1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * vma.h
4 *
5 * Core VMA manipulation API implemented in vma.c.
6 */
7 #ifndef __MM_VMA_H
8 #define __MM_VMA_H
9
10 /*
11 * VMA lock generalization
12 */
13 struct vma_prepare {
14 struct vm_area_struct *vma;
15 struct vm_area_struct *adj_next;
16 struct file *file;
17 struct address_space *mapping;
18 struct anon_vma *anon_vma;
19 struct vm_area_struct *insert;
20 struct vm_area_struct *remove;
21 struct vm_area_struct *remove2;
22 };
23
24 struct unlink_vma_file_batch {
25 int count;
26 struct vm_area_struct *vmas[8];
27 };
28
29 /*
30 * vma munmap operation
31 */
32 struct vma_munmap_struct {
33 struct vma_iterator *vmi;
34 struct vm_area_struct *vma; /* The first vma to munmap */
35 struct vm_area_struct *prev; /* vma before the munmap area */
36 struct vm_area_struct *next; /* vma after the munmap area */
37 struct list_head *uf; /* Userfaultfd list_head */
38 unsigned long start; /* Aligned start addr (inclusive) */
39 unsigned long end; /* Aligned end addr (exclusive) */
40 unsigned long unmap_start; /* Unmap PTE start */
41 unsigned long unmap_end; /* Unmap PTE end */
42 int vma_count; /* Number of vmas that will be removed */
43 bool unlock; /* Unlock after the munmap */
44 bool clear_ptes; /* If there are outstanding PTE to be cleared */
45 /* 2 byte hole */
46 unsigned long nr_pages; /* Number of pages being removed */
47 unsigned long locked_vm; /* Number of locked pages */
48 unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */
49 unsigned long exec_vm;
50 unsigned long stack_vm;
51 unsigned long data_vm;
52 };
53
54 enum vma_merge_state {
55 VMA_MERGE_START,
56 VMA_MERGE_ERROR_NOMEM,
57 VMA_MERGE_NOMERGE,
58 VMA_MERGE_SUCCESS,
59 };
60
61 enum vma_merge_flags {
62 VMG_FLAG_DEFAULT = 0,
63 /*
64 * If we can expand, simply do so. We know there is nothing to merge to
65 * the right. Does not reset state upon failure to merge. The VMA
66 * iterator is assumed to be positioned at the previous VMA, rather than
67 * at the gap.
68 */
69 VMG_FLAG_JUST_EXPAND = 1 << 0,
70 };
71
72 /* Represents a VMA merge operation. */
73 struct vma_merge_struct {
74 struct mm_struct *mm;
75 struct vma_iterator *vmi;
76 pgoff_t pgoff;
77 struct vm_area_struct *prev;
78 struct vm_area_struct *next; /* Modified by vma_merge(). */
79 struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */
80 unsigned long start;
81 unsigned long end;
82 unsigned long flags;
83 struct file *file;
84 struct anon_vma *anon_vma;
85 struct mempolicy *policy;
86 struct vm_userfaultfd_ctx uffd_ctx;
87 struct anon_vma_name *anon_name;
88 enum vma_merge_flags merge_flags;
89 enum vma_merge_state state;
90 };
91
vmg_nomem(struct vma_merge_struct * vmg)92 static inline bool vmg_nomem(struct vma_merge_struct *vmg)
93 {
94 return vmg->state == VMA_MERGE_ERROR_NOMEM;
95 }
96
97 /* Assumes addr >= vma->vm_start. */
vma_pgoff_offset(struct vm_area_struct * vma,unsigned long addr)98 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma,
99 unsigned long addr)
100 {
101 return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start);
102 }
103
104 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_) \
105 struct vma_merge_struct name = { \
106 .mm = mm_, \
107 .vmi = vmi_, \
108 .start = start_, \
109 .end = end_, \
110 .flags = flags_, \
111 .pgoff = pgoff_, \
112 .state = VMA_MERGE_START, \
113 .merge_flags = VMG_FLAG_DEFAULT, \
114 }
115
116 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \
117 struct vma_merge_struct name = { \
118 .mm = vma_->vm_mm, \
119 .vmi = vmi_, \
120 .prev = prev_, \
121 .next = NULL, \
122 .vma = vma_, \
123 .start = start_, \
124 .end = end_, \
125 .flags = vma_->vm_flags, \
126 .pgoff = vma_pgoff_offset(vma_, start_), \
127 .file = vma_->vm_file, \
128 .anon_vma = vma_->anon_vma, \
129 .policy = vma_policy(vma_), \
130 .uffd_ctx = vma_->vm_userfaultfd_ctx, \
131 .anon_name = anon_vma_name(vma_), \
132 .state = VMA_MERGE_START, \
133 .merge_flags = VMG_FLAG_DEFAULT, \
134 }
135
136 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
137 void validate_mm(struct mm_struct *mm);
138 #else
139 #define validate_mm(mm) do { } while (0)
140 #endif
141
142 /* Required for expand_downwards(). */
143 void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma);
144
145 /* Required for expand_downwards(). */
146 void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma);
147
148 int vma_expand(struct vma_merge_struct *vmg);
149 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
150 unsigned long start, unsigned long end, pgoff_t pgoff);
151
vma_iter_store_gfp(struct vma_iterator * vmi,struct vm_area_struct * vma,gfp_t gfp)152 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
153 struct vm_area_struct *vma, gfp_t gfp)
154
155 {
156 if (vmi->mas.status != ma_start &&
157 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
158 vma_iter_invalidate(vmi);
159
160 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
161 mas_store_gfp(&vmi->mas, vma, gfp);
162 if (unlikely(mas_is_err(&vmi->mas)))
163 return -ENOMEM;
164
165 return 0;
166 }
167
168 #ifdef CONFIG_MMU
169 /*
170 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
171 * @vms: The vma munmap struct
172 * @vmi: The vma iterator
173 * @vma: The first vm_area_struct to munmap
174 * @start: The aligned start address to munmap
175 * @end: The aligned end address to munmap
176 * @uf: The userfaultfd list_head
177 * @unlock: Unlock after the operation. Only unlocked on success
178 */
init_vma_munmap(struct vma_munmap_struct * vms,struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)179 static inline void init_vma_munmap(struct vma_munmap_struct *vms,
180 struct vma_iterator *vmi, struct vm_area_struct *vma,
181 unsigned long start, unsigned long end, struct list_head *uf,
182 bool unlock)
183 {
184 vms->vmi = vmi;
185 vms->vma = vma;
186 if (vma) {
187 vms->start = start;
188 vms->end = end;
189 } else {
190 vms->start = vms->end = 0;
191 }
192 vms->unlock = unlock;
193 vms->uf = uf;
194 vms->vma_count = 0;
195 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
196 vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
197 vms->unmap_start = FIRST_USER_ADDRESS;
198 vms->unmap_end = USER_PGTABLES_CEILING;
199 vms->clear_ptes = false;
200 }
201 #endif
202
203 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
204 struct ma_state *mas_detach);
205
206 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
207 struct ma_state *mas_detach);
208
209 void vms_clean_up_area(struct vma_munmap_struct *vms,
210 struct ma_state *mas_detach);
211
212 /*
213 * reattach_vmas() - Undo any munmap work and free resources
214 * @mas_detach: The maple state with the detached maple tree
215 *
216 * Reattach any detached vmas and free up the maple tree used to track the vmas.
217 */
reattach_vmas(struct ma_state * mas_detach)218 static inline void reattach_vmas(struct ma_state *mas_detach)
219 {
220 struct vm_area_struct *vma;
221
222 mas_set(mas_detach, 0);
223 mas_for_each(mas_detach, vma, ULONG_MAX)
224 vma_mark_detached(vma, false);
225
226 __mt_destroy(mas_detach->tree);
227 }
228
229 /*
230 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
231 * operation.
232 * @vms: The vma unmap structure
233 * @mas_detach: The maple state with the detached maple tree
234 *
235 * Reattach any detached vmas, free up the maple tree used to track the vmas.
236 * If that's not possible because the ptes are cleared (and vm_ops->closed() may
237 * have been called), then a NULL is written over the vmas and the vmas are
238 * removed (munmap() completed).
239 */
vms_abort_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)240 static inline void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
241 struct ma_state *mas_detach)
242 {
243 struct ma_state *mas = &vms->vmi->mas;
244 if (!vms->nr_pages)
245 return;
246
247 if (vms->clear_ptes)
248 return reattach_vmas(mas_detach);
249
250 /*
251 * Aborting cannot just call the vm_ops open() because they are often
252 * not symmetrical and state data has been lost. Resort to the old
253 * failure method of leaving a gap where the MAP_FIXED mapping failed.
254 */
255 mas_set_range(mas, vms->start, vms->end - 1);
256 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
257 /* Clean up the insertion of the unfortunate gap */
258 vms_complete_munmap_vmas(vms, mas_detach);
259 }
260
261 int
262 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
263 struct mm_struct *mm, unsigned long start,
264 unsigned long end, struct list_head *uf, bool unlock);
265
266 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
267 unsigned long start, size_t len, struct list_head *uf,
268 bool unlock);
269
270 void remove_vma(struct vm_area_struct *vma, bool unreachable);
271
272 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
273 struct vm_area_struct *prev, struct vm_area_struct *next);
274
275 /* We are about to modify the VMA's flags. */
276 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi,
277 struct vm_area_struct *prev, struct vm_area_struct *vma,
278 unsigned long start, unsigned long end,
279 unsigned long new_flags);
280
281 /* We are about to modify the VMA's flags and/or anon_name. */
282 struct vm_area_struct
283 *vma_modify_flags_name(struct vma_iterator *vmi,
284 struct vm_area_struct *prev,
285 struct vm_area_struct *vma,
286 unsigned long start,
287 unsigned long end,
288 unsigned long new_flags,
289 struct anon_vma_name *new_name);
290
291 /* We are about to modify the VMA's memory policy. */
292 struct vm_area_struct
293 *vma_modify_policy(struct vma_iterator *vmi,
294 struct vm_area_struct *prev,
295 struct vm_area_struct *vma,
296 unsigned long start, unsigned long end,
297 struct mempolicy *new_pol);
298
299 /* We are about to modify the VMA's flags and/or uffd context. */
300 struct vm_area_struct
301 *vma_modify_flags_uffd(struct vma_iterator *vmi,
302 struct vm_area_struct *prev,
303 struct vm_area_struct *vma,
304 unsigned long start, unsigned long end,
305 unsigned long new_flags,
306 struct vm_userfaultfd_ctx new_ctx);
307
308 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg);
309
310 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
311 struct vm_area_struct *vma,
312 unsigned long delta);
313
314 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb);
315
316 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb);
317
318 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
319 struct vm_area_struct *vma);
320
321 void unlink_file_vma(struct vm_area_struct *vma);
322
323 void vma_link_file(struct vm_area_struct *vma);
324
325 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma);
326
327 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
328 unsigned long addr, unsigned long len, pgoff_t pgoff,
329 bool *need_rmap_locks);
330
331 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma);
332
333 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
334 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
335
336 int mm_take_all_locks(struct mm_struct *mm);
337 void mm_drop_all_locks(struct mm_struct *mm);
338
vma_wants_manual_pte_write_upgrade(struct vm_area_struct * vma)339 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
340 {
341 /*
342 * We want to check manually if we can change individual PTEs writable
343 * if we can't do that automatically for all PTEs in a mapping. For
344 * private mappings, that's always the case when we have write
345 * permissions as we properly have to handle COW.
346 */
347 if (vma->vm_flags & VM_SHARED)
348 return vma_wants_writenotify(vma, vma->vm_page_prot);
349 return !!(vma->vm_flags & VM_WRITE);
350 }
351
352 #ifdef CONFIG_MMU
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)353 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
354 {
355 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
356 }
357 #endif
358
vma_prev_limit(struct vma_iterator * vmi,unsigned long min)359 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
360 unsigned long min)
361 {
362 return mas_prev(&vmi->mas, min);
363 }
364
365 /*
366 * These three helpers classifies VMAs for virtual memory accounting.
367 */
368
369 /*
370 * Executable code area - executable, not writable, not stack
371 */
is_exec_mapping(vm_flags_t flags)372 static inline bool is_exec_mapping(vm_flags_t flags)
373 {
374 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
375 }
376
377 /*
378 * Stack area (including shadow stacks)
379 *
380 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
381 * do_mmap() forbids all other combinations.
382 */
is_stack_mapping(vm_flags_t flags)383 static inline bool is_stack_mapping(vm_flags_t flags)
384 {
385 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
386 }
387
388 /*
389 * Data area - private, writable, not stack
390 */
is_data_mapping(vm_flags_t flags)391 static inline bool is_data_mapping(vm_flags_t flags)
392 {
393 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
394 }
395
396
vma_iter_config(struct vma_iterator * vmi,unsigned long index,unsigned long last)397 static inline void vma_iter_config(struct vma_iterator *vmi,
398 unsigned long index, unsigned long last)
399 {
400 __mas_set_range(&vmi->mas, index, last - 1);
401 }
402
vma_iter_reset(struct vma_iterator * vmi)403 static inline void vma_iter_reset(struct vma_iterator *vmi)
404 {
405 mas_reset(&vmi->mas);
406 }
407
408 static inline
vma_iter_prev_range_limit(struct vma_iterator * vmi,unsigned long min)409 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
410 {
411 return mas_prev_range(&vmi->mas, min);
412 }
413
414 static inline
vma_iter_next_range_limit(struct vma_iterator * vmi,unsigned long max)415 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
416 {
417 return mas_next_range(&vmi->mas, max);
418 }
419
vma_iter_area_lowest(struct vma_iterator * vmi,unsigned long min,unsigned long max,unsigned long size)420 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
421 unsigned long max, unsigned long size)
422 {
423 return mas_empty_area(&vmi->mas, min, max - 1, size);
424 }
425
vma_iter_area_highest(struct vma_iterator * vmi,unsigned long min,unsigned long max,unsigned long size)426 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
427 unsigned long max, unsigned long size)
428 {
429 return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
430 }
431
432 /*
433 * VMA Iterator functions shared between nommu and mmap
434 */
vma_iter_prealloc(struct vma_iterator * vmi,struct vm_area_struct * vma)435 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
436 struct vm_area_struct *vma)
437 {
438 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
439 }
440
vma_iter_clear(struct vma_iterator * vmi)441 static inline void vma_iter_clear(struct vma_iterator *vmi)
442 {
443 mas_store_prealloc(&vmi->mas, NULL);
444 }
445
vma_iter_load(struct vma_iterator * vmi)446 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
447 {
448 return mas_walk(&vmi->mas);
449 }
450
451 /* Store a VMA with preallocated memory */
vma_iter_store(struct vma_iterator * vmi,struct vm_area_struct * vma)452 static inline void vma_iter_store(struct vma_iterator *vmi,
453 struct vm_area_struct *vma)
454 {
455
456 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
457 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
458 vmi->mas.index > vma->vm_start)) {
459 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
460 vmi->mas.index, vma->vm_start, vma->vm_start,
461 vma->vm_end, vmi->mas.index, vmi->mas.last);
462 }
463 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
464 vmi->mas.last < vma->vm_start)) {
465 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
466 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
467 vmi->mas.index, vmi->mas.last);
468 }
469 #endif
470
471 if (vmi->mas.status != ma_start &&
472 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
473 vma_iter_invalidate(vmi);
474
475 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
476 mas_store_prealloc(&vmi->mas, vma);
477 }
478
vma_iter_addr(struct vma_iterator * vmi)479 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
480 {
481 return vmi->mas.index;
482 }
483
vma_iter_end(struct vma_iterator * vmi)484 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
485 {
486 return vmi->mas.last + 1;
487 }
488
vma_iter_bulk_alloc(struct vma_iterator * vmi,unsigned long count)489 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
490 unsigned long count)
491 {
492 return mas_expected_entries(&vmi->mas, count);
493 }
494
495 static inline
vma_iter_prev_range(struct vma_iterator * vmi)496 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
497 {
498 return mas_prev_range(&vmi->mas, 0);
499 }
500
501 /*
502 * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or
503 * if no previous VMA, to index 0.
504 */
505 static inline
vma_iter_next_rewind(struct vma_iterator * vmi,struct vm_area_struct ** pprev)506 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi,
507 struct vm_area_struct **pprev)
508 {
509 struct vm_area_struct *next = vma_next(vmi);
510 struct vm_area_struct *prev = vma_prev(vmi);
511
512 /*
513 * Consider the case where no previous VMA exists. We advance to the
514 * next VMA, skipping any gap, then rewind to the start of the range.
515 *
516 * If we were to unconditionally advance to the next range we'd wind up
517 * at the next VMA again, so we check to ensure there is a previous VMA
518 * to skip over.
519 */
520 if (prev)
521 vma_iter_next_range(vmi);
522
523 if (pprev)
524 *pprev = prev;
525
526 return next;
527 }
528
529 #ifdef CONFIG_64BIT
530
vma_is_sealed(struct vm_area_struct * vma)531 static inline bool vma_is_sealed(struct vm_area_struct *vma)
532 {
533 return (vma->vm_flags & VM_SEALED);
534 }
535
536 /*
537 * check if a vma is sealed for modification.
538 * return true, if modification is allowed.
539 */
can_modify_vma(struct vm_area_struct * vma)540 static inline bool can_modify_vma(struct vm_area_struct *vma)
541 {
542 if (unlikely(vma_is_sealed(vma)))
543 return false;
544
545 return true;
546 }
547
548 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior);
549
550 #else
551
can_modify_vma(struct vm_area_struct * vma)552 static inline bool can_modify_vma(struct vm_area_struct *vma)
553 {
554 return true;
555 }
556
can_modify_vma_madv(struct vm_area_struct * vma,int behavior)557 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior)
558 {
559 return true;
560 }
561
562 #endif
563
564 #endif /* __MM_VMA_H */
565