1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/mm/vmstat.c
4   *
5   *  Manages VM statistics
6   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7   *
8   *  zoned VM statistics
9   *  Copyright (C) 2006 Silicon Graphics, Inc.,
10   *		Christoph Lameter <christoph@lameter.com>
11   *  Copyright (C) 2008-2014 Christoph Lameter
12   */
13  #include <linux/fs.h>
14  #include <linux/mm.h>
15  #include <linux/err.h>
16  #include <linux/module.h>
17  #include <linux/slab.h>
18  #include <linux/cpu.h>
19  #include <linux/cpumask.h>
20  #include <linux/vmstat.h>
21  #include <linux/proc_fs.h>
22  #include <linux/seq_file.h>
23  #include <linux/debugfs.h>
24  #include <linux/sched.h>
25  #include <linux/math64.h>
26  #include <linux/writeback.h>
27  #include <linux/compaction.h>
28  #include <linux/mm_inline.h>
29  #include <linux/page_owner.h>
30  #include <linux/sched/isolation.h>
31  
32  #include "internal.h"
33  
34  #ifdef CONFIG_NUMA
35  int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36  
37  /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)38  static void zero_zone_numa_counters(struct zone *zone)
39  {
40  	int item, cpu;
41  
42  	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43  		atomic_long_set(&zone->vm_numa_event[item], 0);
44  		for_each_online_cpu(cpu) {
45  			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46  						= 0;
47  		}
48  	}
49  }
50  
51  /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)52  static void zero_zones_numa_counters(void)
53  {
54  	struct zone *zone;
55  
56  	for_each_populated_zone(zone)
57  		zero_zone_numa_counters(zone);
58  }
59  
60  /* zero global numa counters */
zero_global_numa_counters(void)61  static void zero_global_numa_counters(void)
62  {
63  	int item;
64  
65  	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66  		atomic_long_set(&vm_numa_event[item], 0);
67  }
68  
invalid_numa_statistics(void)69  static void invalid_numa_statistics(void)
70  {
71  	zero_zones_numa_counters();
72  	zero_global_numa_counters();
73  }
74  
75  static DEFINE_MUTEX(vm_numa_stat_lock);
76  
sysctl_vm_numa_stat_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)77  int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
78  		void *buffer, size_t *length, loff_t *ppos)
79  {
80  	int ret, oldval;
81  
82  	mutex_lock(&vm_numa_stat_lock);
83  	if (write)
84  		oldval = sysctl_vm_numa_stat;
85  	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86  	if (ret || !write)
87  		goto out;
88  
89  	if (oldval == sysctl_vm_numa_stat)
90  		goto out;
91  	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92  		static_branch_enable(&vm_numa_stat_key);
93  		pr_info("enable numa statistics\n");
94  	} else {
95  		static_branch_disable(&vm_numa_stat_key);
96  		invalid_numa_statistics();
97  		pr_info("disable numa statistics, and clear numa counters\n");
98  	}
99  
100  out:
101  	mutex_unlock(&vm_numa_stat_lock);
102  	return ret;
103  }
104  #endif
105  
106  #ifdef CONFIG_VM_EVENT_COUNTERS
107  DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108  EXPORT_PER_CPU_SYMBOL(vm_event_states);
109  
sum_vm_events(unsigned long * ret)110  static void sum_vm_events(unsigned long *ret)
111  {
112  	int cpu;
113  	int i;
114  
115  	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116  
117  	for_each_online_cpu(cpu) {
118  		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119  
120  		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121  			ret[i] += this->event[i];
122  	}
123  }
124  
125  /*
126   * Accumulate the vm event counters across all CPUs.
127   * The result is unavoidably approximate - it can change
128   * during and after execution of this function.
129  */
all_vm_events(unsigned long * ret)130  void all_vm_events(unsigned long *ret)
131  {
132  	cpus_read_lock();
133  	sum_vm_events(ret);
134  	cpus_read_unlock();
135  }
136  EXPORT_SYMBOL_GPL(all_vm_events);
137  
138  /*
139   * Fold the foreign cpu events into our own.
140   *
141   * This is adding to the events on one processor
142   * but keeps the global counts constant.
143   */
vm_events_fold_cpu(int cpu)144  void vm_events_fold_cpu(int cpu)
145  {
146  	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147  	int i;
148  
149  	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150  		count_vm_events(i, fold_state->event[i]);
151  		fold_state->event[i] = 0;
152  	}
153  }
154  
155  #endif /* CONFIG_VM_EVENT_COUNTERS */
156  
157  /*
158   * Manage combined zone based / global counters
159   *
160   * vm_stat contains the global counters
161   */
162  atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163  atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164  atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165  EXPORT_SYMBOL(vm_zone_stat);
166  EXPORT_SYMBOL(vm_node_stat);
167  
168  #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)169  static void fold_vm_zone_numa_events(struct zone *zone)
170  {
171  	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172  	int cpu;
173  	enum numa_stat_item item;
174  
175  	for_each_online_cpu(cpu) {
176  		struct per_cpu_zonestat *pzstats;
177  
178  		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179  		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180  			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181  	}
182  
183  	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184  		zone_numa_event_add(zone_numa_events[item], zone, item);
185  }
186  
fold_vm_numa_events(void)187  void fold_vm_numa_events(void)
188  {
189  	struct zone *zone;
190  
191  	for_each_populated_zone(zone)
192  		fold_vm_zone_numa_events(zone);
193  }
194  #endif
195  
196  #ifdef CONFIG_SMP
197  
calculate_pressure_threshold(struct zone * zone)198  int calculate_pressure_threshold(struct zone *zone)
199  {
200  	int threshold;
201  	int watermark_distance;
202  
203  	/*
204  	 * As vmstats are not up to date, there is drift between the estimated
205  	 * and real values. For high thresholds and a high number of CPUs, it
206  	 * is possible for the min watermark to be breached while the estimated
207  	 * value looks fine. The pressure threshold is a reduced value such
208  	 * that even the maximum amount of drift will not accidentally breach
209  	 * the min watermark
210  	 */
211  	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212  	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213  
214  	/*
215  	 * Maximum threshold is 125
216  	 */
217  	threshold = min(125, threshold);
218  
219  	return threshold;
220  }
221  
calculate_normal_threshold(struct zone * zone)222  int calculate_normal_threshold(struct zone *zone)
223  {
224  	int threshold;
225  	int mem;	/* memory in 128 MB units */
226  
227  	/*
228  	 * The threshold scales with the number of processors and the amount
229  	 * of memory per zone. More memory means that we can defer updates for
230  	 * longer, more processors could lead to more contention.
231   	 * fls() is used to have a cheap way of logarithmic scaling.
232  	 *
233  	 * Some sample thresholds:
234  	 *
235  	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
236  	 * ------------------------------------------------------------------
237  	 * 8		1		1	0.9-1 GB	4
238  	 * 16		2		2	0.9-1 GB	4
239  	 * 20 		2		2	1-2 GB		5
240  	 * 24		2		2	2-4 GB		6
241  	 * 28		2		2	4-8 GB		7
242  	 * 32		2		2	8-16 GB		8
243  	 * 4		2		2	<128M		1
244  	 * 30		4		3	2-4 GB		5
245  	 * 48		4		3	8-16 GB		8
246  	 * 32		8		4	1-2 GB		4
247  	 * 32		8		4	0.9-1GB		4
248  	 * 10		16		5	<128M		1
249  	 * 40		16		5	900M		4
250  	 * 70		64		7	2-4 GB		5
251  	 * 84		64		7	4-8 GB		6
252  	 * 108		512		9	4-8 GB		6
253  	 * 125		1024		10	8-16 GB		8
254  	 * 125		1024		10	16-32 GB	9
255  	 */
256  
257  	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258  
259  	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260  
261  	/*
262  	 * Maximum threshold is 125
263  	 */
264  	threshold = min(125, threshold);
265  
266  	return threshold;
267  }
268  
269  /*
270   * Refresh the thresholds for each zone.
271   */
refresh_zone_stat_thresholds(void)272  void refresh_zone_stat_thresholds(void)
273  {
274  	struct pglist_data *pgdat;
275  	struct zone *zone;
276  	int cpu;
277  	int threshold;
278  
279  	/* Zero current pgdat thresholds */
280  	for_each_online_pgdat(pgdat) {
281  		for_each_online_cpu(cpu) {
282  			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283  		}
284  	}
285  
286  	for_each_populated_zone(zone) {
287  		struct pglist_data *pgdat = zone->zone_pgdat;
288  		unsigned long max_drift, tolerate_drift;
289  
290  		threshold = calculate_normal_threshold(zone);
291  
292  		for_each_online_cpu(cpu) {
293  			int pgdat_threshold;
294  
295  			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296  							= threshold;
297  
298  			/* Base nodestat threshold on the largest populated zone. */
299  			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300  			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301  				= max(threshold, pgdat_threshold);
302  		}
303  
304  		/*
305  		 * Only set percpu_drift_mark if there is a danger that
306  		 * NR_FREE_PAGES reports the low watermark is ok when in fact
307  		 * the min watermark could be breached by an allocation
308  		 */
309  		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310  		max_drift = num_online_cpus() * threshold;
311  		if (max_drift > tolerate_drift)
312  			zone->percpu_drift_mark = high_wmark_pages(zone) +
313  					max_drift;
314  	}
315  }
316  
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))317  void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318  				int (*calculate_pressure)(struct zone *))
319  {
320  	struct zone *zone;
321  	int cpu;
322  	int threshold;
323  	int i;
324  
325  	for (i = 0; i < pgdat->nr_zones; i++) {
326  		zone = &pgdat->node_zones[i];
327  		if (!zone->percpu_drift_mark)
328  			continue;
329  
330  		threshold = (*calculate_pressure)(zone);
331  		for_each_online_cpu(cpu)
332  			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333  							= threshold;
334  	}
335  }
336  
337  /*
338   * For use when we know that interrupts are disabled,
339   * or when we know that preemption is disabled and that
340   * particular counter cannot be updated from interrupt context.
341   */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)342  void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343  			   long delta)
344  {
345  	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346  	s8 __percpu *p = pcp->vm_stat_diff + item;
347  	long x;
348  	long t;
349  
350  	/*
351  	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352  	 * atomicity is provided by IRQs being disabled -- either explicitly
353  	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354  	 * CPU migrations and preemption potentially corrupts a counter so
355  	 * disable preemption.
356  	 */
357  	preempt_disable_nested();
358  
359  	x = delta + __this_cpu_read(*p);
360  
361  	t = __this_cpu_read(pcp->stat_threshold);
362  
363  	if (unlikely(abs(x) > t)) {
364  		zone_page_state_add(x, zone, item);
365  		x = 0;
366  	}
367  	__this_cpu_write(*p, x);
368  
369  	preempt_enable_nested();
370  }
371  EXPORT_SYMBOL(__mod_zone_page_state);
372  
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)373  void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374  				long delta)
375  {
376  	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377  	s8 __percpu *p = pcp->vm_node_stat_diff + item;
378  	long x;
379  	long t;
380  
381  	if (vmstat_item_in_bytes(item)) {
382  		/*
383  		 * Only cgroups use subpage accounting right now; at
384  		 * the global level, these items still change in
385  		 * multiples of whole pages. Store them as pages
386  		 * internally to keep the per-cpu counters compact.
387  		 */
388  		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389  		delta >>= PAGE_SHIFT;
390  	}
391  
392  	/* See __mod_node_page_state */
393  	preempt_disable_nested();
394  
395  	x = delta + __this_cpu_read(*p);
396  
397  	t = __this_cpu_read(pcp->stat_threshold);
398  
399  	if (unlikely(abs(x) > t)) {
400  		node_page_state_add(x, pgdat, item);
401  		x = 0;
402  	}
403  	__this_cpu_write(*p, x);
404  
405  	preempt_enable_nested();
406  }
407  EXPORT_SYMBOL(__mod_node_page_state);
408  
409  /*
410   * Optimized increment and decrement functions.
411   *
412   * These are only for a single page and therefore can take a struct page *
413   * argument instead of struct zone *. This allows the inclusion of the code
414   * generated for page_zone(page) into the optimized functions.
415   *
416   * No overflow check is necessary and therefore the differential can be
417   * incremented or decremented in place which may allow the compilers to
418   * generate better code.
419   * The increment or decrement is known and therefore one boundary check can
420   * be omitted.
421   *
422   * NOTE: These functions are very performance sensitive. Change only
423   * with care.
424   *
425   * Some processors have inc/dec instructions that are atomic vs an interrupt.
426   * However, the code must first determine the differential location in a zone
427   * based on the processor number and then inc/dec the counter. There is no
428   * guarantee without disabling preemption that the processor will not change
429   * in between and therefore the atomicity vs. interrupt cannot be exploited
430   * in a useful way here.
431   */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)432  void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433  {
434  	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435  	s8 __percpu *p = pcp->vm_stat_diff + item;
436  	s8 v, t;
437  
438  	/* See __mod_node_page_state */
439  	preempt_disable_nested();
440  
441  	v = __this_cpu_inc_return(*p);
442  	t = __this_cpu_read(pcp->stat_threshold);
443  	if (unlikely(v > t)) {
444  		s8 overstep = t >> 1;
445  
446  		zone_page_state_add(v + overstep, zone, item);
447  		__this_cpu_write(*p, -overstep);
448  	}
449  
450  	preempt_enable_nested();
451  }
452  
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)453  void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454  {
455  	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456  	s8 __percpu *p = pcp->vm_node_stat_diff + item;
457  	s8 v, t;
458  
459  	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460  
461  	/* See __mod_node_page_state */
462  	preempt_disable_nested();
463  
464  	v = __this_cpu_inc_return(*p);
465  	t = __this_cpu_read(pcp->stat_threshold);
466  	if (unlikely(v > t)) {
467  		s8 overstep = t >> 1;
468  
469  		node_page_state_add(v + overstep, pgdat, item);
470  		__this_cpu_write(*p, -overstep);
471  	}
472  
473  	preempt_enable_nested();
474  }
475  
__inc_zone_page_state(struct page * page,enum zone_stat_item item)476  void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477  {
478  	__inc_zone_state(page_zone(page), item);
479  }
480  EXPORT_SYMBOL(__inc_zone_page_state);
481  
__inc_node_page_state(struct page * page,enum node_stat_item item)482  void __inc_node_page_state(struct page *page, enum node_stat_item item)
483  {
484  	__inc_node_state(page_pgdat(page), item);
485  }
486  EXPORT_SYMBOL(__inc_node_page_state);
487  
__dec_zone_state(struct zone * zone,enum zone_stat_item item)488  void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489  {
490  	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491  	s8 __percpu *p = pcp->vm_stat_diff + item;
492  	s8 v, t;
493  
494  	/* See __mod_node_page_state */
495  	preempt_disable_nested();
496  
497  	v = __this_cpu_dec_return(*p);
498  	t = __this_cpu_read(pcp->stat_threshold);
499  	if (unlikely(v < - t)) {
500  		s8 overstep = t >> 1;
501  
502  		zone_page_state_add(v - overstep, zone, item);
503  		__this_cpu_write(*p, overstep);
504  	}
505  
506  	preempt_enable_nested();
507  }
508  
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)509  void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510  {
511  	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512  	s8 __percpu *p = pcp->vm_node_stat_diff + item;
513  	s8 v, t;
514  
515  	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516  
517  	/* See __mod_node_page_state */
518  	preempt_disable_nested();
519  
520  	v = __this_cpu_dec_return(*p);
521  	t = __this_cpu_read(pcp->stat_threshold);
522  	if (unlikely(v < - t)) {
523  		s8 overstep = t >> 1;
524  
525  		node_page_state_add(v - overstep, pgdat, item);
526  		__this_cpu_write(*p, overstep);
527  	}
528  
529  	preempt_enable_nested();
530  }
531  
__dec_zone_page_state(struct page * page,enum zone_stat_item item)532  void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533  {
534  	__dec_zone_state(page_zone(page), item);
535  }
536  EXPORT_SYMBOL(__dec_zone_page_state);
537  
__dec_node_page_state(struct page * page,enum node_stat_item item)538  void __dec_node_page_state(struct page *page, enum node_stat_item item)
539  {
540  	__dec_node_state(page_pgdat(page), item);
541  }
542  EXPORT_SYMBOL(__dec_node_page_state);
543  
544  #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545  /*
546   * If we have cmpxchg_local support then we do not need to incur the overhead
547   * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548   *
549   * mod_state() modifies the zone counter state through atomic per cpu
550   * operations.
551   *
552   * Overstep mode specifies how overstep should handled:
553   *     0       No overstepping
554   *     1       Overstepping half of threshold
555   *     -1      Overstepping minus half of threshold
556  */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)557  static inline void mod_zone_state(struct zone *zone,
558         enum zone_stat_item item, long delta, int overstep_mode)
559  {
560  	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561  	s8 __percpu *p = pcp->vm_stat_diff + item;
562  	long n, t, z;
563  	s8 o;
564  
565  	o = this_cpu_read(*p);
566  	do {
567  		z = 0;  /* overflow to zone counters */
568  
569  		/*
570  		 * The fetching of the stat_threshold is racy. We may apply
571  		 * a counter threshold to the wrong the cpu if we get
572  		 * rescheduled while executing here. However, the next
573  		 * counter update will apply the threshold again and
574  		 * therefore bring the counter under the threshold again.
575  		 *
576  		 * Most of the time the thresholds are the same anyways
577  		 * for all cpus in a zone.
578  		 */
579  		t = this_cpu_read(pcp->stat_threshold);
580  
581  		n = delta + (long)o;
582  
583  		if (abs(n) > t) {
584  			int os = overstep_mode * (t >> 1) ;
585  
586  			/* Overflow must be added to zone counters */
587  			z = n + os;
588  			n = -os;
589  		}
590  	} while (!this_cpu_try_cmpxchg(*p, &o, n));
591  
592  	if (z)
593  		zone_page_state_add(z, zone, item);
594  }
595  
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)596  void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597  			 long delta)
598  {
599  	mod_zone_state(zone, item, delta, 0);
600  }
601  EXPORT_SYMBOL(mod_zone_page_state);
602  
inc_zone_page_state(struct page * page,enum zone_stat_item item)603  void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604  {
605  	mod_zone_state(page_zone(page), item, 1, 1);
606  }
607  EXPORT_SYMBOL(inc_zone_page_state);
608  
dec_zone_page_state(struct page * page,enum zone_stat_item item)609  void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610  {
611  	mod_zone_state(page_zone(page), item, -1, -1);
612  }
613  EXPORT_SYMBOL(dec_zone_page_state);
614  
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)615  static inline void mod_node_state(struct pglist_data *pgdat,
616         enum node_stat_item item, int delta, int overstep_mode)
617  {
618  	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619  	s8 __percpu *p = pcp->vm_node_stat_diff + item;
620  	long n, t, z;
621  	s8 o;
622  
623  	if (vmstat_item_in_bytes(item)) {
624  		/*
625  		 * Only cgroups use subpage accounting right now; at
626  		 * the global level, these items still change in
627  		 * multiples of whole pages. Store them as pages
628  		 * internally to keep the per-cpu counters compact.
629  		 */
630  		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
631  		delta >>= PAGE_SHIFT;
632  	}
633  
634  	o = this_cpu_read(*p);
635  	do {
636  		z = 0;  /* overflow to node counters */
637  
638  		/*
639  		 * The fetching of the stat_threshold is racy. We may apply
640  		 * a counter threshold to the wrong the cpu if we get
641  		 * rescheduled while executing here. However, the next
642  		 * counter update will apply the threshold again and
643  		 * therefore bring the counter under the threshold again.
644  		 *
645  		 * Most of the time the thresholds are the same anyways
646  		 * for all cpus in a node.
647  		 */
648  		t = this_cpu_read(pcp->stat_threshold);
649  
650  		n = delta + (long)o;
651  
652  		if (abs(n) > t) {
653  			int os = overstep_mode * (t >> 1) ;
654  
655  			/* Overflow must be added to node counters */
656  			z = n + os;
657  			n = -os;
658  		}
659  	} while (!this_cpu_try_cmpxchg(*p, &o, n));
660  
661  	if (z)
662  		node_page_state_add(z, pgdat, item);
663  }
664  
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)665  void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
666  					long delta)
667  {
668  	mod_node_state(pgdat, item, delta, 0);
669  }
670  EXPORT_SYMBOL(mod_node_page_state);
671  
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)672  void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
673  {
674  	mod_node_state(pgdat, item, 1, 1);
675  }
676  
inc_node_page_state(struct page * page,enum node_stat_item item)677  void inc_node_page_state(struct page *page, enum node_stat_item item)
678  {
679  	mod_node_state(page_pgdat(page), item, 1, 1);
680  }
681  EXPORT_SYMBOL(inc_node_page_state);
682  
dec_node_page_state(struct page * page,enum node_stat_item item)683  void dec_node_page_state(struct page *page, enum node_stat_item item)
684  {
685  	mod_node_state(page_pgdat(page), item, -1, -1);
686  }
687  EXPORT_SYMBOL(dec_node_page_state);
688  #else
689  /*
690   * Use interrupt disable to serialize counter updates
691   */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)692  void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
693  			 long delta)
694  {
695  	unsigned long flags;
696  
697  	local_irq_save(flags);
698  	__mod_zone_page_state(zone, item, delta);
699  	local_irq_restore(flags);
700  }
701  EXPORT_SYMBOL(mod_zone_page_state);
702  
inc_zone_page_state(struct page * page,enum zone_stat_item item)703  void inc_zone_page_state(struct page *page, enum zone_stat_item item)
704  {
705  	unsigned long flags;
706  	struct zone *zone;
707  
708  	zone = page_zone(page);
709  	local_irq_save(flags);
710  	__inc_zone_state(zone, item);
711  	local_irq_restore(flags);
712  }
713  EXPORT_SYMBOL(inc_zone_page_state);
714  
dec_zone_page_state(struct page * page,enum zone_stat_item item)715  void dec_zone_page_state(struct page *page, enum zone_stat_item item)
716  {
717  	unsigned long flags;
718  
719  	local_irq_save(flags);
720  	__dec_zone_page_state(page, item);
721  	local_irq_restore(flags);
722  }
723  EXPORT_SYMBOL(dec_zone_page_state);
724  
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)725  void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
726  {
727  	unsigned long flags;
728  
729  	local_irq_save(flags);
730  	__inc_node_state(pgdat, item);
731  	local_irq_restore(flags);
732  }
733  EXPORT_SYMBOL(inc_node_state);
734  
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)735  void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
736  					long delta)
737  {
738  	unsigned long flags;
739  
740  	local_irq_save(flags);
741  	__mod_node_page_state(pgdat, item, delta);
742  	local_irq_restore(flags);
743  }
744  EXPORT_SYMBOL(mod_node_page_state);
745  
inc_node_page_state(struct page * page,enum node_stat_item item)746  void inc_node_page_state(struct page *page, enum node_stat_item item)
747  {
748  	unsigned long flags;
749  	struct pglist_data *pgdat;
750  
751  	pgdat = page_pgdat(page);
752  	local_irq_save(flags);
753  	__inc_node_state(pgdat, item);
754  	local_irq_restore(flags);
755  }
756  EXPORT_SYMBOL(inc_node_page_state);
757  
dec_node_page_state(struct page * page,enum node_stat_item item)758  void dec_node_page_state(struct page *page, enum node_stat_item item)
759  {
760  	unsigned long flags;
761  
762  	local_irq_save(flags);
763  	__dec_node_page_state(page, item);
764  	local_irq_restore(flags);
765  }
766  EXPORT_SYMBOL(dec_node_page_state);
767  #endif
768  
769  /*
770   * Fold a differential into the global counters.
771   * Returns the number of counters updated.
772   */
fold_diff(int * zone_diff,int * node_diff)773  static int fold_diff(int *zone_diff, int *node_diff)
774  {
775  	int i;
776  	int changes = 0;
777  
778  	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
779  		if (zone_diff[i]) {
780  			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
781  			changes++;
782  	}
783  
784  	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
785  		if (node_diff[i]) {
786  			atomic_long_add(node_diff[i], &vm_node_stat[i]);
787  			changes++;
788  	}
789  	return changes;
790  }
791  
792  /*
793   * Update the zone counters for the current cpu.
794   *
795   * Note that refresh_cpu_vm_stats strives to only access
796   * node local memory. The per cpu pagesets on remote zones are placed
797   * in the memory local to the processor using that pageset. So the
798   * loop over all zones will access a series of cachelines local to
799   * the processor.
800   *
801   * The call to zone_page_state_add updates the cachelines with the
802   * statistics in the remote zone struct as well as the global cachelines
803   * with the global counters. These could cause remote node cache line
804   * bouncing and will have to be only done when necessary.
805   *
806   * The function returns the number of global counters updated.
807   */
refresh_cpu_vm_stats(bool do_pagesets)808  static int refresh_cpu_vm_stats(bool do_pagesets)
809  {
810  	struct pglist_data *pgdat;
811  	struct zone *zone;
812  	int i;
813  	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
814  	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
815  	int changes = 0;
816  
817  	for_each_populated_zone(zone) {
818  		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
819  		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820  
821  		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822  			int v;
823  
824  			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825  			if (v) {
826  
827  				atomic_long_add(v, &zone->vm_stat[i]);
828  				global_zone_diff[i] += v;
829  #ifdef CONFIG_NUMA
830  				/* 3 seconds idle till flush */
831  				__this_cpu_write(pcp->expire, 3);
832  #endif
833  			}
834  		}
835  
836  		if (do_pagesets) {
837  			cond_resched();
838  
839  			changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
840  #ifdef CONFIG_NUMA
841  			/*
842  			 * Deal with draining the remote pageset of this
843  			 * processor
844  			 *
845  			 * Check if there are pages remaining in this pageset
846  			 * if not then there is nothing to expire.
847  			 */
848  			if (!__this_cpu_read(pcp->expire) ||
849  			       !__this_cpu_read(pcp->count))
850  				continue;
851  
852  			/*
853  			 * We never drain zones local to this processor.
854  			 */
855  			if (zone_to_nid(zone) == numa_node_id()) {
856  				__this_cpu_write(pcp->expire, 0);
857  				continue;
858  			}
859  
860  			if (__this_cpu_dec_return(pcp->expire)) {
861  				changes++;
862  				continue;
863  			}
864  
865  			if (__this_cpu_read(pcp->count)) {
866  				drain_zone_pages(zone, this_cpu_ptr(pcp));
867  				changes++;
868  			}
869  #endif
870  		}
871  	}
872  
873  	for_each_online_pgdat(pgdat) {
874  		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
875  
876  		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
877  			int v;
878  
879  			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
880  			if (v) {
881  				atomic_long_add(v, &pgdat->vm_stat[i]);
882  				global_node_diff[i] += v;
883  			}
884  		}
885  	}
886  
887  	changes += fold_diff(global_zone_diff, global_node_diff);
888  	return changes;
889  }
890  
891  /*
892   * Fold the data for an offline cpu into the global array.
893   * There cannot be any access by the offline cpu and therefore
894   * synchronization is simplified.
895   */
cpu_vm_stats_fold(int cpu)896  void cpu_vm_stats_fold(int cpu)
897  {
898  	struct pglist_data *pgdat;
899  	struct zone *zone;
900  	int i;
901  	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
902  	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
903  
904  	for_each_populated_zone(zone) {
905  		struct per_cpu_zonestat *pzstats;
906  
907  		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
908  
909  		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
910  			if (pzstats->vm_stat_diff[i]) {
911  				int v;
912  
913  				v = pzstats->vm_stat_diff[i];
914  				pzstats->vm_stat_diff[i] = 0;
915  				atomic_long_add(v, &zone->vm_stat[i]);
916  				global_zone_diff[i] += v;
917  			}
918  		}
919  #ifdef CONFIG_NUMA
920  		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
921  			if (pzstats->vm_numa_event[i]) {
922  				unsigned long v;
923  
924  				v = pzstats->vm_numa_event[i];
925  				pzstats->vm_numa_event[i] = 0;
926  				zone_numa_event_add(v, zone, i);
927  			}
928  		}
929  #endif
930  	}
931  
932  	for_each_online_pgdat(pgdat) {
933  		struct per_cpu_nodestat *p;
934  
935  		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
936  
937  		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
938  			if (p->vm_node_stat_diff[i]) {
939  				int v;
940  
941  				v = p->vm_node_stat_diff[i];
942  				p->vm_node_stat_diff[i] = 0;
943  				atomic_long_add(v, &pgdat->vm_stat[i]);
944  				global_node_diff[i] += v;
945  			}
946  	}
947  
948  	fold_diff(global_zone_diff, global_node_diff);
949  }
950  
951  /*
952   * this is only called if !populated_zone(zone), which implies no other users of
953   * pset->vm_stat_diff[] exist.
954   */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)955  void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
956  {
957  	unsigned long v;
958  	int i;
959  
960  	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
961  		if (pzstats->vm_stat_diff[i]) {
962  			v = pzstats->vm_stat_diff[i];
963  			pzstats->vm_stat_diff[i] = 0;
964  			zone_page_state_add(v, zone, i);
965  		}
966  	}
967  
968  #ifdef CONFIG_NUMA
969  	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
970  		if (pzstats->vm_numa_event[i]) {
971  			v = pzstats->vm_numa_event[i];
972  			pzstats->vm_numa_event[i] = 0;
973  			zone_numa_event_add(v, zone, i);
974  		}
975  	}
976  #endif
977  }
978  #endif
979  
980  #ifdef CONFIG_NUMA
981  /*
982   * Determine the per node value of a stat item. This function
983   * is called frequently in a NUMA machine, so try to be as
984   * frugal as possible.
985   */
sum_zone_node_page_state(int node,enum zone_stat_item item)986  unsigned long sum_zone_node_page_state(int node,
987  				 enum zone_stat_item item)
988  {
989  	struct zone *zones = NODE_DATA(node)->node_zones;
990  	int i;
991  	unsigned long count = 0;
992  
993  	for (i = 0; i < MAX_NR_ZONES; i++)
994  		count += zone_page_state(zones + i, item);
995  
996  	return count;
997  }
998  
999  /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)1000  unsigned long sum_zone_numa_event_state(int node,
1001  				 enum numa_stat_item item)
1002  {
1003  	struct zone *zones = NODE_DATA(node)->node_zones;
1004  	unsigned long count = 0;
1005  	int i;
1006  
1007  	for (i = 0; i < MAX_NR_ZONES; i++)
1008  		count += zone_numa_event_state(zones + i, item);
1009  
1010  	return count;
1011  }
1012  
1013  /*
1014   * Determine the per node value of a stat item.
1015   */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1016  unsigned long node_page_state_pages(struct pglist_data *pgdat,
1017  				    enum node_stat_item item)
1018  {
1019  	long x = atomic_long_read(&pgdat->vm_stat[item]);
1020  #ifdef CONFIG_SMP
1021  	if (x < 0)
1022  		x = 0;
1023  #endif
1024  	return x;
1025  }
1026  
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1027  unsigned long node_page_state(struct pglist_data *pgdat,
1028  			      enum node_stat_item item)
1029  {
1030  	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1031  
1032  	return node_page_state_pages(pgdat, item);
1033  }
1034  #endif
1035  
1036  /*
1037   * Count number of pages "struct page" and "struct page_ext" consume.
1038   * nr_memmap_boot_pages: # of pages allocated by boot allocator
1039   * nr_memmap_pages: # of pages that were allocated by buddy allocator
1040   */
1041  static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1042  static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1043  
memmap_boot_pages_add(long delta)1044  void memmap_boot_pages_add(long delta)
1045  {
1046  	atomic_long_add(delta, &nr_memmap_boot_pages);
1047  }
1048  
memmap_pages_add(long delta)1049  void memmap_pages_add(long delta)
1050  {
1051  	atomic_long_add(delta, &nr_memmap_pages);
1052  }
1053  
1054  #ifdef CONFIG_COMPACTION
1055  
1056  struct contig_page_info {
1057  	unsigned long free_pages;
1058  	unsigned long free_blocks_total;
1059  	unsigned long free_blocks_suitable;
1060  };
1061  
1062  /*
1063   * Calculate the number of free pages in a zone, how many contiguous
1064   * pages are free and how many are large enough to satisfy an allocation of
1065   * the target size. Note that this function makes no attempt to estimate
1066   * how many suitable free blocks there *might* be if MOVABLE pages were
1067   * migrated. Calculating that is possible, but expensive and can be
1068   * figured out from userspace
1069   */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1070  static void fill_contig_page_info(struct zone *zone,
1071  				unsigned int suitable_order,
1072  				struct contig_page_info *info)
1073  {
1074  	unsigned int order;
1075  
1076  	info->free_pages = 0;
1077  	info->free_blocks_total = 0;
1078  	info->free_blocks_suitable = 0;
1079  
1080  	for (order = 0; order < NR_PAGE_ORDERS; order++) {
1081  		unsigned long blocks;
1082  
1083  		/*
1084  		 * Count number of free blocks.
1085  		 *
1086  		 * Access to nr_free is lockless as nr_free is used only for
1087  		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1088  		 */
1089  		blocks = data_race(zone->free_area[order].nr_free);
1090  		info->free_blocks_total += blocks;
1091  
1092  		/* Count free base pages */
1093  		info->free_pages += blocks << order;
1094  
1095  		/* Count the suitable free blocks */
1096  		if (order >= suitable_order)
1097  			info->free_blocks_suitable += blocks <<
1098  						(order - suitable_order);
1099  	}
1100  }
1101  
1102  /*
1103   * A fragmentation index only makes sense if an allocation of a requested
1104   * size would fail. If that is true, the fragmentation index indicates
1105   * whether external fragmentation or a lack of memory was the problem.
1106   * The value can be used to determine if page reclaim or compaction
1107   * should be used
1108   */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1109  static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1110  {
1111  	unsigned long requested = 1UL << order;
1112  
1113  	if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1114  		return 0;
1115  
1116  	if (!info->free_blocks_total)
1117  		return 0;
1118  
1119  	/* Fragmentation index only makes sense when a request would fail */
1120  	if (info->free_blocks_suitable)
1121  		return -1000;
1122  
1123  	/*
1124  	 * Index is between 0 and 1 so return within 3 decimal places
1125  	 *
1126  	 * 0 => allocation would fail due to lack of memory
1127  	 * 1 => allocation would fail due to fragmentation
1128  	 */
1129  	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1130  }
1131  
1132  /*
1133   * Calculates external fragmentation within a zone wrt the given order.
1134   * It is defined as the percentage of pages found in blocks of size
1135   * less than 1 << order. It returns values in range [0, 100].
1136   */
extfrag_for_order(struct zone * zone,unsigned int order)1137  unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1138  {
1139  	struct contig_page_info info;
1140  
1141  	fill_contig_page_info(zone, order, &info);
1142  	if (info.free_pages == 0)
1143  		return 0;
1144  
1145  	return div_u64((info.free_pages -
1146  			(info.free_blocks_suitable << order)) * 100,
1147  			info.free_pages);
1148  }
1149  
1150  /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1151  int fragmentation_index(struct zone *zone, unsigned int order)
1152  {
1153  	struct contig_page_info info;
1154  
1155  	fill_contig_page_info(zone, order, &info);
1156  	return __fragmentation_index(order, &info);
1157  }
1158  #endif
1159  
1160  #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1161      defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1162  #ifdef CONFIG_ZONE_DMA
1163  #define TEXT_FOR_DMA(xx) xx "_dma",
1164  #else
1165  #define TEXT_FOR_DMA(xx)
1166  #endif
1167  
1168  #ifdef CONFIG_ZONE_DMA32
1169  #define TEXT_FOR_DMA32(xx) xx "_dma32",
1170  #else
1171  #define TEXT_FOR_DMA32(xx)
1172  #endif
1173  
1174  #ifdef CONFIG_HIGHMEM
1175  #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1176  #else
1177  #define TEXT_FOR_HIGHMEM(xx)
1178  #endif
1179  
1180  #ifdef CONFIG_ZONE_DEVICE
1181  #define TEXT_FOR_DEVICE(xx) xx "_device",
1182  #else
1183  #define TEXT_FOR_DEVICE(xx)
1184  #endif
1185  
1186  #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1187  					TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1188  					TEXT_FOR_DEVICE(xx)
1189  
1190  const char * const vmstat_text[] = {
1191  	/* enum zone_stat_item counters */
1192  	"nr_free_pages",
1193  	"nr_zone_inactive_anon",
1194  	"nr_zone_active_anon",
1195  	"nr_zone_inactive_file",
1196  	"nr_zone_active_file",
1197  	"nr_zone_unevictable",
1198  	"nr_zone_write_pending",
1199  	"nr_mlock",
1200  	"nr_bounce",
1201  #if IS_ENABLED(CONFIG_ZSMALLOC)
1202  	"nr_zspages",
1203  #endif
1204  	"nr_free_cma",
1205  #ifdef CONFIG_UNACCEPTED_MEMORY
1206  	"nr_unaccepted",
1207  #endif
1208  
1209  	/* enum numa_stat_item counters */
1210  #ifdef CONFIG_NUMA
1211  	"numa_hit",
1212  	"numa_miss",
1213  	"numa_foreign",
1214  	"numa_interleave",
1215  	"numa_local",
1216  	"numa_other",
1217  #endif
1218  
1219  	/* enum node_stat_item counters */
1220  	"nr_inactive_anon",
1221  	"nr_active_anon",
1222  	"nr_inactive_file",
1223  	"nr_active_file",
1224  	"nr_unevictable",
1225  	"nr_slab_reclaimable",
1226  	"nr_slab_unreclaimable",
1227  	"nr_isolated_anon",
1228  	"nr_isolated_file",
1229  	"workingset_nodes",
1230  	"workingset_refault_anon",
1231  	"workingset_refault_file",
1232  	"workingset_activate_anon",
1233  	"workingset_activate_file",
1234  	"workingset_restore_anon",
1235  	"workingset_restore_file",
1236  	"workingset_nodereclaim",
1237  	"nr_anon_pages",
1238  	"nr_mapped",
1239  	"nr_file_pages",
1240  	"nr_dirty",
1241  	"nr_writeback",
1242  	"nr_writeback_temp",
1243  	"nr_shmem",
1244  	"nr_shmem_hugepages",
1245  	"nr_shmem_pmdmapped",
1246  	"nr_file_hugepages",
1247  	"nr_file_pmdmapped",
1248  	"nr_anon_transparent_hugepages",
1249  	"nr_vmscan_write",
1250  	"nr_vmscan_immediate_reclaim",
1251  	"nr_dirtied",
1252  	"nr_written",
1253  	"nr_throttled_written",
1254  	"nr_kernel_misc_reclaimable",
1255  	"nr_foll_pin_acquired",
1256  	"nr_foll_pin_released",
1257  	"nr_kernel_stack",
1258  #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1259  	"nr_shadow_call_stack",
1260  #endif
1261  	"nr_page_table_pages",
1262  	"nr_sec_page_table_pages",
1263  #ifdef CONFIG_IOMMU_SUPPORT
1264  	"nr_iommu_pages",
1265  #endif
1266  #ifdef CONFIG_SWAP
1267  	"nr_swapcached",
1268  #endif
1269  #ifdef CONFIG_NUMA_BALANCING
1270  	"pgpromote_success",
1271  	"pgpromote_candidate",
1272  #endif
1273  	"pgdemote_kswapd",
1274  	"pgdemote_direct",
1275  	"pgdemote_khugepaged",
1276  	/* system-wide enum vm_stat_item counters */
1277  	"nr_dirty_threshold",
1278  	"nr_dirty_background_threshold",
1279  	"nr_memmap_pages",
1280  	"nr_memmap_boot_pages",
1281  
1282  #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1283  	/* enum vm_event_item counters */
1284  	"pgpgin",
1285  	"pgpgout",
1286  	"pswpin",
1287  	"pswpout",
1288  
1289  	TEXTS_FOR_ZONES("pgalloc")
1290  	TEXTS_FOR_ZONES("allocstall")
1291  	TEXTS_FOR_ZONES("pgskip")
1292  
1293  	"pgfree",
1294  	"pgactivate",
1295  	"pgdeactivate",
1296  	"pglazyfree",
1297  
1298  	"pgfault",
1299  	"pgmajfault",
1300  	"pglazyfreed",
1301  
1302  	"pgrefill",
1303  	"pgreuse",
1304  	"pgsteal_kswapd",
1305  	"pgsteal_direct",
1306  	"pgsteal_khugepaged",
1307  	"pgscan_kswapd",
1308  	"pgscan_direct",
1309  	"pgscan_khugepaged",
1310  	"pgscan_direct_throttle",
1311  	"pgscan_anon",
1312  	"pgscan_file",
1313  	"pgsteal_anon",
1314  	"pgsteal_file",
1315  
1316  #ifdef CONFIG_NUMA
1317  	"zone_reclaim_success",
1318  	"zone_reclaim_failed",
1319  #endif
1320  	"pginodesteal",
1321  	"slabs_scanned",
1322  	"kswapd_inodesteal",
1323  	"kswapd_low_wmark_hit_quickly",
1324  	"kswapd_high_wmark_hit_quickly",
1325  	"pageoutrun",
1326  
1327  	"pgrotated",
1328  
1329  	"drop_pagecache",
1330  	"drop_slab",
1331  	"oom_kill",
1332  
1333  #ifdef CONFIG_NUMA_BALANCING
1334  	"numa_pte_updates",
1335  	"numa_huge_pte_updates",
1336  	"numa_hint_faults",
1337  	"numa_hint_faults_local",
1338  	"numa_pages_migrated",
1339  #endif
1340  #ifdef CONFIG_MIGRATION
1341  	"pgmigrate_success",
1342  	"pgmigrate_fail",
1343  	"thp_migration_success",
1344  	"thp_migration_fail",
1345  	"thp_migration_split",
1346  #endif
1347  #ifdef CONFIG_COMPACTION
1348  	"compact_migrate_scanned",
1349  	"compact_free_scanned",
1350  	"compact_isolated",
1351  	"compact_stall",
1352  	"compact_fail",
1353  	"compact_success",
1354  	"compact_daemon_wake",
1355  	"compact_daemon_migrate_scanned",
1356  	"compact_daemon_free_scanned",
1357  #endif
1358  
1359  #ifdef CONFIG_HUGETLB_PAGE
1360  	"htlb_buddy_alloc_success",
1361  	"htlb_buddy_alloc_fail",
1362  #endif
1363  #ifdef CONFIG_CMA
1364  	"cma_alloc_success",
1365  	"cma_alloc_fail",
1366  #endif
1367  	"unevictable_pgs_culled",
1368  	"unevictable_pgs_scanned",
1369  	"unevictable_pgs_rescued",
1370  	"unevictable_pgs_mlocked",
1371  	"unevictable_pgs_munlocked",
1372  	"unevictable_pgs_cleared",
1373  	"unevictable_pgs_stranded",
1374  
1375  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1376  	"thp_fault_alloc",
1377  	"thp_fault_fallback",
1378  	"thp_fault_fallback_charge",
1379  	"thp_collapse_alloc",
1380  	"thp_collapse_alloc_failed",
1381  	"thp_file_alloc",
1382  	"thp_file_fallback",
1383  	"thp_file_fallback_charge",
1384  	"thp_file_mapped",
1385  	"thp_split_page",
1386  	"thp_split_page_failed",
1387  	"thp_deferred_split_page",
1388  	"thp_underused_split_page",
1389  	"thp_split_pmd",
1390  	"thp_scan_exceed_none_pte",
1391  	"thp_scan_exceed_swap_pte",
1392  	"thp_scan_exceed_share_pte",
1393  #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1394  	"thp_split_pud",
1395  #endif
1396  	"thp_zero_page_alloc",
1397  	"thp_zero_page_alloc_failed",
1398  	"thp_swpout",
1399  	"thp_swpout_fallback",
1400  #endif
1401  #ifdef CONFIG_MEMORY_BALLOON
1402  	"balloon_inflate",
1403  	"balloon_deflate",
1404  #ifdef CONFIG_BALLOON_COMPACTION
1405  	"balloon_migrate",
1406  #endif
1407  #endif /* CONFIG_MEMORY_BALLOON */
1408  #ifdef CONFIG_DEBUG_TLBFLUSH
1409  	"nr_tlb_remote_flush",
1410  	"nr_tlb_remote_flush_received",
1411  	"nr_tlb_local_flush_all",
1412  	"nr_tlb_local_flush_one",
1413  #endif /* CONFIG_DEBUG_TLBFLUSH */
1414  
1415  #ifdef CONFIG_SWAP
1416  	"swap_ra",
1417  	"swap_ra_hit",
1418  	"swpin_zero",
1419  	"swpout_zero",
1420  #ifdef CONFIG_KSM
1421  	"ksm_swpin_copy",
1422  #endif
1423  #endif
1424  #ifdef CONFIG_KSM
1425  	"cow_ksm",
1426  #endif
1427  #ifdef CONFIG_ZSWAP
1428  	"zswpin",
1429  	"zswpout",
1430  	"zswpwb",
1431  #endif
1432  #ifdef CONFIG_X86
1433  	"direct_map_level2_splits",
1434  	"direct_map_level3_splits",
1435  #endif
1436  #ifdef CONFIG_PER_VMA_LOCK_STATS
1437  	"vma_lock_success",
1438  	"vma_lock_abort",
1439  	"vma_lock_retry",
1440  	"vma_lock_miss",
1441  #endif
1442  #ifdef CONFIG_DEBUG_STACK_USAGE
1443  	"kstack_1k",
1444  #if THREAD_SIZE > 1024
1445  	"kstack_2k",
1446  #endif
1447  #if THREAD_SIZE > 2048
1448  	"kstack_4k",
1449  #endif
1450  #if THREAD_SIZE > 4096
1451  	"kstack_8k",
1452  #endif
1453  #if THREAD_SIZE > 8192
1454  	"kstack_16k",
1455  #endif
1456  #if THREAD_SIZE > 16384
1457  	"kstack_32k",
1458  #endif
1459  #if THREAD_SIZE > 32768
1460  	"kstack_64k",
1461  #endif
1462  #if THREAD_SIZE > 65536
1463  	"kstack_rest",
1464  #endif
1465  #endif
1466  #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1467  };
1468  #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1469  
1470  #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1471       defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1472  static void *frag_start(struct seq_file *m, loff_t *pos)
1473  {
1474  	pg_data_t *pgdat;
1475  	loff_t node = *pos;
1476  
1477  	for (pgdat = first_online_pgdat();
1478  	     pgdat && node;
1479  	     pgdat = next_online_pgdat(pgdat))
1480  		--node;
1481  
1482  	return pgdat;
1483  }
1484  
frag_next(struct seq_file * m,void * arg,loff_t * pos)1485  static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1486  {
1487  	pg_data_t *pgdat = (pg_data_t *)arg;
1488  
1489  	(*pos)++;
1490  	return next_online_pgdat(pgdat);
1491  }
1492  
frag_stop(struct seq_file * m,void * arg)1493  static void frag_stop(struct seq_file *m, void *arg)
1494  {
1495  }
1496  
1497  /*
1498   * Walk zones in a node and print using a callback.
1499   * If @assert_populated is true, only use callback for zones that are populated.
1500   */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1501  static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1502  		bool assert_populated, bool nolock,
1503  		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1504  {
1505  	struct zone *zone;
1506  	struct zone *node_zones = pgdat->node_zones;
1507  	unsigned long flags;
1508  
1509  	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1510  		if (assert_populated && !populated_zone(zone))
1511  			continue;
1512  
1513  		if (!nolock)
1514  			spin_lock_irqsave(&zone->lock, flags);
1515  		print(m, pgdat, zone);
1516  		if (!nolock)
1517  			spin_unlock_irqrestore(&zone->lock, flags);
1518  	}
1519  }
1520  #endif
1521  
1522  #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1523  static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1524  						struct zone *zone)
1525  {
1526  	int order;
1527  
1528  	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1529  	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1530  		/*
1531  		 * Access to nr_free is lockless as nr_free is used only for
1532  		 * printing purposes. Use data_race to avoid KCSAN warning.
1533  		 */
1534  		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1535  	seq_putc(m, '\n');
1536  }
1537  
1538  /*
1539   * This walks the free areas for each zone.
1540   */
frag_show(struct seq_file * m,void * arg)1541  static int frag_show(struct seq_file *m, void *arg)
1542  {
1543  	pg_data_t *pgdat = (pg_data_t *)arg;
1544  	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1545  	return 0;
1546  }
1547  
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1548  static void pagetypeinfo_showfree_print(struct seq_file *m,
1549  					pg_data_t *pgdat, struct zone *zone)
1550  {
1551  	int order, mtype;
1552  
1553  	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1554  		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1555  					pgdat->node_id,
1556  					zone->name,
1557  					migratetype_names[mtype]);
1558  		for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1559  			unsigned long freecount = 0;
1560  			struct free_area *area;
1561  			struct list_head *curr;
1562  			bool overflow = false;
1563  
1564  			area = &(zone->free_area[order]);
1565  
1566  			list_for_each(curr, &area->free_list[mtype]) {
1567  				/*
1568  				 * Cap the free_list iteration because it might
1569  				 * be really large and we are under a spinlock
1570  				 * so a long time spent here could trigger a
1571  				 * hard lockup detector. Anyway this is a
1572  				 * debugging tool so knowing there is a handful
1573  				 * of pages of this order should be more than
1574  				 * sufficient.
1575  				 */
1576  				if (++freecount >= 100000) {
1577  					overflow = true;
1578  					break;
1579  				}
1580  			}
1581  			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1582  			spin_unlock_irq(&zone->lock);
1583  			cond_resched();
1584  			spin_lock_irq(&zone->lock);
1585  		}
1586  		seq_putc(m, '\n');
1587  	}
1588  }
1589  
1590  /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1591  static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1592  {
1593  	int order;
1594  	pg_data_t *pgdat = (pg_data_t *)arg;
1595  
1596  	/* Print header */
1597  	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1598  	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1599  		seq_printf(m, "%6d ", order);
1600  	seq_putc(m, '\n');
1601  
1602  	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1603  }
1604  
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1605  static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1606  					pg_data_t *pgdat, struct zone *zone)
1607  {
1608  	int mtype;
1609  	unsigned long pfn;
1610  	unsigned long start_pfn = zone->zone_start_pfn;
1611  	unsigned long end_pfn = zone_end_pfn(zone);
1612  	unsigned long count[MIGRATE_TYPES] = { 0, };
1613  
1614  	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1615  		struct page *page;
1616  
1617  		page = pfn_to_online_page(pfn);
1618  		if (!page)
1619  			continue;
1620  
1621  		if (page_zone(page) != zone)
1622  			continue;
1623  
1624  		mtype = get_pageblock_migratetype(page);
1625  
1626  		if (mtype < MIGRATE_TYPES)
1627  			count[mtype]++;
1628  	}
1629  
1630  	/* Print counts */
1631  	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1632  	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1633  		seq_printf(m, "%12lu ", count[mtype]);
1634  	seq_putc(m, '\n');
1635  }
1636  
1637  /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1638  static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1639  {
1640  	int mtype;
1641  	pg_data_t *pgdat = (pg_data_t *)arg;
1642  
1643  	seq_printf(m, "\n%-23s", "Number of blocks type ");
1644  	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1645  		seq_printf(m, "%12s ", migratetype_names[mtype]);
1646  	seq_putc(m, '\n');
1647  	walk_zones_in_node(m, pgdat, true, false,
1648  		pagetypeinfo_showblockcount_print);
1649  }
1650  
1651  /*
1652   * Print out the number of pageblocks for each migratetype that contain pages
1653   * of other types. This gives an indication of how well fallbacks are being
1654   * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1655   * to determine what is going on
1656   */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1657  static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1658  {
1659  #ifdef CONFIG_PAGE_OWNER
1660  	int mtype;
1661  
1662  	if (!static_branch_unlikely(&page_owner_inited))
1663  		return;
1664  
1665  	drain_all_pages(NULL);
1666  
1667  	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1668  	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1669  		seq_printf(m, "%12s ", migratetype_names[mtype]);
1670  	seq_putc(m, '\n');
1671  
1672  	walk_zones_in_node(m, pgdat, true, true,
1673  		pagetypeinfo_showmixedcount_print);
1674  #endif /* CONFIG_PAGE_OWNER */
1675  }
1676  
1677  /*
1678   * This prints out statistics in relation to grouping pages by mobility.
1679   * It is expensive to collect so do not constantly read the file.
1680   */
pagetypeinfo_show(struct seq_file * m,void * arg)1681  static int pagetypeinfo_show(struct seq_file *m, void *arg)
1682  {
1683  	pg_data_t *pgdat = (pg_data_t *)arg;
1684  
1685  	/* check memoryless node */
1686  	if (!node_state(pgdat->node_id, N_MEMORY))
1687  		return 0;
1688  
1689  	seq_printf(m, "Page block order: %d\n", pageblock_order);
1690  	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1691  	seq_putc(m, '\n');
1692  	pagetypeinfo_showfree(m, pgdat);
1693  	pagetypeinfo_showblockcount(m, pgdat);
1694  	pagetypeinfo_showmixedcount(m, pgdat);
1695  
1696  	return 0;
1697  }
1698  
1699  static const struct seq_operations fragmentation_op = {
1700  	.start	= frag_start,
1701  	.next	= frag_next,
1702  	.stop	= frag_stop,
1703  	.show	= frag_show,
1704  };
1705  
1706  static const struct seq_operations pagetypeinfo_op = {
1707  	.start	= frag_start,
1708  	.next	= frag_next,
1709  	.stop	= frag_stop,
1710  	.show	= pagetypeinfo_show,
1711  };
1712  
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1713  static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1714  {
1715  	int zid;
1716  
1717  	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1718  		struct zone *compare = &pgdat->node_zones[zid];
1719  
1720  		if (populated_zone(compare))
1721  			return zone == compare;
1722  	}
1723  
1724  	return false;
1725  }
1726  
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1727  static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1728  							struct zone *zone)
1729  {
1730  	int i;
1731  	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1732  	if (is_zone_first_populated(pgdat, zone)) {
1733  		seq_printf(m, "\n  per-node stats");
1734  		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1735  			unsigned long pages = node_page_state_pages(pgdat, i);
1736  
1737  			if (vmstat_item_print_in_thp(i))
1738  				pages /= HPAGE_PMD_NR;
1739  			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1740  				   pages);
1741  		}
1742  	}
1743  	seq_printf(m,
1744  		   "\n  pages free     %lu"
1745  		   "\n        boost    %lu"
1746  		   "\n        min      %lu"
1747  		   "\n        low      %lu"
1748  		   "\n        high     %lu"
1749  		   "\n        promo    %lu"
1750  		   "\n        spanned  %lu"
1751  		   "\n        present  %lu"
1752  		   "\n        managed  %lu"
1753  		   "\n        cma      %lu",
1754  		   zone_page_state(zone, NR_FREE_PAGES),
1755  		   zone->watermark_boost,
1756  		   min_wmark_pages(zone),
1757  		   low_wmark_pages(zone),
1758  		   high_wmark_pages(zone),
1759  		   promo_wmark_pages(zone),
1760  		   zone->spanned_pages,
1761  		   zone->present_pages,
1762  		   zone_managed_pages(zone),
1763  		   zone_cma_pages(zone));
1764  
1765  	seq_printf(m,
1766  		   "\n        protection: (%ld",
1767  		   zone->lowmem_reserve[0]);
1768  	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1769  		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1770  	seq_putc(m, ')');
1771  
1772  	/* If unpopulated, no other information is useful */
1773  	if (!populated_zone(zone)) {
1774  		seq_putc(m, '\n');
1775  		return;
1776  	}
1777  
1778  	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1779  		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1780  			   zone_page_state(zone, i));
1781  
1782  #ifdef CONFIG_NUMA
1783  	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1784  		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1785  			   zone_numa_event_state(zone, i));
1786  #endif
1787  
1788  	seq_printf(m, "\n  pagesets");
1789  	for_each_online_cpu(i) {
1790  		struct per_cpu_pages *pcp;
1791  		struct per_cpu_zonestat __maybe_unused *pzstats;
1792  
1793  		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1794  		seq_printf(m,
1795  			   "\n    cpu: %i"
1796  			   "\n              count: %i"
1797  			   "\n              high:  %i"
1798  			   "\n              batch: %i",
1799  			   i,
1800  			   pcp->count,
1801  			   pcp->high,
1802  			   pcp->batch);
1803  #ifdef CONFIG_SMP
1804  		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1805  		seq_printf(m, "\n  vm stats threshold: %d",
1806  				pzstats->stat_threshold);
1807  #endif
1808  	}
1809  	seq_printf(m,
1810  		   "\n  node_unreclaimable:  %u"
1811  		   "\n  start_pfn:           %lu",
1812  		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1813  		   zone->zone_start_pfn);
1814  	seq_putc(m, '\n');
1815  }
1816  
1817  /*
1818   * Output information about zones in @pgdat.  All zones are printed regardless
1819   * of whether they are populated or not: lowmem_reserve_ratio operates on the
1820   * set of all zones and userspace would not be aware of such zones if they are
1821   * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1822   */
zoneinfo_show(struct seq_file * m,void * arg)1823  static int zoneinfo_show(struct seq_file *m, void *arg)
1824  {
1825  	pg_data_t *pgdat = (pg_data_t *)arg;
1826  	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1827  	return 0;
1828  }
1829  
1830  static const struct seq_operations zoneinfo_op = {
1831  	.start	= frag_start, /* iterate over all zones. The same as in
1832  			       * fragmentation. */
1833  	.next	= frag_next,
1834  	.stop	= frag_stop,
1835  	.show	= zoneinfo_show,
1836  };
1837  
1838  #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1839  			 NR_VM_NUMA_EVENT_ITEMS + \
1840  			 NR_VM_NODE_STAT_ITEMS + \
1841  			 NR_VM_STAT_ITEMS + \
1842  			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1843  			  NR_VM_EVENT_ITEMS : 0))
1844  
vmstat_start(struct seq_file * m,loff_t * pos)1845  static void *vmstat_start(struct seq_file *m, loff_t *pos)
1846  {
1847  	unsigned long *v;
1848  	int i;
1849  
1850  	if (*pos >= NR_VMSTAT_ITEMS)
1851  		return NULL;
1852  
1853  	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1854  	fold_vm_numa_events();
1855  	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1856  	m->private = v;
1857  	if (!v)
1858  		return ERR_PTR(-ENOMEM);
1859  	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1860  		v[i] = global_zone_page_state(i);
1861  	v += NR_VM_ZONE_STAT_ITEMS;
1862  
1863  #ifdef CONFIG_NUMA
1864  	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1865  		v[i] = global_numa_event_state(i);
1866  	v += NR_VM_NUMA_EVENT_ITEMS;
1867  #endif
1868  
1869  	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1870  		v[i] = global_node_page_state_pages(i);
1871  		if (vmstat_item_print_in_thp(i))
1872  			v[i] /= HPAGE_PMD_NR;
1873  	}
1874  	v += NR_VM_NODE_STAT_ITEMS;
1875  
1876  	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1877  			    v + NR_DIRTY_THRESHOLD);
1878  	v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1879  	v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1880  	v += NR_VM_STAT_ITEMS;
1881  
1882  #ifdef CONFIG_VM_EVENT_COUNTERS
1883  	all_vm_events(v);
1884  	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1885  	v[PGPGOUT] /= 2;
1886  #endif
1887  	return (unsigned long *)m->private + *pos;
1888  }
1889  
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1890  static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1891  {
1892  	(*pos)++;
1893  	if (*pos >= NR_VMSTAT_ITEMS)
1894  		return NULL;
1895  	return (unsigned long *)m->private + *pos;
1896  }
1897  
vmstat_show(struct seq_file * m,void * arg)1898  static int vmstat_show(struct seq_file *m, void *arg)
1899  {
1900  	unsigned long *l = arg;
1901  	unsigned long off = l - (unsigned long *)m->private;
1902  
1903  	seq_puts(m, vmstat_text[off]);
1904  	seq_put_decimal_ull(m, " ", *l);
1905  	seq_putc(m, '\n');
1906  
1907  	if (off == NR_VMSTAT_ITEMS - 1) {
1908  		/*
1909  		 * We've come to the end - add any deprecated counters to avoid
1910  		 * breaking userspace which might depend on them being present.
1911  		 */
1912  		seq_puts(m, "nr_unstable 0\n");
1913  	}
1914  	return 0;
1915  }
1916  
vmstat_stop(struct seq_file * m,void * arg)1917  static void vmstat_stop(struct seq_file *m, void *arg)
1918  {
1919  	kfree(m->private);
1920  	m->private = NULL;
1921  }
1922  
1923  static const struct seq_operations vmstat_op = {
1924  	.start	= vmstat_start,
1925  	.next	= vmstat_next,
1926  	.stop	= vmstat_stop,
1927  	.show	= vmstat_show,
1928  };
1929  #endif /* CONFIG_PROC_FS */
1930  
1931  #ifdef CONFIG_SMP
1932  static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1933  int sysctl_stat_interval __read_mostly = HZ;
1934  
1935  #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1936  static void refresh_vm_stats(struct work_struct *work)
1937  {
1938  	refresh_cpu_vm_stats(true);
1939  }
1940  
vmstat_refresh(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1941  int vmstat_refresh(const struct ctl_table *table, int write,
1942  		   void *buffer, size_t *lenp, loff_t *ppos)
1943  {
1944  	long val;
1945  	int err;
1946  	int i;
1947  
1948  	/*
1949  	 * The regular update, every sysctl_stat_interval, may come later
1950  	 * than expected: leaving a significant amount in per_cpu buckets.
1951  	 * This is particularly misleading when checking a quantity of HUGE
1952  	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1953  	 * which can equally be echo'ed to or cat'ted from (by root),
1954  	 * can be used to update the stats just before reading them.
1955  	 *
1956  	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1957  	 * transiently negative values, report an error here if any of
1958  	 * the stats is negative, so we know to go looking for imbalance.
1959  	 */
1960  	err = schedule_on_each_cpu(refresh_vm_stats);
1961  	if (err)
1962  		return err;
1963  	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1964  		/*
1965  		 * Skip checking stats known to go negative occasionally.
1966  		 */
1967  		switch (i) {
1968  		case NR_ZONE_WRITE_PENDING:
1969  		case NR_FREE_CMA_PAGES:
1970  			continue;
1971  		}
1972  		val = atomic_long_read(&vm_zone_stat[i]);
1973  		if (val < 0) {
1974  			pr_warn("%s: %s %ld\n",
1975  				__func__, zone_stat_name(i), val);
1976  		}
1977  	}
1978  	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1979  		/*
1980  		 * Skip checking stats known to go negative occasionally.
1981  		 */
1982  		switch (i) {
1983  		case NR_WRITEBACK:
1984  			continue;
1985  		}
1986  		val = atomic_long_read(&vm_node_stat[i]);
1987  		if (val < 0) {
1988  			pr_warn("%s: %s %ld\n",
1989  				__func__, node_stat_name(i), val);
1990  		}
1991  	}
1992  	if (write)
1993  		*ppos += *lenp;
1994  	else
1995  		*lenp = 0;
1996  	return 0;
1997  }
1998  #endif /* CONFIG_PROC_FS */
1999  
vmstat_update(struct work_struct * w)2000  static void vmstat_update(struct work_struct *w)
2001  {
2002  	if (refresh_cpu_vm_stats(true)) {
2003  		/*
2004  		 * Counters were updated so we expect more updates
2005  		 * to occur in the future. Keep on running the
2006  		 * update worker thread.
2007  		 */
2008  		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2009  				this_cpu_ptr(&vmstat_work),
2010  				round_jiffies_relative(sysctl_stat_interval));
2011  	}
2012  }
2013  
2014  /*
2015   * Check if the diffs for a certain cpu indicate that
2016   * an update is needed.
2017   */
need_update(int cpu)2018  static bool need_update(int cpu)
2019  {
2020  	pg_data_t *last_pgdat = NULL;
2021  	struct zone *zone;
2022  
2023  	for_each_populated_zone(zone) {
2024  		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2025  		struct per_cpu_nodestat *n;
2026  
2027  		/*
2028  		 * The fast way of checking if there are any vmstat diffs.
2029  		 */
2030  		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2031  			return true;
2032  
2033  		if (last_pgdat == zone->zone_pgdat)
2034  			continue;
2035  		last_pgdat = zone->zone_pgdat;
2036  		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2037  		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2038  			return true;
2039  	}
2040  	return false;
2041  }
2042  
2043  /*
2044   * Switch off vmstat processing and then fold all the remaining differentials
2045   * until the diffs stay at zero. The function is used by NOHZ and can only be
2046   * invoked when tick processing is not active.
2047   */
quiet_vmstat(void)2048  void quiet_vmstat(void)
2049  {
2050  	if (system_state != SYSTEM_RUNNING)
2051  		return;
2052  
2053  	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2054  		return;
2055  
2056  	if (!need_update(smp_processor_id()))
2057  		return;
2058  
2059  	/*
2060  	 * Just refresh counters and do not care about the pending delayed
2061  	 * vmstat_update. It doesn't fire that often to matter and canceling
2062  	 * it would be too expensive from this path.
2063  	 * vmstat_shepherd will take care about that for us.
2064  	 */
2065  	refresh_cpu_vm_stats(false);
2066  }
2067  
2068  /*
2069   * Shepherd worker thread that checks the
2070   * differentials of processors that have their worker
2071   * threads for vm statistics updates disabled because of
2072   * inactivity.
2073   */
2074  static void vmstat_shepherd(struct work_struct *w);
2075  
2076  static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2077  
vmstat_shepherd(struct work_struct * w)2078  static void vmstat_shepherd(struct work_struct *w)
2079  {
2080  	int cpu;
2081  
2082  	cpus_read_lock();
2083  	/* Check processors whose vmstat worker threads have been disabled */
2084  	for_each_online_cpu(cpu) {
2085  		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2086  
2087  		/*
2088  		 * In kernel users of vmstat counters either require the precise value and
2089  		 * they are using zone_page_state_snapshot interface or they can live with
2090  		 * an imprecision as the regular flushing can happen at arbitrary time and
2091  		 * cumulative error can grow (see calculate_normal_threshold).
2092  		 *
2093  		 * From that POV the regular flushing can be postponed for CPUs that have
2094  		 * been isolated from the kernel interference without critical
2095  		 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2096  		 * for all isolated CPUs to avoid interference with the isolated workload.
2097  		 */
2098  		if (cpu_is_isolated(cpu))
2099  			continue;
2100  
2101  		if (!delayed_work_pending(dw) && need_update(cpu))
2102  			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2103  
2104  		cond_resched();
2105  	}
2106  	cpus_read_unlock();
2107  
2108  	schedule_delayed_work(&shepherd,
2109  		round_jiffies_relative(sysctl_stat_interval));
2110  }
2111  
start_shepherd_timer(void)2112  static void __init start_shepherd_timer(void)
2113  {
2114  	int cpu;
2115  
2116  	for_each_possible_cpu(cpu)
2117  		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2118  			vmstat_update);
2119  
2120  	schedule_delayed_work(&shepherd,
2121  		round_jiffies_relative(sysctl_stat_interval));
2122  }
2123  
init_cpu_node_state(void)2124  static void __init init_cpu_node_state(void)
2125  {
2126  	int node;
2127  
2128  	for_each_online_node(node) {
2129  		if (!cpumask_empty(cpumask_of_node(node)))
2130  			node_set_state(node, N_CPU);
2131  	}
2132  }
2133  
vmstat_cpu_online(unsigned int cpu)2134  static int vmstat_cpu_online(unsigned int cpu)
2135  {
2136  	refresh_zone_stat_thresholds();
2137  
2138  	if (!node_state(cpu_to_node(cpu), N_CPU)) {
2139  		node_set_state(cpu_to_node(cpu), N_CPU);
2140  	}
2141  
2142  	return 0;
2143  }
2144  
vmstat_cpu_down_prep(unsigned int cpu)2145  static int vmstat_cpu_down_prep(unsigned int cpu)
2146  {
2147  	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2148  	return 0;
2149  }
2150  
vmstat_cpu_dead(unsigned int cpu)2151  static int vmstat_cpu_dead(unsigned int cpu)
2152  {
2153  	const struct cpumask *node_cpus;
2154  	int node;
2155  
2156  	node = cpu_to_node(cpu);
2157  
2158  	refresh_zone_stat_thresholds();
2159  	node_cpus = cpumask_of_node(node);
2160  	if (!cpumask_empty(node_cpus))
2161  		return 0;
2162  
2163  	node_clear_state(node, N_CPU);
2164  
2165  	return 0;
2166  }
2167  
2168  #endif
2169  
2170  struct workqueue_struct *mm_percpu_wq;
2171  
init_mm_internals(void)2172  void __init init_mm_internals(void)
2173  {
2174  	int ret __maybe_unused;
2175  
2176  	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2177  
2178  #ifdef CONFIG_SMP
2179  	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2180  					NULL, vmstat_cpu_dead);
2181  	if (ret < 0)
2182  		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2183  
2184  	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2185  					vmstat_cpu_online,
2186  					vmstat_cpu_down_prep);
2187  	if (ret < 0)
2188  		pr_err("vmstat: failed to register 'online' hotplug state\n");
2189  
2190  	cpus_read_lock();
2191  	init_cpu_node_state();
2192  	cpus_read_unlock();
2193  
2194  	start_shepherd_timer();
2195  #endif
2196  #ifdef CONFIG_PROC_FS
2197  	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2198  	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2199  	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2200  	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2201  #endif
2202  }
2203  
2204  #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2205  
2206  /*
2207   * Return an index indicating how much of the available free memory is
2208   * unusable for an allocation of the requested size.
2209   */
unusable_free_index(unsigned int order,struct contig_page_info * info)2210  static int unusable_free_index(unsigned int order,
2211  				struct contig_page_info *info)
2212  {
2213  	/* No free memory is interpreted as all free memory is unusable */
2214  	if (info->free_pages == 0)
2215  		return 1000;
2216  
2217  	/*
2218  	 * Index should be a value between 0 and 1. Return a value to 3
2219  	 * decimal places.
2220  	 *
2221  	 * 0 => no fragmentation
2222  	 * 1 => high fragmentation
2223  	 */
2224  	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2225  
2226  }
2227  
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2228  static void unusable_show_print(struct seq_file *m,
2229  					pg_data_t *pgdat, struct zone *zone)
2230  {
2231  	unsigned int order;
2232  	int index;
2233  	struct contig_page_info info;
2234  
2235  	seq_printf(m, "Node %d, zone %8s ",
2236  				pgdat->node_id,
2237  				zone->name);
2238  	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2239  		fill_contig_page_info(zone, order, &info);
2240  		index = unusable_free_index(order, &info);
2241  		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2242  	}
2243  
2244  	seq_putc(m, '\n');
2245  }
2246  
2247  /*
2248   * Display unusable free space index
2249   *
2250   * The unusable free space index measures how much of the available free
2251   * memory cannot be used to satisfy an allocation of a given size and is a
2252   * value between 0 and 1. The higher the value, the more of free memory is
2253   * unusable and by implication, the worse the external fragmentation is. This
2254   * can be expressed as a percentage by multiplying by 100.
2255   */
unusable_show(struct seq_file * m,void * arg)2256  static int unusable_show(struct seq_file *m, void *arg)
2257  {
2258  	pg_data_t *pgdat = (pg_data_t *)arg;
2259  
2260  	/* check memoryless node */
2261  	if (!node_state(pgdat->node_id, N_MEMORY))
2262  		return 0;
2263  
2264  	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2265  
2266  	return 0;
2267  }
2268  
2269  static const struct seq_operations unusable_sops = {
2270  	.start	= frag_start,
2271  	.next	= frag_next,
2272  	.stop	= frag_stop,
2273  	.show	= unusable_show,
2274  };
2275  
2276  DEFINE_SEQ_ATTRIBUTE(unusable);
2277  
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2278  static void extfrag_show_print(struct seq_file *m,
2279  					pg_data_t *pgdat, struct zone *zone)
2280  {
2281  	unsigned int order;
2282  	int index;
2283  
2284  	/* Alloc on stack as interrupts are disabled for zone walk */
2285  	struct contig_page_info info;
2286  
2287  	seq_printf(m, "Node %d, zone %8s ",
2288  				pgdat->node_id,
2289  				zone->name);
2290  	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2291  		fill_contig_page_info(zone, order, &info);
2292  		index = __fragmentation_index(order, &info);
2293  		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2294  	}
2295  
2296  	seq_putc(m, '\n');
2297  }
2298  
2299  /*
2300   * Display fragmentation index for orders that allocations would fail for
2301   */
extfrag_show(struct seq_file * m,void * arg)2302  static int extfrag_show(struct seq_file *m, void *arg)
2303  {
2304  	pg_data_t *pgdat = (pg_data_t *)arg;
2305  
2306  	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2307  
2308  	return 0;
2309  }
2310  
2311  static const struct seq_operations extfrag_sops = {
2312  	.start	= frag_start,
2313  	.next	= frag_next,
2314  	.stop	= frag_stop,
2315  	.show	= extfrag_show,
2316  };
2317  
2318  DEFINE_SEQ_ATTRIBUTE(extfrag);
2319  
extfrag_debug_init(void)2320  static int __init extfrag_debug_init(void)
2321  {
2322  	struct dentry *extfrag_debug_root;
2323  
2324  	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2325  
2326  	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2327  			    &unusable_fops);
2328  
2329  	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2330  			    &extfrag_fops);
2331  
2332  	return 0;
2333  }
2334  
2335  module_init(extfrag_debug_init);
2336  
2337  #endif
2338