1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 .name = "AF_VSOCK",
124 .owner = THIS_MODULE,
125 .obj_size = sizeof(struct vsock_sock),
126 #ifdef CONFIG_BPF_SYSCALL
127 .psock_update_sk_prot = vsock_bpf_update_proto,
128 #endif
129 };
130
131 /* The default peer timeout indicates how long we will wait for a peer response
132 * to a control message.
133 */
134 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
135
136 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
137 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
139
140 /* Transport used for host->guest communication */
141 static const struct vsock_transport *transport_h2g;
142 /* Transport used for guest->host communication */
143 static const struct vsock_transport *transport_g2h;
144 /* Transport used for DGRAM communication */
145 static const struct vsock_transport *transport_dgram;
146 /* Transport used for local communication */
147 static const struct vsock_transport *transport_local;
148 static DEFINE_MUTEX(vsock_register_mutex);
149
150 /**** UTILS ****/
151
152 /* Each bound VSocket is stored in the bind hash table and each connected
153 * VSocket is stored in the connected hash table.
154 *
155 * Unbound sockets are all put on the same list attached to the end of the hash
156 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
157 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158 * represents the list that addr hashes to).
159 *
160 * Specifically, we initialize the vsock_bind_table array to a size of
161 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
164 * mods with VSOCK_HASH_SIZE to ensure this.
165 */
166 #define MAX_PORT_RETRIES 24
167
168 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
169 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
171
172 /* XXX This can probably be implemented in a better way. */
173 #define VSOCK_CONN_HASH(src, dst) \
174 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
175 #define vsock_connected_sockets(src, dst) \
176 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177 #define vsock_connected_sockets_vsk(vsk) \
178 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179
180 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181 EXPORT_SYMBOL_GPL(vsock_bind_table);
182 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183 EXPORT_SYMBOL_GPL(vsock_connected_table);
184 DEFINE_SPINLOCK(vsock_table_lock);
185 EXPORT_SYMBOL_GPL(vsock_table_lock);
186
187 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)188 static int vsock_auto_bind(struct vsock_sock *vsk)
189 {
190 struct sock *sk = sk_vsock(vsk);
191 struct sockaddr_vm local_addr;
192
193 if (vsock_addr_bound(&vsk->local_addr))
194 return 0;
195 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196 return __vsock_bind(sk, &local_addr);
197 }
198
vsock_init_tables(void)199 static void vsock_init_tables(void)
200 {
201 int i;
202
203 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204 INIT_LIST_HEAD(&vsock_bind_table[i]);
205
206 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207 INIT_LIST_HEAD(&vsock_connected_table[i]);
208 }
209
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_bound(struct list_head *list,
211 struct vsock_sock *vsk)
212 {
213 sock_hold(&vsk->sk);
214 list_add(&vsk->bound_table, list);
215 }
216
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)217 static void __vsock_insert_connected(struct list_head *list,
218 struct vsock_sock *vsk)
219 {
220 sock_hold(&vsk->sk);
221 list_add(&vsk->connected_table, list);
222 }
223
__vsock_remove_bound(struct vsock_sock * vsk)224 static void __vsock_remove_bound(struct vsock_sock *vsk)
225 {
226 list_del_init(&vsk->bound_table);
227 sock_put(&vsk->sk);
228 }
229
__vsock_remove_connected(struct vsock_sock * vsk)230 static void __vsock_remove_connected(struct vsock_sock *vsk)
231 {
232 list_del_init(&vsk->connected_table);
233 sock_put(&vsk->sk);
234 }
235
__vsock_find_bound_socket(struct sockaddr_vm * addr)236 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
237 {
238 struct vsock_sock *vsk;
239
240 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
241 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
242 return sk_vsock(vsk);
243
244 if (addr->svm_port == vsk->local_addr.svm_port &&
245 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
246 addr->svm_cid == VMADDR_CID_ANY))
247 return sk_vsock(vsk);
248 }
249
250 return NULL;
251 }
252
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)253 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
254 struct sockaddr_vm *dst)
255 {
256 struct vsock_sock *vsk;
257
258 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
259 connected_table) {
260 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
261 dst->svm_port == vsk->local_addr.svm_port) {
262 return sk_vsock(vsk);
263 }
264 }
265
266 return NULL;
267 }
268
vsock_insert_unbound(struct vsock_sock * vsk)269 static void vsock_insert_unbound(struct vsock_sock *vsk)
270 {
271 spin_lock_bh(&vsock_table_lock);
272 __vsock_insert_bound(vsock_unbound_sockets, vsk);
273 spin_unlock_bh(&vsock_table_lock);
274 }
275
vsock_insert_connected(struct vsock_sock * vsk)276 void vsock_insert_connected(struct vsock_sock *vsk)
277 {
278 struct list_head *list = vsock_connected_sockets(
279 &vsk->remote_addr, &vsk->local_addr);
280
281 spin_lock_bh(&vsock_table_lock);
282 __vsock_insert_connected(list, vsk);
283 spin_unlock_bh(&vsock_table_lock);
284 }
285 EXPORT_SYMBOL_GPL(vsock_insert_connected);
286
vsock_remove_bound(struct vsock_sock * vsk)287 void vsock_remove_bound(struct vsock_sock *vsk)
288 {
289 spin_lock_bh(&vsock_table_lock);
290 if (__vsock_in_bound_table(vsk))
291 __vsock_remove_bound(vsk);
292 spin_unlock_bh(&vsock_table_lock);
293 }
294 EXPORT_SYMBOL_GPL(vsock_remove_bound);
295
vsock_remove_connected(struct vsock_sock * vsk)296 void vsock_remove_connected(struct vsock_sock *vsk)
297 {
298 spin_lock_bh(&vsock_table_lock);
299 if (__vsock_in_connected_table(vsk))
300 __vsock_remove_connected(vsk);
301 spin_unlock_bh(&vsock_table_lock);
302 }
303 EXPORT_SYMBOL_GPL(vsock_remove_connected);
304
vsock_find_bound_socket(struct sockaddr_vm * addr)305 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
306 {
307 struct sock *sk;
308
309 spin_lock_bh(&vsock_table_lock);
310 sk = __vsock_find_bound_socket(addr);
311 if (sk)
312 sock_hold(sk);
313
314 spin_unlock_bh(&vsock_table_lock);
315
316 return sk;
317 }
318 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
319
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)320 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
321 struct sockaddr_vm *dst)
322 {
323 struct sock *sk;
324
325 spin_lock_bh(&vsock_table_lock);
326 sk = __vsock_find_connected_socket(src, dst);
327 if (sk)
328 sock_hold(sk);
329
330 spin_unlock_bh(&vsock_table_lock);
331
332 return sk;
333 }
334 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
335
vsock_remove_sock(struct vsock_sock * vsk)336 void vsock_remove_sock(struct vsock_sock *vsk)
337 {
338 vsock_remove_bound(vsk);
339 vsock_remove_connected(vsk);
340 }
341 EXPORT_SYMBOL_GPL(vsock_remove_sock);
342
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))343 void vsock_for_each_connected_socket(struct vsock_transport *transport,
344 void (*fn)(struct sock *sk))
345 {
346 int i;
347
348 spin_lock_bh(&vsock_table_lock);
349
350 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
351 struct vsock_sock *vsk;
352 list_for_each_entry(vsk, &vsock_connected_table[i],
353 connected_table) {
354 if (vsk->transport != transport)
355 continue;
356
357 fn(sk_vsock(vsk));
358 }
359 }
360
361 spin_unlock_bh(&vsock_table_lock);
362 }
363 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
364
vsock_add_pending(struct sock * listener,struct sock * pending)365 void vsock_add_pending(struct sock *listener, struct sock *pending)
366 {
367 struct vsock_sock *vlistener;
368 struct vsock_sock *vpending;
369
370 vlistener = vsock_sk(listener);
371 vpending = vsock_sk(pending);
372
373 sock_hold(pending);
374 sock_hold(listener);
375 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
376 }
377 EXPORT_SYMBOL_GPL(vsock_add_pending);
378
vsock_remove_pending(struct sock * listener,struct sock * pending)379 void vsock_remove_pending(struct sock *listener, struct sock *pending)
380 {
381 struct vsock_sock *vpending = vsock_sk(pending);
382
383 list_del_init(&vpending->pending_links);
384 sock_put(listener);
385 sock_put(pending);
386 }
387 EXPORT_SYMBOL_GPL(vsock_remove_pending);
388
vsock_enqueue_accept(struct sock * listener,struct sock * connected)389 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
390 {
391 struct vsock_sock *vlistener;
392 struct vsock_sock *vconnected;
393
394 vlistener = vsock_sk(listener);
395 vconnected = vsock_sk(connected);
396
397 sock_hold(connected);
398 sock_hold(listener);
399 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
400 }
401 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
402
vsock_use_local_transport(unsigned int remote_cid)403 static bool vsock_use_local_transport(unsigned int remote_cid)
404 {
405 if (!transport_local)
406 return false;
407
408 if (remote_cid == VMADDR_CID_LOCAL)
409 return true;
410
411 if (transport_g2h) {
412 return remote_cid == transport_g2h->get_local_cid();
413 } else {
414 return remote_cid == VMADDR_CID_HOST;
415 }
416 }
417
vsock_deassign_transport(struct vsock_sock * vsk)418 static void vsock_deassign_transport(struct vsock_sock *vsk)
419 {
420 if (!vsk->transport)
421 return;
422
423 vsk->transport->destruct(vsk);
424 module_put(vsk->transport->module);
425 vsk->transport = NULL;
426 }
427
428 /* Assign a transport to a socket and call the .init transport callback.
429 *
430 * Note: for connection oriented socket this must be called when vsk->remote_addr
431 * is set (e.g. during the connect() or when a connection request on a listener
432 * socket is received).
433 * The vsk->remote_addr is used to decide which transport to use:
434 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
435 * g2h is not loaded, will use local transport;
436 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
437 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
438 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
439 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)440 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
441 {
442 const struct vsock_transport *new_transport;
443 struct sock *sk = sk_vsock(vsk);
444 unsigned int remote_cid = vsk->remote_addr.svm_cid;
445 __u8 remote_flags;
446 int ret;
447
448 /* If the packet is coming with the source and destination CIDs higher
449 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
450 * forwarded to the host should be established. Then the host will
451 * need to forward the packets to the guest.
452 *
453 * The flag is set on the (listen) receive path (psk is not NULL). On
454 * the connect path the flag can be set by the user space application.
455 */
456 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
457 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
458 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
459
460 remote_flags = vsk->remote_addr.svm_flags;
461
462 switch (sk->sk_type) {
463 case SOCK_DGRAM:
464 new_transport = transport_dgram;
465 break;
466 case SOCK_STREAM:
467 case SOCK_SEQPACKET:
468 if (vsock_use_local_transport(remote_cid))
469 new_transport = transport_local;
470 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
471 (remote_flags & VMADDR_FLAG_TO_HOST))
472 new_transport = transport_g2h;
473 else
474 new_transport = transport_h2g;
475 break;
476 default:
477 return -ESOCKTNOSUPPORT;
478 }
479
480 if (vsk->transport) {
481 if (vsk->transport == new_transport)
482 return 0;
483
484 /* transport->release() must be called with sock lock acquired.
485 * This path can only be taken during vsock_connect(), where we
486 * have already held the sock lock. In the other cases, this
487 * function is called on a new socket which is not assigned to
488 * any transport.
489 */
490 vsk->transport->release(vsk);
491 vsock_deassign_transport(vsk);
492 }
493
494 /* We increase the module refcnt to prevent the transport unloading
495 * while there are open sockets assigned to it.
496 */
497 if (!new_transport || !try_module_get(new_transport->module))
498 return -ENODEV;
499
500 if (sk->sk_type == SOCK_SEQPACKET) {
501 if (!new_transport->seqpacket_allow ||
502 !new_transport->seqpacket_allow(remote_cid)) {
503 module_put(new_transport->module);
504 return -ESOCKTNOSUPPORT;
505 }
506 }
507
508 ret = new_transport->init(vsk, psk);
509 if (ret) {
510 module_put(new_transport->module);
511 return ret;
512 }
513
514 vsk->transport = new_transport;
515
516 return 0;
517 }
518 EXPORT_SYMBOL_GPL(vsock_assign_transport);
519
vsock_find_cid(unsigned int cid)520 bool vsock_find_cid(unsigned int cid)
521 {
522 if (transport_g2h && cid == transport_g2h->get_local_cid())
523 return true;
524
525 if (transport_h2g && cid == VMADDR_CID_HOST)
526 return true;
527
528 if (transport_local && cid == VMADDR_CID_LOCAL)
529 return true;
530
531 return false;
532 }
533 EXPORT_SYMBOL_GPL(vsock_find_cid);
534
vsock_dequeue_accept(struct sock * listener)535 static struct sock *vsock_dequeue_accept(struct sock *listener)
536 {
537 struct vsock_sock *vlistener;
538 struct vsock_sock *vconnected;
539
540 vlistener = vsock_sk(listener);
541
542 if (list_empty(&vlistener->accept_queue))
543 return NULL;
544
545 vconnected = list_entry(vlistener->accept_queue.next,
546 struct vsock_sock, accept_queue);
547
548 list_del_init(&vconnected->accept_queue);
549 sock_put(listener);
550 /* The caller will need a reference on the connected socket so we let
551 * it call sock_put().
552 */
553
554 return sk_vsock(vconnected);
555 }
556
vsock_is_accept_queue_empty(struct sock * sk)557 static bool vsock_is_accept_queue_empty(struct sock *sk)
558 {
559 struct vsock_sock *vsk = vsock_sk(sk);
560 return list_empty(&vsk->accept_queue);
561 }
562
vsock_is_pending(struct sock * sk)563 static bool vsock_is_pending(struct sock *sk)
564 {
565 struct vsock_sock *vsk = vsock_sk(sk);
566 return !list_empty(&vsk->pending_links);
567 }
568
vsock_send_shutdown(struct sock * sk,int mode)569 static int vsock_send_shutdown(struct sock *sk, int mode)
570 {
571 struct vsock_sock *vsk = vsock_sk(sk);
572
573 if (!vsk->transport)
574 return -ENODEV;
575
576 return vsk->transport->shutdown(vsk, mode);
577 }
578
vsock_pending_work(struct work_struct * work)579 static void vsock_pending_work(struct work_struct *work)
580 {
581 struct sock *sk;
582 struct sock *listener;
583 struct vsock_sock *vsk;
584 bool cleanup;
585
586 vsk = container_of(work, struct vsock_sock, pending_work.work);
587 sk = sk_vsock(vsk);
588 listener = vsk->listener;
589 cleanup = true;
590
591 lock_sock(listener);
592 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
593
594 if (vsock_is_pending(sk)) {
595 vsock_remove_pending(listener, sk);
596
597 sk_acceptq_removed(listener);
598 } else if (!vsk->rejected) {
599 /* We are not on the pending list and accept() did not reject
600 * us, so we must have been accepted by our user process. We
601 * just need to drop our references to the sockets and be on
602 * our way.
603 */
604 cleanup = false;
605 goto out;
606 }
607
608 /* We need to remove ourself from the global connected sockets list so
609 * incoming packets can't find this socket, and to reduce the reference
610 * count.
611 */
612 vsock_remove_connected(vsk);
613
614 sk->sk_state = TCP_CLOSE;
615
616 out:
617 release_sock(sk);
618 release_sock(listener);
619 if (cleanup)
620 sock_put(sk);
621
622 sock_put(sk);
623 sock_put(listener);
624 }
625
626 /**** SOCKET OPERATIONS ****/
627
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)628 static int __vsock_bind_connectible(struct vsock_sock *vsk,
629 struct sockaddr_vm *addr)
630 {
631 static u32 port;
632 struct sockaddr_vm new_addr;
633
634 if (!port)
635 port = get_random_u32_above(LAST_RESERVED_PORT);
636
637 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
638
639 if (addr->svm_port == VMADDR_PORT_ANY) {
640 bool found = false;
641 unsigned int i;
642
643 for (i = 0; i < MAX_PORT_RETRIES; i++) {
644 if (port <= LAST_RESERVED_PORT)
645 port = LAST_RESERVED_PORT + 1;
646
647 new_addr.svm_port = port++;
648
649 if (!__vsock_find_bound_socket(&new_addr)) {
650 found = true;
651 break;
652 }
653 }
654
655 if (!found)
656 return -EADDRNOTAVAIL;
657 } else {
658 /* If port is in reserved range, ensure caller
659 * has necessary privileges.
660 */
661 if (addr->svm_port <= LAST_RESERVED_PORT &&
662 !capable(CAP_NET_BIND_SERVICE)) {
663 return -EACCES;
664 }
665
666 if (__vsock_find_bound_socket(&new_addr))
667 return -EADDRINUSE;
668 }
669
670 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
671
672 /* Remove connection oriented sockets from the unbound list and add them
673 * to the hash table for easy lookup by its address. The unbound list
674 * is simply an extra entry at the end of the hash table, a trick used
675 * by AF_UNIX.
676 */
677 __vsock_remove_bound(vsk);
678 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
679
680 return 0;
681 }
682
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)683 static int __vsock_bind_dgram(struct vsock_sock *vsk,
684 struct sockaddr_vm *addr)
685 {
686 return vsk->transport->dgram_bind(vsk, addr);
687 }
688
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)689 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
690 {
691 struct vsock_sock *vsk = vsock_sk(sk);
692 int retval;
693
694 /* First ensure this socket isn't already bound. */
695 if (vsock_addr_bound(&vsk->local_addr))
696 return -EINVAL;
697
698 /* Now bind to the provided address or select appropriate values if
699 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
700 * like AF_INET prevents binding to a non-local IP address (in most
701 * cases), we only allow binding to a local CID.
702 */
703 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
704 return -EADDRNOTAVAIL;
705
706 switch (sk->sk_socket->type) {
707 case SOCK_STREAM:
708 case SOCK_SEQPACKET:
709 spin_lock_bh(&vsock_table_lock);
710 retval = __vsock_bind_connectible(vsk, addr);
711 spin_unlock_bh(&vsock_table_lock);
712 break;
713
714 case SOCK_DGRAM:
715 retval = __vsock_bind_dgram(vsk, addr);
716 break;
717
718 default:
719 retval = -EINVAL;
720 break;
721 }
722
723 return retval;
724 }
725
726 static void vsock_connect_timeout(struct work_struct *work);
727
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)728 static struct sock *__vsock_create(struct net *net,
729 struct socket *sock,
730 struct sock *parent,
731 gfp_t priority,
732 unsigned short type,
733 int kern)
734 {
735 struct sock *sk;
736 struct vsock_sock *psk;
737 struct vsock_sock *vsk;
738
739 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
740 if (!sk)
741 return NULL;
742
743 sock_init_data(sock, sk);
744
745 /* sk->sk_type is normally set in sock_init_data, but only if sock is
746 * non-NULL. We make sure that our sockets always have a type by
747 * setting it here if needed.
748 */
749 if (!sock)
750 sk->sk_type = type;
751
752 vsk = vsock_sk(sk);
753 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
754 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
755
756 sk->sk_destruct = vsock_sk_destruct;
757 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
758 sock_reset_flag(sk, SOCK_DONE);
759
760 INIT_LIST_HEAD(&vsk->bound_table);
761 INIT_LIST_HEAD(&vsk->connected_table);
762 vsk->listener = NULL;
763 INIT_LIST_HEAD(&vsk->pending_links);
764 INIT_LIST_HEAD(&vsk->accept_queue);
765 vsk->rejected = false;
766 vsk->sent_request = false;
767 vsk->ignore_connecting_rst = false;
768 vsk->peer_shutdown = 0;
769 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
770 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
771
772 psk = parent ? vsock_sk(parent) : NULL;
773 if (parent) {
774 vsk->trusted = psk->trusted;
775 vsk->owner = get_cred(psk->owner);
776 vsk->connect_timeout = psk->connect_timeout;
777 vsk->buffer_size = psk->buffer_size;
778 vsk->buffer_min_size = psk->buffer_min_size;
779 vsk->buffer_max_size = psk->buffer_max_size;
780 security_sk_clone(parent, sk);
781 } else {
782 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
783 vsk->owner = get_current_cred();
784 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
785 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
786 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
787 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
788 }
789
790 return sk;
791 }
792
sock_type_connectible(u16 type)793 static bool sock_type_connectible(u16 type)
794 {
795 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
796 }
797
__vsock_release(struct sock * sk,int level)798 static void __vsock_release(struct sock *sk, int level)
799 {
800 if (sk) {
801 struct sock *pending;
802 struct vsock_sock *vsk;
803
804 vsk = vsock_sk(sk);
805 pending = NULL; /* Compiler warning. */
806
807 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
808 * version to avoid the warning "possible recursive locking
809 * detected". When "level" is 0, lock_sock_nested(sk, level)
810 * is the same as lock_sock(sk).
811 */
812 lock_sock_nested(sk, level);
813
814 if (vsk->transport)
815 vsk->transport->release(vsk);
816 else if (sock_type_connectible(sk->sk_type))
817 vsock_remove_sock(vsk);
818
819 sock_orphan(sk);
820 sk->sk_shutdown = SHUTDOWN_MASK;
821
822 skb_queue_purge(&sk->sk_receive_queue);
823
824 /* Clean up any sockets that never were accepted. */
825 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
826 __vsock_release(pending, SINGLE_DEPTH_NESTING);
827 sock_put(pending);
828 }
829
830 release_sock(sk);
831 sock_put(sk);
832 }
833 }
834
vsock_sk_destruct(struct sock * sk)835 static void vsock_sk_destruct(struct sock *sk)
836 {
837 struct vsock_sock *vsk = vsock_sk(sk);
838
839 /* Flush MSG_ZEROCOPY leftovers. */
840 __skb_queue_purge(&sk->sk_error_queue);
841
842 vsock_deassign_transport(vsk);
843
844 /* When clearing these addresses, there's no need to set the family and
845 * possibly register the address family with the kernel.
846 */
847 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
848 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
849
850 put_cred(vsk->owner);
851 }
852
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)853 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
854 {
855 int err;
856
857 err = sock_queue_rcv_skb(sk, skb);
858 if (err)
859 kfree_skb(skb);
860
861 return err;
862 }
863
vsock_create_connected(struct sock * parent)864 struct sock *vsock_create_connected(struct sock *parent)
865 {
866 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
867 parent->sk_type, 0);
868 }
869 EXPORT_SYMBOL_GPL(vsock_create_connected);
870
vsock_stream_has_data(struct vsock_sock * vsk)871 s64 vsock_stream_has_data(struct vsock_sock *vsk)
872 {
873 return vsk->transport->stream_has_data(vsk);
874 }
875 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
876
vsock_connectible_has_data(struct vsock_sock * vsk)877 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
878 {
879 struct sock *sk = sk_vsock(vsk);
880
881 if (sk->sk_type == SOCK_SEQPACKET)
882 return vsk->transport->seqpacket_has_data(vsk);
883 else
884 return vsock_stream_has_data(vsk);
885 }
886 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
887
vsock_stream_has_space(struct vsock_sock * vsk)888 s64 vsock_stream_has_space(struct vsock_sock *vsk)
889 {
890 return vsk->transport->stream_has_space(vsk);
891 }
892 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
893
vsock_data_ready(struct sock * sk)894 void vsock_data_ready(struct sock *sk)
895 {
896 struct vsock_sock *vsk = vsock_sk(sk);
897
898 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
899 sock_flag(sk, SOCK_DONE))
900 sk->sk_data_ready(sk);
901 }
902 EXPORT_SYMBOL_GPL(vsock_data_ready);
903
vsock_release(struct socket * sock)904 static int vsock_release(struct socket *sock)
905 {
906 __vsock_release(sock->sk, 0);
907 sock->sk = NULL;
908 sock->state = SS_FREE;
909
910 return 0;
911 }
912
913 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)914 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
915 {
916 int err;
917 struct sock *sk;
918 struct sockaddr_vm *vm_addr;
919
920 sk = sock->sk;
921
922 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
923 return -EINVAL;
924
925 lock_sock(sk);
926 err = __vsock_bind(sk, vm_addr);
927 release_sock(sk);
928
929 return err;
930 }
931
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)932 static int vsock_getname(struct socket *sock,
933 struct sockaddr *addr, int peer)
934 {
935 int err;
936 struct sock *sk;
937 struct vsock_sock *vsk;
938 struct sockaddr_vm *vm_addr;
939
940 sk = sock->sk;
941 vsk = vsock_sk(sk);
942 err = 0;
943
944 lock_sock(sk);
945
946 if (peer) {
947 if (sock->state != SS_CONNECTED) {
948 err = -ENOTCONN;
949 goto out;
950 }
951 vm_addr = &vsk->remote_addr;
952 } else {
953 vm_addr = &vsk->local_addr;
954 }
955
956 if (!vm_addr) {
957 err = -EINVAL;
958 goto out;
959 }
960
961 /* sys_getsockname() and sys_getpeername() pass us a
962 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
963 * that macro is defined in socket.c instead of .h, so we hardcode its
964 * value here.
965 */
966 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
967 memcpy(addr, vm_addr, sizeof(*vm_addr));
968 err = sizeof(*vm_addr);
969
970 out:
971 release_sock(sk);
972 return err;
973 }
974
vsock_shutdown(struct socket * sock,int mode)975 static int vsock_shutdown(struct socket *sock, int mode)
976 {
977 int err;
978 struct sock *sk;
979
980 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
981 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
982 * here like the other address families do. Note also that the
983 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
984 * which is what we want.
985 */
986 mode++;
987
988 if ((mode & ~SHUTDOWN_MASK) || !mode)
989 return -EINVAL;
990
991 /* If this is a connection oriented socket and it is not connected then
992 * bail out immediately. If it is a DGRAM socket then we must first
993 * kick the socket so that it wakes up from any sleeping calls, for
994 * example recv(), and then afterwards return the error.
995 */
996
997 sk = sock->sk;
998
999 lock_sock(sk);
1000 if (sock->state == SS_UNCONNECTED) {
1001 err = -ENOTCONN;
1002 if (sock_type_connectible(sk->sk_type))
1003 goto out;
1004 } else {
1005 sock->state = SS_DISCONNECTING;
1006 err = 0;
1007 }
1008
1009 /* Receive and send shutdowns are treated alike. */
1010 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1011 if (mode) {
1012 sk->sk_shutdown |= mode;
1013 sk->sk_state_change(sk);
1014
1015 if (sock_type_connectible(sk->sk_type)) {
1016 sock_reset_flag(sk, SOCK_DONE);
1017 vsock_send_shutdown(sk, mode);
1018 }
1019 }
1020
1021 out:
1022 release_sock(sk);
1023 return err;
1024 }
1025
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1026 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1027 poll_table *wait)
1028 {
1029 struct sock *sk;
1030 __poll_t mask;
1031 struct vsock_sock *vsk;
1032
1033 sk = sock->sk;
1034 vsk = vsock_sk(sk);
1035
1036 poll_wait(file, sk_sleep(sk), wait);
1037 mask = 0;
1038
1039 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1040 /* Signify that there has been an error on this socket. */
1041 mask |= EPOLLERR;
1042
1043 /* INET sockets treat local write shutdown and peer write shutdown as a
1044 * case of EPOLLHUP set.
1045 */
1046 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1047 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1048 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1049 mask |= EPOLLHUP;
1050 }
1051
1052 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1053 vsk->peer_shutdown & SEND_SHUTDOWN) {
1054 mask |= EPOLLRDHUP;
1055 }
1056
1057 if (sock->type == SOCK_DGRAM) {
1058 /* For datagram sockets we can read if there is something in
1059 * the queue and write as long as the socket isn't shutdown for
1060 * sending.
1061 */
1062 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1063 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1064 mask |= EPOLLIN | EPOLLRDNORM;
1065 }
1066
1067 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1068 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1069
1070 } else if (sock_type_connectible(sk->sk_type)) {
1071 const struct vsock_transport *transport;
1072
1073 lock_sock(sk);
1074
1075 transport = vsk->transport;
1076
1077 /* Listening sockets that have connections in their accept
1078 * queue can be read.
1079 */
1080 if (sk->sk_state == TCP_LISTEN
1081 && !vsock_is_accept_queue_empty(sk))
1082 mask |= EPOLLIN | EPOLLRDNORM;
1083
1084 /* If there is something in the queue then we can read. */
1085 if (transport && transport->stream_is_active(vsk) &&
1086 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1087 bool data_ready_now = false;
1088 int target = sock_rcvlowat(sk, 0, INT_MAX);
1089 int ret = transport->notify_poll_in(
1090 vsk, target, &data_ready_now);
1091 if (ret < 0) {
1092 mask |= EPOLLERR;
1093 } else {
1094 if (data_ready_now)
1095 mask |= EPOLLIN | EPOLLRDNORM;
1096
1097 }
1098 }
1099
1100 /* Sockets whose connections have been closed, reset, or
1101 * terminated should also be considered read, and we check the
1102 * shutdown flag for that.
1103 */
1104 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1105 vsk->peer_shutdown & SEND_SHUTDOWN) {
1106 mask |= EPOLLIN | EPOLLRDNORM;
1107 }
1108
1109 /* Connected sockets that can produce data can be written. */
1110 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1111 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1112 bool space_avail_now = false;
1113 int ret = transport->notify_poll_out(
1114 vsk, 1, &space_avail_now);
1115 if (ret < 0) {
1116 mask |= EPOLLERR;
1117 } else {
1118 if (space_avail_now)
1119 /* Remove EPOLLWRBAND since INET
1120 * sockets are not setting it.
1121 */
1122 mask |= EPOLLOUT | EPOLLWRNORM;
1123
1124 }
1125 }
1126 }
1127
1128 /* Simulate INET socket poll behaviors, which sets
1129 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1130 * but local send is not shutdown.
1131 */
1132 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1133 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1134 mask |= EPOLLOUT | EPOLLWRNORM;
1135
1136 }
1137
1138 release_sock(sk);
1139 }
1140
1141 return mask;
1142 }
1143
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1144 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1145 {
1146 struct vsock_sock *vsk = vsock_sk(sk);
1147
1148 return vsk->transport->read_skb(vsk, read_actor);
1149 }
1150
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1151 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1152 size_t len)
1153 {
1154 int err;
1155 struct sock *sk;
1156 struct vsock_sock *vsk;
1157 struct sockaddr_vm *remote_addr;
1158 const struct vsock_transport *transport;
1159
1160 if (msg->msg_flags & MSG_OOB)
1161 return -EOPNOTSUPP;
1162
1163 /* For now, MSG_DONTWAIT is always assumed... */
1164 err = 0;
1165 sk = sock->sk;
1166 vsk = vsock_sk(sk);
1167
1168 lock_sock(sk);
1169
1170 transport = vsk->transport;
1171
1172 err = vsock_auto_bind(vsk);
1173 if (err)
1174 goto out;
1175
1176
1177 /* If the provided message contains an address, use that. Otherwise
1178 * fall back on the socket's remote handle (if it has been connected).
1179 */
1180 if (msg->msg_name &&
1181 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1182 &remote_addr) == 0) {
1183 /* Ensure this address is of the right type and is a valid
1184 * destination.
1185 */
1186
1187 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1188 remote_addr->svm_cid = transport->get_local_cid();
1189
1190 if (!vsock_addr_bound(remote_addr)) {
1191 err = -EINVAL;
1192 goto out;
1193 }
1194 } else if (sock->state == SS_CONNECTED) {
1195 remote_addr = &vsk->remote_addr;
1196
1197 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1198 remote_addr->svm_cid = transport->get_local_cid();
1199
1200 /* XXX Should connect() or this function ensure remote_addr is
1201 * bound?
1202 */
1203 if (!vsock_addr_bound(&vsk->remote_addr)) {
1204 err = -EINVAL;
1205 goto out;
1206 }
1207 } else {
1208 err = -EINVAL;
1209 goto out;
1210 }
1211
1212 if (!transport->dgram_allow(remote_addr->svm_cid,
1213 remote_addr->svm_port)) {
1214 err = -EINVAL;
1215 goto out;
1216 }
1217
1218 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1219
1220 out:
1221 release_sock(sk);
1222 return err;
1223 }
1224
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1225 static int vsock_dgram_connect(struct socket *sock,
1226 struct sockaddr *addr, int addr_len, int flags)
1227 {
1228 int err;
1229 struct sock *sk;
1230 struct vsock_sock *vsk;
1231 struct sockaddr_vm *remote_addr;
1232
1233 sk = sock->sk;
1234 vsk = vsock_sk(sk);
1235
1236 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1237 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1238 lock_sock(sk);
1239 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1240 VMADDR_PORT_ANY);
1241 sock->state = SS_UNCONNECTED;
1242 release_sock(sk);
1243 return 0;
1244 } else if (err != 0)
1245 return -EINVAL;
1246
1247 lock_sock(sk);
1248
1249 err = vsock_auto_bind(vsk);
1250 if (err)
1251 goto out;
1252
1253 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1254 remote_addr->svm_port)) {
1255 err = -EINVAL;
1256 goto out;
1257 }
1258
1259 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1260 sock->state = SS_CONNECTED;
1261
1262 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1263 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1264 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1265 *
1266 * This doesn't seem to be abnormal state for datagram sockets, as the
1267 * same approach can be see in other datagram socket types as well
1268 * (such as unix sockets).
1269 */
1270 sk->sk_state = TCP_ESTABLISHED;
1271
1272 out:
1273 release_sock(sk);
1274 return err;
1275 }
1276
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1277 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1278 size_t len, int flags)
1279 {
1280 struct sock *sk = sock->sk;
1281 struct vsock_sock *vsk = vsock_sk(sk);
1282
1283 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1284 }
1285
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1286 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1287 size_t len, int flags)
1288 {
1289 #ifdef CONFIG_BPF_SYSCALL
1290 struct sock *sk = sock->sk;
1291 const struct proto *prot;
1292
1293 prot = READ_ONCE(sk->sk_prot);
1294 if (prot != &vsock_proto)
1295 return prot->recvmsg(sk, msg, len, flags, NULL);
1296 #endif
1297
1298 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1299 }
1300 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1301
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1302 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1303 int __user *arg)
1304 {
1305 struct sock *sk = sock->sk;
1306 struct vsock_sock *vsk;
1307 int ret;
1308
1309 vsk = vsock_sk(sk);
1310
1311 switch (cmd) {
1312 case SIOCOUTQ: {
1313 ssize_t n_bytes;
1314
1315 if (!vsk->transport || !vsk->transport->unsent_bytes) {
1316 ret = -EOPNOTSUPP;
1317 break;
1318 }
1319
1320 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1321 ret = -EINVAL;
1322 break;
1323 }
1324
1325 n_bytes = vsk->transport->unsent_bytes(vsk);
1326 if (n_bytes < 0) {
1327 ret = n_bytes;
1328 break;
1329 }
1330
1331 ret = put_user(n_bytes, arg);
1332 break;
1333 }
1334 default:
1335 ret = -ENOIOCTLCMD;
1336 }
1337
1338 return ret;
1339 }
1340
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1341 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1342 unsigned long arg)
1343 {
1344 int ret;
1345
1346 lock_sock(sock->sk);
1347 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1348 release_sock(sock->sk);
1349
1350 return ret;
1351 }
1352
1353 static const struct proto_ops vsock_dgram_ops = {
1354 .family = PF_VSOCK,
1355 .owner = THIS_MODULE,
1356 .release = vsock_release,
1357 .bind = vsock_bind,
1358 .connect = vsock_dgram_connect,
1359 .socketpair = sock_no_socketpair,
1360 .accept = sock_no_accept,
1361 .getname = vsock_getname,
1362 .poll = vsock_poll,
1363 .ioctl = vsock_ioctl,
1364 .listen = sock_no_listen,
1365 .shutdown = vsock_shutdown,
1366 .sendmsg = vsock_dgram_sendmsg,
1367 .recvmsg = vsock_dgram_recvmsg,
1368 .mmap = sock_no_mmap,
1369 .read_skb = vsock_read_skb,
1370 };
1371
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1372 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1373 {
1374 const struct vsock_transport *transport = vsk->transport;
1375
1376 if (!transport || !transport->cancel_pkt)
1377 return -EOPNOTSUPP;
1378
1379 return transport->cancel_pkt(vsk);
1380 }
1381
vsock_connect_timeout(struct work_struct * work)1382 static void vsock_connect_timeout(struct work_struct *work)
1383 {
1384 struct sock *sk;
1385 struct vsock_sock *vsk;
1386
1387 vsk = container_of(work, struct vsock_sock, connect_work.work);
1388 sk = sk_vsock(vsk);
1389
1390 lock_sock(sk);
1391 if (sk->sk_state == TCP_SYN_SENT &&
1392 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1393 sk->sk_state = TCP_CLOSE;
1394 sk->sk_socket->state = SS_UNCONNECTED;
1395 sk->sk_err = ETIMEDOUT;
1396 sk_error_report(sk);
1397 vsock_transport_cancel_pkt(vsk);
1398 }
1399 release_sock(sk);
1400
1401 sock_put(sk);
1402 }
1403
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1404 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1405 int addr_len, int flags)
1406 {
1407 int err;
1408 struct sock *sk;
1409 struct vsock_sock *vsk;
1410 const struct vsock_transport *transport;
1411 struct sockaddr_vm *remote_addr;
1412 long timeout;
1413 DEFINE_WAIT(wait);
1414
1415 err = 0;
1416 sk = sock->sk;
1417 vsk = vsock_sk(sk);
1418
1419 lock_sock(sk);
1420
1421 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1422 switch (sock->state) {
1423 case SS_CONNECTED:
1424 err = -EISCONN;
1425 goto out;
1426 case SS_DISCONNECTING:
1427 err = -EINVAL;
1428 goto out;
1429 case SS_CONNECTING:
1430 /* This continues on so we can move sock into the SS_CONNECTED
1431 * state once the connection has completed (at which point err
1432 * will be set to zero also). Otherwise, we will either wait
1433 * for the connection or return -EALREADY should this be a
1434 * non-blocking call.
1435 */
1436 err = -EALREADY;
1437 if (flags & O_NONBLOCK)
1438 goto out;
1439 break;
1440 default:
1441 if ((sk->sk_state == TCP_LISTEN) ||
1442 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1443 err = -EINVAL;
1444 goto out;
1445 }
1446
1447 /* Set the remote address that we are connecting to. */
1448 memcpy(&vsk->remote_addr, remote_addr,
1449 sizeof(vsk->remote_addr));
1450
1451 err = vsock_assign_transport(vsk, NULL);
1452 if (err)
1453 goto out;
1454
1455 transport = vsk->transport;
1456
1457 /* The hypervisor and well-known contexts do not have socket
1458 * endpoints.
1459 */
1460 if (!transport ||
1461 !transport->stream_allow(remote_addr->svm_cid,
1462 remote_addr->svm_port)) {
1463 err = -ENETUNREACH;
1464 goto out;
1465 }
1466
1467 if (vsock_msgzerocopy_allow(transport)) {
1468 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1469 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1470 /* If this option was set before 'connect()',
1471 * when transport was unknown, check that this
1472 * feature is supported here.
1473 */
1474 err = -EOPNOTSUPP;
1475 goto out;
1476 }
1477
1478 err = vsock_auto_bind(vsk);
1479 if (err)
1480 goto out;
1481
1482 sk->sk_state = TCP_SYN_SENT;
1483
1484 err = transport->connect(vsk);
1485 if (err < 0)
1486 goto out;
1487
1488 /* Mark sock as connecting and set the error code to in
1489 * progress in case this is a non-blocking connect.
1490 */
1491 sock->state = SS_CONNECTING;
1492 err = -EINPROGRESS;
1493 }
1494
1495 /* The receive path will handle all communication until we are able to
1496 * enter the connected state. Here we wait for the connection to be
1497 * completed or a notification of an error.
1498 */
1499 timeout = vsk->connect_timeout;
1500 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1501
1502 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1503 if (flags & O_NONBLOCK) {
1504 /* If we're not going to block, we schedule a timeout
1505 * function to generate a timeout on the connection
1506 * attempt, in case the peer doesn't respond in a
1507 * timely manner. We hold on to the socket until the
1508 * timeout fires.
1509 */
1510 sock_hold(sk);
1511
1512 /* If the timeout function is already scheduled,
1513 * reschedule it, then ungrab the socket refcount to
1514 * keep it balanced.
1515 */
1516 if (mod_delayed_work(system_wq, &vsk->connect_work,
1517 timeout))
1518 sock_put(sk);
1519
1520 /* Skip ahead to preserve error code set above. */
1521 goto out_wait;
1522 }
1523
1524 release_sock(sk);
1525 timeout = schedule_timeout(timeout);
1526 lock_sock(sk);
1527
1528 if (signal_pending(current)) {
1529 err = sock_intr_errno(timeout);
1530 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1531 sock->state = SS_UNCONNECTED;
1532 vsock_transport_cancel_pkt(vsk);
1533 vsock_remove_connected(vsk);
1534 goto out_wait;
1535 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1536 err = -ETIMEDOUT;
1537 sk->sk_state = TCP_CLOSE;
1538 sock->state = SS_UNCONNECTED;
1539 vsock_transport_cancel_pkt(vsk);
1540 goto out_wait;
1541 }
1542
1543 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1544 }
1545
1546 if (sk->sk_err) {
1547 err = -sk->sk_err;
1548 sk->sk_state = TCP_CLOSE;
1549 sock->state = SS_UNCONNECTED;
1550 } else {
1551 err = 0;
1552 }
1553
1554 out_wait:
1555 finish_wait(sk_sleep(sk), &wait);
1556 out:
1557 release_sock(sk);
1558 return err;
1559 }
1560
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1561 static int vsock_accept(struct socket *sock, struct socket *newsock,
1562 struct proto_accept_arg *arg)
1563 {
1564 struct sock *listener;
1565 int err;
1566 struct sock *connected;
1567 struct vsock_sock *vconnected;
1568 long timeout;
1569 DEFINE_WAIT(wait);
1570
1571 err = 0;
1572 listener = sock->sk;
1573
1574 lock_sock(listener);
1575
1576 if (!sock_type_connectible(sock->type)) {
1577 err = -EOPNOTSUPP;
1578 goto out;
1579 }
1580
1581 if (listener->sk_state != TCP_LISTEN) {
1582 err = -EINVAL;
1583 goto out;
1584 }
1585
1586 /* Wait for children sockets to appear; these are the new sockets
1587 * created upon connection establishment.
1588 */
1589 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1590 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1591
1592 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1593 listener->sk_err == 0) {
1594 release_sock(listener);
1595 timeout = schedule_timeout(timeout);
1596 finish_wait(sk_sleep(listener), &wait);
1597 lock_sock(listener);
1598
1599 if (signal_pending(current)) {
1600 err = sock_intr_errno(timeout);
1601 goto out;
1602 } else if (timeout == 0) {
1603 err = -EAGAIN;
1604 goto out;
1605 }
1606
1607 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1608 }
1609 finish_wait(sk_sleep(listener), &wait);
1610
1611 if (listener->sk_err)
1612 err = -listener->sk_err;
1613
1614 if (connected) {
1615 sk_acceptq_removed(listener);
1616
1617 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1618 vconnected = vsock_sk(connected);
1619
1620 /* If the listener socket has received an error, then we should
1621 * reject this socket and return. Note that we simply mark the
1622 * socket rejected, drop our reference, and let the cleanup
1623 * function handle the cleanup; the fact that we found it in
1624 * the listener's accept queue guarantees that the cleanup
1625 * function hasn't run yet.
1626 */
1627 if (err) {
1628 vconnected->rejected = true;
1629 } else {
1630 newsock->state = SS_CONNECTED;
1631 sock_graft(connected, newsock);
1632 if (vsock_msgzerocopy_allow(vconnected->transport))
1633 set_bit(SOCK_SUPPORT_ZC,
1634 &connected->sk_socket->flags);
1635 }
1636
1637 release_sock(connected);
1638 sock_put(connected);
1639 }
1640
1641 out:
1642 release_sock(listener);
1643 return err;
1644 }
1645
vsock_listen(struct socket * sock,int backlog)1646 static int vsock_listen(struct socket *sock, int backlog)
1647 {
1648 int err;
1649 struct sock *sk;
1650 struct vsock_sock *vsk;
1651
1652 sk = sock->sk;
1653
1654 lock_sock(sk);
1655
1656 if (!sock_type_connectible(sk->sk_type)) {
1657 err = -EOPNOTSUPP;
1658 goto out;
1659 }
1660
1661 if (sock->state != SS_UNCONNECTED) {
1662 err = -EINVAL;
1663 goto out;
1664 }
1665
1666 vsk = vsock_sk(sk);
1667
1668 if (!vsock_addr_bound(&vsk->local_addr)) {
1669 err = -EINVAL;
1670 goto out;
1671 }
1672
1673 sk->sk_max_ack_backlog = backlog;
1674 sk->sk_state = TCP_LISTEN;
1675
1676 err = 0;
1677
1678 out:
1679 release_sock(sk);
1680 return err;
1681 }
1682
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1683 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1684 const struct vsock_transport *transport,
1685 u64 val)
1686 {
1687 if (val > vsk->buffer_max_size)
1688 val = vsk->buffer_max_size;
1689
1690 if (val < vsk->buffer_min_size)
1691 val = vsk->buffer_min_size;
1692
1693 if (val != vsk->buffer_size &&
1694 transport && transport->notify_buffer_size)
1695 transport->notify_buffer_size(vsk, &val);
1696
1697 vsk->buffer_size = val;
1698 }
1699
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1700 static int vsock_connectible_setsockopt(struct socket *sock,
1701 int level,
1702 int optname,
1703 sockptr_t optval,
1704 unsigned int optlen)
1705 {
1706 int err;
1707 struct sock *sk;
1708 struct vsock_sock *vsk;
1709 const struct vsock_transport *transport;
1710 u64 val;
1711
1712 if (level != AF_VSOCK && level != SOL_SOCKET)
1713 return -ENOPROTOOPT;
1714
1715 #define COPY_IN(_v) \
1716 do { \
1717 if (optlen < sizeof(_v)) { \
1718 err = -EINVAL; \
1719 goto exit; \
1720 } \
1721 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1722 err = -EFAULT; \
1723 goto exit; \
1724 } \
1725 } while (0)
1726
1727 err = 0;
1728 sk = sock->sk;
1729 vsk = vsock_sk(sk);
1730
1731 lock_sock(sk);
1732
1733 transport = vsk->transport;
1734
1735 if (level == SOL_SOCKET) {
1736 int zerocopy;
1737
1738 if (optname != SO_ZEROCOPY) {
1739 release_sock(sk);
1740 return sock_setsockopt(sock, level, optname, optval, optlen);
1741 }
1742
1743 /* Use 'int' type here, because variable to
1744 * set this option usually has this type.
1745 */
1746 COPY_IN(zerocopy);
1747
1748 if (zerocopy < 0 || zerocopy > 1) {
1749 err = -EINVAL;
1750 goto exit;
1751 }
1752
1753 if (transport && !vsock_msgzerocopy_allow(transport)) {
1754 err = -EOPNOTSUPP;
1755 goto exit;
1756 }
1757
1758 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1759 goto exit;
1760 }
1761
1762 switch (optname) {
1763 case SO_VM_SOCKETS_BUFFER_SIZE:
1764 COPY_IN(val);
1765 vsock_update_buffer_size(vsk, transport, val);
1766 break;
1767
1768 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1769 COPY_IN(val);
1770 vsk->buffer_max_size = val;
1771 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1772 break;
1773
1774 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1775 COPY_IN(val);
1776 vsk->buffer_min_size = val;
1777 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1778 break;
1779
1780 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1781 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1782 struct __kernel_sock_timeval tv;
1783
1784 err = sock_copy_user_timeval(&tv, optval, optlen,
1785 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1786 if (err)
1787 break;
1788 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1789 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1790 vsk->connect_timeout = tv.tv_sec * HZ +
1791 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1792 if (vsk->connect_timeout == 0)
1793 vsk->connect_timeout =
1794 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1795
1796 } else {
1797 err = -ERANGE;
1798 }
1799 break;
1800 }
1801
1802 default:
1803 err = -ENOPROTOOPT;
1804 break;
1805 }
1806
1807 #undef COPY_IN
1808
1809 exit:
1810 release_sock(sk);
1811 return err;
1812 }
1813
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1814 static int vsock_connectible_getsockopt(struct socket *sock,
1815 int level, int optname,
1816 char __user *optval,
1817 int __user *optlen)
1818 {
1819 struct sock *sk = sock->sk;
1820 struct vsock_sock *vsk = vsock_sk(sk);
1821
1822 union {
1823 u64 val64;
1824 struct old_timeval32 tm32;
1825 struct __kernel_old_timeval tm;
1826 struct __kernel_sock_timeval stm;
1827 } v;
1828
1829 int lv = sizeof(v.val64);
1830 int len;
1831
1832 if (level != AF_VSOCK)
1833 return -ENOPROTOOPT;
1834
1835 if (get_user(len, optlen))
1836 return -EFAULT;
1837
1838 memset(&v, 0, sizeof(v));
1839
1840 switch (optname) {
1841 case SO_VM_SOCKETS_BUFFER_SIZE:
1842 v.val64 = vsk->buffer_size;
1843 break;
1844
1845 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1846 v.val64 = vsk->buffer_max_size;
1847 break;
1848
1849 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1850 v.val64 = vsk->buffer_min_size;
1851 break;
1852
1853 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1854 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1855 lv = sock_get_timeout(vsk->connect_timeout, &v,
1856 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1857 break;
1858
1859 default:
1860 return -ENOPROTOOPT;
1861 }
1862
1863 if (len < lv)
1864 return -EINVAL;
1865 if (len > lv)
1866 len = lv;
1867 if (copy_to_user(optval, &v, len))
1868 return -EFAULT;
1869
1870 if (put_user(len, optlen))
1871 return -EFAULT;
1872
1873 return 0;
1874 }
1875
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1876 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1877 size_t len)
1878 {
1879 struct sock *sk;
1880 struct vsock_sock *vsk;
1881 const struct vsock_transport *transport;
1882 ssize_t total_written;
1883 long timeout;
1884 int err;
1885 struct vsock_transport_send_notify_data send_data;
1886 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1887
1888 sk = sock->sk;
1889 vsk = vsock_sk(sk);
1890 total_written = 0;
1891 err = 0;
1892
1893 if (msg->msg_flags & MSG_OOB)
1894 return -EOPNOTSUPP;
1895
1896 lock_sock(sk);
1897
1898 transport = vsk->transport;
1899
1900 /* Callers should not provide a destination with connection oriented
1901 * sockets.
1902 */
1903 if (msg->msg_namelen) {
1904 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1905 goto out;
1906 }
1907
1908 /* Send data only if both sides are not shutdown in the direction. */
1909 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1910 vsk->peer_shutdown & RCV_SHUTDOWN) {
1911 err = -EPIPE;
1912 goto out;
1913 }
1914
1915 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1916 !vsock_addr_bound(&vsk->local_addr)) {
1917 err = -ENOTCONN;
1918 goto out;
1919 }
1920
1921 if (!vsock_addr_bound(&vsk->remote_addr)) {
1922 err = -EDESTADDRREQ;
1923 goto out;
1924 }
1925
1926 if (msg->msg_flags & MSG_ZEROCOPY &&
1927 !vsock_msgzerocopy_allow(transport)) {
1928 err = -EOPNOTSUPP;
1929 goto out;
1930 }
1931
1932 /* Wait for room in the produce queue to enqueue our user's data. */
1933 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1934
1935 err = transport->notify_send_init(vsk, &send_data);
1936 if (err < 0)
1937 goto out;
1938
1939 while (total_written < len) {
1940 ssize_t written;
1941
1942 add_wait_queue(sk_sleep(sk), &wait);
1943 while (vsock_stream_has_space(vsk) == 0 &&
1944 sk->sk_err == 0 &&
1945 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1946 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1947
1948 /* Don't wait for non-blocking sockets. */
1949 if (timeout == 0) {
1950 err = -EAGAIN;
1951 remove_wait_queue(sk_sleep(sk), &wait);
1952 goto out_err;
1953 }
1954
1955 err = transport->notify_send_pre_block(vsk, &send_data);
1956 if (err < 0) {
1957 remove_wait_queue(sk_sleep(sk), &wait);
1958 goto out_err;
1959 }
1960
1961 release_sock(sk);
1962 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1963 lock_sock(sk);
1964 if (signal_pending(current)) {
1965 err = sock_intr_errno(timeout);
1966 remove_wait_queue(sk_sleep(sk), &wait);
1967 goto out_err;
1968 } else if (timeout == 0) {
1969 err = -EAGAIN;
1970 remove_wait_queue(sk_sleep(sk), &wait);
1971 goto out_err;
1972 }
1973 }
1974 remove_wait_queue(sk_sleep(sk), &wait);
1975
1976 /* These checks occur both as part of and after the loop
1977 * conditional since we need to check before and after
1978 * sleeping.
1979 */
1980 if (sk->sk_err) {
1981 err = -sk->sk_err;
1982 goto out_err;
1983 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1984 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1985 err = -EPIPE;
1986 goto out_err;
1987 }
1988
1989 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1990 if (err < 0)
1991 goto out_err;
1992
1993 /* Note that enqueue will only write as many bytes as are free
1994 * in the produce queue, so we don't need to ensure len is
1995 * smaller than the queue size. It is the caller's
1996 * responsibility to check how many bytes we were able to send.
1997 */
1998
1999 if (sk->sk_type == SOCK_SEQPACKET) {
2000 written = transport->seqpacket_enqueue(vsk,
2001 msg, len - total_written);
2002 } else {
2003 written = transport->stream_enqueue(vsk,
2004 msg, len - total_written);
2005 }
2006
2007 if (written < 0) {
2008 err = written;
2009 goto out_err;
2010 }
2011
2012 total_written += written;
2013
2014 err = transport->notify_send_post_enqueue(
2015 vsk, written, &send_data);
2016 if (err < 0)
2017 goto out_err;
2018
2019 }
2020
2021 out_err:
2022 if (total_written > 0) {
2023 /* Return number of written bytes only if:
2024 * 1) SOCK_STREAM socket.
2025 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2026 */
2027 if (sk->sk_type == SOCK_STREAM || total_written == len)
2028 err = total_written;
2029 }
2030 out:
2031 if (sk->sk_type == SOCK_STREAM)
2032 err = sk_stream_error(sk, msg->msg_flags, err);
2033
2034 release_sock(sk);
2035 return err;
2036 }
2037
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2038 static int vsock_connectible_wait_data(struct sock *sk,
2039 struct wait_queue_entry *wait,
2040 long timeout,
2041 struct vsock_transport_recv_notify_data *recv_data,
2042 size_t target)
2043 {
2044 const struct vsock_transport *transport;
2045 struct vsock_sock *vsk;
2046 s64 data;
2047 int err;
2048
2049 vsk = vsock_sk(sk);
2050 err = 0;
2051 transport = vsk->transport;
2052
2053 while (1) {
2054 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2055 data = vsock_connectible_has_data(vsk);
2056 if (data != 0)
2057 break;
2058
2059 if (sk->sk_err != 0 ||
2060 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2061 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2062 break;
2063 }
2064
2065 /* Don't wait for non-blocking sockets. */
2066 if (timeout == 0) {
2067 err = -EAGAIN;
2068 break;
2069 }
2070
2071 if (recv_data) {
2072 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2073 if (err < 0)
2074 break;
2075 }
2076
2077 release_sock(sk);
2078 timeout = schedule_timeout(timeout);
2079 lock_sock(sk);
2080
2081 if (signal_pending(current)) {
2082 err = sock_intr_errno(timeout);
2083 break;
2084 } else if (timeout == 0) {
2085 err = -EAGAIN;
2086 break;
2087 }
2088 }
2089
2090 finish_wait(sk_sleep(sk), wait);
2091
2092 if (err)
2093 return err;
2094
2095 /* Internal transport error when checking for available
2096 * data. XXX This should be changed to a connection
2097 * reset in a later change.
2098 */
2099 if (data < 0)
2100 return -ENOMEM;
2101
2102 return data;
2103 }
2104
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2105 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2106 size_t len, int flags)
2107 {
2108 struct vsock_transport_recv_notify_data recv_data;
2109 const struct vsock_transport *transport;
2110 struct vsock_sock *vsk;
2111 ssize_t copied;
2112 size_t target;
2113 long timeout;
2114 int err;
2115
2116 DEFINE_WAIT(wait);
2117
2118 vsk = vsock_sk(sk);
2119 transport = vsk->transport;
2120
2121 /* We must not copy less than target bytes into the user's buffer
2122 * before returning successfully, so we wait for the consume queue to
2123 * have that much data to consume before dequeueing. Note that this
2124 * makes it impossible to handle cases where target is greater than the
2125 * queue size.
2126 */
2127 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2128 if (target >= transport->stream_rcvhiwat(vsk)) {
2129 err = -ENOMEM;
2130 goto out;
2131 }
2132 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2133 copied = 0;
2134
2135 err = transport->notify_recv_init(vsk, target, &recv_data);
2136 if (err < 0)
2137 goto out;
2138
2139
2140 while (1) {
2141 ssize_t read;
2142
2143 err = vsock_connectible_wait_data(sk, &wait, timeout,
2144 &recv_data, target);
2145 if (err <= 0)
2146 break;
2147
2148 err = transport->notify_recv_pre_dequeue(vsk, target,
2149 &recv_data);
2150 if (err < 0)
2151 break;
2152
2153 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2154 if (read < 0) {
2155 err = read;
2156 break;
2157 }
2158
2159 copied += read;
2160
2161 err = transport->notify_recv_post_dequeue(vsk, target, read,
2162 !(flags & MSG_PEEK), &recv_data);
2163 if (err < 0)
2164 goto out;
2165
2166 if (read >= target || flags & MSG_PEEK)
2167 break;
2168
2169 target -= read;
2170 }
2171
2172 if (sk->sk_err)
2173 err = -sk->sk_err;
2174 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2175 err = 0;
2176
2177 if (copied > 0)
2178 err = copied;
2179
2180 out:
2181 return err;
2182 }
2183
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2184 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2185 size_t len, int flags)
2186 {
2187 const struct vsock_transport *transport;
2188 struct vsock_sock *vsk;
2189 ssize_t msg_len;
2190 long timeout;
2191 int err = 0;
2192 DEFINE_WAIT(wait);
2193
2194 vsk = vsock_sk(sk);
2195 transport = vsk->transport;
2196
2197 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2198
2199 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2200 if (err <= 0)
2201 goto out;
2202
2203 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2204
2205 if (msg_len < 0) {
2206 err = msg_len;
2207 goto out;
2208 }
2209
2210 if (sk->sk_err) {
2211 err = -sk->sk_err;
2212 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2213 err = 0;
2214 } else {
2215 /* User sets MSG_TRUNC, so return real length of
2216 * packet.
2217 */
2218 if (flags & MSG_TRUNC)
2219 err = msg_len;
2220 else
2221 err = len - msg_data_left(msg);
2222
2223 /* Always set MSG_TRUNC if real length of packet is
2224 * bigger than user's buffer.
2225 */
2226 if (msg_len > len)
2227 msg->msg_flags |= MSG_TRUNC;
2228 }
2229
2230 out:
2231 return err;
2232 }
2233
2234 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2235 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2236 int flags)
2237 {
2238 struct sock *sk;
2239 struct vsock_sock *vsk;
2240 const struct vsock_transport *transport;
2241 int err;
2242
2243 sk = sock->sk;
2244
2245 if (unlikely(flags & MSG_ERRQUEUE))
2246 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2247
2248 vsk = vsock_sk(sk);
2249 err = 0;
2250
2251 lock_sock(sk);
2252
2253 transport = vsk->transport;
2254
2255 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2256 /* Recvmsg is supposed to return 0 if a peer performs an
2257 * orderly shutdown. Differentiate between that case and when a
2258 * peer has not connected or a local shutdown occurred with the
2259 * SOCK_DONE flag.
2260 */
2261 if (sock_flag(sk, SOCK_DONE))
2262 err = 0;
2263 else
2264 err = -ENOTCONN;
2265
2266 goto out;
2267 }
2268
2269 if (flags & MSG_OOB) {
2270 err = -EOPNOTSUPP;
2271 goto out;
2272 }
2273
2274 /* We don't check peer_shutdown flag here since peer may actually shut
2275 * down, but there can be data in the queue that a local socket can
2276 * receive.
2277 */
2278 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2279 err = 0;
2280 goto out;
2281 }
2282
2283 /* It is valid on Linux to pass in a zero-length receive buffer. This
2284 * is not an error. We may as well bail out now.
2285 */
2286 if (!len) {
2287 err = 0;
2288 goto out;
2289 }
2290
2291 if (sk->sk_type == SOCK_STREAM)
2292 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2293 else
2294 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2295
2296 out:
2297 release_sock(sk);
2298 return err;
2299 }
2300
2301 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2302 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2303 int flags)
2304 {
2305 #ifdef CONFIG_BPF_SYSCALL
2306 struct sock *sk = sock->sk;
2307 const struct proto *prot;
2308
2309 prot = READ_ONCE(sk->sk_prot);
2310 if (prot != &vsock_proto)
2311 return prot->recvmsg(sk, msg, len, flags, NULL);
2312 #endif
2313
2314 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2315 }
2316 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2317
vsock_set_rcvlowat(struct sock * sk,int val)2318 static int vsock_set_rcvlowat(struct sock *sk, int val)
2319 {
2320 const struct vsock_transport *transport;
2321 struct vsock_sock *vsk;
2322
2323 vsk = vsock_sk(sk);
2324
2325 if (val > vsk->buffer_size)
2326 return -EINVAL;
2327
2328 transport = vsk->transport;
2329
2330 if (transport && transport->notify_set_rcvlowat) {
2331 int err;
2332
2333 err = transport->notify_set_rcvlowat(vsk, val);
2334 if (err)
2335 return err;
2336 }
2337
2338 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2339 return 0;
2340 }
2341
2342 static const struct proto_ops vsock_stream_ops = {
2343 .family = PF_VSOCK,
2344 .owner = THIS_MODULE,
2345 .release = vsock_release,
2346 .bind = vsock_bind,
2347 .connect = vsock_connect,
2348 .socketpair = sock_no_socketpair,
2349 .accept = vsock_accept,
2350 .getname = vsock_getname,
2351 .poll = vsock_poll,
2352 .ioctl = vsock_ioctl,
2353 .listen = vsock_listen,
2354 .shutdown = vsock_shutdown,
2355 .setsockopt = vsock_connectible_setsockopt,
2356 .getsockopt = vsock_connectible_getsockopt,
2357 .sendmsg = vsock_connectible_sendmsg,
2358 .recvmsg = vsock_connectible_recvmsg,
2359 .mmap = sock_no_mmap,
2360 .set_rcvlowat = vsock_set_rcvlowat,
2361 .read_skb = vsock_read_skb,
2362 };
2363
2364 static const struct proto_ops vsock_seqpacket_ops = {
2365 .family = PF_VSOCK,
2366 .owner = THIS_MODULE,
2367 .release = vsock_release,
2368 .bind = vsock_bind,
2369 .connect = vsock_connect,
2370 .socketpair = sock_no_socketpair,
2371 .accept = vsock_accept,
2372 .getname = vsock_getname,
2373 .poll = vsock_poll,
2374 .ioctl = vsock_ioctl,
2375 .listen = vsock_listen,
2376 .shutdown = vsock_shutdown,
2377 .setsockopt = vsock_connectible_setsockopt,
2378 .getsockopt = vsock_connectible_getsockopt,
2379 .sendmsg = vsock_connectible_sendmsg,
2380 .recvmsg = vsock_connectible_recvmsg,
2381 .mmap = sock_no_mmap,
2382 .read_skb = vsock_read_skb,
2383 };
2384
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2385 static int vsock_create(struct net *net, struct socket *sock,
2386 int protocol, int kern)
2387 {
2388 struct vsock_sock *vsk;
2389 struct sock *sk;
2390 int ret;
2391
2392 if (!sock)
2393 return -EINVAL;
2394
2395 if (protocol && protocol != PF_VSOCK)
2396 return -EPROTONOSUPPORT;
2397
2398 switch (sock->type) {
2399 case SOCK_DGRAM:
2400 sock->ops = &vsock_dgram_ops;
2401 break;
2402 case SOCK_STREAM:
2403 sock->ops = &vsock_stream_ops;
2404 break;
2405 case SOCK_SEQPACKET:
2406 sock->ops = &vsock_seqpacket_ops;
2407 break;
2408 default:
2409 return -ESOCKTNOSUPPORT;
2410 }
2411
2412 sock->state = SS_UNCONNECTED;
2413
2414 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2415 if (!sk)
2416 return -ENOMEM;
2417
2418 vsk = vsock_sk(sk);
2419
2420 if (sock->type == SOCK_DGRAM) {
2421 ret = vsock_assign_transport(vsk, NULL);
2422 if (ret < 0) {
2423 sock_put(sk);
2424 return ret;
2425 }
2426 }
2427
2428 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2429 * proto_ops, so there is no handler for custom logic.
2430 */
2431 if (sock_type_connectible(sock->type))
2432 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2433
2434 vsock_insert_unbound(vsk);
2435
2436 return 0;
2437 }
2438
2439 static const struct net_proto_family vsock_family_ops = {
2440 .family = AF_VSOCK,
2441 .create = vsock_create,
2442 .owner = THIS_MODULE,
2443 };
2444
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2445 static long vsock_dev_do_ioctl(struct file *filp,
2446 unsigned int cmd, void __user *ptr)
2447 {
2448 u32 __user *p = ptr;
2449 u32 cid = VMADDR_CID_ANY;
2450 int retval = 0;
2451
2452 switch (cmd) {
2453 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2454 /* To be compatible with the VMCI behavior, we prioritize the
2455 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2456 */
2457 if (transport_g2h)
2458 cid = transport_g2h->get_local_cid();
2459 else if (transport_h2g)
2460 cid = transport_h2g->get_local_cid();
2461
2462 if (put_user(cid, p) != 0)
2463 retval = -EFAULT;
2464 break;
2465
2466 default:
2467 retval = -ENOIOCTLCMD;
2468 }
2469
2470 return retval;
2471 }
2472
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2473 static long vsock_dev_ioctl(struct file *filp,
2474 unsigned int cmd, unsigned long arg)
2475 {
2476 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2477 }
2478
2479 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2480 static long vsock_dev_compat_ioctl(struct file *filp,
2481 unsigned int cmd, unsigned long arg)
2482 {
2483 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2484 }
2485 #endif
2486
2487 static const struct file_operations vsock_device_ops = {
2488 .owner = THIS_MODULE,
2489 .unlocked_ioctl = vsock_dev_ioctl,
2490 #ifdef CONFIG_COMPAT
2491 .compat_ioctl = vsock_dev_compat_ioctl,
2492 #endif
2493 .open = nonseekable_open,
2494 };
2495
2496 static struct miscdevice vsock_device = {
2497 .name = "vsock",
2498 .fops = &vsock_device_ops,
2499 };
2500
vsock_init(void)2501 static int __init vsock_init(void)
2502 {
2503 int err = 0;
2504
2505 vsock_init_tables();
2506
2507 vsock_proto.owner = THIS_MODULE;
2508 vsock_device.minor = MISC_DYNAMIC_MINOR;
2509 err = misc_register(&vsock_device);
2510 if (err) {
2511 pr_err("Failed to register misc device\n");
2512 goto err_reset_transport;
2513 }
2514
2515 err = proto_register(&vsock_proto, 1); /* we want our slab */
2516 if (err) {
2517 pr_err("Cannot register vsock protocol\n");
2518 goto err_deregister_misc;
2519 }
2520
2521 err = sock_register(&vsock_family_ops);
2522 if (err) {
2523 pr_err("could not register af_vsock (%d) address family: %d\n",
2524 AF_VSOCK, err);
2525 goto err_unregister_proto;
2526 }
2527
2528 vsock_bpf_build_proto();
2529
2530 return 0;
2531
2532 err_unregister_proto:
2533 proto_unregister(&vsock_proto);
2534 err_deregister_misc:
2535 misc_deregister(&vsock_device);
2536 err_reset_transport:
2537 return err;
2538 }
2539
vsock_exit(void)2540 static void __exit vsock_exit(void)
2541 {
2542 misc_deregister(&vsock_device);
2543 sock_unregister(AF_VSOCK);
2544 proto_unregister(&vsock_proto);
2545 }
2546
vsock_core_get_transport(struct vsock_sock * vsk)2547 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2548 {
2549 return vsk->transport;
2550 }
2551 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2552
vsock_core_register(const struct vsock_transport * t,int features)2553 int vsock_core_register(const struct vsock_transport *t, int features)
2554 {
2555 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2556 int err = mutex_lock_interruptible(&vsock_register_mutex);
2557
2558 if (err)
2559 return err;
2560
2561 t_h2g = transport_h2g;
2562 t_g2h = transport_g2h;
2563 t_dgram = transport_dgram;
2564 t_local = transport_local;
2565
2566 if (features & VSOCK_TRANSPORT_F_H2G) {
2567 if (t_h2g) {
2568 err = -EBUSY;
2569 goto err_busy;
2570 }
2571 t_h2g = t;
2572 }
2573
2574 if (features & VSOCK_TRANSPORT_F_G2H) {
2575 if (t_g2h) {
2576 err = -EBUSY;
2577 goto err_busy;
2578 }
2579 t_g2h = t;
2580 }
2581
2582 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2583 if (t_dgram) {
2584 err = -EBUSY;
2585 goto err_busy;
2586 }
2587 t_dgram = t;
2588 }
2589
2590 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2591 if (t_local) {
2592 err = -EBUSY;
2593 goto err_busy;
2594 }
2595 t_local = t;
2596 }
2597
2598 transport_h2g = t_h2g;
2599 transport_g2h = t_g2h;
2600 transport_dgram = t_dgram;
2601 transport_local = t_local;
2602
2603 err_busy:
2604 mutex_unlock(&vsock_register_mutex);
2605 return err;
2606 }
2607 EXPORT_SYMBOL_GPL(vsock_core_register);
2608
vsock_core_unregister(const struct vsock_transport * t)2609 void vsock_core_unregister(const struct vsock_transport *t)
2610 {
2611 mutex_lock(&vsock_register_mutex);
2612
2613 if (transport_h2g == t)
2614 transport_h2g = NULL;
2615
2616 if (transport_g2h == t)
2617 transport_g2h = NULL;
2618
2619 if (transport_dgram == t)
2620 transport_dgram = NULL;
2621
2622 if (transport_local == t)
2623 transport_local = NULL;
2624
2625 mutex_unlock(&vsock_register_mutex);
2626 }
2627 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2628
2629 module_init(vsock_init);
2630 module_exit(vsock_exit);
2631
2632 MODULE_AUTHOR("VMware, Inc.");
2633 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2634 MODULE_VERSION("1.0.2.0-k");
2635 MODULE_LICENSE("GPL v2");
2636