1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * tools/testing/selftests/kvm/lib/kvm_util.c
4   *
5   * Copyright (C) 2018, Google LLC.
6   */
7  #include "test_util.h"
8  #include "kvm_util.h"
9  #include "processor.h"
10  #include "ucall_common.h"
11  
12  #include <assert.h>
13  #include <sched.h>
14  #include <sys/mman.h>
15  #include <sys/types.h>
16  #include <sys/stat.h>
17  #include <unistd.h>
18  #include <linux/kernel.h>
19  
20  #define KVM_UTIL_MIN_PFN	2
21  
22  uint32_t guest_random_seed;
23  struct guest_random_state guest_rng;
24  static uint32_t last_guest_seed;
25  
26  static int vcpu_mmap_sz(void);
27  
open_path_or_exit(const char * path,int flags)28  int open_path_or_exit(const char *path, int flags)
29  {
30  	int fd;
31  
32  	fd = open(path, flags);
33  	__TEST_REQUIRE(fd >= 0 || errno != ENOENT, "Cannot open %s: %s", path, strerror(errno));
34  	TEST_ASSERT(fd >= 0, "Failed to open '%s'", path);
35  
36  	return fd;
37  }
38  
39  /*
40   * Open KVM_DEV_PATH if available, otherwise exit the entire program.
41   *
42   * Input Args:
43   *   flags - The flags to pass when opening KVM_DEV_PATH.
44   *
45   * Return:
46   *   The opened file descriptor of /dev/kvm.
47   */
_open_kvm_dev_path_or_exit(int flags)48  static int _open_kvm_dev_path_or_exit(int flags)
49  {
50  	return open_path_or_exit(KVM_DEV_PATH, flags);
51  }
52  
open_kvm_dev_path_or_exit(void)53  int open_kvm_dev_path_or_exit(void)
54  {
55  	return _open_kvm_dev_path_or_exit(O_RDONLY);
56  }
57  
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)58  static ssize_t get_module_param(const char *module_name, const char *param,
59  				void *buffer, size_t buffer_size)
60  {
61  	const int path_size = 128;
62  	char path[path_size];
63  	ssize_t bytes_read;
64  	int fd, r;
65  
66  	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
67  		     module_name, param);
68  	TEST_ASSERT(r < path_size,
69  		    "Failed to construct sysfs path in %d bytes.", path_size);
70  
71  	fd = open_path_or_exit(path, O_RDONLY);
72  
73  	bytes_read = read(fd, buffer, buffer_size);
74  	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
75  		    path, bytes_read, buffer_size);
76  
77  	r = close(fd);
78  	TEST_ASSERT(!r, "close(%s) failed", path);
79  	return bytes_read;
80  }
81  
get_module_param_integer(const char * module_name,const char * param)82  static int get_module_param_integer(const char *module_name, const char *param)
83  {
84  	/*
85  	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
86  	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
87  	 * at the end.
88  	 */
89  	char value[16 + 1 + 1];
90  	ssize_t r;
91  
92  	memset(value, '\0', sizeof(value));
93  
94  	r = get_module_param(module_name, param, value, sizeof(value));
95  	TEST_ASSERT(value[r - 1] == '\n',
96  		    "Expected trailing newline, got char '%c'", value[r - 1]);
97  
98  	/*
99  	 * Squash the newline, otherwise atoi_paranoid() will complain about
100  	 * trailing non-NUL characters in the string.
101  	 */
102  	value[r - 1] = '\0';
103  	return atoi_paranoid(value);
104  }
105  
get_module_param_bool(const char * module_name,const char * param)106  static bool get_module_param_bool(const char *module_name, const char *param)
107  {
108  	char value;
109  	ssize_t r;
110  
111  	r = get_module_param(module_name, param, &value, sizeof(value));
112  	TEST_ASSERT_EQ(r, 1);
113  
114  	if (value == 'Y')
115  		return true;
116  	else if (value == 'N')
117  		return false;
118  
119  	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
120  }
121  
get_kvm_param_bool(const char * param)122  bool get_kvm_param_bool(const char *param)
123  {
124  	return get_module_param_bool("kvm", param);
125  }
126  
get_kvm_intel_param_bool(const char * param)127  bool get_kvm_intel_param_bool(const char *param)
128  {
129  	return get_module_param_bool("kvm_intel", param);
130  }
131  
get_kvm_amd_param_bool(const char * param)132  bool get_kvm_amd_param_bool(const char *param)
133  {
134  	return get_module_param_bool("kvm_amd", param);
135  }
136  
get_kvm_param_integer(const char * param)137  int get_kvm_param_integer(const char *param)
138  {
139  	return get_module_param_integer("kvm", param);
140  }
141  
get_kvm_intel_param_integer(const char * param)142  int get_kvm_intel_param_integer(const char *param)
143  {
144  	return get_module_param_integer("kvm_intel", param);
145  }
146  
get_kvm_amd_param_integer(const char * param)147  int get_kvm_amd_param_integer(const char *param)
148  {
149  	return get_module_param_integer("kvm_amd", param);
150  }
151  
152  /*
153   * Capability
154   *
155   * Input Args:
156   *   cap - Capability
157   *
158   * Output Args: None
159   *
160   * Return:
161   *   On success, the Value corresponding to the capability (KVM_CAP_*)
162   *   specified by the value of cap.  On failure a TEST_ASSERT failure
163   *   is produced.
164   *
165   * Looks up and returns the value corresponding to the capability
166   * (KVM_CAP_*) given by cap.
167   */
kvm_check_cap(long cap)168  unsigned int kvm_check_cap(long cap)
169  {
170  	int ret;
171  	int kvm_fd;
172  
173  	kvm_fd = open_kvm_dev_path_or_exit();
174  	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
175  	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
176  
177  	close(kvm_fd);
178  
179  	return (unsigned int)ret;
180  }
181  
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)182  void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
183  {
184  	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
185  		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
186  	else
187  		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
188  	vm->dirty_ring_size = ring_size;
189  }
190  
vm_open(struct kvm_vm * vm)191  static void vm_open(struct kvm_vm *vm)
192  {
193  	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
194  
195  	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
196  
197  	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
198  	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
199  }
200  
vm_guest_mode_string(uint32_t i)201  const char *vm_guest_mode_string(uint32_t i)
202  {
203  	static const char * const strings[] = {
204  		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
205  		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
206  		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
207  		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
208  		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
209  		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
210  		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
211  		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
212  		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
213  		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
214  		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
215  		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
216  		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
217  		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
218  		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
219  		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
220  	};
221  	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
222  		       "Missing new mode strings?");
223  
224  	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
225  
226  	return strings[i];
227  }
228  
229  const struct vm_guest_mode_params vm_guest_mode_params[] = {
230  	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
231  	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
232  	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
233  	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
234  	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
235  	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
236  	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
237  	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
238  	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
239  	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
240  	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
241  	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
242  	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
243  	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
244  	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
245  	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
246  };
247  _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
248  	       "Missing new mode params?");
249  
250  /*
251   * Initializes vm->vpages_valid to match the canonical VA space of the
252   * architecture.
253   *
254   * The default implementation is valid for architectures which split the
255   * range addressed by a single page table into a low and high region
256   * based on the MSB of the VA. On architectures with this behavior
257   * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
258   */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)259  __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
260  {
261  	sparsebit_set_num(vm->vpages_valid,
262  		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
263  	sparsebit_set_num(vm->vpages_valid,
264  		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
265  		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
266  }
267  
____vm_create(struct vm_shape shape)268  struct kvm_vm *____vm_create(struct vm_shape shape)
269  {
270  	struct kvm_vm *vm;
271  
272  	vm = calloc(1, sizeof(*vm));
273  	TEST_ASSERT(vm != NULL, "Insufficient Memory");
274  
275  	INIT_LIST_HEAD(&vm->vcpus);
276  	vm->regions.gpa_tree = RB_ROOT;
277  	vm->regions.hva_tree = RB_ROOT;
278  	hash_init(vm->regions.slot_hash);
279  
280  	vm->mode = shape.mode;
281  	vm->type = shape.type;
282  
283  	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
284  	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
285  	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
286  	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
287  
288  	/* Setup mode specific traits. */
289  	switch (vm->mode) {
290  	case VM_MODE_P52V48_4K:
291  		vm->pgtable_levels = 4;
292  		break;
293  	case VM_MODE_P52V48_64K:
294  		vm->pgtable_levels = 3;
295  		break;
296  	case VM_MODE_P48V48_4K:
297  		vm->pgtable_levels = 4;
298  		break;
299  	case VM_MODE_P48V48_64K:
300  		vm->pgtable_levels = 3;
301  		break;
302  	case VM_MODE_P40V48_4K:
303  	case VM_MODE_P36V48_4K:
304  		vm->pgtable_levels = 4;
305  		break;
306  	case VM_MODE_P40V48_64K:
307  	case VM_MODE_P36V48_64K:
308  		vm->pgtable_levels = 3;
309  		break;
310  	case VM_MODE_P52V48_16K:
311  	case VM_MODE_P48V48_16K:
312  	case VM_MODE_P40V48_16K:
313  	case VM_MODE_P36V48_16K:
314  		vm->pgtable_levels = 4;
315  		break;
316  	case VM_MODE_P36V47_16K:
317  		vm->pgtable_levels = 3;
318  		break;
319  	case VM_MODE_PXXV48_4K:
320  #ifdef __x86_64__
321  		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
322  		kvm_init_vm_address_properties(vm);
323  		/*
324  		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
325  		 * it doesn't take effect unless a CR4.LA57 is set, which it
326  		 * isn't for this mode (48-bit virtual address space).
327  		 */
328  		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
329  			    "Linear address width (%d bits) not supported",
330  			    vm->va_bits);
331  		pr_debug("Guest physical address width detected: %d\n",
332  			 vm->pa_bits);
333  		vm->pgtable_levels = 4;
334  		vm->va_bits = 48;
335  #else
336  		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
337  #endif
338  		break;
339  	case VM_MODE_P47V64_4K:
340  		vm->pgtable_levels = 5;
341  		break;
342  	case VM_MODE_P44V64_4K:
343  		vm->pgtable_levels = 5;
344  		break;
345  	default:
346  		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
347  	}
348  
349  #ifdef __aarch64__
350  	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
351  	if (vm->pa_bits != 40)
352  		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
353  #endif
354  
355  	vm_open(vm);
356  
357  	/* Limit to VA-bit canonical virtual addresses. */
358  	vm->vpages_valid = sparsebit_alloc();
359  	vm_vaddr_populate_bitmap(vm);
360  
361  	/* Limit physical addresses to PA-bits. */
362  	vm->max_gfn = vm_compute_max_gfn(vm);
363  
364  	/* Allocate and setup memory for guest. */
365  	vm->vpages_mapped = sparsebit_alloc();
366  
367  	return vm;
368  }
369  
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)370  static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
371  				     uint32_t nr_runnable_vcpus,
372  				     uint64_t extra_mem_pages)
373  {
374  	uint64_t page_size = vm_guest_mode_params[mode].page_size;
375  	uint64_t nr_pages;
376  
377  	TEST_ASSERT(nr_runnable_vcpus,
378  		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
379  
380  	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
381  		    "nr_vcpus = %d too large for host, max-vcpus = %d",
382  		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
383  
384  	/*
385  	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
386  	 * test code and other per-VM assets that will be loaded into memslot0.
387  	 */
388  	nr_pages = 512;
389  
390  	/* Account for the per-vCPU stacks on behalf of the test. */
391  	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
392  
393  	/*
394  	 * Account for the number of pages needed for the page tables.  The
395  	 * maximum page table size for a memory region will be when the
396  	 * smallest page size is used. Considering each page contains x page
397  	 * table descriptors, the total extra size for page tables (for extra
398  	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
399  	 * than N/x*2.
400  	 */
401  	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
402  
403  	/* Account for the number of pages needed by ucall. */
404  	nr_pages += ucall_nr_pages_required(page_size);
405  
406  	return vm_adjust_num_guest_pages(mode, nr_pages);
407  }
408  
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)409  struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
410  			   uint64_t nr_extra_pages)
411  {
412  	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
413  						 nr_extra_pages);
414  	struct userspace_mem_region *slot0;
415  	struct kvm_vm *vm;
416  	int i;
417  
418  	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
419  		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
420  
421  	vm = ____vm_create(shape);
422  
423  	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
424  	for (i = 0; i < NR_MEM_REGIONS; i++)
425  		vm->memslots[i] = 0;
426  
427  	kvm_vm_elf_load(vm, program_invocation_name);
428  
429  	/*
430  	 * TODO: Add proper defines to protect the library's memslots, and then
431  	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
432  	 * read-only memslots as MMIO, and creating a read-only memslot for the
433  	 * MMIO region would prevent silently clobbering the MMIO region.
434  	 */
435  	slot0 = memslot2region(vm, 0);
436  	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
437  
438  	if (guest_random_seed != last_guest_seed) {
439  		pr_info("Random seed: 0x%x\n", guest_random_seed);
440  		last_guest_seed = guest_random_seed;
441  	}
442  	guest_rng = new_guest_random_state(guest_random_seed);
443  	sync_global_to_guest(vm, guest_rng);
444  
445  	kvm_arch_vm_post_create(vm);
446  
447  	return vm;
448  }
449  
450  /*
451   * VM Create with customized parameters
452   *
453   * Input Args:
454   *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
455   *   nr_vcpus - VCPU count
456   *   extra_mem_pages - Non-slot0 physical memory total size
457   *   guest_code - Guest entry point
458   *   vcpuids - VCPU IDs
459   *
460   * Output Args: None
461   *
462   * Return:
463   *   Pointer to opaque structure that describes the created VM.
464   *
465   * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
466   * extra_mem_pages is only used to calculate the maximum page table size,
467   * no real memory allocation for non-slot0 memory in this function.
468   */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])469  struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
470  				      uint64_t extra_mem_pages,
471  				      void *guest_code, struct kvm_vcpu *vcpus[])
472  {
473  	struct kvm_vm *vm;
474  	int i;
475  
476  	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
477  
478  	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
479  
480  	for (i = 0; i < nr_vcpus; ++i)
481  		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
482  
483  	return vm;
484  }
485  
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)486  struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
487  					       struct kvm_vcpu **vcpu,
488  					       uint64_t extra_mem_pages,
489  					       void *guest_code)
490  {
491  	struct kvm_vcpu *vcpus[1];
492  	struct kvm_vm *vm;
493  
494  	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
495  
496  	*vcpu = vcpus[0];
497  	return vm;
498  }
499  
500  /*
501   * VM Restart
502   *
503   * Input Args:
504   *   vm - VM that has been released before
505   *
506   * Output Args: None
507   *
508   * Reopens the file descriptors associated to the VM and reinstates the
509   * global state, such as the irqchip and the memory regions that are mapped
510   * into the guest.
511   */
kvm_vm_restart(struct kvm_vm * vmp)512  void kvm_vm_restart(struct kvm_vm *vmp)
513  {
514  	int ctr;
515  	struct userspace_mem_region *region;
516  
517  	vm_open(vmp);
518  	if (vmp->has_irqchip)
519  		vm_create_irqchip(vmp);
520  
521  	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
522  		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
523  
524  		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
525  			    "  rc: %i errno: %i\n"
526  			    "  slot: %u flags: 0x%x\n"
527  			    "  guest_phys_addr: 0x%llx size: 0x%llx",
528  			    ret, errno, region->region.slot,
529  			    region->region.flags,
530  			    region->region.guest_phys_addr,
531  			    region->region.memory_size);
532  	}
533  }
534  
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)535  __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
536  					      uint32_t vcpu_id)
537  {
538  	return __vm_vcpu_add(vm, vcpu_id);
539  }
540  
vm_recreate_with_one_vcpu(struct kvm_vm * vm)541  struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
542  {
543  	kvm_vm_restart(vm);
544  
545  	return vm_vcpu_recreate(vm, 0);
546  }
547  
kvm_pin_this_task_to_pcpu(uint32_t pcpu)548  void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
549  {
550  	cpu_set_t mask;
551  	int r;
552  
553  	CPU_ZERO(&mask);
554  	CPU_SET(pcpu, &mask);
555  	r = sched_setaffinity(0, sizeof(mask), &mask);
556  	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.", pcpu);
557  }
558  
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)559  static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
560  {
561  	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
562  
563  	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
564  		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
565  	return pcpu;
566  }
567  
kvm_print_vcpu_pinning_help(void)568  void kvm_print_vcpu_pinning_help(void)
569  {
570  	const char *name = program_invocation_name;
571  
572  	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
573  	       "     values (target pCPU), one for each vCPU, plus an optional\n"
574  	       "     entry for the main application task (specified via entry\n"
575  	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
576  	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
577  	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
578  	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
579  	       "         %s -v 3 -c 22,23,24,50\n\n"
580  	       "     To leave the application task unpinned, drop the final entry:\n\n"
581  	       "         %s -v 3 -c 22,23,24\n\n"
582  	       "     (default: no pinning)\n", name, name);
583  }
584  
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)585  void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
586  			    int nr_vcpus)
587  {
588  	cpu_set_t allowed_mask;
589  	char *cpu, *cpu_list;
590  	char delim[2] = ",";
591  	int i, r;
592  
593  	cpu_list = strdup(pcpus_string);
594  	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
595  
596  	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
597  	TEST_ASSERT(!r, "sched_getaffinity() failed");
598  
599  	cpu = strtok(cpu_list, delim);
600  
601  	/* 1. Get all pcpus for vcpus. */
602  	for (i = 0; i < nr_vcpus; i++) {
603  		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
604  		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
605  		cpu = strtok(NULL, delim);
606  	}
607  
608  	/* 2. Check if the main worker needs to be pinned. */
609  	if (cpu) {
610  		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
611  		cpu = strtok(NULL, delim);
612  	}
613  
614  	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
615  	free(cpu_list);
616  }
617  
618  /*
619   * Userspace Memory Region Find
620   *
621   * Input Args:
622   *   vm - Virtual Machine
623   *   start - Starting VM physical address
624   *   end - Ending VM physical address, inclusive.
625   *
626   * Output Args: None
627   *
628   * Return:
629   *   Pointer to overlapping region, NULL if no such region.
630   *
631   * Searches for a region with any physical memory that overlaps with
632   * any portion of the guest physical addresses from start to end
633   * inclusive.  If multiple overlapping regions exist, a pointer to any
634   * of the regions is returned.  Null is returned only when no overlapping
635   * region exists.
636   */
637  static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)638  userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
639  {
640  	struct rb_node *node;
641  
642  	for (node = vm->regions.gpa_tree.rb_node; node; ) {
643  		struct userspace_mem_region *region =
644  			container_of(node, struct userspace_mem_region, gpa_node);
645  		uint64_t existing_start = region->region.guest_phys_addr;
646  		uint64_t existing_end = region->region.guest_phys_addr
647  			+ region->region.memory_size - 1;
648  		if (start <= existing_end && end >= existing_start)
649  			return region;
650  
651  		if (start < existing_start)
652  			node = node->rb_left;
653  		else
654  			node = node->rb_right;
655  	}
656  
657  	return NULL;
658  }
659  
vcpu_arch_free(struct kvm_vcpu * vcpu)660  __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
661  {
662  
663  }
664  
665  /*
666   * VM VCPU Remove
667   *
668   * Input Args:
669   *   vcpu - VCPU to remove
670   *
671   * Output Args: None
672   *
673   * Return: None, TEST_ASSERT failures for all error conditions
674   *
675   * Removes a vCPU from a VM and frees its resources.
676   */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)677  static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
678  {
679  	int ret;
680  
681  	if (vcpu->dirty_gfns) {
682  		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
683  		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
684  		vcpu->dirty_gfns = NULL;
685  	}
686  
687  	ret = munmap(vcpu->run, vcpu_mmap_sz());
688  	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
689  
690  	ret = close(vcpu->fd);
691  	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
692  
693  	list_del(&vcpu->list);
694  
695  	vcpu_arch_free(vcpu);
696  	free(vcpu);
697  }
698  
kvm_vm_release(struct kvm_vm * vmp)699  void kvm_vm_release(struct kvm_vm *vmp)
700  {
701  	struct kvm_vcpu *vcpu, *tmp;
702  	int ret;
703  
704  	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
705  		vm_vcpu_rm(vmp, vcpu);
706  
707  	ret = close(vmp->fd);
708  	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
709  
710  	ret = close(vmp->kvm_fd);
711  	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
712  }
713  
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)714  static void __vm_mem_region_delete(struct kvm_vm *vm,
715  				   struct userspace_mem_region *region)
716  {
717  	int ret;
718  
719  	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
720  	rb_erase(&region->hva_node, &vm->regions.hva_tree);
721  	hash_del(&region->slot_node);
722  
723  	region->region.memory_size = 0;
724  	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
725  
726  	sparsebit_free(&region->unused_phy_pages);
727  	sparsebit_free(&region->protected_phy_pages);
728  	ret = munmap(region->mmap_start, region->mmap_size);
729  	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
730  	if (region->fd >= 0) {
731  		/* There's an extra map when using shared memory. */
732  		ret = munmap(region->mmap_alias, region->mmap_size);
733  		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
734  		close(region->fd);
735  	}
736  	if (region->region.guest_memfd >= 0)
737  		close(region->region.guest_memfd);
738  
739  	free(region);
740  }
741  
742  /*
743   * Destroys and frees the VM pointed to by vmp.
744   */
kvm_vm_free(struct kvm_vm * vmp)745  void kvm_vm_free(struct kvm_vm *vmp)
746  {
747  	int ctr;
748  	struct hlist_node *node;
749  	struct userspace_mem_region *region;
750  
751  	if (vmp == NULL)
752  		return;
753  
754  	/* Free cached stats metadata and close FD */
755  	if (vmp->stats_fd) {
756  		free(vmp->stats_desc);
757  		close(vmp->stats_fd);
758  	}
759  
760  	/* Free userspace_mem_regions. */
761  	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
762  		__vm_mem_region_delete(vmp, region);
763  
764  	/* Free sparsebit arrays. */
765  	sparsebit_free(&vmp->vpages_valid);
766  	sparsebit_free(&vmp->vpages_mapped);
767  
768  	kvm_vm_release(vmp);
769  
770  	/* Free the structure describing the VM. */
771  	free(vmp);
772  }
773  
kvm_memfd_alloc(size_t size,bool hugepages)774  int kvm_memfd_alloc(size_t size, bool hugepages)
775  {
776  	int memfd_flags = MFD_CLOEXEC;
777  	int fd, r;
778  
779  	if (hugepages)
780  		memfd_flags |= MFD_HUGETLB;
781  
782  	fd = memfd_create("kvm_selftest", memfd_flags);
783  	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
784  
785  	r = ftruncate(fd, size);
786  	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
787  
788  	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
789  	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
790  
791  	return fd;
792  }
793  
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)794  static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
795  					       struct userspace_mem_region *region)
796  {
797  	struct rb_node **cur, *parent;
798  
799  	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
800  		struct userspace_mem_region *cregion;
801  
802  		cregion = container_of(*cur, typeof(*cregion), gpa_node);
803  		parent = *cur;
804  		if (region->region.guest_phys_addr <
805  		    cregion->region.guest_phys_addr)
806  			cur = &(*cur)->rb_left;
807  		else {
808  			TEST_ASSERT(region->region.guest_phys_addr !=
809  				    cregion->region.guest_phys_addr,
810  				    "Duplicate GPA in region tree");
811  
812  			cur = &(*cur)->rb_right;
813  		}
814  	}
815  
816  	rb_link_node(&region->gpa_node, parent, cur);
817  	rb_insert_color(&region->gpa_node, gpa_tree);
818  }
819  
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)820  static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
821  					       struct userspace_mem_region *region)
822  {
823  	struct rb_node **cur, *parent;
824  
825  	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
826  		struct userspace_mem_region *cregion;
827  
828  		cregion = container_of(*cur, typeof(*cregion), hva_node);
829  		parent = *cur;
830  		if (region->host_mem < cregion->host_mem)
831  			cur = &(*cur)->rb_left;
832  		else {
833  			TEST_ASSERT(region->host_mem !=
834  				    cregion->host_mem,
835  				    "Duplicate HVA in region tree");
836  
837  			cur = &(*cur)->rb_right;
838  		}
839  	}
840  
841  	rb_link_node(&region->hva_node, parent, cur);
842  	rb_insert_color(&region->hva_node, hva_tree);
843  }
844  
845  
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)846  int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
847  				uint64_t gpa, uint64_t size, void *hva)
848  {
849  	struct kvm_userspace_memory_region region = {
850  		.slot = slot,
851  		.flags = flags,
852  		.guest_phys_addr = gpa,
853  		.memory_size = size,
854  		.userspace_addr = (uintptr_t)hva,
855  	};
856  
857  	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
858  }
859  
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)860  void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
861  			       uint64_t gpa, uint64_t size, void *hva)
862  {
863  	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
864  
865  	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
866  		    errno, strerror(errno));
867  }
868  
869  #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
870  	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
871  		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
872  
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)873  int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
874  				 uint64_t gpa, uint64_t size, void *hva,
875  				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
876  {
877  	struct kvm_userspace_memory_region2 region = {
878  		.slot = slot,
879  		.flags = flags,
880  		.guest_phys_addr = gpa,
881  		.memory_size = size,
882  		.userspace_addr = (uintptr_t)hva,
883  		.guest_memfd = guest_memfd,
884  		.guest_memfd_offset = guest_memfd_offset,
885  	};
886  
887  	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
888  
889  	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
890  }
891  
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)892  void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
893  				uint64_t gpa, uint64_t size, void *hva,
894  				uint32_t guest_memfd, uint64_t guest_memfd_offset)
895  {
896  	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
897  					       guest_memfd, guest_memfd_offset);
898  
899  	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
900  		    errno, strerror(errno));
901  }
902  
903  
904  /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)905  void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
906  		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
907  		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
908  {
909  	int ret;
910  	struct userspace_mem_region *region;
911  	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
912  	size_t mem_size = npages * vm->page_size;
913  	size_t alignment;
914  
915  	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
916  
917  	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
918  		"Number of guest pages is not compatible with the host. "
919  		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
920  
921  	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
922  		"address not on a page boundary.\n"
923  		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
924  		guest_paddr, vm->page_size);
925  	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
926  		<= vm->max_gfn, "Physical range beyond maximum "
927  		"supported physical address,\n"
928  		"  guest_paddr: 0x%lx npages: 0x%lx\n"
929  		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
930  		guest_paddr, npages, vm->max_gfn, vm->page_size);
931  
932  	/*
933  	 * Confirm a mem region with an overlapping address doesn't
934  	 * already exist.
935  	 */
936  	region = (struct userspace_mem_region *) userspace_mem_region_find(
937  		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
938  	if (region != NULL)
939  		TEST_FAIL("overlapping userspace_mem_region already "
940  			"exists\n"
941  			"  requested guest_paddr: 0x%lx npages: 0x%lx "
942  			"page_size: 0x%x\n"
943  			"  existing guest_paddr: 0x%lx size: 0x%lx",
944  			guest_paddr, npages, vm->page_size,
945  			(uint64_t) region->region.guest_phys_addr,
946  			(uint64_t) region->region.memory_size);
947  
948  	/* Confirm no region with the requested slot already exists. */
949  	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
950  			       slot) {
951  		if (region->region.slot != slot)
952  			continue;
953  
954  		TEST_FAIL("A mem region with the requested slot "
955  			"already exists.\n"
956  			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
957  			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
958  			slot, guest_paddr, npages,
959  			region->region.slot,
960  			(uint64_t) region->region.guest_phys_addr,
961  			(uint64_t) region->region.memory_size);
962  	}
963  
964  	/* Allocate and initialize new mem region structure. */
965  	region = calloc(1, sizeof(*region));
966  	TEST_ASSERT(region != NULL, "Insufficient Memory");
967  	region->mmap_size = mem_size;
968  
969  #ifdef __s390x__
970  	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
971  	alignment = 0x100000;
972  #else
973  	alignment = 1;
974  #endif
975  
976  	/*
977  	 * When using THP mmap is not guaranteed to returned a hugepage aligned
978  	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
979  	 * because mmap will always return an address aligned to the HugeTLB
980  	 * page size.
981  	 */
982  	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
983  		alignment = max(backing_src_pagesz, alignment);
984  
985  	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
986  
987  	/* Add enough memory to align up if necessary */
988  	if (alignment > 1)
989  		region->mmap_size += alignment;
990  
991  	region->fd = -1;
992  	if (backing_src_is_shared(src_type))
993  		region->fd = kvm_memfd_alloc(region->mmap_size,
994  					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
995  
996  	region->mmap_start = mmap(NULL, region->mmap_size,
997  				  PROT_READ | PROT_WRITE,
998  				  vm_mem_backing_src_alias(src_type)->flag,
999  				  region->fd, 0);
1000  	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1001  		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1002  
1003  	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1004  		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1005  		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1006  		    region->mmap_start, backing_src_pagesz);
1007  
1008  	/* Align host address */
1009  	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1010  
1011  	/* As needed perform madvise */
1012  	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1013  	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1014  		ret = madvise(region->host_mem, mem_size,
1015  			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1016  		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1017  			    region->host_mem, mem_size,
1018  			    vm_mem_backing_src_alias(src_type)->name);
1019  	}
1020  
1021  	region->backing_src_type = src_type;
1022  
1023  	if (flags & KVM_MEM_GUEST_MEMFD) {
1024  		if (guest_memfd < 0) {
1025  			uint32_t guest_memfd_flags = 0;
1026  			TEST_ASSERT(!guest_memfd_offset,
1027  				    "Offset must be zero when creating new guest_memfd");
1028  			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1029  		} else {
1030  			/*
1031  			 * Install a unique fd for each memslot so that the fd
1032  			 * can be closed when the region is deleted without
1033  			 * needing to track if the fd is owned by the framework
1034  			 * or by the caller.
1035  			 */
1036  			guest_memfd = dup(guest_memfd);
1037  			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1038  		}
1039  
1040  		region->region.guest_memfd = guest_memfd;
1041  		region->region.guest_memfd_offset = guest_memfd_offset;
1042  	} else {
1043  		region->region.guest_memfd = -1;
1044  	}
1045  
1046  	region->unused_phy_pages = sparsebit_alloc();
1047  	if (vm_arch_has_protected_memory(vm))
1048  		region->protected_phy_pages = sparsebit_alloc();
1049  	sparsebit_set_num(region->unused_phy_pages,
1050  		guest_paddr >> vm->page_shift, npages);
1051  	region->region.slot = slot;
1052  	region->region.flags = flags;
1053  	region->region.guest_phys_addr = guest_paddr;
1054  	region->region.memory_size = npages * vm->page_size;
1055  	region->region.userspace_addr = (uintptr_t) region->host_mem;
1056  	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1057  	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1058  		"  rc: %i errno: %i\n"
1059  		"  slot: %u flags: 0x%x\n"
1060  		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1061  		ret, errno, slot, flags,
1062  		guest_paddr, (uint64_t) region->region.memory_size,
1063  		region->region.guest_memfd);
1064  
1065  	/* Add to quick lookup data structures */
1066  	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1067  	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1068  	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1069  
1070  	/* If shared memory, create an alias. */
1071  	if (region->fd >= 0) {
1072  		region->mmap_alias = mmap(NULL, region->mmap_size,
1073  					  PROT_READ | PROT_WRITE,
1074  					  vm_mem_backing_src_alias(src_type)->flag,
1075  					  region->fd, 0);
1076  		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1077  			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1078  
1079  		/* Align host alias address */
1080  		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1081  	}
1082  }
1083  
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1084  void vm_userspace_mem_region_add(struct kvm_vm *vm,
1085  				 enum vm_mem_backing_src_type src_type,
1086  				 uint64_t guest_paddr, uint32_t slot,
1087  				 uint64_t npages, uint32_t flags)
1088  {
1089  	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1090  }
1091  
1092  /*
1093   * Memslot to region
1094   *
1095   * Input Args:
1096   *   vm - Virtual Machine
1097   *   memslot - KVM memory slot ID
1098   *
1099   * Output Args: None
1100   *
1101   * Return:
1102   *   Pointer to memory region structure that describe memory region
1103   *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1104   *   on error (e.g. currently no memory region using memslot as a KVM
1105   *   memory slot ID).
1106   */
1107  struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1108  memslot2region(struct kvm_vm *vm, uint32_t memslot)
1109  {
1110  	struct userspace_mem_region *region;
1111  
1112  	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1113  			       memslot)
1114  		if (region->region.slot == memslot)
1115  			return region;
1116  
1117  	fprintf(stderr, "No mem region with the requested slot found,\n"
1118  		"  requested slot: %u\n", memslot);
1119  	fputs("---- vm dump ----\n", stderr);
1120  	vm_dump(stderr, vm, 2);
1121  	TEST_FAIL("Mem region not found");
1122  	return NULL;
1123  }
1124  
1125  /*
1126   * VM Memory Region Flags Set
1127   *
1128   * Input Args:
1129   *   vm - Virtual Machine
1130   *   flags - Starting guest physical address
1131   *
1132   * Output Args: None
1133   *
1134   * Return: None
1135   *
1136   * Sets the flags of the memory region specified by the value of slot,
1137   * to the values given by flags.
1138   */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1139  void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1140  {
1141  	int ret;
1142  	struct userspace_mem_region *region;
1143  
1144  	region = memslot2region(vm, slot);
1145  
1146  	region->region.flags = flags;
1147  
1148  	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1149  
1150  	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1151  		"  rc: %i errno: %i slot: %u flags: 0x%x",
1152  		ret, errno, slot, flags);
1153  }
1154  
1155  /*
1156   * VM Memory Region Move
1157   *
1158   * Input Args:
1159   *   vm - Virtual Machine
1160   *   slot - Slot of the memory region to move
1161   *   new_gpa - Starting guest physical address
1162   *
1163   * Output Args: None
1164   *
1165   * Return: None
1166   *
1167   * Change the gpa of a memory region.
1168   */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1169  void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1170  {
1171  	struct userspace_mem_region *region;
1172  	int ret;
1173  
1174  	region = memslot2region(vm, slot);
1175  
1176  	region->region.guest_phys_addr = new_gpa;
1177  
1178  	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1179  
1180  	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1181  		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1182  		    ret, errno, slot, new_gpa);
1183  }
1184  
1185  /*
1186   * VM Memory Region Delete
1187   *
1188   * Input Args:
1189   *   vm - Virtual Machine
1190   *   slot - Slot of the memory region to delete
1191   *
1192   * Output Args: None
1193   *
1194   * Return: None
1195   *
1196   * Delete a memory region.
1197   */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1198  void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1199  {
1200  	__vm_mem_region_delete(vm, memslot2region(vm, slot));
1201  }
1202  
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1203  void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1204  			    bool punch_hole)
1205  {
1206  	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1207  	struct userspace_mem_region *region;
1208  	uint64_t end = base + size;
1209  	uint64_t gpa, len;
1210  	off_t fd_offset;
1211  	int ret;
1212  
1213  	for (gpa = base; gpa < end; gpa += len) {
1214  		uint64_t offset;
1215  
1216  		region = userspace_mem_region_find(vm, gpa, gpa);
1217  		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1218  			    "Private memory region not found for GPA 0x%lx", gpa);
1219  
1220  		offset = gpa - region->region.guest_phys_addr;
1221  		fd_offset = region->region.guest_memfd_offset + offset;
1222  		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1223  
1224  		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1225  		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1226  			    punch_hole ? "punch hole" : "allocate", gpa, len,
1227  			    region->region.guest_memfd, mode, fd_offset);
1228  	}
1229  }
1230  
1231  /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1232  static int vcpu_mmap_sz(void)
1233  {
1234  	int dev_fd, ret;
1235  
1236  	dev_fd = open_kvm_dev_path_or_exit();
1237  
1238  	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1239  	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1240  		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1241  
1242  	close(dev_fd);
1243  
1244  	return ret;
1245  }
1246  
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1247  static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1248  {
1249  	struct kvm_vcpu *vcpu;
1250  
1251  	list_for_each_entry(vcpu, &vm->vcpus, list) {
1252  		if (vcpu->id == vcpu_id)
1253  			return true;
1254  	}
1255  
1256  	return false;
1257  }
1258  
1259  /*
1260   * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1261   * No additional vCPU setup is done.  Returns the vCPU.
1262   */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1263  struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1264  {
1265  	struct kvm_vcpu *vcpu;
1266  
1267  	/* Confirm a vcpu with the specified id doesn't already exist. */
1268  	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1269  
1270  	/* Allocate and initialize new vcpu structure. */
1271  	vcpu = calloc(1, sizeof(*vcpu));
1272  	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1273  
1274  	vcpu->vm = vm;
1275  	vcpu->id = vcpu_id;
1276  	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1277  	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1278  
1279  	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1280  		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1281  		vcpu_mmap_sz(), sizeof(*vcpu->run));
1282  	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1283  		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1284  	TEST_ASSERT(vcpu->run != MAP_FAILED,
1285  		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1286  
1287  	/* Add to linked-list of VCPUs. */
1288  	list_add(&vcpu->list, &vm->vcpus);
1289  
1290  	return vcpu;
1291  }
1292  
1293  /*
1294   * VM Virtual Address Unused Gap
1295   *
1296   * Input Args:
1297   *   vm - Virtual Machine
1298   *   sz - Size (bytes)
1299   *   vaddr_min - Minimum Virtual Address
1300   *
1301   * Output Args: None
1302   *
1303   * Return:
1304   *   Lowest virtual address at or below vaddr_min, with at least
1305   *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1306   *   size sz is available.
1307   *
1308   * Within the VM specified by vm, locates the lowest starting virtual
1309   * address >= vaddr_min, that has at least sz unallocated bytes.  A
1310   * TEST_ASSERT failure occurs for invalid input or no area of at least
1311   * sz unallocated bytes >= vaddr_min is available.
1312   */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1313  vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1314  			       vm_vaddr_t vaddr_min)
1315  {
1316  	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1317  
1318  	/* Determine lowest permitted virtual page index. */
1319  	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1320  	if ((pgidx_start * vm->page_size) < vaddr_min)
1321  		goto no_va_found;
1322  
1323  	/* Loop over section with enough valid virtual page indexes. */
1324  	if (!sparsebit_is_set_num(vm->vpages_valid,
1325  		pgidx_start, pages))
1326  		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1327  			pgidx_start, pages);
1328  	do {
1329  		/*
1330  		 * Are there enough unused virtual pages available at
1331  		 * the currently proposed starting virtual page index.
1332  		 * If not, adjust proposed starting index to next
1333  		 * possible.
1334  		 */
1335  		if (sparsebit_is_clear_num(vm->vpages_mapped,
1336  			pgidx_start, pages))
1337  			goto va_found;
1338  		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1339  			pgidx_start, pages);
1340  		if (pgidx_start == 0)
1341  			goto no_va_found;
1342  
1343  		/*
1344  		 * If needed, adjust proposed starting virtual address,
1345  		 * to next range of valid virtual addresses.
1346  		 */
1347  		if (!sparsebit_is_set_num(vm->vpages_valid,
1348  			pgidx_start, pages)) {
1349  			pgidx_start = sparsebit_next_set_num(
1350  				vm->vpages_valid, pgidx_start, pages);
1351  			if (pgidx_start == 0)
1352  				goto no_va_found;
1353  		}
1354  	} while (pgidx_start != 0);
1355  
1356  no_va_found:
1357  	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1358  
1359  	/* NOT REACHED */
1360  	return -1;
1361  
1362  va_found:
1363  	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1364  		pgidx_start, pages),
1365  		"Unexpected, invalid virtual page index range,\n"
1366  		"  pgidx_start: 0x%lx\n"
1367  		"  pages: 0x%lx",
1368  		pgidx_start, pages);
1369  	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1370  		pgidx_start, pages),
1371  		"Unexpected, pages already mapped,\n"
1372  		"  pgidx_start: 0x%lx\n"
1373  		"  pages: 0x%lx",
1374  		pgidx_start, pages);
1375  
1376  	return pgidx_start * vm->page_size;
1377  }
1378  
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1379  static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1380  				     vm_vaddr_t vaddr_min,
1381  				     enum kvm_mem_region_type type,
1382  				     bool protected)
1383  {
1384  	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1385  
1386  	virt_pgd_alloc(vm);
1387  	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1388  						KVM_UTIL_MIN_PFN * vm->page_size,
1389  						vm->memslots[type], protected);
1390  
1391  	/*
1392  	 * Find an unused range of virtual page addresses of at least
1393  	 * pages in length.
1394  	 */
1395  	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1396  
1397  	/* Map the virtual pages. */
1398  	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1399  		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1400  
1401  		virt_pg_map(vm, vaddr, paddr);
1402  
1403  		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1404  	}
1405  
1406  	return vaddr_start;
1407  }
1408  
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1409  vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1410  			    enum kvm_mem_region_type type)
1411  {
1412  	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1413  				  vm_arch_has_protected_memory(vm));
1414  }
1415  
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1416  vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1417  				 vm_vaddr_t vaddr_min,
1418  				 enum kvm_mem_region_type type)
1419  {
1420  	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1421  }
1422  
1423  /*
1424   * VM Virtual Address Allocate
1425   *
1426   * Input Args:
1427   *   vm - Virtual Machine
1428   *   sz - Size in bytes
1429   *   vaddr_min - Minimum starting virtual address
1430   *
1431   * Output Args: None
1432   *
1433   * Return:
1434   *   Starting guest virtual address
1435   *
1436   * Allocates at least sz bytes within the virtual address space of the vm
1437   * given by vm.  The allocated bytes are mapped to a virtual address >=
1438   * the address given by vaddr_min.  Note that each allocation uses a
1439   * a unique set of pages, with the minimum real allocation being at least
1440   * a page. The allocated physical space comes from the TEST_DATA memory region.
1441   */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1442  vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1443  {
1444  	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1445  }
1446  
1447  /*
1448   * VM Virtual Address Allocate Pages
1449   *
1450   * Input Args:
1451   *   vm - Virtual Machine
1452   *
1453   * Output Args: None
1454   *
1455   * Return:
1456   *   Starting guest virtual address
1457   *
1458   * Allocates at least N system pages worth of bytes within the virtual address
1459   * space of the vm.
1460   */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1461  vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1462  {
1463  	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1464  }
1465  
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1466  vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1467  {
1468  	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1469  }
1470  
1471  /*
1472   * VM Virtual Address Allocate Page
1473   *
1474   * Input Args:
1475   *   vm - Virtual Machine
1476   *
1477   * Output Args: None
1478   *
1479   * Return:
1480   *   Starting guest virtual address
1481   *
1482   * Allocates at least one system page worth of bytes within the virtual address
1483   * space of the vm.
1484   */
vm_vaddr_alloc_page(struct kvm_vm * vm)1485  vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1486  {
1487  	return vm_vaddr_alloc_pages(vm, 1);
1488  }
1489  
1490  /*
1491   * Map a range of VM virtual address to the VM's physical address
1492   *
1493   * Input Args:
1494   *   vm - Virtual Machine
1495   *   vaddr - Virtuall address to map
1496   *   paddr - VM Physical Address
1497   *   npages - The number of pages to map
1498   *
1499   * Output Args: None
1500   *
1501   * Return: None
1502   *
1503   * Within the VM given by @vm, creates a virtual translation for
1504   * @npages starting at @vaddr to the page range starting at @paddr.
1505   */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1506  void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1507  	      unsigned int npages)
1508  {
1509  	size_t page_size = vm->page_size;
1510  	size_t size = npages * page_size;
1511  
1512  	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1513  	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1514  
1515  	while (npages--) {
1516  		virt_pg_map(vm, vaddr, paddr);
1517  		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1518  
1519  		vaddr += page_size;
1520  		paddr += page_size;
1521  	}
1522  }
1523  
1524  /*
1525   * Address VM Physical to Host Virtual
1526   *
1527   * Input Args:
1528   *   vm - Virtual Machine
1529   *   gpa - VM physical address
1530   *
1531   * Output Args: None
1532   *
1533   * Return:
1534   *   Equivalent host virtual address
1535   *
1536   * Locates the memory region containing the VM physical address given
1537   * by gpa, within the VM given by vm.  When found, the host virtual
1538   * address providing the memory to the vm physical address is returned.
1539   * A TEST_ASSERT failure occurs if no region containing gpa exists.
1540   */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1541  void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1542  {
1543  	struct userspace_mem_region *region;
1544  
1545  	gpa = vm_untag_gpa(vm, gpa);
1546  
1547  	region = userspace_mem_region_find(vm, gpa, gpa);
1548  	if (!region) {
1549  		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1550  		return NULL;
1551  	}
1552  
1553  	return (void *)((uintptr_t)region->host_mem
1554  		+ (gpa - region->region.guest_phys_addr));
1555  }
1556  
1557  /*
1558   * Address Host Virtual to VM Physical
1559   *
1560   * Input Args:
1561   *   vm - Virtual Machine
1562   *   hva - Host virtual address
1563   *
1564   * Output Args: None
1565   *
1566   * Return:
1567   *   Equivalent VM physical address
1568   *
1569   * Locates the memory region containing the host virtual address given
1570   * by hva, within the VM given by vm.  When found, the equivalent
1571   * VM physical address is returned. A TEST_ASSERT failure occurs if no
1572   * region containing hva exists.
1573   */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1574  vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1575  {
1576  	struct rb_node *node;
1577  
1578  	for (node = vm->regions.hva_tree.rb_node; node; ) {
1579  		struct userspace_mem_region *region =
1580  			container_of(node, struct userspace_mem_region, hva_node);
1581  
1582  		if (hva >= region->host_mem) {
1583  			if (hva <= (region->host_mem
1584  				+ region->region.memory_size - 1))
1585  				return (vm_paddr_t)((uintptr_t)
1586  					region->region.guest_phys_addr
1587  					+ (hva - (uintptr_t)region->host_mem));
1588  
1589  			node = node->rb_right;
1590  		} else
1591  			node = node->rb_left;
1592  	}
1593  
1594  	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1595  	return -1;
1596  }
1597  
1598  /*
1599   * Address VM physical to Host Virtual *alias*.
1600   *
1601   * Input Args:
1602   *   vm - Virtual Machine
1603   *   gpa - VM physical address
1604   *
1605   * Output Args: None
1606   *
1607   * Return:
1608   *   Equivalent address within the host virtual *alias* area, or NULL
1609   *   (without failing the test) if the guest memory is not shared (so
1610   *   no alias exists).
1611   *
1612   * Create a writable, shared virtual=>physical alias for the specific GPA.
1613   * The primary use case is to allow the host selftest to manipulate guest
1614   * memory without mapping said memory in the guest's address space. And, for
1615   * userfaultfd-based demand paging, to do so without triggering userfaults.
1616   */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1617  void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1618  {
1619  	struct userspace_mem_region *region;
1620  	uintptr_t offset;
1621  
1622  	region = userspace_mem_region_find(vm, gpa, gpa);
1623  	if (!region)
1624  		return NULL;
1625  
1626  	if (!region->host_alias)
1627  		return NULL;
1628  
1629  	offset = gpa - region->region.guest_phys_addr;
1630  	return (void *) ((uintptr_t) region->host_alias + offset);
1631  }
1632  
1633  /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1634  void vm_create_irqchip(struct kvm_vm *vm)
1635  {
1636  	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1637  
1638  	vm->has_irqchip = true;
1639  }
1640  
_vcpu_run(struct kvm_vcpu * vcpu)1641  int _vcpu_run(struct kvm_vcpu *vcpu)
1642  {
1643  	int rc;
1644  
1645  	do {
1646  		rc = __vcpu_run(vcpu);
1647  	} while (rc == -1 && errno == EINTR);
1648  
1649  	assert_on_unhandled_exception(vcpu);
1650  
1651  	return rc;
1652  }
1653  
1654  /*
1655   * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1656   * Assert if the KVM returns an error (other than -EINTR).
1657   */
vcpu_run(struct kvm_vcpu * vcpu)1658  void vcpu_run(struct kvm_vcpu *vcpu)
1659  {
1660  	int ret = _vcpu_run(vcpu);
1661  
1662  	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1663  }
1664  
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1665  void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1666  {
1667  	int ret;
1668  
1669  	vcpu->run->immediate_exit = 1;
1670  	ret = __vcpu_run(vcpu);
1671  	vcpu->run->immediate_exit = 0;
1672  
1673  	TEST_ASSERT(ret == -1 && errno == EINTR,
1674  		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1675  		    ret, errno);
1676  }
1677  
1678  /*
1679   * Get the list of guest registers which are supported for
1680   * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1681   * it is the caller's responsibility to free the list.
1682   */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1683  struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1684  {
1685  	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1686  	int ret;
1687  
1688  	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1689  	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1690  
1691  	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1692  	reg_list->n = reg_list_n.n;
1693  	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1694  	return reg_list;
1695  }
1696  
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1697  void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1698  {
1699  	uint32_t page_size = getpagesize();
1700  	uint32_t size = vcpu->vm->dirty_ring_size;
1701  
1702  	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1703  
1704  	if (!vcpu->dirty_gfns) {
1705  		void *addr;
1706  
1707  		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1708  			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1709  		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1710  
1711  		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1712  			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1713  		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1714  
1715  		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1716  			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1717  		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1718  
1719  		vcpu->dirty_gfns = addr;
1720  		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1721  	}
1722  
1723  	return vcpu->dirty_gfns;
1724  }
1725  
1726  /*
1727   * Device Ioctl
1728   */
1729  
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1730  int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1731  {
1732  	struct kvm_device_attr attribute = {
1733  		.group = group,
1734  		.attr = attr,
1735  		.flags = 0,
1736  	};
1737  
1738  	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1739  }
1740  
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1741  int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1742  {
1743  	struct kvm_create_device create_dev = {
1744  		.type = type,
1745  		.flags = KVM_CREATE_DEVICE_TEST,
1746  	};
1747  
1748  	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1749  }
1750  
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1751  int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1752  {
1753  	struct kvm_create_device create_dev = {
1754  		.type = type,
1755  		.fd = -1,
1756  		.flags = 0,
1757  	};
1758  	int err;
1759  
1760  	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1761  	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1762  	return err ? : create_dev.fd;
1763  }
1764  
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1765  int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1766  {
1767  	struct kvm_device_attr kvmattr = {
1768  		.group = group,
1769  		.attr = attr,
1770  		.flags = 0,
1771  		.addr = (uintptr_t)val,
1772  	};
1773  
1774  	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1775  }
1776  
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1777  int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1778  {
1779  	struct kvm_device_attr kvmattr = {
1780  		.group = group,
1781  		.attr = attr,
1782  		.flags = 0,
1783  		.addr = (uintptr_t)val,
1784  	};
1785  
1786  	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1787  }
1788  
1789  /*
1790   * IRQ related functions.
1791   */
1792  
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1793  int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1794  {
1795  	struct kvm_irq_level irq_level = {
1796  		.irq    = irq,
1797  		.level  = level,
1798  	};
1799  
1800  	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1801  }
1802  
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1803  void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1804  {
1805  	int ret = _kvm_irq_line(vm, irq, level);
1806  
1807  	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1808  }
1809  
kvm_gsi_routing_create(void)1810  struct kvm_irq_routing *kvm_gsi_routing_create(void)
1811  {
1812  	struct kvm_irq_routing *routing;
1813  	size_t size;
1814  
1815  	size = sizeof(struct kvm_irq_routing);
1816  	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1817  	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1818  	routing = calloc(1, size);
1819  	assert(routing);
1820  
1821  	return routing;
1822  }
1823  
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1824  void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1825  		uint32_t gsi, uint32_t pin)
1826  {
1827  	int i;
1828  
1829  	assert(routing);
1830  	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1831  
1832  	i = routing->nr;
1833  	routing->entries[i].gsi = gsi;
1834  	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1835  	routing->entries[i].flags = 0;
1836  	routing->entries[i].u.irqchip.irqchip = 0;
1837  	routing->entries[i].u.irqchip.pin = pin;
1838  	routing->nr++;
1839  }
1840  
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1841  int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1842  {
1843  	int ret;
1844  
1845  	assert(routing);
1846  	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1847  	free(routing);
1848  
1849  	return ret;
1850  }
1851  
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1852  void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1853  {
1854  	int ret;
1855  
1856  	ret = _kvm_gsi_routing_write(vm, routing);
1857  	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1858  }
1859  
1860  /*
1861   * VM Dump
1862   *
1863   * Input Args:
1864   *   vm - Virtual Machine
1865   *   indent - Left margin indent amount
1866   *
1867   * Output Args:
1868   *   stream - Output FILE stream
1869   *
1870   * Return: None
1871   *
1872   * Dumps the current state of the VM given by vm, to the FILE stream
1873   * given by stream.
1874   */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1875  void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1876  {
1877  	int ctr;
1878  	struct userspace_mem_region *region;
1879  	struct kvm_vcpu *vcpu;
1880  
1881  	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1882  	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1883  	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1884  	fprintf(stream, "%*sMem Regions:\n", indent, "");
1885  	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1886  		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1887  			"host_virt: %p\n", indent + 2, "",
1888  			(uint64_t) region->region.guest_phys_addr,
1889  			(uint64_t) region->region.memory_size,
1890  			region->host_mem);
1891  		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1892  		sparsebit_dump(stream, region->unused_phy_pages, 0);
1893  		if (region->protected_phy_pages) {
1894  			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
1895  			sparsebit_dump(stream, region->protected_phy_pages, 0);
1896  		}
1897  	}
1898  	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1899  	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1900  	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1901  		vm->pgd_created);
1902  	if (vm->pgd_created) {
1903  		fprintf(stream, "%*sVirtual Translation Tables:\n",
1904  			indent + 2, "");
1905  		virt_dump(stream, vm, indent + 4);
1906  	}
1907  	fprintf(stream, "%*sVCPUs:\n", indent, "");
1908  
1909  	list_for_each_entry(vcpu, &vm->vcpus, list)
1910  		vcpu_dump(stream, vcpu, indent + 2);
1911  }
1912  
1913  #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1914  
1915  /* Known KVM exit reasons */
1916  static struct exit_reason {
1917  	unsigned int reason;
1918  	const char *name;
1919  } exit_reasons_known[] = {
1920  	KVM_EXIT_STRING(UNKNOWN),
1921  	KVM_EXIT_STRING(EXCEPTION),
1922  	KVM_EXIT_STRING(IO),
1923  	KVM_EXIT_STRING(HYPERCALL),
1924  	KVM_EXIT_STRING(DEBUG),
1925  	KVM_EXIT_STRING(HLT),
1926  	KVM_EXIT_STRING(MMIO),
1927  	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1928  	KVM_EXIT_STRING(SHUTDOWN),
1929  	KVM_EXIT_STRING(FAIL_ENTRY),
1930  	KVM_EXIT_STRING(INTR),
1931  	KVM_EXIT_STRING(SET_TPR),
1932  	KVM_EXIT_STRING(TPR_ACCESS),
1933  	KVM_EXIT_STRING(S390_SIEIC),
1934  	KVM_EXIT_STRING(S390_RESET),
1935  	KVM_EXIT_STRING(DCR),
1936  	KVM_EXIT_STRING(NMI),
1937  	KVM_EXIT_STRING(INTERNAL_ERROR),
1938  	KVM_EXIT_STRING(OSI),
1939  	KVM_EXIT_STRING(PAPR_HCALL),
1940  	KVM_EXIT_STRING(S390_UCONTROL),
1941  	KVM_EXIT_STRING(WATCHDOG),
1942  	KVM_EXIT_STRING(S390_TSCH),
1943  	KVM_EXIT_STRING(EPR),
1944  	KVM_EXIT_STRING(SYSTEM_EVENT),
1945  	KVM_EXIT_STRING(S390_STSI),
1946  	KVM_EXIT_STRING(IOAPIC_EOI),
1947  	KVM_EXIT_STRING(HYPERV),
1948  	KVM_EXIT_STRING(ARM_NISV),
1949  	KVM_EXIT_STRING(X86_RDMSR),
1950  	KVM_EXIT_STRING(X86_WRMSR),
1951  	KVM_EXIT_STRING(DIRTY_RING_FULL),
1952  	KVM_EXIT_STRING(AP_RESET_HOLD),
1953  	KVM_EXIT_STRING(X86_BUS_LOCK),
1954  	KVM_EXIT_STRING(XEN),
1955  	KVM_EXIT_STRING(RISCV_SBI),
1956  	KVM_EXIT_STRING(RISCV_CSR),
1957  	KVM_EXIT_STRING(NOTIFY),
1958  #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1959  	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1960  #endif
1961  };
1962  
1963  /*
1964   * Exit Reason String
1965   *
1966   * Input Args:
1967   *   exit_reason - Exit reason
1968   *
1969   * Output Args: None
1970   *
1971   * Return:
1972   *   Constant string pointer describing the exit reason.
1973   *
1974   * Locates and returns a constant string that describes the KVM exit
1975   * reason given by exit_reason.  If no such string is found, a constant
1976   * string of "Unknown" is returned.
1977   */
exit_reason_str(unsigned int exit_reason)1978  const char *exit_reason_str(unsigned int exit_reason)
1979  {
1980  	unsigned int n1;
1981  
1982  	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1983  		if (exit_reason == exit_reasons_known[n1].reason)
1984  			return exit_reasons_known[n1].name;
1985  	}
1986  
1987  	return "Unknown";
1988  }
1989  
1990  /*
1991   * Physical Contiguous Page Allocator
1992   *
1993   * Input Args:
1994   *   vm - Virtual Machine
1995   *   num - number of pages
1996   *   paddr_min - Physical address minimum
1997   *   memslot - Memory region to allocate page from
1998   *   protected - True if the pages will be used as protected/private memory
1999   *
2000   * Output Args: None
2001   *
2002   * Return:
2003   *   Starting physical address
2004   *
2005   * Within the VM specified by vm, locates a range of available physical
2006   * pages at or above paddr_min. If found, the pages are marked as in use
2007   * and their base address is returned. A TEST_ASSERT failure occurs if
2008   * not enough pages are available at or above paddr_min.
2009   */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2010  vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2011  				vm_paddr_t paddr_min, uint32_t memslot,
2012  				bool protected)
2013  {
2014  	struct userspace_mem_region *region;
2015  	sparsebit_idx_t pg, base;
2016  
2017  	TEST_ASSERT(num > 0, "Must allocate at least one page");
2018  
2019  	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2020  		"not divisible by page size.\n"
2021  		"  paddr_min: 0x%lx page_size: 0x%x",
2022  		paddr_min, vm->page_size);
2023  
2024  	region = memslot2region(vm, memslot);
2025  	TEST_ASSERT(!protected || region->protected_phy_pages,
2026  		    "Region doesn't support protected memory");
2027  
2028  	base = pg = paddr_min >> vm->page_shift;
2029  	do {
2030  		for (; pg < base + num; ++pg) {
2031  			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2032  				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2033  				break;
2034  			}
2035  		}
2036  	} while (pg && pg != base + num);
2037  
2038  	if (pg == 0) {
2039  		fprintf(stderr, "No guest physical page available, "
2040  			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2041  			paddr_min, vm->page_size, memslot);
2042  		fputs("---- vm dump ----\n", stderr);
2043  		vm_dump(stderr, vm, 2);
2044  		abort();
2045  	}
2046  
2047  	for (pg = base; pg < base + num; ++pg) {
2048  		sparsebit_clear(region->unused_phy_pages, pg);
2049  		if (protected)
2050  			sparsebit_set(region->protected_phy_pages, pg);
2051  	}
2052  
2053  	return base * vm->page_size;
2054  }
2055  
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2056  vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2057  			     uint32_t memslot)
2058  {
2059  	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2060  }
2061  
vm_alloc_page_table(struct kvm_vm * vm)2062  vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2063  {
2064  	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2065  				 vm->memslots[MEM_REGION_PT]);
2066  }
2067  
2068  /*
2069   * Address Guest Virtual to Host Virtual
2070   *
2071   * Input Args:
2072   *   vm - Virtual Machine
2073   *   gva - VM virtual address
2074   *
2075   * Output Args: None
2076   *
2077   * Return:
2078   *   Equivalent host virtual address
2079   */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2080  void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2081  {
2082  	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2083  }
2084  
vm_compute_max_gfn(struct kvm_vm * vm)2085  unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2086  {
2087  	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2088  }
2089  
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2090  static unsigned int vm_calc_num_pages(unsigned int num_pages,
2091  				      unsigned int page_shift,
2092  				      unsigned int new_page_shift,
2093  				      bool ceil)
2094  {
2095  	unsigned int n = 1 << (new_page_shift - page_shift);
2096  
2097  	if (page_shift >= new_page_shift)
2098  		return num_pages * (1 << (page_shift - new_page_shift));
2099  
2100  	return num_pages / n + !!(ceil && num_pages % n);
2101  }
2102  
getpageshift(void)2103  static inline int getpageshift(void)
2104  {
2105  	return __builtin_ffs(getpagesize()) - 1;
2106  }
2107  
2108  unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2109  vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2110  {
2111  	return vm_calc_num_pages(num_guest_pages,
2112  				 vm_guest_mode_params[mode].page_shift,
2113  				 getpageshift(), true);
2114  }
2115  
2116  unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2117  vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2118  {
2119  	return vm_calc_num_pages(num_host_pages, getpageshift(),
2120  				 vm_guest_mode_params[mode].page_shift, false);
2121  }
2122  
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2123  unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2124  {
2125  	unsigned int n;
2126  	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2127  	return vm_adjust_num_guest_pages(mode, n);
2128  }
2129  
2130  /*
2131   * Read binary stats descriptors
2132   *
2133   * Input Args:
2134   *   stats_fd - the file descriptor for the binary stats file from which to read
2135   *   header - the binary stats metadata header corresponding to the given FD
2136   *
2137   * Output Args: None
2138   *
2139   * Return:
2140   *   A pointer to a newly allocated series of stat descriptors.
2141   *   Caller is responsible for freeing the returned kvm_stats_desc.
2142   *
2143   * Read the stats descriptors from the binary stats interface.
2144   */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2145  struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2146  					      struct kvm_stats_header *header)
2147  {
2148  	struct kvm_stats_desc *stats_desc;
2149  	ssize_t desc_size, total_size, ret;
2150  
2151  	desc_size = get_stats_descriptor_size(header);
2152  	total_size = header->num_desc * desc_size;
2153  
2154  	stats_desc = calloc(header->num_desc, desc_size);
2155  	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2156  
2157  	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2158  	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2159  
2160  	return stats_desc;
2161  }
2162  
2163  /*
2164   * Read stat data for a particular stat
2165   *
2166   * Input Args:
2167   *   stats_fd - the file descriptor for the binary stats file from which to read
2168   *   header - the binary stats metadata header corresponding to the given FD
2169   *   desc - the binary stat metadata for the particular stat to be read
2170   *   max_elements - the maximum number of 8-byte values to read into data
2171   *
2172   * Output Args:
2173   *   data - the buffer into which stat data should be read
2174   *
2175   * Read the data values of a specified stat from the binary stats interface.
2176   */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2177  void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2178  		    struct kvm_stats_desc *desc, uint64_t *data,
2179  		    size_t max_elements)
2180  {
2181  	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2182  	size_t size = nr_elements * sizeof(*data);
2183  	ssize_t ret;
2184  
2185  	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2186  	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2187  
2188  	ret = pread(stats_fd, data, size,
2189  		    header->data_offset + desc->offset);
2190  
2191  	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2192  		    desc->name, errno, strerror(errno));
2193  	TEST_ASSERT(ret == size,
2194  		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2195  		    desc->name, size, ret);
2196  }
2197  
2198  /*
2199   * Read the data of the named stat
2200   *
2201   * Input Args:
2202   *   vm - the VM for which the stat should be read
2203   *   stat_name - the name of the stat to read
2204   *   max_elements - the maximum number of 8-byte values to read into data
2205   *
2206   * Output Args:
2207   *   data - the buffer into which stat data should be read
2208   *
2209   * Read the data values of a specified stat from the binary stats interface.
2210   */
__vm_get_stat(struct kvm_vm * vm,const char * stat_name,uint64_t * data,size_t max_elements)2211  void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2212  		   size_t max_elements)
2213  {
2214  	struct kvm_stats_desc *desc;
2215  	size_t size_desc;
2216  	int i;
2217  
2218  	if (!vm->stats_fd) {
2219  		vm->stats_fd = vm_get_stats_fd(vm);
2220  		read_stats_header(vm->stats_fd, &vm->stats_header);
2221  		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2222  							&vm->stats_header);
2223  	}
2224  
2225  	size_desc = get_stats_descriptor_size(&vm->stats_header);
2226  
2227  	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2228  		desc = (void *)vm->stats_desc + (i * size_desc);
2229  
2230  		if (strcmp(desc->name, stat_name))
2231  			continue;
2232  
2233  		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2234  			       data, max_elements);
2235  
2236  		break;
2237  	}
2238  }
2239  
kvm_arch_vm_post_create(struct kvm_vm * vm)2240  __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2241  {
2242  }
2243  
kvm_selftest_arch_init(void)2244  __weak void kvm_selftest_arch_init(void)
2245  {
2246  }
2247  
kvm_selftest_init(void)2248  void __attribute((constructor)) kvm_selftest_init(void)
2249  {
2250  	/* Tell stdout not to buffer its content. */
2251  	setbuf(stdout, NULL);
2252  
2253  	guest_random_seed = last_guest_seed = random();
2254  	pr_info("Random seed: 0x%x\n", guest_random_seed);
2255  
2256  	kvm_selftest_arch_init();
2257  }
2258  
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2259  bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2260  {
2261  	sparsebit_idx_t pg = 0;
2262  	struct userspace_mem_region *region;
2263  
2264  	if (!vm_arch_has_protected_memory(vm))
2265  		return false;
2266  
2267  	region = userspace_mem_region_find(vm, paddr, paddr);
2268  	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2269  
2270  	pg = paddr >> vm->page_shift;
2271  	return sparsebit_is_set(region->protected_phy_pages, pg);
2272  }
2273