1  /*
2   * Copyright 2020 Advanced Micro Devices, Inc.
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice shall be included in
12   * all copies or substantial portions of the Software.
13   *
14   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17   * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18   * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19   * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20   * OTHER DEALINGS IN THE SOFTWARE.
21   *
22   * Authors: AMD
23   *
24   */
25  
26  #include "dccg.h"
27  #include "clk_mgr_internal.h"
28  
29  // For dce12_get_dp_ref_freq_khz
30  #include "dce100/dce_clk_mgr.h"
31  
32  // For dcn20_update_clocks_update_dpp_dto
33  #include "dcn20/dcn20_clk_mgr.h"
34  
35  // For DML FPU code
36  #include "dml/dcn20/dcn20_fpu.h"
37  
38  #include "vg_clk_mgr.h"
39  #include "dcn301_smu.h"
40  #include "reg_helper.h"
41  #include "core_types.h"
42  #include "dm_helpers.h"
43  
44  #include "atomfirmware.h"
45  #include "vangogh_ip_offset.h"
46  #include "clk/clk_11_5_0_offset.h"
47  #include "clk/clk_11_5_0_sh_mask.h"
48  
49  /* Constants */
50  
51  #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
52  
53  /* Macros */
54  
55  #define TO_CLK_MGR_VGH(clk_mgr)\
56  	container_of(clk_mgr, struct clk_mgr_vgh, base)
57  
58  #define REG(reg_name) \
59  	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
60  
61  /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
vg_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)62  static int vg_get_active_display_cnt_wa(
63  		struct dc *dc,
64  		struct dc_state *context)
65  {
66  	int i, display_count;
67  	bool tmds_present = false;
68  
69  	display_count = 0;
70  	for (i = 0; i < context->stream_count; i++) {
71  		const struct dc_stream_state *stream = context->streams[i];
72  
73  		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
74  				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
75  				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
76  			tmds_present = true;
77  	}
78  
79  	for (i = 0; i < dc->link_count; i++) {
80  		const struct dc_link *link = dc->links[i];
81  
82  		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
83  		if (link->link_enc->funcs->is_dig_enabled &&
84  				link->link_enc->funcs->is_dig_enabled(link->link_enc))
85  			display_count++;
86  	}
87  
88  	/* WA for hang on HDMI after display off back back on*/
89  	if (display_count == 0 && tmds_present)
90  		display_count = 1;
91  
92  	return display_count;
93  }
94  
vg_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)95  static void vg_update_clocks(struct clk_mgr *clk_mgr_base,
96  			     struct dc_state *context,
97  			     bool safe_to_lower)
98  {
99  	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
100  	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
101  	struct dc *dc = clk_mgr_base->ctx->dc;
102  	int display_count;
103  	bool update_dppclk = false;
104  	bool update_dispclk = false;
105  	bool dpp_clock_lowered = false;
106  
107  	if (dc->work_arounds.skip_clock_update)
108  		return;
109  
110  	/*
111  	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
112  	 * also if safe to lower is false, we just go in the higher state
113  	 */
114  	if (safe_to_lower) {
115  		/* check that we're not already in lower */
116  		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
117  
118  			display_count = vg_get_active_display_cnt_wa(dc, context);
119  			/* if we can go lower, go lower */
120  			if (display_count == 0) {
121  				union display_idle_optimization_u idle_info = { 0 };
122  
123  				idle_info.idle_info.df_request_disabled = 1;
124  				idle_info.idle_info.phy_ref_clk_off = 1;
125  
126  				dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
127  				/* update power state */
128  				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
129  			}
130  		}
131  	} else {
132  		/* check that we're not already in D0 */
133  		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
134  			union display_idle_optimization_u idle_info = { 0 };
135  
136  			dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
137  			/* update power state */
138  			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
139  		}
140  	}
141  
142  	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz) && !dc->debug.disable_min_fclk) {
143  		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
144  		dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
145  	}
146  
147  	if (should_set_clock(safe_to_lower,
148  			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz) && !dc->debug.disable_min_fclk) {
149  		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
150  		dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
151  	}
152  
153  	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
154  	if (new_clocks->dppclk_khz < 100000)
155  		new_clocks->dppclk_khz = 100000;
156  
157  	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
158  		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
159  			dpp_clock_lowered = true;
160  		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
161  		update_dppclk = true;
162  	}
163  
164  	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
165  		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
166  		dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
167  
168  		update_dispclk = true;
169  	}
170  
171  	if (dpp_clock_lowered) {
172  		// increase per DPP DTO before lowering global dppclk
173  		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
174  		dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
175  	} else {
176  		// increase global DPPCLK before lowering per DPP DTO
177  		if (update_dppclk || update_dispclk)
178  			dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
179  		// always update dtos unless clock is lowered and not safe to lower
180  		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
181  	}
182  }
183  
184  
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)185  static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
186  {
187  	/* get FbMult value */
188  	struct fixed31_32 pll_req;
189  	unsigned int fbmult_frac_val = 0;
190  	unsigned int fbmult_int_val = 0;
191  
192  
193  	/*
194  	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
195  	 * to leverage the fix point operations available in driver
196  	 */
197  
198  	REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
199  	REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
200  
201  	pll_req = dc_fixpt_from_int(fbmult_int_val);
202  
203  	/*
204  	 * since fractional part is only 16 bit in register definition but is 32 bit
205  	 * in our fix point definiton, need to shift left by 16 to obtain correct value
206  	 */
207  	pll_req.value |= fbmult_frac_val << 16;
208  
209  	/* multiply by REFCLK period */
210  	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
211  
212  	/* integer part is now VCO frequency in kHz */
213  	return dc_fixpt_floor(pll_req);
214  }
215  
vg_dump_clk_registers_internal(struct dcn301_clk_internal * internal,struct clk_mgr * clk_mgr_base)216  static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
217  {
218  	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
219  
220  	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
221  	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
222  
223  	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
224  	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
225  
226  	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
227  	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
228  
229  	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
230  	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
231  
232  	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
233  	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
234  }
235  
236  /* This function collect raw clk register values */
vg_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)237  static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
238  		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
239  {
240  	struct dcn301_clk_internal internal = {0};
241  	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
242  	unsigned int chars_printed = 0;
243  	unsigned int remaining_buffer = log_info->bufSize;
244  
245  	vg_dump_clk_registers_internal(&internal, clk_mgr_base);
246  
247  	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
248  	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
249  	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
250  	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
251  	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
252  	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
253  
254  	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
255  	if (regs_and_bypass->dppclk_bypass > 4)
256  		regs_and_bypass->dppclk_bypass = 0;
257  	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
258  	if (regs_and_bypass->dcfclk_bypass > 4)
259  		regs_and_bypass->dcfclk_bypass = 0;
260  	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
261  	if (regs_and_bypass->dispclk_bypass > 4)
262  		regs_and_bypass->dispclk_bypass = 0;
263  	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
264  	if (regs_and_bypass->dprefclk_bypass > 4)
265  		regs_and_bypass->dprefclk_bypass = 0;
266  
267  	if (log_info->enabled) {
268  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
269  		remaining_buffer -= chars_printed;
270  		*log_info->sum_chars_printed += chars_printed;
271  		log_info->pBuf += chars_printed;
272  
273  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
274  			regs_and_bypass->dcfclk,
275  			regs_and_bypass->dcf_deep_sleep_divider,
276  			regs_and_bypass->dcf_deep_sleep_allow,
277  			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
278  		remaining_buffer -= chars_printed;
279  		*log_info->sum_chars_printed += chars_printed;
280  		log_info->pBuf += chars_printed;
281  
282  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
283  			regs_and_bypass->dprefclk,
284  			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
285  		remaining_buffer -= chars_printed;
286  		*log_info->sum_chars_printed += chars_printed;
287  		log_info->pBuf += chars_printed;
288  
289  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
290  			regs_and_bypass->dispclk,
291  			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
292  		remaining_buffer -= chars_printed;
293  		*log_info->sum_chars_printed += chars_printed;
294  		log_info->pBuf += chars_printed;
295  
296  		//split
297  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
298  		remaining_buffer -= chars_printed;
299  		*log_info->sum_chars_printed += chars_printed;
300  		log_info->pBuf += chars_printed;
301  
302  		// REGISTER VALUES
303  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
304  		remaining_buffer -= chars_printed;
305  		*log_info->sum_chars_printed += chars_printed;
306  		log_info->pBuf += chars_printed;
307  
308  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
309  				internal.CLK1_CLK3_CURRENT_CNT);
310  		remaining_buffer -= chars_printed;
311  		*log_info->sum_chars_printed += chars_printed;
312  		log_info->pBuf += chars_printed;
313  
314  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
315  					internal.CLK1_CLK3_DS_CNTL);
316  		remaining_buffer -= chars_printed;
317  		*log_info->sum_chars_printed += chars_printed;
318  		log_info->pBuf += chars_printed;
319  
320  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
321  					internal.CLK1_CLK3_ALLOW_DS);
322  		remaining_buffer -= chars_printed;
323  		*log_info->sum_chars_printed += chars_printed;
324  		log_info->pBuf += chars_printed;
325  
326  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
327  					internal.CLK1_CLK2_CURRENT_CNT);
328  		remaining_buffer -= chars_printed;
329  		*log_info->sum_chars_printed += chars_printed;
330  		log_info->pBuf += chars_printed;
331  
332  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
333  					internal.CLK1_CLK0_CURRENT_CNT);
334  		remaining_buffer -= chars_printed;
335  		*log_info->sum_chars_printed += chars_printed;
336  		log_info->pBuf += chars_printed;
337  
338  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
339  					internal.CLK1_CLK1_CURRENT_CNT);
340  		remaining_buffer -= chars_printed;
341  		*log_info->sum_chars_printed += chars_printed;
342  		log_info->pBuf += chars_printed;
343  
344  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
345  					internal.CLK1_CLK3_BYPASS_CNTL);
346  		remaining_buffer -= chars_printed;
347  		*log_info->sum_chars_printed += chars_printed;
348  		log_info->pBuf += chars_printed;
349  
350  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
351  					internal.CLK1_CLK2_BYPASS_CNTL);
352  		remaining_buffer -= chars_printed;
353  		*log_info->sum_chars_printed += chars_printed;
354  		log_info->pBuf += chars_printed;
355  
356  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
357  					internal.CLK1_CLK0_BYPASS_CNTL);
358  		remaining_buffer -= chars_printed;
359  		*log_info->sum_chars_printed += chars_printed;
360  		log_info->pBuf += chars_printed;
361  
362  		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
363  					internal.CLK1_CLK1_BYPASS_CNTL);
364  		remaining_buffer -= chars_printed;
365  		*log_info->sum_chars_printed += chars_printed;
366  		log_info->pBuf += chars_printed;
367  	}
368  }
369  
vg_enable_pme_wa(struct clk_mgr * clk_mgr_base)370  static void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
371  {
372  	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
373  
374  	dcn301_smu_enable_pme_wa(clk_mgr);
375  }
376  
vg_init_clocks(struct clk_mgr * clk_mgr)377  static void vg_init_clocks(struct clk_mgr *clk_mgr)
378  {
379  	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
380  	// Assumption is that boot state always supports pstate
381  	clk_mgr->clks.p_state_change_support = true;
382  	clk_mgr->clks.prev_p_state_change_support = true;
383  	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
384  }
385  
vg_build_watermark_ranges(struct clk_bw_params * bw_params,struct watermarks * table)386  static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
387  {
388  	int i, num_valid_sets;
389  
390  	num_valid_sets = 0;
391  
392  	for (i = 0; i < WM_SET_COUNT; i++) {
393  		/* skip empty entries, the smu array has no holes*/
394  		if (!bw_params->wm_table.entries[i].valid)
395  			continue;
396  
397  		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
398  		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
399  		/* We will not select WM based on fclk, so leave it as unconstrained */
400  		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
401  		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
402  
403  		if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
404  			if (i == 0)
405  				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
406  			else {
407  				/* add 1 to make it non-overlapping with next lvl */
408  				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
409  						bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
410  			}
411  			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
412  					bw_params->clk_table.entries[i].dcfclk_mhz;
413  
414  		} else {
415  			/* unconstrained for memory retraining */
416  			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
417  			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
418  
419  			/* Modify previous watermark range to cover up to max */
420  			table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
421  		}
422  		num_valid_sets++;
423  	}
424  
425  	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
426  
427  	/* modify the min and max to make sure we cover the whole range*/
428  	table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
429  	table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
430  	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
431  	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
432  
433  	/* This is for writeback only, does not matter currently as no writeback support*/
434  	table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
435  	table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
436  	table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
437  	table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
438  	table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
439  }
440  
441  
vg_notify_wm_ranges(struct clk_mgr * clk_mgr_base)442  static void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
443  {
444  	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
445  	struct clk_mgr_vgh *clk_mgr_vgh = TO_CLK_MGR_VGH(clk_mgr);
446  	struct watermarks *table = clk_mgr_vgh->smu_wm_set.wm_set;
447  
448  	if (!clk_mgr->smu_ver)
449  		return;
450  
451  	if (!table || clk_mgr_vgh->smu_wm_set.mc_address.quad_part == 0)
452  		return;
453  
454  	memset(table, 0, sizeof(*table));
455  
456  	vg_build_watermark_ranges(clk_mgr_base->bw_params, table);
457  
458  	dcn301_smu_set_dram_addr_high(clk_mgr,
459  			clk_mgr_vgh->smu_wm_set.mc_address.high_part);
460  	dcn301_smu_set_dram_addr_low(clk_mgr,
461  			clk_mgr_vgh->smu_wm_set.mc_address.low_part);
462  	dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
463  }
464  
vg_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)465  static bool vg_are_clock_states_equal(struct dc_clocks *a,
466  		struct dc_clocks *b)
467  {
468  	if (a->dispclk_khz != b->dispclk_khz)
469  		return false;
470  	else if (a->dppclk_khz != b->dppclk_khz)
471  		return false;
472  	else if (a->dcfclk_khz != b->dcfclk_khz)
473  		return false;
474  	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
475  		return false;
476  
477  	return true;
478  }
479  
480  
481  static struct clk_mgr_funcs vg_funcs = {
482  	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
483  	.update_clocks = vg_update_clocks,
484  	.init_clocks = vg_init_clocks,
485  	.enable_pme_wa = vg_enable_pme_wa,
486  	.are_clock_states_equal = vg_are_clock_states_equal,
487  	.notify_wm_ranges = vg_notify_wm_ranges
488  };
489  
490  static struct clk_bw_params vg_bw_params = {
491  	.vram_type = Ddr4MemType,
492  	.num_channels = 1,
493  	.clk_table = {
494  		.entries = {
495  			{
496  				.voltage = 0,
497  				.dcfclk_mhz = 400,
498  				.fclk_mhz = 400,
499  				.memclk_mhz = 800,
500  				.socclk_mhz = 0,
501  			},
502  			{
503  				.voltage = 0,
504  				.dcfclk_mhz = 483,
505  				.fclk_mhz = 800,
506  				.memclk_mhz = 1600,
507  				.socclk_mhz = 0,
508  			},
509  			{
510  				.voltage = 0,
511  				.dcfclk_mhz = 602,
512  				.fclk_mhz = 1067,
513  				.memclk_mhz = 1067,
514  				.socclk_mhz = 0,
515  			},
516  			{
517  				.voltage = 0,
518  				.dcfclk_mhz = 738,
519  				.fclk_mhz = 1333,
520  				.memclk_mhz = 1600,
521  				.socclk_mhz = 0,
522  			},
523  		},
524  
525  		.num_entries = 4,
526  	},
527  
528  };
529  
find_max_clk_value(const uint32_t clocks[],uint32_t num_clocks)530  static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
531  {
532  	uint32_t max = 0;
533  	int i;
534  
535  	for (i = 0; i < num_clocks; ++i) {
536  		if (clocks[i] > max)
537  			max = clocks[i];
538  	}
539  
540  	return max;
541  }
542  
find_dcfclk_for_voltage(const struct vg_dpm_clocks * clock_table,unsigned int voltage)543  static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
544  		unsigned int voltage)
545  {
546  	int i;
547  
548  	for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
549  		if (i >= VG_NUM_DCFCLK_DPM_LEVELS)
550  			break;
551  		if (clock_table->SocVoltage[i] == voltage)
552  			return clock_table->DcfClocks[i];
553  	}
554  
555  	ASSERT(0);
556  	return 0;
557  }
558  
vg_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal * clk_mgr,struct integrated_info * bios_info,const struct vg_dpm_clocks * clock_table)559  static void vg_clk_mgr_helper_populate_bw_params(
560  		struct clk_mgr_internal *clk_mgr,
561  		struct integrated_info *bios_info,
562  		const struct vg_dpm_clocks *clock_table)
563  {
564  	int i, j;
565  	struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
566  
567  	j = -1;
568  
569  	static_assert(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL,
570  		"number of reported FCLK DPM levels exceeds maximum");
571  
572  	/* Find lowest DPM, FCLK is filled in reverse order*/
573  
574  	for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
575  		if (clock_table->DfPstateTable[i].fclk != 0) {
576  			j = i;
577  			break;
578  		}
579  	}
580  
581  	if (j == -1) {
582  		/* clock table is all 0s, just use our own hardcode */
583  		ASSERT(0);
584  		return;
585  	}
586  
587  	bw_params->clk_table.num_entries = j + 1;
588  
589  	for (i = 0; i < bw_params->clk_table.num_entries - 1; i++, j--) {
590  		bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
591  		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
592  		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
593  		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage);
594  	}
595  	bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
596  	bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
597  	bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
598  	bw_params->clk_table.entries[i].dcfclk_mhz = find_max_clk_value(clock_table->DcfClocks, VG_NUM_DCFCLK_DPM_LEVELS);
599  
600  	bw_params->vram_type = bios_info->memory_type;
601  	bw_params->num_channels = bios_info->ma_channel_number;
602  
603  	for (i = 0; i < WM_SET_COUNT; i++) {
604  		bw_params->wm_table.entries[i].wm_inst = i;
605  
606  		if (i >= bw_params->clk_table.num_entries) {
607  			bw_params->wm_table.entries[i].valid = false;
608  			continue;
609  		}
610  
611  		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
612  		bw_params->wm_table.entries[i].valid = true;
613  	}
614  
615  	if (bw_params->vram_type == LpDdr4MemType) {
616  		/*
617  		 * WM set D will be re-purposed for memory retraining
618  		 */
619  		DC_FP_START();
620  		dcn21_clk_mgr_set_bw_params_wm_table(bw_params);
621  		DC_FP_END();
622  	}
623  
624  }
625  
626  /* Temporary Place holder until we can get them from fuse */
627  static struct vg_dpm_clocks dummy_clocks = {
628  		.DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
629  		.SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
630  		.SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
631  		.DfPstateTable = {
632  				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
633  				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
634  				{ .fclk = 400,  .memclk = 400, .voltage = 2800 },
635  				{ .fclk = 400,  .memclk = 400, .voltage = 2800 }
636  		}
637  };
638  
639  static struct watermarks dummy_wms = { 0 };
640  
vg_get_dpm_table_from_smu(struct clk_mgr_internal * clk_mgr,struct smu_dpm_clks * smu_dpm_clks)641  static void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
642  		struct smu_dpm_clks *smu_dpm_clks)
643  {
644  	struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
645  
646  	if (!clk_mgr->smu_ver)
647  		return;
648  
649  	if (!table || smu_dpm_clks->mc_address.quad_part == 0)
650  		return;
651  
652  	memset(table, 0, sizeof(*table));
653  
654  	dcn301_smu_set_dram_addr_high(clk_mgr,
655  			smu_dpm_clks->mc_address.high_part);
656  	dcn301_smu_set_dram_addr_low(clk_mgr,
657  			smu_dpm_clks->mc_address.low_part);
658  	dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
659  }
660  
vg_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_vgh * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)661  void vg_clk_mgr_construct(
662  		struct dc_context *ctx,
663  		struct clk_mgr_vgh *clk_mgr,
664  		struct pp_smu_funcs *pp_smu,
665  		struct dccg *dccg)
666  {
667  	struct smu_dpm_clks smu_dpm_clks = { 0 };
668  	struct clk_log_info log_info = {0};
669  
670  	clk_mgr->base.base.ctx = ctx;
671  	clk_mgr->base.base.funcs = &vg_funcs;
672  
673  	clk_mgr->base.pp_smu = pp_smu;
674  
675  	clk_mgr->base.dccg = dccg;
676  	clk_mgr->base.dfs_bypass_disp_clk = 0;
677  
678  	clk_mgr->base.dprefclk_ss_percentage = 0;
679  	clk_mgr->base.dprefclk_ss_divider = 1000;
680  	clk_mgr->base.ss_on_dprefclk = false;
681  	clk_mgr->base.dfs_ref_freq_khz = 48000;
682  
683  	clk_mgr->smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
684  				clk_mgr->base.base.ctx,
685  				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
686  				sizeof(struct watermarks),
687  				&clk_mgr->smu_wm_set.mc_address.quad_part);
688  
689  	if (!clk_mgr->smu_wm_set.wm_set) {
690  		clk_mgr->smu_wm_set.wm_set = &dummy_wms;
691  		clk_mgr->smu_wm_set.mc_address.quad_part = 0;
692  	}
693  	ASSERT(clk_mgr->smu_wm_set.wm_set);
694  
695  	smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
696  				clk_mgr->base.base.ctx,
697  				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
698  				sizeof(struct vg_dpm_clocks),
699  				&smu_dpm_clks.mc_address.quad_part);
700  
701  	if (smu_dpm_clks.dpm_clks == NULL) {
702  		smu_dpm_clks.dpm_clks = &dummy_clocks;
703  		smu_dpm_clks.mc_address.quad_part = 0;
704  	}
705  
706  	ASSERT(smu_dpm_clks.dpm_clks);
707  
708  	clk_mgr->base.smu_ver = dcn301_smu_get_smu_version(&clk_mgr->base);
709  
710  	if (clk_mgr->base.smu_ver)
711  		clk_mgr->base.smu_present = true;
712  
713  	/* TODO: Check we get what we expect during bringup */
714  	clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
715  
716  	/* in case we don't get a value from the register, use default */
717  	if (clk_mgr->base.base.dentist_vco_freq_khz == 0)
718  		clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
719  
720  	if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
721  		vg_bw_params.wm_table = lpddr5_wm_table;
722  	} else {
723  		vg_bw_params.wm_table = ddr4_wm_table;
724  	}
725  	/* Saved clocks configured at boot for debug purposes */
726  	vg_dump_clk_registers(&clk_mgr->base.base.boot_snapshot, &clk_mgr->base.base, &log_info);
727  
728  	clk_mgr->base.base.dprefclk_khz = 600000;
729  	dce_clock_read_ss_info(&clk_mgr->base);
730  
731  	clk_mgr->base.base.bw_params = &vg_bw_params;
732  
733  	vg_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
734  	if (ctx->dc_bios->integrated_info) {
735  		vg_clk_mgr_helper_populate_bw_params(
736  				&clk_mgr->base,
737  				ctx->dc_bios->integrated_info,
738  				smu_dpm_clks.dpm_clks);
739  	}
740  
741  	if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
742  		dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
743  				smu_dpm_clks.dpm_clks);
744  }
745  
vg_clk_mgr_destroy(struct clk_mgr_internal * clk_mgr_int)746  void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
747  {
748  	struct clk_mgr_vgh *clk_mgr = TO_CLK_MGR_VGH(clk_mgr_int);
749  
750  	if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
751  		dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
752  				clk_mgr->smu_wm_set.wm_set);
753  }
754