349  	.accept = vsock_accept,
2350  	.getname = vsock_getname,
2351  	.poll = vsock_poll,
2352  	.ioctl = vsock_ioctl,
2353  	.listen = vsock_listen,
2354  	.shutdown = vsock_shutdown,
2355  	.setsockopt = vsock_connectible_setsockopt,
2356  	.getsockopt = vsock_connectible_getsockopt,
2357  	.sendmsg = vsock_connectible_sendmsg,
2358  	.recvmsg = vsock_connectible_recvmsg,
2359  	.mmap = sock_no_mmap,
2360  	.set_rcvlowat = vsock_set_rcvlowat,
2361  	.read_skb = vsock_read_skb,
2362  };
2363  
2364  static const struct proto_ops vsock_seqpacket_ops = {
2365  	.family = PF_VSOCK,
2366  	.owner = THIS_MODULE,
2367  	.release = vsock_release,
2368  	.bind = vsock_bind,
2369  	.connect = vsock_connect,
2370  	.socketpair = sock_no_socketpair,
2371  	.accept = vsock_accept,
2372  	.getname = vsock_getname,
2373  	.poll = vsock_poll,
2374  	.ioctl = vsock_ioctl,
2375  	.listen = vsock_listen,
2376  	.shutdown = vsock_shutdown,
2377  	.setsockopt = vsock_connectible_setsockopt,
2378  	.getsockopt = vsock_connectible_getsockopt,
2379  	.sendmsg = vsock_connectible_sendmsg,
2380  	.recvmsg = vsock_connectible_recvmsg,
2381  	.mmap = sock_no_mmap,
2382  	.read_skb = vsock_read_skb,
2383  };
2384  
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2385  static int vsock_create(struct net *net, struct socket *sock,
2386  			int protocol, int kern)
2387  {
2388  	struct vsock_sock *vsk;
2389  	struct sock *sk;
2390  	int ret;
2391  
2392  	if (!sock)
2393  		return -EINVAL;
2394  
2395  	if (protocol && protocol != PF_VSOCK)
2396  		return -EPROTONOSUPPORT;
2397  
2398  	switch (sock->type) {
2399  	case SOCK_DGRAM:
2400  		sock->ops = &vsock_dgram_ops;
2401  		break;
2402  	case SOCK_STREAM:
2403  		sock->ops = &vsock_stream_ops;
2404  		break;
2405  	case SOCK_SEQPACKET:
2406  		sock->ops = &vsock_seqpacket_ops;
2407  		break;
2408  	default:
2409  		return -ESOCKTNOSUPPORT;
2410  	}
2411  
2412  	sock->state = SS_UNCONNECTED;
2413  
2414  	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2415  	if (!sk)
2416  		return -ENOMEM;
2417  
2418  	vsk = vsock_sk(sk);
2419  
2420  	if (sock->type == SOCK_DGRAM) {
2421  		ret = vsock_assign_transport(vsk, NULL);
2422  		if (ret < 0) {
2423  			sock_put(sk);
2424  			return ret;
2425  		}
2426  	}
2427  
2428  	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2429  	 * proto_ops, so there is no handler for custom logic.
2430  	 */
2431  	if (sock_type_connectible(sock->type))
2432  		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2433  
2434  	vsock_insert_unbound(vsk);
2435  
2436  	return 0;
2437  }
2438  
2439  static const struct net_proto_family vsock_family_ops = {
2440  	.family = AF_VSOCK,
2441  	.create = vsock_create,
2442  	.owner = THIS_MODULE,
2443  };
2444  
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2445  static long vsock_dev_do_ioctl(struct file *filp,
2446  			       unsigned int cmd, void __user *ptr)
2447  {
2448  	u32 __user *p = ptr;
2449  	u32 cid = VMADDR_CID_ANY;
2450  	int retval = 0;
2451  
2452  	switch (cmd) {
2453  	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2454  		/* To be compatible with the VMCI behavior, we prioritize the
2455  		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2456  		 */
2457  		if (transport_g2h)
2458  			cid = transport_g2h->get_local_cid();
2459  		else if (transport_h2g)
2460  			cid = transport_h2g->get_local_cid();
2461  
2462  		if (put_user(cid, p) != 0)
2463  			retval = -EFAULT;
2464  		break;
2465  
2466  	default:
2467  		retval = -ENOIOCTLCMD;
2468  	}
2469  
2470  	return retval;
2471  }
2472  
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2473  static long vsock_dev_ioctl(struct file *filp,
2474  			    unsigned int cmd, unsigned long arg)
2475  {
2476  	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2477  }
2478  
2479  #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2480  static long vsock_dev_compat_ioctl(struct file *filp,
2481  				   unsigned int cmd, unsigned long arg)
2482  {
2483  	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2484  }
2485  #endif
2486  
2487  static const struct file_operations vsock_device_ops = {
2488  	.owner		= THIS_MODULE,
2489  	.unlocked_ioctl	= vsock_dev_ioctl,
2490  #ifdef CONFIG_COMPAT
2491  	.compat_ioctl	= vsock_dev_compat_ioctl,
2492  #endif
2493  	.open		= nonseekable_open,
2494  };
2495  
2496  static struct miscdevice vsock_device = {
2497  	.name		= "vsock",
2498  	.fops		= &vsock_device_ops,
2499  };
2500  
vsock_init(void)2501  static int __init vsock_init(void)
2502  {
2503  	int err = 0;
2504  
2505  	vsock_init_tables();
2506  
2507  	vsock_proto.owner = THIS_MODULE;
2508  	vsock_device.minor = MISC_DYNAMIC_MINOR;
2509  	err = misc_register(&vsock_device);
2510  	if (err) {
2511  		pr_err("Failed to register misc device\n");
2512  		goto err_reset_transport;
2513  	}
2514  
2515  	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2516  	if (err) {
2517  		pr_err("Cannot register vsock protocol\n");
2518  		goto err_deregister_misc;
2519  	}
2520  
2521  	err = sock_register(&vsock_family_ops);
2522  	if (err) {
2523  		pr_err("could not register af_vsock (%d) address family: %d\n",
2524  		       AF_VSOCK, err);
2525  		goto err_unregister_proto;
2526  	}
2527  
2528  	vsock_bpf_build_proto();
2529  
2530  	return 0;
2531  
2532  err_unregister_proto:
2533  	proto_unregister(&vsock_proto);
2534  err_deregister_misc:
2535  	misc_deregister(&vsock_device);
2536  err_reset_transport:
2537  	return err;
2538  }
2539  
vsock_exit(void)2540  static void __exit vsock_exit(void)
2541  {
2542  	misc_deregister(&vsock_device);
2543  	sock_unregister(AF_VSOCK);
2544  	proto_unregister(&vsock_proto);
2545  }
2546  
vsock_core_get_transport(struct vsock_sock * vsk)2547  const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2548  {
2549  	return vsk->transport;
2550  }
2551  EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2552  
vsock_core_register(const struct vsock_transport * t,int features)2553  int vsock_core_register(const struct vsock_transport *t, int features)
2554  {
2555  	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2556  	int err = mutex_lock_interruptible(&vsock_register_mutex);
2557  
2558  	if (err)
2559  		return err;
2560  
2561  	t_h2g = transport_h2g;
2562  	t_g2h = transport_g2h;
2563  	t_dgram = transport_dgram;
2564  	t_local = transport_local;
2565  
2566  	if (features & VSOCK_TRANSPORT_F_H2G) {
2567  		if (t_h2g) {
2568  			err = -EBUSY;
2569  			goto err_busy;
2570  		}
2571  		t_h2g = t;
2572  	}
2573  
2574  	if (features & VSOCK_TRANSPORT_F_G2H) {
2575  		if (t_g2h) {
2576  			err = -EBUSY;
2577  			goto err_busy;
2578  		}
2579  		t_g2h = t;
2580  	}
2581  
2582  	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2583  		if (t_dgram) {
2584  			err = -EBUSY;
2585  			goto err_busy;
2586  		}
2587  		t_dgram = t;
2588  	}
2589  
2590  	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2591  		if (t_local) {
2592  			err = -EBUSY;
2593  			goto err_busy;
2594  		}
2595  		t_local = t;
2596  	}
2597  
2598  	transport_h2g = t_h2g;
2599  	transport_g2h = t_g2h;
2600  	transport_dgram = t_dgram;
2601  	transport_local = t_local;
2602  
2603  err_busy:
2604  	mutex_unlock(&vsock_register_mutex);
2605  	return err;
2606  }
2607  EXPORT_SYMBOL_GPL(vsock_core_register);
2608  
vsock_core_unregister(const struct vsock_transport * t)2609  void vsock_core_unregister(const struct vsock_transport *t)
2610  {
2611  	mutex_lock(&vsock_register_mutex);
2612  
2613  	if (transport_h2g == t)
2614  		transport_h2g = NULL;
2615  
2616  	if (transport_g2h == t)
2617  		transport_g2h = NULL;
2618  
2619  	if (transport_dgram == t)
2620  		transport_dgram = NULL;
2621  
2622  	if (transport_local == t)
2623  		transport_local = NULL;
2624  
2625  	mutex_unlock(&vsock_register_mutex);
2626  }
2627  EXPORT_SYMBOL_GPL(vsock_core_unregister);
2628  
2629  module_init(vsock_init);
2630  module_exit(vsock_exit);
2631  
2632  MODULE_AUTHOR("VMware, Inc.");
2633  MODULE_DESCRIPTION("VMware Virtual Socket Family");
2634  MODULE_VERSION("1.0.2.0-k");
2635  MODULE_LICENSE("GPL v2");
2636