1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef __KVM_X86_VMX_H
3  #define __KVM_X86_VMX_H
4  
5  #include <linux/kvm_host.h>
6  
7  #include <asm/kvm.h>
8  #include <asm/intel_pt.h>
9  #include <asm/perf_event.h>
10  #include <asm/posted_intr.h>
11  
12  #include "capabilities.h"
13  #include "../kvm_cache_regs.h"
14  #include "vmcs.h"
15  #include "vmx_ops.h"
16  #include "../cpuid.h"
17  #include "run_flags.h"
18  #include "../mmu.h"
19  
20  #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
21  
22  #ifdef CONFIG_X86_64
23  #define MAX_NR_USER_RETURN_MSRS	7
24  #else
25  #define MAX_NR_USER_RETURN_MSRS	4
26  #endif
27  
28  #define MAX_NR_LOADSTORE_MSRS	8
29  
30  struct vmx_msrs {
31  	unsigned int		nr;
32  	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
33  };
34  
35  struct vmx_uret_msr {
36  	bool load_into_hardware;
37  	u64 data;
38  	u64 mask;
39  };
40  
41  enum segment_cache_field {
42  	SEG_FIELD_SEL = 0,
43  	SEG_FIELD_BASE = 1,
44  	SEG_FIELD_LIMIT = 2,
45  	SEG_FIELD_AR = 3,
46  
47  	SEG_FIELD_NR = 4
48  };
49  
50  #define RTIT_ADDR_RANGE		4
51  
52  struct pt_ctx {
53  	u64 ctl;
54  	u64 status;
55  	u64 output_base;
56  	u64 output_mask;
57  	u64 cr3_match;
58  	u64 addr_a[RTIT_ADDR_RANGE];
59  	u64 addr_b[RTIT_ADDR_RANGE];
60  };
61  
62  struct pt_desc {
63  	u64 ctl_bitmask;
64  	u32 num_address_ranges;
65  	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
66  	struct pt_ctx host;
67  	struct pt_ctx guest;
68  };
69  
70  union vmx_exit_reason {
71  	struct {
72  		u32	basic			: 16;
73  		u32	reserved16		: 1;
74  		u32	reserved17		: 1;
75  		u32	reserved18		: 1;
76  		u32	reserved19		: 1;
77  		u32	reserved20		: 1;
78  		u32	reserved21		: 1;
79  		u32	reserved22		: 1;
80  		u32	reserved23		: 1;
81  		u32	reserved24		: 1;
82  		u32	reserved25		: 1;
83  		u32	bus_lock_detected	: 1;
84  		u32	enclave_mode		: 1;
85  		u32	smi_pending_mtf		: 1;
86  		u32	smi_from_vmx_root	: 1;
87  		u32	reserved30		: 1;
88  		u32	failed_vmentry		: 1;
89  	};
90  	u32 full;
91  };
92  
93  struct lbr_desc {
94  	/* Basic info about guest LBR records. */
95  	struct x86_pmu_lbr records;
96  
97  	/*
98  	 * Emulate LBR feature via passthrough LBR registers when the
99  	 * per-vcpu guest LBR event is scheduled on the current pcpu.
100  	 *
101  	 * The records may be inaccurate if the host reclaims the LBR.
102  	 */
103  	struct perf_event *event;
104  
105  	/* True if LBRs are marked as not intercepted in the MSR bitmap */
106  	bool msr_passthrough;
107  };
108  
109  extern struct x86_pmu_lbr vmx_lbr_caps;
110  
111  /*
112   * The nested_vmx structure is part of vcpu_vmx, and holds information we need
113   * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
114   */
115  struct nested_vmx {
116  	/* Has the level1 guest done vmxon? */
117  	bool vmxon;
118  	gpa_t vmxon_ptr;
119  	bool pml_full;
120  
121  	/* The guest-physical address of the current VMCS L1 keeps for L2 */
122  	gpa_t current_vmptr;
123  	/*
124  	 * Cache of the guest's VMCS, existing outside of guest memory.
125  	 * Loaded from guest memory during VMPTRLD. Flushed to guest
126  	 * memory during VMCLEAR and VMPTRLD.
127  	 */
128  	struct vmcs12 *cached_vmcs12;
129  	/*
130  	 * Cache of the guest's shadow VMCS, existing outside of guest
131  	 * memory. Loaded from guest memory during VM entry. Flushed
132  	 * to guest memory during VM exit.
133  	 */
134  	struct vmcs12 *cached_shadow_vmcs12;
135  
136  	/*
137  	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
138  	 */
139  	struct gfn_to_hva_cache shadow_vmcs12_cache;
140  
141  	/*
142  	 * GPA to HVA cache for VMCS12
143  	 */
144  	struct gfn_to_hva_cache vmcs12_cache;
145  
146  	/*
147  	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
148  	 * with the data held by struct vmcs12.
149  	 */
150  	bool need_vmcs12_to_shadow_sync;
151  	bool dirty_vmcs12;
152  
153  	/*
154  	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
155  	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
156  	 * this flag can only be used reliably in conjunction with a paravirt L1
157  	 * which informs L0 whether any changes to MSR bitmap for L2 were done
158  	 * on its side.
159  	 */
160  	bool force_msr_bitmap_recalc;
161  
162  	/*
163  	 * Indicates lazily loaded guest state has not yet been decached from
164  	 * vmcs02.
165  	 */
166  	bool need_sync_vmcs02_to_vmcs12_rare;
167  
168  	/*
169  	 * vmcs02 has been initialized, i.e. state that is constant for
170  	 * vmcs02 has been written to the backing VMCS.  Initialization
171  	 * is delayed until L1 actually attempts to run a nested VM.
172  	 */
173  	bool vmcs02_initialized;
174  
175  	bool change_vmcs01_virtual_apic_mode;
176  	bool reload_vmcs01_apic_access_page;
177  	bool update_vmcs01_cpu_dirty_logging;
178  	bool update_vmcs01_apicv_status;
179  
180  	/*
181  	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
182  	 * use it. However, VMX features available to L1 will be limited based
183  	 * on what the enlightened VMCS supports.
184  	 */
185  	bool enlightened_vmcs_enabled;
186  
187  	/* L2 must run next, and mustn't decide to exit to L1. */
188  	bool nested_run_pending;
189  
190  	/* Pending MTF VM-exit into L1.  */
191  	bool mtf_pending;
192  
193  	struct loaded_vmcs vmcs02;
194  
195  	/*
196  	 * Guest pages referred to in the vmcs02 with host-physical
197  	 * pointers, so we must keep them pinned while L2 runs.
198  	 */
199  	struct kvm_host_map apic_access_page_map;
200  	struct kvm_host_map virtual_apic_map;
201  	struct kvm_host_map pi_desc_map;
202  
203  	struct kvm_host_map msr_bitmap_map;
204  
205  	struct pi_desc *pi_desc;
206  	bool pi_pending;
207  	u16 posted_intr_nv;
208  
209  	struct hrtimer preemption_timer;
210  	u64 preemption_timer_deadline;
211  	bool has_preemption_timer_deadline;
212  	bool preemption_timer_expired;
213  
214  	/*
215  	 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
216  	 * order to propagate the guest's pre-VM-Enter value into vmcs02.  For
217  	 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
218  	 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
219  	 * userspace restores MSRs before nested state.  If userspace restores
220  	 * MSRs after nested state, the snapshot holds garbage, but KVM can't
221  	 * detect that, and the garbage value in vmcs02 will be overwritten by
222  	 * MSR restoration in any case.
223  	 */
224  	u64 pre_vmenter_debugctl;
225  	u64 pre_vmenter_bndcfgs;
226  
227  	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
228  	int l1_tpr_threshold;
229  
230  	u16 vpid02;
231  	u16 last_vpid;
232  
233  	struct nested_vmx_msrs msrs;
234  
235  	/* SMM related state */
236  	struct {
237  		/* in VMX operation on SMM entry? */
238  		bool vmxon;
239  		/* in guest mode on SMM entry? */
240  		bool guest_mode;
241  	} smm;
242  
243  #ifdef CONFIG_KVM_HYPERV
244  	gpa_t hv_evmcs_vmptr;
245  	struct kvm_host_map hv_evmcs_map;
246  	struct hv_enlightened_vmcs *hv_evmcs;
247  #endif
248  };
249  
250  struct vcpu_vmx {
251  	struct kvm_vcpu       vcpu;
252  	u8                    fail;
253  	u8		      x2apic_msr_bitmap_mode;
254  
255  	/*
256  	 * If true, host state has been stored in vmx->loaded_vmcs for
257  	 * the CPU registers that only need to be switched when transitioning
258  	 * to/from the kernel, and the registers have been loaded with guest
259  	 * values.  If false, host state is loaded in the CPU registers
260  	 * and vmx->loaded_vmcs->host_state is invalid.
261  	 */
262  	bool		      guest_state_loaded;
263  
264  	unsigned long         exit_qualification;
265  	u32                   exit_intr_info;
266  	u32                   idt_vectoring_info;
267  	ulong                 rflags;
268  
269  	/*
270  	 * User return MSRs are always emulated when enabled in the guest, but
271  	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
272  	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
273  	 * be loaded into hardware if those conditions aren't met.
274  	 */
275  	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
276  	bool                  guest_uret_msrs_loaded;
277  #ifdef CONFIG_X86_64
278  	u64		      msr_host_kernel_gs_base;
279  	u64		      msr_guest_kernel_gs_base;
280  #endif
281  
282  	u64		      spec_ctrl;
283  	u32		      msr_ia32_umwait_control;
284  
285  	/*
286  	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
287  	 * non-nested (L1) guest, it always points to vmcs01. For a nested
288  	 * guest (L2), it points to a different VMCS.
289  	 */
290  	struct loaded_vmcs    vmcs01;
291  	struct loaded_vmcs   *loaded_vmcs;
292  
293  	struct msr_autoload {
294  		struct vmx_msrs guest;
295  		struct vmx_msrs host;
296  	} msr_autoload;
297  
298  	struct msr_autostore {
299  		struct vmx_msrs guest;
300  	} msr_autostore;
301  
302  	struct {
303  		int vm86_active;
304  		ulong save_rflags;
305  		struct kvm_segment segs[8];
306  	} rmode;
307  	struct {
308  		u32 bitmask; /* 4 bits per segment (1 bit per field) */
309  		struct kvm_save_segment {
310  			u16 selector;
311  			unsigned long base;
312  			u32 limit;
313  			u32 ar;
314  		} seg[8];
315  	} segment_cache;
316  	int vpid;
317  	bool emulation_required;
318  
319  	union vmx_exit_reason exit_reason;
320  
321  	/* Posted interrupt descriptor */
322  	struct pi_desc pi_desc;
323  
324  	/* Used if this vCPU is waiting for PI notification wakeup. */
325  	struct list_head pi_wakeup_list;
326  
327  	/* Support for a guest hypervisor (nested VMX) */
328  	struct nested_vmx nested;
329  
330  	/* Dynamic PLE window. */
331  	unsigned int ple_window;
332  	bool ple_window_dirty;
333  
334  	/* Support for PML */
335  #define PML_ENTITY_NUM		512
336  	struct page *pml_pg;
337  
338  	/* apic deadline value in host tsc */
339  	u64 hv_deadline_tsc;
340  
341  	unsigned long host_debugctlmsr;
342  
343  	/*
344  	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
345  	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
346  	 * in msr_ia32_feature_control_valid_bits.
347  	 */
348  	u64 msr_ia32_feature_control;
349  	u64 msr_ia32_feature_control_valid_bits;
350  	/* SGX Launch Control public key hash */
351  	u64 msr_ia32_sgxlepubkeyhash[4];
352  	u64 msr_ia32_mcu_opt_ctrl;
353  	bool disable_fb_clear;
354  
355  	struct pt_desc pt_desc;
356  	struct lbr_desc lbr_desc;
357  
358  	/* Save desired MSR intercept (read: pass-through) state */
359  #define MAX_POSSIBLE_PASSTHROUGH_MSRS	16
360  	struct {
361  		DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
362  		DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
363  	} shadow_msr_intercept;
364  
365  	/* ve_info must be page aligned. */
366  	struct vmx_ve_information *ve_info;
367  };
368  
369  struct kvm_vmx {
370  	struct kvm kvm;
371  
372  	unsigned int tss_addr;
373  	bool ept_identity_pagetable_done;
374  	gpa_t ept_identity_map_addr;
375  	/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
376  	u64 *pid_table;
377  };
378  
379  void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
380  			struct loaded_vmcs *buddy);
381  int allocate_vpid(void);
382  void free_vpid(int vpid);
383  void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
384  void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
385  void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
386  			unsigned long fs_base, unsigned long gs_base);
387  int vmx_get_cpl(struct kvm_vcpu *vcpu);
388  bool vmx_emulation_required(struct kvm_vcpu *vcpu);
389  unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
390  void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
391  u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
392  void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
393  int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
394  void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
395  void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
396  void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
397  void ept_save_pdptrs(struct kvm_vcpu *vcpu);
398  void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
399  void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
400  u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
401  
402  bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
403  void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
404  bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
405  bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
406  bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
407  bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
408  void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
409  void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
410  struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
411  void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
412  void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
413  void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
414  unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
415  bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
416  		    unsigned int flags);
417  int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
418  void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
419  
420  void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
421  void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
422  
423  u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
424  u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
425  
426  gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
427  
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)428  static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
429  					     int type, bool value)
430  {
431  	if (value)
432  		vmx_enable_intercept_for_msr(vcpu, msr, type);
433  	else
434  		vmx_disable_intercept_for_msr(vcpu, msr, type);
435  }
436  
437  void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
438  
439  /*
440   * Note, early Intel manuals have the write-low and read-high bitmap offsets
441   * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
442   * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
443   * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
444   * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
445   * VM-Exit.
446   */
447  #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
448  static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
449  						       u32 msr)		       \
450  {									       \
451  	int f = sizeof(unsigned long);					       \
452  									       \
453  	if (msr <= 0x1fff)						       \
454  		return bitop##_bit(msr, bitmap + base / f);		       \
455  	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
456  		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
457  	return (rtype)true;						       \
458  }
459  #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
460  	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
461  	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
462  
BUILD_VMX_MSR_BITMAP_HELPERS(bool,test,test)463  BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
464  BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
465  BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
466  
467  static inline u8 vmx_get_rvi(void)
468  {
469  	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
470  }
471  
472  #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS				\
473  	(VM_ENTRY_LOAD_DEBUG_CONTROLS)
474  #ifdef CONFIG_X86_64
475  	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
476  		(__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS |			\
477  		 VM_ENTRY_IA32E_MODE)
478  #else
479  	#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS			\
480  		__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
481  #endif
482  #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS				\
483  	(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |				\
484  	 VM_ENTRY_LOAD_IA32_PAT |					\
485  	 VM_ENTRY_LOAD_IA32_EFER |					\
486  	 VM_ENTRY_LOAD_BNDCFGS |					\
487  	 VM_ENTRY_PT_CONCEAL_PIP |					\
488  	 VM_ENTRY_LOAD_IA32_RTIT_CTL)
489  
490  #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS				\
491  	(VM_EXIT_SAVE_DEBUG_CONTROLS |					\
492  	 VM_EXIT_ACK_INTR_ON_EXIT)
493  #ifdef CONFIG_X86_64
494  	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
495  		(__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS |			\
496  		 VM_EXIT_HOST_ADDR_SPACE_SIZE)
497  #else
498  	#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS			\
499  		__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
500  #endif
501  #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS				\
502  	      (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |			\
503  	       VM_EXIT_SAVE_IA32_PAT |					\
504  	       VM_EXIT_LOAD_IA32_PAT |					\
505  	       VM_EXIT_SAVE_IA32_EFER |					\
506  	       VM_EXIT_SAVE_VMX_PREEMPTION_TIMER |			\
507  	       VM_EXIT_LOAD_IA32_EFER |					\
508  	       VM_EXIT_CLEAR_BNDCFGS |					\
509  	       VM_EXIT_PT_CONCEAL_PIP |					\
510  	       VM_EXIT_CLEAR_IA32_RTIT_CTL)
511  
512  #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL			\
513  	(PIN_BASED_EXT_INTR_MASK |					\
514  	 PIN_BASED_NMI_EXITING)
515  #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL			\
516  	(PIN_BASED_VIRTUAL_NMIS |					\
517  	 PIN_BASED_POSTED_INTR |					\
518  	 PIN_BASED_VMX_PREEMPTION_TIMER)
519  
520  #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL			\
521  	(CPU_BASED_HLT_EXITING |					\
522  	 CPU_BASED_CR3_LOAD_EXITING |					\
523  	 CPU_BASED_CR3_STORE_EXITING |					\
524  	 CPU_BASED_UNCOND_IO_EXITING |					\
525  	 CPU_BASED_MOV_DR_EXITING |					\
526  	 CPU_BASED_USE_TSC_OFFSETTING |					\
527  	 CPU_BASED_MWAIT_EXITING |					\
528  	 CPU_BASED_MONITOR_EXITING |					\
529  	 CPU_BASED_INVLPG_EXITING |					\
530  	 CPU_BASED_RDPMC_EXITING |					\
531  	 CPU_BASED_INTR_WINDOW_EXITING)
532  
533  #ifdef CONFIG_X86_64
534  	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
535  		(__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL |		\
536  		 CPU_BASED_CR8_LOAD_EXITING |				\
537  		 CPU_BASED_CR8_STORE_EXITING)
538  #else
539  	#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL		\
540  		__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
541  #endif
542  
543  #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL			\
544  	(CPU_BASED_RDTSC_EXITING |					\
545  	 CPU_BASED_TPR_SHADOW |						\
546  	 CPU_BASED_USE_IO_BITMAPS |					\
547  	 CPU_BASED_MONITOR_TRAP_FLAG |					\
548  	 CPU_BASED_USE_MSR_BITMAPS |					\
549  	 CPU_BASED_NMI_WINDOW_EXITING |					\
550  	 CPU_BASED_PAUSE_EXITING |					\
551  	 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |			\
552  	 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
553  
554  #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
555  #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL			\
556  	(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
557  	 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |			\
558  	 SECONDARY_EXEC_WBINVD_EXITING |				\
559  	 SECONDARY_EXEC_ENABLE_VPID |					\
560  	 SECONDARY_EXEC_ENABLE_EPT |					\
561  	 SECONDARY_EXEC_UNRESTRICTED_GUEST |				\
562  	 SECONDARY_EXEC_PAUSE_LOOP_EXITING |				\
563  	 SECONDARY_EXEC_DESC |						\
564  	 SECONDARY_EXEC_ENABLE_RDTSCP |					\
565  	 SECONDARY_EXEC_ENABLE_INVPCID |				\
566  	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
567  	 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
568  	 SECONDARY_EXEC_SHADOW_VMCS |					\
569  	 SECONDARY_EXEC_ENABLE_XSAVES |					\
570  	 SECONDARY_EXEC_RDSEED_EXITING |				\
571  	 SECONDARY_EXEC_RDRAND_EXITING |				\
572  	 SECONDARY_EXEC_ENABLE_PML |					\
573  	 SECONDARY_EXEC_TSC_SCALING |					\
574  	 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |				\
575  	 SECONDARY_EXEC_PT_USE_GPA |					\
576  	 SECONDARY_EXEC_PT_CONCEAL_VMX |				\
577  	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
578  	 SECONDARY_EXEC_BUS_LOCK_DETECTION |				\
579  	 SECONDARY_EXEC_NOTIFY_VM_EXITING |				\
580  	 SECONDARY_EXEC_ENCLS_EXITING |					\
581  	 SECONDARY_EXEC_EPT_VIOLATION_VE)
582  
583  #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
584  #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL			\
585  	(TERTIARY_EXEC_IPI_VIRT)
586  
587  #define BUILD_CONTROLS_SHADOW(lname, uname, bits)						\
588  static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val)			\
589  {												\
590  	if (vmx->loaded_vmcs->controls_shadow.lname != val) {					\
591  		vmcs_write##bits(uname, val);							\
592  		vmx->loaded_vmcs->controls_shadow.lname = val;					\
593  	}											\
594  }												\
595  static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs)			\
596  {												\
597  	return vmcs->controls_shadow.lname;							\
598  }												\
599  static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx)				\
600  {												\
601  	return __##lname##_controls_get(vmx->loaded_vmcs);					\
602  }												\
603  static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val)		\
604  {												\
605  	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
606  	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);				\
607  }												\
608  static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val)	\
609  {												\
610  	BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname)));		\
611  	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);				\
612  }
613  BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
614  BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
615  BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
616  BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
617  BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
618  BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
619  
620  /*
621   * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
622   * cache on demand.  Other registers not listed here are synced to
623   * the cache immediately after VM-Exit.
624   */
625  #define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
626  				(1 << VCPU_REGS_RSP) |          \
627  				(1 << VCPU_EXREG_RFLAGS) |      \
628  				(1 << VCPU_EXREG_PDPTR) |       \
629  				(1 << VCPU_EXREG_SEGMENTS) |    \
630  				(1 << VCPU_EXREG_CR0) |         \
631  				(1 << VCPU_EXREG_CR3) |         \
632  				(1 << VCPU_EXREG_CR4) |         \
633  				(1 << VCPU_EXREG_EXIT_INFO_1) | \
634  				(1 << VCPU_EXREG_EXIT_INFO_2))
635  
vmx_l1_guest_owned_cr0_bits(void)636  static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
637  {
638  	unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
639  
640  	/*
641  	 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
642  	 * in order to construct shadow PTEs with the correct protections.
643  	 * Note!  CR0.WP technically can be passed through to the guest if
644  	 * paging is disabled, but checking CR0.PG would generate a cyclical
645  	 * dependency of sorts due to forcing the caller to ensure CR0 holds
646  	 * the correct value prior to determining which CR0 bits can be owned
647  	 * by L1.  Keep it simple and limit the optimization to EPT.
648  	 */
649  	if (!enable_ept)
650  		bits &= ~X86_CR0_WP;
651  	return bits;
652  }
653  
to_kvm_vmx(struct kvm * kvm)654  static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
655  {
656  	return container_of(kvm, struct kvm_vmx, kvm);
657  }
658  
to_vmx(struct kvm_vcpu * vcpu)659  static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
660  {
661  	return container_of(vcpu, struct vcpu_vmx, vcpu);
662  }
663  
vcpu_to_lbr_desc(struct kvm_vcpu * vcpu)664  static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
665  {
666  	return &to_vmx(vcpu)->lbr_desc;
667  }
668  
vcpu_to_lbr_records(struct kvm_vcpu * vcpu)669  static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
670  {
671  	return &vcpu_to_lbr_desc(vcpu)->records;
672  }
673  
intel_pmu_lbr_is_enabled(struct kvm_vcpu * vcpu)674  static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
675  {
676  	return !!vcpu_to_lbr_records(vcpu)->nr;
677  }
678  
679  void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
680  int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
681  void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
682  
vmx_get_exit_qual(struct kvm_vcpu * vcpu)683  static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
684  {
685  	struct vcpu_vmx *vmx = to_vmx(vcpu);
686  
687  	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
688  		vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
689  
690  	return vmx->exit_qualification;
691  }
692  
vmx_get_intr_info(struct kvm_vcpu * vcpu)693  static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
694  {
695  	struct vcpu_vmx *vmx = to_vmx(vcpu);
696  
697  	if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
698  		vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
699  
700  	return vmx->exit_intr_info;
701  }
702  
703  struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
704  void free_vmcs(struct vmcs *vmcs);
705  int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
706  void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
707  void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
708  
alloc_vmcs(bool shadow)709  static inline struct vmcs *alloc_vmcs(bool shadow)
710  {
711  	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
712  			      GFP_KERNEL_ACCOUNT);
713  }
714  
vmx_has_waitpkg(struct vcpu_vmx * vmx)715  static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
716  {
717  	return secondary_exec_controls_get(vmx) &
718  		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
719  }
720  
vmx_need_pf_intercept(struct kvm_vcpu * vcpu)721  static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
722  {
723  	if (!enable_ept)
724  		return true;
725  
726  	return allow_smaller_maxphyaddr &&
727  	       cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr;
728  }
729  
is_unrestricted_guest(struct kvm_vcpu * vcpu)730  static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
731  {
732  	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
733  	    (secondary_exec_controls_get(to_vmx(vcpu)) &
734  	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
735  }
736  
737  bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
vmx_guest_state_valid(struct kvm_vcpu * vcpu)738  static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
739  {
740  	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
741  }
742  
743  void dump_vmcs(struct kvm_vcpu *vcpu);
744  
vmx_get_instr_info_reg2(u32 vmx_instr_info)745  static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
746  {
747  	return (vmx_instr_info >> 28) & 0xf;
748  }
749  
vmx_can_use_ipiv(struct kvm_vcpu * vcpu)750  static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
751  {
752  	return  lapic_in_kernel(vcpu) && enable_ipiv;
753  }
754  
vmx_segment_cache_clear(struct vcpu_vmx * vmx)755  static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
756  {
757  	vmx->segment_cache.bitmask = 0;
758  }
759  
760  #endif /* __KVM_X86_VMX_H */
761