1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/fs/namei.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   * Some corrections by tytso.
10   */
11  
12  /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13   * lookup logic.
14   */
15  /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16   */
17  
18  #include <linux/init.h>
19  #include <linux/export.h>
20  #include <linux/slab.h>
21  #include <linux/wordpart.h>
22  #include <linux/fs.h>
23  #include <linux/filelock.h>
24  #include <linux/namei.h>
25  #include <linux/pagemap.h>
26  #include <linux/sched/mm.h>
27  #include <linux/fsnotify.h>
28  #include <linux/personality.h>
29  #include <linux/security.h>
30  #include <linux/syscalls.h>
31  #include <linux/mount.h>
32  #include <linux/audit.h>
33  #include <linux/capability.h>
34  #include <linux/file.h>
35  #include <linux/fcntl.h>
36  #include <linux/device_cgroup.h>
37  #include <linux/fs_struct.h>
38  #include <linux/posix_acl.h>
39  #include <linux/hash.h>
40  #include <linux/bitops.h>
41  #include <linux/init_task.h>
42  #include <linux/uaccess.h>
43  
44  #include "internal.h"
45  #include "mount.h"
46  
47  /* [Feb-1997 T. Schoebel-Theuer]
48   * Fundamental changes in the pathname lookup mechanisms (namei)
49   * were necessary because of omirr.  The reason is that omirr needs
50   * to know the _real_ pathname, not the user-supplied one, in case
51   * of symlinks (and also when transname replacements occur).
52   *
53   * The new code replaces the old recursive symlink resolution with
54   * an iterative one (in case of non-nested symlink chains).  It does
55   * this with calls to <fs>_follow_link().
56   * As a side effect, dir_namei(), _namei() and follow_link() are now
57   * replaced with a single function lookup_dentry() that can handle all
58   * the special cases of the former code.
59   *
60   * With the new dcache, the pathname is stored at each inode, at least as
61   * long as the refcount of the inode is positive.  As a side effect, the
62   * size of the dcache depends on the inode cache and thus is dynamic.
63   *
64   * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65   * resolution to correspond with current state of the code.
66   *
67   * Note that the symlink resolution is not *completely* iterative.
68   * There is still a significant amount of tail- and mid- recursion in
69   * the algorithm.  Also, note that <fs>_readlink() is not used in
70   * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71   * may return different results than <fs>_follow_link().  Many virtual
72   * filesystems (including /proc) exhibit this behavior.
73   */
74  
75  /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76   * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77   * and the name already exists in form of a symlink, try to create the new
78   * name indicated by the symlink. The old code always complained that the
79   * name already exists, due to not following the symlink even if its target
80   * is nonexistent.  The new semantics affects also mknod() and link() when
81   * the name is a symlink pointing to a non-existent name.
82   *
83   * I don't know which semantics is the right one, since I have no access
84   * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85   * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86   * "old" one. Personally, I think the new semantics is much more logical.
87   * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88   * file does succeed in both HP-UX and SunOs, but not in Solaris
89   * and in the old Linux semantics.
90   */
91  
92  /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93   * semantics.  See the comments in "open_namei" and "do_link" below.
94   *
95   * [10-Sep-98 Alan Modra] Another symlink change.
96   */
97  
98  /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99   *	inside the path - always follow.
100   *	in the last component in creation/removal/renaming - never follow.
101   *	if LOOKUP_FOLLOW passed - follow.
102   *	if the pathname has trailing slashes - follow.
103   *	otherwise - don't follow.
104   * (applied in that order).
105   *
106   * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107   * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108   * During the 2.4 we need to fix the userland stuff depending on it -
109   * hopefully we will be able to get rid of that wart in 2.5. So far only
110   * XEmacs seems to be relying on it...
111   */
112  /*
113   * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114   * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115   * any extra contention...
116   */
117  
118  /* In order to reduce some races, while at the same time doing additional
119   * checking and hopefully speeding things up, we copy filenames to the
120   * kernel data space before using them..
121   *
122   * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123   * PATH_MAX includes the nul terminator --RR.
124   */
125  
126  #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127  
128  struct filename *
getname_flags(const char __user * filename,int flags)129  getname_flags(const char __user *filename, int flags)
130  {
131  	struct filename *result;
132  	char *kname;
133  	int len;
134  
135  	result = audit_reusename(filename);
136  	if (result)
137  		return result;
138  
139  	result = __getname();
140  	if (unlikely(!result))
141  		return ERR_PTR(-ENOMEM);
142  
143  	/*
144  	 * First, try to embed the struct filename inside the names_cache
145  	 * allocation
146  	 */
147  	kname = (char *)result->iname;
148  	result->name = kname;
149  
150  	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151  	/*
152  	 * Handle both empty path and copy failure in one go.
153  	 */
154  	if (unlikely(len <= 0)) {
155  		if (unlikely(len < 0)) {
156  			__putname(result);
157  			return ERR_PTR(len);
158  		}
159  
160  		/* The empty path is special. */
161  		if (!(flags & LOOKUP_EMPTY)) {
162  			__putname(result);
163  			return ERR_PTR(-ENOENT);
164  		}
165  	}
166  
167  	/*
168  	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169  	 * separate struct filename so we can dedicate the entire
170  	 * names_cache allocation for the pathname, and re-do the copy from
171  	 * userland.
172  	 */
173  	if (unlikely(len == EMBEDDED_NAME_MAX)) {
174  		const size_t size = offsetof(struct filename, iname[1]);
175  		kname = (char *)result;
176  
177  		/*
178  		 * size is chosen that way we to guarantee that
179  		 * result->iname[0] is within the same object and that
180  		 * kname can't be equal to result->iname, no matter what.
181  		 */
182  		result = kzalloc(size, GFP_KERNEL);
183  		if (unlikely(!result)) {
184  			__putname(kname);
185  			return ERR_PTR(-ENOMEM);
186  		}
187  		result->name = kname;
188  		len = strncpy_from_user(kname, filename, PATH_MAX);
189  		if (unlikely(len < 0)) {
190  			__putname(kname);
191  			kfree(result);
192  			return ERR_PTR(len);
193  		}
194  		/* The empty path is special. */
195  		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
196  			__putname(kname);
197  			kfree(result);
198  			return ERR_PTR(-ENOENT);
199  		}
200  		if (unlikely(len == PATH_MAX)) {
201  			__putname(kname);
202  			kfree(result);
203  			return ERR_PTR(-ENAMETOOLONG);
204  		}
205  	}
206  
207  	atomic_set(&result->refcnt, 1);
208  	result->uptr = filename;
209  	result->aname = NULL;
210  	audit_getname(result);
211  	return result;
212  }
213  
214  struct filename *
getname_uflags(const char __user * filename,int uflags)215  getname_uflags(const char __user *filename, int uflags)
216  {
217  	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
218  
219  	return getname_flags(filename, flags);
220  }
221  
222  struct filename *
getname(const char __user * filename)223  getname(const char __user * filename)
224  {
225  	return getname_flags(filename, 0);
226  }
227  
228  struct filename *
getname_kernel(const char * filename)229  getname_kernel(const char * filename)
230  {
231  	struct filename *result;
232  	int len = strlen(filename) + 1;
233  
234  	result = __getname();
235  	if (unlikely(!result))
236  		return ERR_PTR(-ENOMEM);
237  
238  	if (len <= EMBEDDED_NAME_MAX) {
239  		result->name = (char *)result->iname;
240  	} else if (len <= PATH_MAX) {
241  		const size_t size = offsetof(struct filename, iname[1]);
242  		struct filename *tmp;
243  
244  		tmp = kmalloc(size, GFP_KERNEL);
245  		if (unlikely(!tmp)) {
246  			__putname(result);
247  			return ERR_PTR(-ENOMEM);
248  		}
249  		tmp->name = (char *)result;
250  		result = tmp;
251  	} else {
252  		__putname(result);
253  		return ERR_PTR(-ENAMETOOLONG);
254  	}
255  	memcpy((char *)result->name, filename, len);
256  	result->uptr = NULL;
257  	result->aname = NULL;
258  	atomic_set(&result->refcnt, 1);
259  	audit_getname(result);
260  
261  	return result;
262  }
263  EXPORT_SYMBOL(getname_kernel);
264  
putname(struct filename * name)265  void putname(struct filename *name)
266  {
267  	if (IS_ERR(name))
268  		return;
269  
270  	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
271  		return;
272  
273  	if (!atomic_dec_and_test(&name->refcnt))
274  		return;
275  
276  	if (name->name != name->iname) {
277  		__putname(name->name);
278  		kfree(name);
279  	} else
280  		__putname(name);
281  }
282  EXPORT_SYMBOL(putname);
283  
284  /**
285   * check_acl - perform ACL permission checking
286   * @idmap:	idmap of the mount the inode was found from
287   * @inode:	inode to check permissions on
288   * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
289   *
290   * This function performs the ACL permission checking. Since this function
291   * retrieve POSIX acls it needs to know whether it is called from a blocking or
292   * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
293   *
294   * If the inode has been found through an idmapped mount the idmap of
295   * the vfsmount must be passed through @idmap. This function will then take
296   * care to map the inode according to @idmap before checking permissions.
297   * On non-idmapped mounts or if permission checking is to be performed on the
298   * raw inode simply pass @nop_mnt_idmap.
299   */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)300  static int check_acl(struct mnt_idmap *idmap,
301  		     struct inode *inode, int mask)
302  {
303  #ifdef CONFIG_FS_POSIX_ACL
304  	struct posix_acl *acl;
305  
306  	if (mask & MAY_NOT_BLOCK) {
307  		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
308  	        if (!acl)
309  	                return -EAGAIN;
310  		/* no ->get_inode_acl() calls in RCU mode... */
311  		if (is_uncached_acl(acl))
312  			return -ECHILD;
313  	        return posix_acl_permission(idmap, inode, acl, mask);
314  	}
315  
316  	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
317  	if (IS_ERR(acl))
318  		return PTR_ERR(acl);
319  	if (acl) {
320  	        int error = posix_acl_permission(idmap, inode, acl, mask);
321  	        posix_acl_release(acl);
322  	        return error;
323  	}
324  #endif
325  
326  	return -EAGAIN;
327  }
328  
329  /**
330   * acl_permission_check - perform basic UNIX permission checking
331   * @idmap:	idmap of the mount the inode was found from
332   * @inode:	inode to check permissions on
333   * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
334   *
335   * This function performs the basic UNIX permission checking. Since this
336   * function may retrieve POSIX acls it needs to know whether it is called from a
337   * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
338   *
339   * If the inode has been found through an idmapped mount the idmap of
340   * the vfsmount must be passed through @idmap. This function will then take
341   * care to map the inode according to @idmap before checking permissions.
342   * On non-idmapped mounts or if permission checking is to be performed on the
343   * raw inode simply pass @nop_mnt_idmap.
344   */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)345  static int acl_permission_check(struct mnt_idmap *idmap,
346  				struct inode *inode, int mask)
347  {
348  	unsigned int mode = inode->i_mode;
349  	vfsuid_t vfsuid;
350  
351  	/* Are we the owner? If so, ACL's don't matter */
352  	vfsuid = i_uid_into_vfsuid(idmap, inode);
353  	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
354  		mask &= 7;
355  		mode >>= 6;
356  		return (mask & ~mode) ? -EACCES : 0;
357  	}
358  
359  	/* Do we have ACL's? */
360  	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
361  		int error = check_acl(idmap, inode, mask);
362  		if (error != -EAGAIN)
363  			return error;
364  	}
365  
366  	/* Only RWX matters for group/other mode bits */
367  	mask &= 7;
368  
369  	/*
370  	 * Are the group permissions different from
371  	 * the other permissions in the bits we care
372  	 * about? Need to check group ownership if so.
373  	 */
374  	if (mask & (mode ^ (mode >> 3))) {
375  		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
376  		if (vfsgid_in_group_p(vfsgid))
377  			mode >>= 3;
378  	}
379  
380  	/* Bits in 'mode' clear that we require? */
381  	return (mask & ~mode) ? -EACCES : 0;
382  }
383  
384  /**
385   * generic_permission -  check for access rights on a Posix-like filesystem
386   * @idmap:	idmap of the mount the inode was found from
387   * @inode:	inode to check access rights for
388   * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
389   *		%MAY_NOT_BLOCK ...)
390   *
391   * Used to check for read/write/execute permissions on a file.
392   * We use "fsuid" for this, letting us set arbitrary permissions
393   * for filesystem access without changing the "normal" uids which
394   * are used for other things.
395   *
396   * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
397   * request cannot be satisfied (eg. requires blocking or too much complexity).
398   * It would then be called again in ref-walk mode.
399   *
400   * If the inode has been found through an idmapped mount the idmap of
401   * the vfsmount must be passed through @idmap. This function will then take
402   * care to map the inode according to @idmap before checking permissions.
403   * On non-idmapped mounts or if permission checking is to be performed on the
404   * raw inode simply pass @nop_mnt_idmap.
405   */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)406  int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
407  		       int mask)
408  {
409  	int ret;
410  
411  	/*
412  	 * Do the basic permission checks.
413  	 */
414  	ret = acl_permission_check(idmap, inode, mask);
415  	if (ret != -EACCES)
416  		return ret;
417  
418  	if (S_ISDIR(inode->i_mode)) {
419  		/* DACs are overridable for directories */
420  		if (!(mask & MAY_WRITE))
421  			if (capable_wrt_inode_uidgid(idmap, inode,
422  						     CAP_DAC_READ_SEARCH))
423  				return 0;
424  		if (capable_wrt_inode_uidgid(idmap, inode,
425  					     CAP_DAC_OVERRIDE))
426  			return 0;
427  		return -EACCES;
428  	}
429  
430  	/*
431  	 * Searching includes executable on directories, else just read.
432  	 */
433  	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
434  	if (mask == MAY_READ)
435  		if (capable_wrt_inode_uidgid(idmap, inode,
436  					     CAP_DAC_READ_SEARCH))
437  			return 0;
438  	/*
439  	 * Read/write DACs are always overridable.
440  	 * Executable DACs are overridable when there is
441  	 * at least one exec bit set.
442  	 */
443  	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
444  		if (capable_wrt_inode_uidgid(idmap, inode,
445  					     CAP_DAC_OVERRIDE))
446  			return 0;
447  
448  	return -EACCES;
449  }
450  EXPORT_SYMBOL(generic_permission);
451  
452  /**
453   * do_inode_permission - UNIX permission checking
454   * @idmap:	idmap of the mount the inode was found from
455   * @inode:	inode to check permissions on
456   * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
457   *
458   * We _really_ want to just do "generic_permission()" without
459   * even looking at the inode->i_op values. So we keep a cache
460   * flag in inode->i_opflags, that says "this has not special
461   * permission function, use the fast case".
462   */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)463  static inline int do_inode_permission(struct mnt_idmap *idmap,
464  				      struct inode *inode, int mask)
465  {
466  	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
467  		if (likely(inode->i_op->permission))
468  			return inode->i_op->permission(idmap, inode, mask);
469  
470  		/* This gets set once for the inode lifetime */
471  		spin_lock(&inode->i_lock);
472  		inode->i_opflags |= IOP_FASTPERM;
473  		spin_unlock(&inode->i_lock);
474  	}
475  	return generic_permission(idmap, inode, mask);
476  }
477  
478  /**
479   * sb_permission - Check superblock-level permissions
480   * @sb: Superblock of inode to check permission on
481   * @inode: Inode to check permission on
482   * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
483   *
484   * Separate out file-system wide checks from inode-specific permission checks.
485   */
sb_permission(struct super_block * sb,struct inode * inode,int mask)486  static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
487  {
488  	if (unlikely(mask & MAY_WRITE)) {
489  		umode_t mode = inode->i_mode;
490  
491  		/* Nobody gets write access to a read-only fs. */
492  		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
493  			return -EROFS;
494  	}
495  	return 0;
496  }
497  
498  /**
499   * inode_permission - Check for access rights to a given inode
500   * @idmap:	idmap of the mount the inode was found from
501   * @inode:	Inode to check permission on
502   * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
503   *
504   * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
505   * this, letting us set arbitrary permissions for filesystem access without
506   * changing the "normal" UIDs which are used for other things.
507   *
508   * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
509   */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)510  int inode_permission(struct mnt_idmap *idmap,
511  		     struct inode *inode, int mask)
512  {
513  	int retval;
514  
515  	retval = sb_permission(inode->i_sb, inode, mask);
516  	if (retval)
517  		return retval;
518  
519  	if (unlikely(mask & MAY_WRITE)) {
520  		/*
521  		 * Nobody gets write access to an immutable file.
522  		 */
523  		if (IS_IMMUTABLE(inode))
524  			return -EPERM;
525  
526  		/*
527  		 * Updating mtime will likely cause i_uid and i_gid to be
528  		 * written back improperly if their true value is unknown
529  		 * to the vfs.
530  		 */
531  		if (HAS_UNMAPPED_ID(idmap, inode))
532  			return -EACCES;
533  	}
534  
535  	retval = do_inode_permission(idmap, inode, mask);
536  	if (retval)
537  		return retval;
538  
539  	retval = devcgroup_inode_permission(inode, mask);
540  	if (retval)
541  		return retval;
542  
543  	return security_inode_permission(inode, mask);
544  }
545  EXPORT_SYMBOL(inode_permission);
546  
547  /**
548   * path_get - get a reference to a path
549   * @path: path to get the reference to
550   *
551   * Given a path increment the reference count to the dentry and the vfsmount.
552   */
path_get(const struct path * path)553  void path_get(const struct path *path)
554  {
555  	mntget(path->mnt);
556  	dget(path->dentry);
557  }
558  EXPORT_SYMBOL(path_get);
559  
560  /**
561   * path_put - put a reference to a path
562   * @path: path to put the reference to
563   *
564   * Given a path decrement the reference count to the dentry and the vfsmount.
565   */
path_put(const struct path * path)566  void path_put(const struct path *path)
567  {
568  	dput(path->dentry);
569  	mntput(path->mnt);
570  }
571  EXPORT_SYMBOL(path_put);
572  
573  #define EMBEDDED_LEVELS 2
574  struct nameidata {
575  	struct path	path;
576  	struct qstr	last;
577  	struct path	root;
578  	struct inode	*inode; /* path.dentry.d_inode */
579  	unsigned int	flags, state;
580  	unsigned	seq, next_seq, m_seq, r_seq;
581  	int		last_type;
582  	unsigned	depth;
583  	int		total_link_count;
584  	struct saved {
585  		struct path link;
586  		struct delayed_call done;
587  		const char *name;
588  		unsigned seq;
589  	} *stack, internal[EMBEDDED_LEVELS];
590  	struct filename	*name;
591  	struct nameidata *saved;
592  	unsigned	root_seq;
593  	int		dfd;
594  	vfsuid_t	dir_vfsuid;
595  	umode_t		dir_mode;
596  } __randomize_layout;
597  
598  #define ND_ROOT_PRESET 1
599  #define ND_ROOT_GRABBED 2
600  #define ND_JUMPED 4
601  
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)602  static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
603  {
604  	struct nameidata *old = current->nameidata;
605  	p->stack = p->internal;
606  	p->depth = 0;
607  	p->dfd = dfd;
608  	p->name = name;
609  	p->path.mnt = NULL;
610  	p->path.dentry = NULL;
611  	p->total_link_count = old ? old->total_link_count : 0;
612  	p->saved = old;
613  	current->nameidata = p;
614  }
615  
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)616  static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
617  			  const struct path *root)
618  {
619  	__set_nameidata(p, dfd, name);
620  	p->state = 0;
621  	if (unlikely(root)) {
622  		p->state = ND_ROOT_PRESET;
623  		p->root = *root;
624  	}
625  }
626  
restore_nameidata(void)627  static void restore_nameidata(void)
628  {
629  	struct nameidata *now = current->nameidata, *old = now->saved;
630  
631  	current->nameidata = old;
632  	if (old)
633  		old->total_link_count = now->total_link_count;
634  	if (now->stack != now->internal)
635  		kfree(now->stack);
636  }
637  
nd_alloc_stack(struct nameidata * nd)638  static bool nd_alloc_stack(struct nameidata *nd)
639  {
640  	struct saved *p;
641  
642  	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
643  			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
644  	if (unlikely(!p))
645  		return false;
646  	memcpy(p, nd->internal, sizeof(nd->internal));
647  	nd->stack = p;
648  	return true;
649  }
650  
651  /**
652   * path_connected - Verify that a dentry is below mnt.mnt_root
653   * @mnt: The mountpoint to check.
654   * @dentry: The dentry to check.
655   *
656   * Rename can sometimes move a file or directory outside of a bind
657   * mount, path_connected allows those cases to be detected.
658   */
path_connected(struct vfsmount * mnt,struct dentry * dentry)659  static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
660  {
661  	struct super_block *sb = mnt->mnt_sb;
662  
663  	/* Bind mounts can have disconnected paths */
664  	if (mnt->mnt_root == sb->s_root)
665  		return true;
666  
667  	return is_subdir(dentry, mnt->mnt_root);
668  }
669  
drop_links(struct nameidata * nd)670  static void drop_links(struct nameidata *nd)
671  {
672  	int i = nd->depth;
673  	while (i--) {
674  		struct saved *last = nd->stack + i;
675  		do_delayed_call(&last->done);
676  		clear_delayed_call(&last->done);
677  	}
678  }
679  
leave_rcu(struct nameidata * nd)680  static void leave_rcu(struct nameidata *nd)
681  {
682  	nd->flags &= ~LOOKUP_RCU;
683  	nd->seq = nd->next_seq = 0;
684  	rcu_read_unlock();
685  }
686  
terminate_walk(struct nameidata * nd)687  static void terminate_walk(struct nameidata *nd)
688  {
689  	drop_links(nd);
690  	if (!(nd->flags & LOOKUP_RCU)) {
691  		int i;
692  		path_put(&nd->path);
693  		for (i = 0; i < nd->depth; i++)
694  			path_put(&nd->stack[i].link);
695  		if (nd->state & ND_ROOT_GRABBED) {
696  			path_put(&nd->root);
697  			nd->state &= ~ND_ROOT_GRABBED;
698  		}
699  	} else {
700  		leave_rcu(nd);
701  	}
702  	nd->depth = 0;
703  	nd->path.mnt = NULL;
704  	nd->path.dentry = NULL;
705  }
706  
707  /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)708  static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
709  {
710  	int res = __legitimize_mnt(path->mnt, mseq);
711  	if (unlikely(res)) {
712  		if (res > 0)
713  			path->mnt = NULL;
714  		path->dentry = NULL;
715  		return false;
716  	}
717  	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
718  		path->dentry = NULL;
719  		return false;
720  	}
721  	return !read_seqcount_retry(&path->dentry->d_seq, seq);
722  }
723  
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)724  static inline bool legitimize_path(struct nameidata *nd,
725  			    struct path *path, unsigned seq)
726  {
727  	return __legitimize_path(path, seq, nd->m_seq);
728  }
729  
legitimize_links(struct nameidata * nd)730  static bool legitimize_links(struct nameidata *nd)
731  {
732  	int i;
733  	if (unlikely(nd->flags & LOOKUP_CACHED)) {
734  		drop_links(nd);
735  		nd->depth = 0;
736  		return false;
737  	}
738  	for (i = 0; i < nd->depth; i++) {
739  		struct saved *last = nd->stack + i;
740  		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
741  			drop_links(nd);
742  			nd->depth = i + 1;
743  			return false;
744  		}
745  	}
746  	return true;
747  }
748  
legitimize_root(struct nameidata * nd)749  static bool legitimize_root(struct nameidata *nd)
750  {
751  	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
752  	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
753  		return true;
754  	nd->state |= ND_ROOT_GRABBED;
755  	return legitimize_path(nd, &nd->root, nd->root_seq);
756  }
757  
758  /*
759   * Path walking has 2 modes, rcu-walk and ref-walk (see
760   * Documentation/filesystems/path-lookup.txt).  In situations when we can't
761   * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
762   * normal reference counts on dentries and vfsmounts to transition to ref-walk
763   * mode.  Refcounts are grabbed at the last known good point before rcu-walk
764   * got stuck, so ref-walk may continue from there. If this is not successful
765   * (eg. a seqcount has changed), then failure is returned and it's up to caller
766   * to restart the path walk from the beginning in ref-walk mode.
767   */
768  
769  /**
770   * try_to_unlazy - try to switch to ref-walk mode.
771   * @nd: nameidata pathwalk data
772   * Returns: true on success, false on failure
773   *
774   * try_to_unlazy attempts to legitimize the current nd->path and nd->root
775   * for ref-walk mode.
776   * Must be called from rcu-walk context.
777   * Nothing should touch nameidata between try_to_unlazy() failure and
778   * terminate_walk().
779   */
try_to_unlazy(struct nameidata * nd)780  static bool try_to_unlazy(struct nameidata *nd)
781  {
782  	struct dentry *parent = nd->path.dentry;
783  
784  	BUG_ON(!(nd->flags & LOOKUP_RCU));
785  
786  	if (unlikely(!legitimize_links(nd)))
787  		goto out1;
788  	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
789  		goto out;
790  	if (unlikely(!legitimize_root(nd)))
791  		goto out;
792  	leave_rcu(nd);
793  	BUG_ON(nd->inode != parent->d_inode);
794  	return true;
795  
796  out1:
797  	nd->path.mnt = NULL;
798  	nd->path.dentry = NULL;
799  out:
800  	leave_rcu(nd);
801  	return false;
802  }
803  
804  /**
805   * try_to_unlazy_next - try to switch to ref-walk mode.
806   * @nd: nameidata pathwalk data
807   * @dentry: next dentry to step into
808   * Returns: true on success, false on failure
809   *
810   * Similar to try_to_unlazy(), but here we have the next dentry already
811   * picked by rcu-walk and want to legitimize that in addition to the current
812   * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
813   * Nothing should touch nameidata between try_to_unlazy_next() failure and
814   * terminate_walk().
815   */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)816  static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
817  {
818  	int res;
819  	BUG_ON(!(nd->flags & LOOKUP_RCU));
820  
821  	if (unlikely(!legitimize_links(nd)))
822  		goto out2;
823  	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
824  	if (unlikely(res)) {
825  		if (res > 0)
826  			goto out2;
827  		goto out1;
828  	}
829  	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
830  		goto out1;
831  
832  	/*
833  	 * We need to move both the parent and the dentry from the RCU domain
834  	 * to be properly refcounted. And the sequence number in the dentry
835  	 * validates *both* dentry counters, since we checked the sequence
836  	 * number of the parent after we got the child sequence number. So we
837  	 * know the parent must still be valid if the child sequence number is
838  	 */
839  	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
840  		goto out;
841  	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
842  		goto out_dput;
843  	/*
844  	 * Sequence counts matched. Now make sure that the root is
845  	 * still valid and get it if required.
846  	 */
847  	if (unlikely(!legitimize_root(nd)))
848  		goto out_dput;
849  	leave_rcu(nd);
850  	return true;
851  
852  out2:
853  	nd->path.mnt = NULL;
854  out1:
855  	nd->path.dentry = NULL;
856  out:
857  	leave_rcu(nd);
858  	return false;
859  out_dput:
860  	leave_rcu(nd);
861  	dput(dentry);
862  	return false;
863  }
864  
d_revalidate(struct dentry * dentry,unsigned int flags)865  static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
866  {
867  	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
868  		return dentry->d_op->d_revalidate(dentry, flags);
869  	else
870  		return 1;
871  }
872  
873  /**
874   * complete_walk - successful completion of path walk
875   * @nd:  pointer nameidata
876   *
877   * If we had been in RCU mode, drop out of it and legitimize nd->path.
878   * Revalidate the final result, unless we'd already done that during
879   * the path walk or the filesystem doesn't ask for it.  Return 0 on
880   * success, -error on failure.  In case of failure caller does not
881   * need to drop nd->path.
882   */
complete_walk(struct nameidata * nd)883  static int complete_walk(struct nameidata *nd)
884  {
885  	struct dentry *dentry = nd->path.dentry;
886  	int status;
887  
888  	if (nd->flags & LOOKUP_RCU) {
889  		/*
890  		 * We don't want to zero nd->root for scoped-lookups or
891  		 * externally-managed nd->root.
892  		 */
893  		if (!(nd->state & ND_ROOT_PRESET))
894  			if (!(nd->flags & LOOKUP_IS_SCOPED))
895  				nd->root.mnt = NULL;
896  		nd->flags &= ~LOOKUP_CACHED;
897  		if (!try_to_unlazy(nd))
898  			return -ECHILD;
899  	}
900  
901  	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
902  		/*
903  		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
904  		 * ever step outside the root during lookup" and should already
905  		 * be guaranteed by the rest of namei, we want to avoid a namei
906  		 * BUG resulting in userspace being given a path that was not
907  		 * scoped within the root at some point during the lookup.
908  		 *
909  		 * So, do a final sanity-check to make sure that in the
910  		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
911  		 * we won't silently return an fd completely outside of the
912  		 * requested root to userspace.
913  		 *
914  		 * Userspace could move the path outside the root after this
915  		 * check, but as discussed elsewhere this is not a concern (the
916  		 * resolved file was inside the root at some point).
917  		 */
918  		if (!path_is_under(&nd->path, &nd->root))
919  			return -EXDEV;
920  	}
921  
922  	if (likely(!(nd->state & ND_JUMPED)))
923  		return 0;
924  
925  	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
926  		return 0;
927  
928  	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
929  	if (status > 0)
930  		return 0;
931  
932  	if (!status)
933  		status = -ESTALE;
934  
935  	return status;
936  }
937  
set_root(struct nameidata * nd)938  static int set_root(struct nameidata *nd)
939  {
940  	struct fs_struct *fs = current->fs;
941  
942  	/*
943  	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
944  	 * still have to ensure it doesn't happen because it will cause a breakout
945  	 * from the dirfd.
946  	 */
947  	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
948  		return -ENOTRECOVERABLE;
949  
950  	if (nd->flags & LOOKUP_RCU) {
951  		unsigned seq;
952  
953  		do {
954  			seq = read_seqcount_begin(&fs->seq);
955  			nd->root = fs->root;
956  			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
957  		} while (read_seqcount_retry(&fs->seq, seq));
958  	} else {
959  		get_fs_root(fs, &nd->root);
960  		nd->state |= ND_ROOT_GRABBED;
961  	}
962  	return 0;
963  }
964  
nd_jump_root(struct nameidata * nd)965  static int nd_jump_root(struct nameidata *nd)
966  {
967  	if (unlikely(nd->flags & LOOKUP_BENEATH))
968  		return -EXDEV;
969  	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
970  		/* Absolute path arguments to path_init() are allowed. */
971  		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
972  			return -EXDEV;
973  	}
974  	if (!nd->root.mnt) {
975  		int error = set_root(nd);
976  		if (error)
977  			return error;
978  	}
979  	if (nd->flags & LOOKUP_RCU) {
980  		struct dentry *d;
981  		nd->path = nd->root;
982  		d = nd->path.dentry;
983  		nd->inode = d->d_inode;
984  		nd->seq = nd->root_seq;
985  		if (read_seqcount_retry(&d->d_seq, nd->seq))
986  			return -ECHILD;
987  	} else {
988  		path_put(&nd->path);
989  		nd->path = nd->root;
990  		path_get(&nd->path);
991  		nd->inode = nd->path.dentry->d_inode;
992  	}
993  	nd->state |= ND_JUMPED;
994  	return 0;
995  }
996  
997  /*
998   * Helper to directly jump to a known parsed path from ->get_link,
999   * caller must have taken a reference to path beforehand.
1000   */
nd_jump_link(const struct path * path)1001  int nd_jump_link(const struct path *path)
1002  {
1003  	int error = -ELOOP;
1004  	struct nameidata *nd = current->nameidata;
1005  
1006  	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1007  		goto err;
1008  
1009  	error = -EXDEV;
1010  	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1011  		if (nd->path.mnt != path->mnt)
1012  			goto err;
1013  	}
1014  	/* Not currently safe for scoped-lookups. */
1015  	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1016  		goto err;
1017  
1018  	path_put(&nd->path);
1019  	nd->path = *path;
1020  	nd->inode = nd->path.dentry->d_inode;
1021  	nd->state |= ND_JUMPED;
1022  	return 0;
1023  
1024  err:
1025  	path_put(path);
1026  	return error;
1027  }
1028  
put_link(struct nameidata * nd)1029  static inline void put_link(struct nameidata *nd)
1030  {
1031  	struct saved *last = nd->stack + --nd->depth;
1032  	do_delayed_call(&last->done);
1033  	if (!(nd->flags & LOOKUP_RCU))
1034  		path_put(&last->link);
1035  }
1036  
1037  static int sysctl_protected_symlinks __read_mostly;
1038  static int sysctl_protected_hardlinks __read_mostly;
1039  static int sysctl_protected_fifos __read_mostly;
1040  static int sysctl_protected_regular __read_mostly;
1041  
1042  #ifdef CONFIG_SYSCTL
1043  static struct ctl_table namei_sysctls[] = {
1044  	{
1045  		.procname	= "protected_symlinks",
1046  		.data		= &sysctl_protected_symlinks,
1047  		.maxlen		= sizeof(int),
1048  		.mode		= 0644,
1049  		.proc_handler	= proc_dointvec_minmax,
1050  		.extra1		= SYSCTL_ZERO,
1051  		.extra2		= SYSCTL_ONE,
1052  	},
1053  	{
1054  		.procname	= "protected_hardlinks",
1055  		.data		= &sysctl_protected_hardlinks,
1056  		.maxlen		= sizeof(int),
1057  		.mode		= 0644,
1058  		.proc_handler	= proc_dointvec_minmax,
1059  		.extra1		= SYSCTL_ZERO,
1060  		.extra2		= SYSCTL_ONE,
1061  	},
1062  	{
1063  		.procname	= "protected_fifos",
1064  		.data		= &sysctl_protected_fifos,
1065  		.maxlen		= sizeof(int),
1066  		.mode		= 0644,
1067  		.proc_handler	= proc_dointvec_minmax,
1068  		.extra1		= SYSCTL_ZERO,
1069  		.extra2		= SYSCTL_TWO,
1070  	},
1071  	{
1072  		.procname	= "protected_regular",
1073  		.data		= &sysctl_protected_regular,
1074  		.maxlen		= sizeof(int),
1075  		.mode		= 0644,
1076  		.proc_handler	= proc_dointvec_minmax,
1077  		.extra1		= SYSCTL_ZERO,
1078  		.extra2		= SYSCTL_TWO,
1079  	},
1080  };
1081  
init_fs_namei_sysctls(void)1082  static int __init init_fs_namei_sysctls(void)
1083  {
1084  	register_sysctl_init("fs", namei_sysctls);
1085  	return 0;
1086  }
1087  fs_initcall(init_fs_namei_sysctls);
1088  
1089  #endif /* CONFIG_SYSCTL */
1090  
1091  /**
1092   * may_follow_link - Check symlink following for unsafe situations
1093   * @nd: nameidata pathwalk data
1094   * @inode: Used for idmapping.
1095   *
1096   * In the case of the sysctl_protected_symlinks sysctl being enabled,
1097   * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1098   * in a sticky world-writable directory. This is to protect privileged
1099   * processes from failing races against path names that may change out
1100   * from under them by way of other users creating malicious symlinks.
1101   * It will permit symlinks to be followed only when outside a sticky
1102   * world-writable directory, or when the uid of the symlink and follower
1103   * match, or when the directory owner matches the symlink's owner.
1104   *
1105   * Returns 0 if following the symlink is allowed, -ve on error.
1106   */
may_follow_link(struct nameidata * nd,const struct inode * inode)1107  static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1108  {
1109  	struct mnt_idmap *idmap;
1110  	vfsuid_t vfsuid;
1111  
1112  	if (!sysctl_protected_symlinks)
1113  		return 0;
1114  
1115  	idmap = mnt_idmap(nd->path.mnt);
1116  	vfsuid = i_uid_into_vfsuid(idmap, inode);
1117  	/* Allowed if owner and follower match. */
1118  	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1119  		return 0;
1120  
1121  	/* Allowed if parent directory not sticky and world-writable. */
1122  	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1123  		return 0;
1124  
1125  	/* Allowed if parent directory and link owner match. */
1126  	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1127  		return 0;
1128  
1129  	if (nd->flags & LOOKUP_RCU)
1130  		return -ECHILD;
1131  
1132  	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1133  	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1134  	return -EACCES;
1135  }
1136  
1137  /**
1138   * safe_hardlink_source - Check for safe hardlink conditions
1139   * @idmap: idmap of the mount the inode was found from
1140   * @inode: the source inode to hardlink from
1141   *
1142   * Return false if at least one of the following conditions:
1143   *    - inode is not a regular file
1144   *    - inode is setuid
1145   *    - inode is setgid and group-exec
1146   *    - access failure for read and write
1147   *
1148   * Otherwise returns true.
1149   */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1150  static bool safe_hardlink_source(struct mnt_idmap *idmap,
1151  				 struct inode *inode)
1152  {
1153  	umode_t mode = inode->i_mode;
1154  
1155  	/* Special files should not get pinned to the filesystem. */
1156  	if (!S_ISREG(mode))
1157  		return false;
1158  
1159  	/* Setuid files should not get pinned to the filesystem. */
1160  	if (mode & S_ISUID)
1161  		return false;
1162  
1163  	/* Executable setgid files should not get pinned to the filesystem. */
1164  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1165  		return false;
1166  
1167  	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1168  	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1169  		return false;
1170  
1171  	return true;
1172  }
1173  
1174  /**
1175   * may_linkat - Check permissions for creating a hardlink
1176   * @idmap: idmap of the mount the inode was found from
1177   * @link:  the source to hardlink from
1178   *
1179   * Block hardlink when all of:
1180   *  - sysctl_protected_hardlinks enabled
1181   *  - fsuid does not match inode
1182   *  - hardlink source is unsafe (see safe_hardlink_source() above)
1183   *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1184   *
1185   * If the inode has been found through an idmapped mount the idmap of
1186   * the vfsmount must be passed through @idmap. This function will then take
1187   * care to map the inode according to @idmap before checking permissions.
1188   * On non-idmapped mounts or if permission checking is to be performed on the
1189   * raw inode simply pass @nop_mnt_idmap.
1190   *
1191   * Returns 0 if successful, -ve on error.
1192   */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1193  int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1194  {
1195  	struct inode *inode = link->dentry->d_inode;
1196  
1197  	/* Inode writeback is not safe when the uid or gid are invalid. */
1198  	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1199  	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1200  		return -EOVERFLOW;
1201  
1202  	if (!sysctl_protected_hardlinks)
1203  		return 0;
1204  
1205  	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1206  	 * otherwise, it must be a safe source.
1207  	 */
1208  	if (safe_hardlink_source(idmap, inode) ||
1209  	    inode_owner_or_capable(idmap, inode))
1210  		return 0;
1211  
1212  	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1213  	return -EPERM;
1214  }
1215  
1216  /**
1217   * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1218   *			  should be allowed, or not, on files that already
1219   *			  exist.
1220   * @idmap: idmap of the mount the inode was found from
1221   * @nd: nameidata pathwalk data
1222   * @inode: the inode of the file to open
1223   *
1224   * Block an O_CREAT open of a FIFO (or a regular file) when:
1225   *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1226   *   - the file already exists
1227   *   - we are in a sticky directory
1228   *   - we don't own the file
1229   *   - the owner of the directory doesn't own the file
1230   *   - the directory is world writable
1231   * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1232   * the directory doesn't have to be world writable: being group writable will
1233   * be enough.
1234   *
1235   * If the inode has been found through an idmapped mount the idmap of
1236   * the vfsmount must be passed through @idmap. This function will then take
1237   * care to map the inode according to @idmap before checking permissions.
1238   * On non-idmapped mounts or if permission checking is to be performed on the
1239   * raw inode simply pass @nop_mnt_idmap.
1240   *
1241   * Returns 0 if the open is allowed, -ve on error.
1242   */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1243  static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1244  				struct inode *const inode)
1245  {
1246  	umode_t dir_mode = nd->dir_mode;
1247  	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1248  
1249  	if (likely(!(dir_mode & S_ISVTX)))
1250  		return 0;
1251  
1252  	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1253  		return 0;
1254  
1255  	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1256  		return 0;
1257  
1258  	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1259  
1260  	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1261  		return 0;
1262  
1263  	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1264  		return 0;
1265  
1266  	if (likely(dir_mode & 0002)) {
1267  		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1268  		return -EACCES;
1269  	}
1270  
1271  	if (dir_mode & 0020) {
1272  		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1273  			audit_log_path_denied(AUDIT_ANOM_CREAT,
1274  					      "sticky_create_fifo");
1275  			return -EACCES;
1276  		}
1277  
1278  		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1279  			audit_log_path_denied(AUDIT_ANOM_CREAT,
1280  					      "sticky_create_regular");
1281  			return -EACCES;
1282  		}
1283  	}
1284  
1285  	return 0;
1286  }
1287  
1288  /*
1289   * follow_up - Find the mountpoint of path's vfsmount
1290   *
1291   * Given a path, find the mountpoint of its source file system.
1292   * Replace @path with the path of the mountpoint in the parent mount.
1293   * Up is towards /.
1294   *
1295   * Return 1 if we went up a level and 0 if we were already at the
1296   * root.
1297   */
follow_up(struct path * path)1298  int follow_up(struct path *path)
1299  {
1300  	struct mount *mnt = real_mount(path->mnt);
1301  	struct mount *parent;
1302  	struct dentry *mountpoint;
1303  
1304  	read_seqlock_excl(&mount_lock);
1305  	parent = mnt->mnt_parent;
1306  	if (parent == mnt) {
1307  		read_sequnlock_excl(&mount_lock);
1308  		return 0;
1309  	}
1310  	mntget(&parent->mnt);
1311  	mountpoint = dget(mnt->mnt_mountpoint);
1312  	read_sequnlock_excl(&mount_lock);
1313  	dput(path->dentry);
1314  	path->dentry = mountpoint;
1315  	mntput(path->mnt);
1316  	path->mnt = &parent->mnt;
1317  	return 1;
1318  }
1319  EXPORT_SYMBOL(follow_up);
1320  
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1321  static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1322  				  struct path *path, unsigned *seqp)
1323  {
1324  	while (mnt_has_parent(m)) {
1325  		struct dentry *mountpoint = m->mnt_mountpoint;
1326  
1327  		m = m->mnt_parent;
1328  		if (unlikely(root->dentry == mountpoint &&
1329  			     root->mnt == &m->mnt))
1330  			break;
1331  		if (mountpoint != m->mnt.mnt_root) {
1332  			path->mnt = &m->mnt;
1333  			path->dentry = mountpoint;
1334  			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1335  			return true;
1336  		}
1337  	}
1338  	return false;
1339  }
1340  
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1341  static bool choose_mountpoint(struct mount *m, const struct path *root,
1342  			      struct path *path)
1343  {
1344  	bool found;
1345  
1346  	rcu_read_lock();
1347  	while (1) {
1348  		unsigned seq, mseq = read_seqbegin(&mount_lock);
1349  
1350  		found = choose_mountpoint_rcu(m, root, path, &seq);
1351  		if (unlikely(!found)) {
1352  			if (!read_seqretry(&mount_lock, mseq))
1353  				break;
1354  		} else {
1355  			if (likely(__legitimize_path(path, seq, mseq)))
1356  				break;
1357  			rcu_read_unlock();
1358  			path_put(path);
1359  			rcu_read_lock();
1360  		}
1361  	}
1362  	rcu_read_unlock();
1363  	return found;
1364  }
1365  
1366  /*
1367   * Perform an automount
1368   * - return -EISDIR to tell follow_managed() to stop and return the path we
1369   *   were called with.
1370   */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1371  static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1372  {
1373  	struct dentry *dentry = path->dentry;
1374  
1375  	/* We don't want to mount if someone's just doing a stat -
1376  	 * unless they're stat'ing a directory and appended a '/' to
1377  	 * the name.
1378  	 *
1379  	 * We do, however, want to mount if someone wants to open or
1380  	 * create a file of any type under the mountpoint, wants to
1381  	 * traverse through the mountpoint or wants to open the
1382  	 * mounted directory.  Also, autofs may mark negative dentries
1383  	 * as being automount points.  These will need the attentions
1384  	 * of the daemon to instantiate them before they can be used.
1385  	 */
1386  	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1387  			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1388  	    dentry->d_inode)
1389  		return -EISDIR;
1390  
1391  	if (count && (*count)++ >= MAXSYMLINKS)
1392  		return -ELOOP;
1393  
1394  	return finish_automount(dentry->d_op->d_automount(path), path);
1395  }
1396  
1397  /*
1398   * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1399   * dentries are pinned but not locked here, so negative dentry can go
1400   * positive right under us.  Use of smp_load_acquire() provides a barrier
1401   * sufficient for ->d_inode and ->d_flags consistency.
1402   */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1403  static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1404  			     int *count, unsigned lookup_flags)
1405  {
1406  	struct vfsmount *mnt = path->mnt;
1407  	bool need_mntput = false;
1408  	int ret = 0;
1409  
1410  	while (flags & DCACHE_MANAGED_DENTRY) {
1411  		/* Allow the filesystem to manage the transit without i_mutex
1412  		 * being held. */
1413  		if (flags & DCACHE_MANAGE_TRANSIT) {
1414  			ret = path->dentry->d_op->d_manage(path, false);
1415  			flags = smp_load_acquire(&path->dentry->d_flags);
1416  			if (ret < 0)
1417  				break;
1418  		}
1419  
1420  		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1421  			struct vfsmount *mounted = lookup_mnt(path);
1422  			if (mounted) {		// ... in our namespace
1423  				dput(path->dentry);
1424  				if (need_mntput)
1425  					mntput(path->mnt);
1426  				path->mnt = mounted;
1427  				path->dentry = dget(mounted->mnt_root);
1428  				// here we know it's positive
1429  				flags = path->dentry->d_flags;
1430  				need_mntput = true;
1431  				continue;
1432  			}
1433  		}
1434  
1435  		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1436  			break;
1437  
1438  		// uncovered automount point
1439  		ret = follow_automount(path, count, lookup_flags);
1440  		flags = smp_load_acquire(&path->dentry->d_flags);
1441  		if (ret < 0)
1442  			break;
1443  	}
1444  
1445  	if (ret == -EISDIR)
1446  		ret = 0;
1447  	// possible if you race with several mount --move
1448  	if (need_mntput && path->mnt == mnt)
1449  		mntput(path->mnt);
1450  	if (!ret && unlikely(d_flags_negative(flags)))
1451  		ret = -ENOENT;
1452  	*jumped = need_mntput;
1453  	return ret;
1454  }
1455  
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1456  static inline int traverse_mounts(struct path *path, bool *jumped,
1457  				  int *count, unsigned lookup_flags)
1458  {
1459  	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1460  
1461  	/* fastpath */
1462  	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1463  		*jumped = false;
1464  		if (unlikely(d_flags_negative(flags)))
1465  			return -ENOENT;
1466  		return 0;
1467  	}
1468  	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1469  }
1470  
follow_down_one(struct path * path)1471  int follow_down_one(struct path *path)
1472  {
1473  	struct vfsmount *mounted;
1474  
1475  	mounted = lookup_mnt(path);
1476  	if (mounted) {
1477  		dput(path->dentry);
1478  		mntput(path->mnt);
1479  		path->mnt = mounted;
1480  		path->dentry = dget(mounted->mnt_root);
1481  		return 1;
1482  	}
1483  	return 0;
1484  }
1485  EXPORT_SYMBOL(follow_down_one);
1486  
1487  /*
1488   * Follow down to the covering mount currently visible to userspace.  At each
1489   * point, the filesystem owning that dentry may be queried as to whether the
1490   * caller is permitted to proceed or not.
1491   */
follow_down(struct path * path,unsigned int flags)1492  int follow_down(struct path *path, unsigned int flags)
1493  {
1494  	struct vfsmount *mnt = path->mnt;
1495  	bool jumped;
1496  	int ret = traverse_mounts(path, &jumped, NULL, flags);
1497  
1498  	if (path->mnt != mnt)
1499  		mntput(mnt);
1500  	return ret;
1501  }
1502  EXPORT_SYMBOL(follow_down);
1503  
1504  /*
1505   * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1506   * we meet a managed dentry that would need blocking.
1507   */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1508  static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1509  {
1510  	struct dentry *dentry = path->dentry;
1511  	unsigned int flags = dentry->d_flags;
1512  
1513  	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1514  		return true;
1515  
1516  	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1517  		return false;
1518  
1519  	for (;;) {
1520  		/*
1521  		 * Don't forget we might have a non-mountpoint managed dentry
1522  		 * that wants to block transit.
1523  		 */
1524  		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1525  			int res = dentry->d_op->d_manage(path, true);
1526  			if (res)
1527  				return res == -EISDIR;
1528  			flags = dentry->d_flags;
1529  		}
1530  
1531  		if (flags & DCACHE_MOUNTED) {
1532  			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1533  			if (mounted) {
1534  				path->mnt = &mounted->mnt;
1535  				dentry = path->dentry = mounted->mnt.mnt_root;
1536  				nd->state |= ND_JUMPED;
1537  				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1538  				flags = dentry->d_flags;
1539  				// makes sure that non-RCU pathwalk could reach
1540  				// this state.
1541  				if (read_seqretry(&mount_lock, nd->m_seq))
1542  					return false;
1543  				continue;
1544  			}
1545  			if (read_seqretry(&mount_lock, nd->m_seq))
1546  				return false;
1547  		}
1548  		return !(flags & DCACHE_NEED_AUTOMOUNT);
1549  	}
1550  }
1551  
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1552  static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1553  			  struct path *path)
1554  {
1555  	bool jumped;
1556  	int ret;
1557  
1558  	path->mnt = nd->path.mnt;
1559  	path->dentry = dentry;
1560  	if (nd->flags & LOOKUP_RCU) {
1561  		unsigned int seq = nd->next_seq;
1562  		if (likely(__follow_mount_rcu(nd, path)))
1563  			return 0;
1564  		// *path and nd->next_seq might've been clobbered
1565  		path->mnt = nd->path.mnt;
1566  		path->dentry = dentry;
1567  		nd->next_seq = seq;
1568  		if (!try_to_unlazy_next(nd, dentry))
1569  			return -ECHILD;
1570  	}
1571  	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1572  	if (jumped) {
1573  		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1574  			ret = -EXDEV;
1575  		else
1576  			nd->state |= ND_JUMPED;
1577  	}
1578  	if (unlikely(ret)) {
1579  		dput(path->dentry);
1580  		if (path->mnt != nd->path.mnt)
1581  			mntput(path->mnt);
1582  	}
1583  	return ret;
1584  }
1585  
1586  /*
1587   * This looks up the name in dcache and possibly revalidates the found dentry.
1588   * NULL is returned if the dentry does not exist in the cache.
1589   */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1590  static struct dentry *lookup_dcache(const struct qstr *name,
1591  				    struct dentry *dir,
1592  				    unsigned int flags)
1593  {
1594  	struct dentry *dentry = d_lookup(dir, name);
1595  	if (dentry) {
1596  		int error = d_revalidate(dentry, flags);
1597  		if (unlikely(error <= 0)) {
1598  			if (!error)
1599  				d_invalidate(dentry);
1600  			dput(dentry);
1601  			return ERR_PTR(error);
1602  		}
1603  	}
1604  	return dentry;
1605  }
1606  
1607  /*
1608   * Parent directory has inode locked exclusive.  This is one
1609   * and only case when ->lookup() gets called on non in-lookup
1610   * dentries - as the matter of fact, this only gets called
1611   * when directory is guaranteed to have no in-lookup children
1612   * at all.
1613   */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1614  struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1615  				    struct dentry *base,
1616  				    unsigned int flags)
1617  {
1618  	struct dentry *dentry = lookup_dcache(name, base, flags);
1619  	struct dentry *old;
1620  	struct inode *dir = base->d_inode;
1621  
1622  	if (dentry)
1623  		return dentry;
1624  
1625  	/* Don't create child dentry for a dead directory. */
1626  	if (unlikely(IS_DEADDIR(dir)))
1627  		return ERR_PTR(-ENOENT);
1628  
1629  	dentry = d_alloc(base, name);
1630  	if (unlikely(!dentry))
1631  		return ERR_PTR(-ENOMEM);
1632  
1633  	old = dir->i_op->lookup(dir, dentry, flags);
1634  	if (unlikely(old)) {
1635  		dput(dentry);
1636  		dentry = old;
1637  	}
1638  	return dentry;
1639  }
1640  EXPORT_SYMBOL(lookup_one_qstr_excl);
1641  
1642  /**
1643   * lookup_fast - do fast lockless (but racy) lookup of a dentry
1644   * @nd: current nameidata
1645   *
1646   * Do a fast, but racy lookup in the dcache for the given dentry, and
1647   * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1648   * found. On error, an ERR_PTR will be returned.
1649   *
1650   * If this function returns a valid dentry and the walk is no longer
1651   * lazy, the dentry will carry a reference that must later be put. If
1652   * RCU mode is still in force, then this is not the case and the dentry
1653   * must be legitimized before use. If this returns NULL, then the walk
1654   * will no longer be in RCU mode.
1655   */
lookup_fast(struct nameidata * nd)1656  static struct dentry *lookup_fast(struct nameidata *nd)
1657  {
1658  	struct dentry *dentry, *parent = nd->path.dentry;
1659  	int status = 1;
1660  
1661  	/*
1662  	 * Rename seqlock is not required here because in the off chance
1663  	 * of a false negative due to a concurrent rename, the caller is
1664  	 * going to fall back to non-racy lookup.
1665  	 */
1666  	if (nd->flags & LOOKUP_RCU) {
1667  		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1668  		if (unlikely(!dentry)) {
1669  			if (!try_to_unlazy(nd))
1670  				return ERR_PTR(-ECHILD);
1671  			return NULL;
1672  		}
1673  
1674  		/*
1675  		 * This sequence count validates that the parent had no
1676  		 * changes while we did the lookup of the dentry above.
1677  		 */
1678  		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1679  			return ERR_PTR(-ECHILD);
1680  
1681  		status = d_revalidate(dentry, nd->flags);
1682  		if (likely(status > 0))
1683  			return dentry;
1684  		if (!try_to_unlazy_next(nd, dentry))
1685  			return ERR_PTR(-ECHILD);
1686  		if (status == -ECHILD)
1687  			/* we'd been told to redo it in non-rcu mode */
1688  			status = d_revalidate(dentry, nd->flags);
1689  	} else {
1690  		dentry = __d_lookup(parent, &nd->last);
1691  		if (unlikely(!dentry))
1692  			return NULL;
1693  		status = d_revalidate(dentry, nd->flags);
1694  	}
1695  	if (unlikely(status <= 0)) {
1696  		if (!status)
1697  			d_invalidate(dentry);
1698  		dput(dentry);
1699  		return ERR_PTR(status);
1700  	}
1701  	return dentry;
1702  }
1703  
1704  /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1705  static struct dentry *__lookup_slow(const struct qstr *name,
1706  				    struct dentry *dir,
1707  				    unsigned int flags)
1708  {
1709  	struct dentry *dentry, *old;
1710  	struct inode *inode = dir->d_inode;
1711  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1712  
1713  	/* Don't go there if it's already dead */
1714  	if (unlikely(IS_DEADDIR(inode)))
1715  		return ERR_PTR(-ENOENT);
1716  again:
1717  	dentry = d_alloc_parallel(dir, name, &wq);
1718  	if (IS_ERR(dentry))
1719  		return dentry;
1720  	if (unlikely(!d_in_lookup(dentry))) {
1721  		int error = d_revalidate(dentry, flags);
1722  		if (unlikely(error <= 0)) {
1723  			if (!error) {
1724  				d_invalidate(dentry);
1725  				dput(dentry);
1726  				goto again;
1727  			}
1728  			dput(dentry);
1729  			dentry = ERR_PTR(error);
1730  		}
1731  	} else {
1732  		old = inode->i_op->lookup(inode, dentry, flags);
1733  		d_lookup_done(dentry);
1734  		if (unlikely(old)) {
1735  			dput(dentry);
1736  			dentry = old;
1737  		}
1738  	}
1739  	return dentry;
1740  }
1741  
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1742  static struct dentry *lookup_slow(const struct qstr *name,
1743  				  struct dentry *dir,
1744  				  unsigned int flags)
1745  {
1746  	struct inode *inode = dir->d_inode;
1747  	struct dentry *res;
1748  	inode_lock_shared(inode);
1749  	res = __lookup_slow(name, dir, flags);
1750  	inode_unlock_shared(inode);
1751  	return res;
1752  }
1753  
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1754  static inline int may_lookup(struct mnt_idmap *idmap,
1755  			     struct nameidata *restrict nd)
1756  {
1757  	int err, mask;
1758  
1759  	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1760  	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1761  	if (likely(!err))
1762  		return 0;
1763  
1764  	// If we failed, and we weren't in LOOKUP_RCU, it's final
1765  	if (!(nd->flags & LOOKUP_RCU))
1766  		return err;
1767  
1768  	// Drop out of RCU mode to make sure it wasn't transient
1769  	if (!try_to_unlazy(nd))
1770  		return -ECHILD;	// redo it all non-lazy
1771  
1772  	if (err != -ECHILD)	// hard error
1773  		return err;
1774  
1775  	return inode_permission(idmap, nd->inode, MAY_EXEC);
1776  }
1777  
reserve_stack(struct nameidata * nd,struct path * link)1778  static int reserve_stack(struct nameidata *nd, struct path *link)
1779  {
1780  	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1781  		return -ELOOP;
1782  
1783  	if (likely(nd->depth != EMBEDDED_LEVELS))
1784  		return 0;
1785  	if (likely(nd->stack != nd->internal))
1786  		return 0;
1787  	if (likely(nd_alloc_stack(nd)))
1788  		return 0;
1789  
1790  	if (nd->flags & LOOKUP_RCU) {
1791  		// we need to grab link before we do unlazy.  And we can't skip
1792  		// unlazy even if we fail to grab the link - cleanup needs it
1793  		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1794  
1795  		if (!try_to_unlazy(nd) || !grabbed_link)
1796  			return -ECHILD;
1797  
1798  		if (nd_alloc_stack(nd))
1799  			return 0;
1800  	}
1801  	return -ENOMEM;
1802  }
1803  
1804  enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1805  
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1806  static const char *pick_link(struct nameidata *nd, struct path *link,
1807  		     struct inode *inode, int flags)
1808  {
1809  	struct saved *last;
1810  	const char *res;
1811  	int error = reserve_stack(nd, link);
1812  
1813  	if (unlikely(error)) {
1814  		if (!(nd->flags & LOOKUP_RCU))
1815  			path_put(link);
1816  		return ERR_PTR(error);
1817  	}
1818  	last = nd->stack + nd->depth++;
1819  	last->link = *link;
1820  	clear_delayed_call(&last->done);
1821  	last->seq = nd->next_seq;
1822  
1823  	if (flags & WALK_TRAILING) {
1824  		error = may_follow_link(nd, inode);
1825  		if (unlikely(error))
1826  			return ERR_PTR(error);
1827  	}
1828  
1829  	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1830  			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1831  		return ERR_PTR(-ELOOP);
1832  
1833  	if (!(nd->flags & LOOKUP_RCU)) {
1834  		touch_atime(&last->link);
1835  		cond_resched();
1836  	} else if (atime_needs_update(&last->link, inode)) {
1837  		if (!try_to_unlazy(nd))
1838  			return ERR_PTR(-ECHILD);
1839  		touch_atime(&last->link);
1840  	}
1841  
1842  	error = security_inode_follow_link(link->dentry, inode,
1843  					   nd->flags & LOOKUP_RCU);
1844  	if (unlikely(error))
1845  		return ERR_PTR(error);
1846  
1847  	res = READ_ONCE(inode->i_link);
1848  	if (!res) {
1849  		const char * (*get)(struct dentry *, struct inode *,
1850  				struct delayed_call *);
1851  		get = inode->i_op->get_link;
1852  		if (nd->flags & LOOKUP_RCU) {
1853  			res = get(NULL, inode, &last->done);
1854  			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1855  				res = get(link->dentry, inode, &last->done);
1856  		} else {
1857  			res = get(link->dentry, inode, &last->done);
1858  		}
1859  		if (!res)
1860  			goto all_done;
1861  		if (IS_ERR(res))
1862  			return res;
1863  	}
1864  	if (*res == '/') {
1865  		error = nd_jump_root(nd);
1866  		if (unlikely(error))
1867  			return ERR_PTR(error);
1868  		while (unlikely(*++res == '/'))
1869  			;
1870  	}
1871  	if (*res)
1872  		return res;
1873  all_done: // pure jump
1874  	put_link(nd);
1875  	return NULL;
1876  }
1877  
1878  /*
1879   * Do we need to follow links? We _really_ want to be able
1880   * to do this check without having to look at inode->i_op,
1881   * so we keep a cache of "no, this doesn't need follow_link"
1882   * for the common case.
1883   *
1884   * NOTE: dentry must be what nd->next_seq had been sampled from.
1885   */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1886  static const char *step_into(struct nameidata *nd, int flags,
1887  		     struct dentry *dentry)
1888  {
1889  	struct path path;
1890  	struct inode *inode;
1891  	int err = handle_mounts(nd, dentry, &path);
1892  
1893  	if (err < 0)
1894  		return ERR_PTR(err);
1895  	inode = path.dentry->d_inode;
1896  	if (likely(!d_is_symlink(path.dentry)) ||
1897  	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1898  	   (flags & WALK_NOFOLLOW)) {
1899  		/* not a symlink or should not follow */
1900  		if (nd->flags & LOOKUP_RCU) {
1901  			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1902  				return ERR_PTR(-ECHILD);
1903  			if (unlikely(!inode))
1904  				return ERR_PTR(-ENOENT);
1905  		} else {
1906  			dput(nd->path.dentry);
1907  			if (nd->path.mnt != path.mnt)
1908  				mntput(nd->path.mnt);
1909  		}
1910  		nd->path = path;
1911  		nd->inode = inode;
1912  		nd->seq = nd->next_seq;
1913  		return NULL;
1914  	}
1915  	if (nd->flags & LOOKUP_RCU) {
1916  		/* make sure that d_is_symlink above matches inode */
1917  		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1918  			return ERR_PTR(-ECHILD);
1919  	} else {
1920  		if (path.mnt == nd->path.mnt)
1921  			mntget(path.mnt);
1922  	}
1923  	return pick_link(nd, &path, inode, flags);
1924  }
1925  
follow_dotdot_rcu(struct nameidata * nd)1926  static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1927  {
1928  	struct dentry *parent, *old;
1929  
1930  	if (path_equal(&nd->path, &nd->root))
1931  		goto in_root;
1932  	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1933  		struct path path;
1934  		unsigned seq;
1935  		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1936  					   &nd->root, &path, &seq))
1937  			goto in_root;
1938  		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1939  			return ERR_PTR(-ECHILD);
1940  		nd->path = path;
1941  		nd->inode = path.dentry->d_inode;
1942  		nd->seq = seq;
1943  		// makes sure that non-RCU pathwalk could reach this state
1944  		if (read_seqretry(&mount_lock, nd->m_seq))
1945  			return ERR_PTR(-ECHILD);
1946  		/* we know that mountpoint was pinned */
1947  	}
1948  	old = nd->path.dentry;
1949  	parent = old->d_parent;
1950  	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1951  	// makes sure that non-RCU pathwalk could reach this state
1952  	if (read_seqcount_retry(&old->d_seq, nd->seq))
1953  		return ERR_PTR(-ECHILD);
1954  	if (unlikely(!path_connected(nd->path.mnt, parent)))
1955  		return ERR_PTR(-ECHILD);
1956  	return parent;
1957  in_root:
1958  	if (read_seqretry(&mount_lock, nd->m_seq))
1959  		return ERR_PTR(-ECHILD);
1960  	if (unlikely(nd->flags & LOOKUP_BENEATH))
1961  		return ERR_PTR(-ECHILD);
1962  	nd->next_seq = nd->seq;
1963  	return nd->path.dentry;
1964  }
1965  
follow_dotdot(struct nameidata * nd)1966  static struct dentry *follow_dotdot(struct nameidata *nd)
1967  {
1968  	struct dentry *parent;
1969  
1970  	if (path_equal(&nd->path, &nd->root))
1971  		goto in_root;
1972  	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1973  		struct path path;
1974  
1975  		if (!choose_mountpoint(real_mount(nd->path.mnt),
1976  				       &nd->root, &path))
1977  			goto in_root;
1978  		path_put(&nd->path);
1979  		nd->path = path;
1980  		nd->inode = path.dentry->d_inode;
1981  		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1982  			return ERR_PTR(-EXDEV);
1983  	}
1984  	/* rare case of legitimate dget_parent()... */
1985  	parent = dget_parent(nd->path.dentry);
1986  	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1987  		dput(parent);
1988  		return ERR_PTR(-ENOENT);
1989  	}
1990  	return parent;
1991  
1992  in_root:
1993  	if (unlikely(nd->flags & LOOKUP_BENEATH))
1994  		return ERR_PTR(-EXDEV);
1995  	return dget(nd->path.dentry);
1996  }
1997  
handle_dots(struct nameidata * nd,int type)1998  static const char *handle_dots(struct nameidata *nd, int type)
1999  {
2000  	if (type == LAST_DOTDOT) {
2001  		const char *error = NULL;
2002  		struct dentry *parent;
2003  
2004  		if (!nd->root.mnt) {
2005  			error = ERR_PTR(set_root(nd));
2006  			if (error)
2007  				return error;
2008  		}
2009  		if (nd->flags & LOOKUP_RCU)
2010  			parent = follow_dotdot_rcu(nd);
2011  		else
2012  			parent = follow_dotdot(nd);
2013  		if (IS_ERR(parent))
2014  			return ERR_CAST(parent);
2015  		error = step_into(nd, WALK_NOFOLLOW, parent);
2016  		if (unlikely(error))
2017  			return error;
2018  
2019  		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2020  			/*
2021  			 * If there was a racing rename or mount along our
2022  			 * path, then we can't be sure that ".." hasn't jumped
2023  			 * above nd->root (and so userspace should retry or use
2024  			 * some fallback).
2025  			 */
2026  			smp_rmb();
2027  			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2028  				return ERR_PTR(-EAGAIN);
2029  			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2030  				return ERR_PTR(-EAGAIN);
2031  		}
2032  	}
2033  	return NULL;
2034  }
2035  
walk_component(struct nameidata * nd,int flags)2036  static const char *walk_component(struct nameidata *nd, int flags)
2037  {
2038  	struct dentry *dentry;
2039  	/*
2040  	 * "." and ".." are special - ".." especially so because it has
2041  	 * to be able to know about the current root directory and
2042  	 * parent relationships.
2043  	 */
2044  	if (unlikely(nd->last_type != LAST_NORM)) {
2045  		if (!(flags & WALK_MORE) && nd->depth)
2046  			put_link(nd);
2047  		return handle_dots(nd, nd->last_type);
2048  	}
2049  	dentry = lookup_fast(nd);
2050  	if (IS_ERR(dentry))
2051  		return ERR_CAST(dentry);
2052  	if (unlikely(!dentry)) {
2053  		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2054  		if (IS_ERR(dentry))
2055  			return ERR_CAST(dentry);
2056  	}
2057  	if (!(flags & WALK_MORE) && nd->depth)
2058  		put_link(nd);
2059  	return step_into(nd, flags, dentry);
2060  }
2061  
2062  /*
2063   * We can do the critical dentry name comparison and hashing
2064   * operations one word at a time, but we are limited to:
2065   *
2066   * - Architectures with fast unaligned word accesses. We could
2067   *   do a "get_unaligned()" if this helps and is sufficiently
2068   *   fast.
2069   *
2070   * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2071   *   do not trap on the (extremely unlikely) case of a page
2072   *   crossing operation.
2073   *
2074   * - Furthermore, we need an efficient 64-bit compile for the
2075   *   64-bit case in order to generate the "number of bytes in
2076   *   the final mask". Again, that could be replaced with a
2077   *   efficient population count instruction or similar.
2078   */
2079  #ifdef CONFIG_DCACHE_WORD_ACCESS
2080  
2081  #include <asm/word-at-a-time.h>
2082  
2083  #ifdef HASH_MIX
2084  
2085  /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2086  
2087  #elif defined(CONFIG_64BIT)
2088  /*
2089   * Register pressure in the mixing function is an issue, particularly
2090   * on 32-bit x86, but almost any function requires one state value and
2091   * one temporary.  Instead, use a function designed for two state values
2092   * and no temporaries.
2093   *
2094   * This function cannot create a collision in only two iterations, so
2095   * we have two iterations to achieve avalanche.  In those two iterations,
2096   * we have six layers of mixing, which is enough to spread one bit's
2097   * influence out to 2^6 = 64 state bits.
2098   *
2099   * Rotate constants are scored by considering either 64 one-bit input
2100   * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2101   * probability of that delta causing a change to each of the 128 output
2102   * bits, using a sample of random initial states.
2103   *
2104   * The Shannon entropy of the computed probabilities is then summed
2105   * to produce a score.  Ideally, any input change has a 50% chance of
2106   * toggling any given output bit.
2107   *
2108   * Mixing scores (in bits) for (12,45):
2109   * Input delta: 1-bit      2-bit
2110   * 1 round:     713.3    42542.6
2111   * 2 rounds:   2753.7   140389.8
2112   * 3 rounds:   5954.1   233458.2
2113   * 4 rounds:   7862.6   256672.2
2114   * Perfect:    8192     258048
2115   *            (64*128) (64*63/2 * 128)
2116   */
2117  #define HASH_MIX(x, y, a)	\
2118  	(	x ^= (a),	\
2119  	y ^= x,	x = rol64(x,12),\
2120  	x += y,	y = rol64(y,45),\
2121  	y *= 9			)
2122  
2123  /*
2124   * Fold two longs into one 32-bit hash value.  This must be fast, but
2125   * latency isn't quite as critical, as there is a fair bit of additional
2126   * work done before the hash value is used.
2127   */
fold_hash(unsigned long x,unsigned long y)2128  static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2129  {
2130  	y ^= x * GOLDEN_RATIO_64;
2131  	y *= GOLDEN_RATIO_64;
2132  	return y >> 32;
2133  }
2134  
2135  #else	/* 32-bit case */
2136  
2137  /*
2138   * Mixing scores (in bits) for (7,20):
2139   * Input delta: 1-bit      2-bit
2140   * 1 round:     330.3     9201.6
2141   * 2 rounds:   1246.4    25475.4
2142   * 3 rounds:   1907.1    31295.1
2143   * 4 rounds:   2042.3    31718.6
2144   * Perfect:    2048      31744
2145   *            (32*64)   (32*31/2 * 64)
2146   */
2147  #define HASH_MIX(x, y, a)	\
2148  	(	x ^= (a),	\
2149  	y ^= x,	x = rol32(x, 7),\
2150  	x += y,	y = rol32(y,20),\
2151  	y *= 9			)
2152  
fold_hash(unsigned long x,unsigned long y)2153  static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2154  {
2155  	/* Use arch-optimized multiply if one exists */
2156  	return __hash_32(y ^ __hash_32(x));
2157  }
2158  
2159  #endif
2160  
2161  /*
2162   * Return the hash of a string of known length.  This is carfully
2163   * designed to match hash_name(), which is the more critical function.
2164   * In particular, we must end by hashing a final word containing 0..7
2165   * payload bytes, to match the way that hash_name() iterates until it
2166   * finds the delimiter after the name.
2167   */
full_name_hash(const void * salt,const char * name,unsigned int len)2168  unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2169  {
2170  	unsigned long a, x = 0, y = (unsigned long)salt;
2171  
2172  	for (;;) {
2173  		if (!len)
2174  			goto done;
2175  		a = load_unaligned_zeropad(name);
2176  		if (len < sizeof(unsigned long))
2177  			break;
2178  		HASH_MIX(x, y, a);
2179  		name += sizeof(unsigned long);
2180  		len -= sizeof(unsigned long);
2181  	}
2182  	x ^= a & bytemask_from_count(len);
2183  done:
2184  	return fold_hash(x, y);
2185  }
2186  EXPORT_SYMBOL(full_name_hash);
2187  
2188  /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2189  u64 hashlen_string(const void *salt, const char *name)
2190  {
2191  	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2192  	unsigned long adata, mask, len;
2193  	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2194  
2195  	len = 0;
2196  	goto inside;
2197  
2198  	do {
2199  		HASH_MIX(x, y, a);
2200  		len += sizeof(unsigned long);
2201  inside:
2202  		a = load_unaligned_zeropad(name+len);
2203  	} while (!has_zero(a, &adata, &constants));
2204  
2205  	adata = prep_zero_mask(a, adata, &constants);
2206  	mask = create_zero_mask(adata);
2207  	x ^= a & zero_bytemask(mask);
2208  
2209  	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2210  }
2211  EXPORT_SYMBOL(hashlen_string);
2212  
2213  /*
2214   * Calculate the length and hash of the path component, and
2215   * return the length as the result.
2216   */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2217  static inline const char *hash_name(struct nameidata *nd,
2218  				    const char *name,
2219  				    unsigned long *lastword)
2220  {
2221  	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2222  	unsigned long adata, bdata, mask, len;
2223  	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2224  
2225  	/*
2226  	 * The first iteration is special, because it can result in
2227  	 * '.' and '..' and has no mixing other than the final fold.
2228  	 */
2229  	a = load_unaligned_zeropad(name);
2230  	b = a ^ REPEAT_BYTE('/');
2231  	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2232  		adata = prep_zero_mask(a, adata, &constants);
2233  		bdata = prep_zero_mask(b, bdata, &constants);
2234  		mask = create_zero_mask(adata | bdata);
2235  		a &= zero_bytemask(mask);
2236  		*lastword = a;
2237  		len = find_zero(mask);
2238  		nd->last.hash = fold_hash(a, y);
2239  		nd->last.len = len;
2240  		return name + len;
2241  	}
2242  
2243  	len = 0;
2244  	x = 0;
2245  	do {
2246  		HASH_MIX(x, y, a);
2247  		len += sizeof(unsigned long);
2248  		a = load_unaligned_zeropad(name+len);
2249  		b = a ^ REPEAT_BYTE('/');
2250  	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2251  
2252  	adata = prep_zero_mask(a, adata, &constants);
2253  	bdata = prep_zero_mask(b, bdata, &constants);
2254  	mask = create_zero_mask(adata | bdata);
2255  	a &= zero_bytemask(mask);
2256  	x ^= a;
2257  	len += find_zero(mask);
2258  	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2259  
2260  	nd->last.hash = fold_hash(x, y);
2261  	nd->last.len = len;
2262  	return name + len;
2263  }
2264  
2265  /*
2266   * Note that the 'last' word is always zero-masked, but
2267   * was loaded as a possibly big-endian word.
2268   */
2269  #ifdef __BIG_ENDIAN
2270    #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2271    #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2272  #endif
2273  
2274  #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2275  
2276  /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2277  unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2278  {
2279  	unsigned long hash = init_name_hash(salt);
2280  	while (len--)
2281  		hash = partial_name_hash((unsigned char)*name++, hash);
2282  	return end_name_hash(hash);
2283  }
2284  EXPORT_SYMBOL(full_name_hash);
2285  
2286  /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2287  u64 hashlen_string(const void *salt, const char *name)
2288  {
2289  	unsigned long hash = init_name_hash(salt);
2290  	unsigned long len = 0, c;
2291  
2292  	c = (unsigned char)*name;
2293  	while (c) {
2294  		len++;
2295  		hash = partial_name_hash(c, hash);
2296  		c = (unsigned char)name[len];
2297  	}
2298  	return hashlen_create(end_name_hash(hash), len);
2299  }
2300  EXPORT_SYMBOL(hashlen_string);
2301  
2302  /*
2303   * We know there's a real path component here of at least
2304   * one character.
2305   */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2306  static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2307  {
2308  	unsigned long hash = init_name_hash(nd->path.dentry);
2309  	unsigned long len = 0, c, last = 0;
2310  
2311  	c = (unsigned char)*name;
2312  	do {
2313  		last = (last << 8) + c;
2314  		len++;
2315  		hash = partial_name_hash(c, hash);
2316  		c = (unsigned char)name[len];
2317  	} while (c && c != '/');
2318  
2319  	// This is reliable for DOT or DOTDOT, since the component
2320  	// cannot contain NUL characters - top bits being zero means
2321  	// we cannot have had any other pathnames.
2322  	*lastword = last;
2323  	nd->last.hash = end_name_hash(hash);
2324  	nd->last.len = len;
2325  	return name + len;
2326  }
2327  
2328  #endif
2329  
2330  #ifndef LAST_WORD_IS_DOT
2331    #define LAST_WORD_IS_DOT	0x2e
2332    #define LAST_WORD_IS_DOTDOT	0x2e2e
2333  #endif
2334  
2335  /*
2336   * Name resolution.
2337   * This is the basic name resolution function, turning a pathname into
2338   * the final dentry. We expect 'base' to be positive and a directory.
2339   *
2340   * Returns 0 and nd will have valid dentry and mnt on success.
2341   * Returns error and drops reference to input namei data on failure.
2342   */
link_path_walk(const char * name,struct nameidata * nd)2343  static int link_path_walk(const char *name, struct nameidata *nd)
2344  {
2345  	int depth = 0; // depth <= nd->depth
2346  	int err;
2347  
2348  	nd->last_type = LAST_ROOT;
2349  	nd->flags |= LOOKUP_PARENT;
2350  	if (IS_ERR(name))
2351  		return PTR_ERR(name);
2352  	while (*name=='/')
2353  		name++;
2354  	if (!*name) {
2355  		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2356  		return 0;
2357  	}
2358  
2359  	/* At this point we know we have a real path component. */
2360  	for(;;) {
2361  		struct mnt_idmap *idmap;
2362  		const char *link;
2363  		unsigned long lastword;
2364  
2365  		idmap = mnt_idmap(nd->path.mnt);
2366  		err = may_lookup(idmap, nd);
2367  		if (err)
2368  			return err;
2369  
2370  		nd->last.name = name;
2371  		name = hash_name(nd, name, &lastword);
2372  
2373  		switch(lastword) {
2374  		case LAST_WORD_IS_DOTDOT:
2375  			nd->last_type = LAST_DOTDOT;
2376  			nd->state |= ND_JUMPED;
2377  			break;
2378  
2379  		case LAST_WORD_IS_DOT:
2380  			nd->last_type = LAST_DOT;
2381  			break;
2382  
2383  		default:
2384  			nd->last_type = LAST_NORM;
2385  			nd->state &= ~ND_JUMPED;
2386  
2387  			struct dentry *parent = nd->path.dentry;
2388  			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2389  				err = parent->d_op->d_hash(parent, &nd->last);
2390  				if (err < 0)
2391  					return err;
2392  			}
2393  		}
2394  
2395  		if (!*name)
2396  			goto OK;
2397  		/*
2398  		 * If it wasn't NUL, we know it was '/'. Skip that
2399  		 * slash, and continue until no more slashes.
2400  		 */
2401  		do {
2402  			name++;
2403  		} while (unlikely(*name == '/'));
2404  		if (unlikely(!*name)) {
2405  OK:
2406  			/* pathname or trailing symlink, done */
2407  			if (!depth) {
2408  				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2409  				nd->dir_mode = nd->inode->i_mode;
2410  				nd->flags &= ~LOOKUP_PARENT;
2411  				return 0;
2412  			}
2413  			/* last component of nested symlink */
2414  			name = nd->stack[--depth].name;
2415  			link = walk_component(nd, 0);
2416  		} else {
2417  			/* not the last component */
2418  			link = walk_component(nd, WALK_MORE);
2419  		}
2420  		if (unlikely(link)) {
2421  			if (IS_ERR(link))
2422  				return PTR_ERR(link);
2423  			/* a symlink to follow */
2424  			nd->stack[depth++].name = name;
2425  			name = link;
2426  			continue;
2427  		}
2428  		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2429  			if (nd->flags & LOOKUP_RCU) {
2430  				if (!try_to_unlazy(nd))
2431  					return -ECHILD;
2432  			}
2433  			return -ENOTDIR;
2434  		}
2435  	}
2436  }
2437  
2438  /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2439  static const char *path_init(struct nameidata *nd, unsigned flags)
2440  {
2441  	int error;
2442  	const char *s = nd->name->name;
2443  
2444  	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2445  	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2446  		return ERR_PTR(-EAGAIN);
2447  
2448  	if (!*s)
2449  		flags &= ~LOOKUP_RCU;
2450  	if (flags & LOOKUP_RCU)
2451  		rcu_read_lock();
2452  	else
2453  		nd->seq = nd->next_seq = 0;
2454  
2455  	nd->flags = flags;
2456  	nd->state |= ND_JUMPED;
2457  
2458  	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2459  	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2460  	smp_rmb();
2461  
2462  	if (nd->state & ND_ROOT_PRESET) {
2463  		struct dentry *root = nd->root.dentry;
2464  		struct inode *inode = root->d_inode;
2465  		if (*s && unlikely(!d_can_lookup(root)))
2466  			return ERR_PTR(-ENOTDIR);
2467  		nd->path = nd->root;
2468  		nd->inode = inode;
2469  		if (flags & LOOKUP_RCU) {
2470  			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2471  			nd->root_seq = nd->seq;
2472  		} else {
2473  			path_get(&nd->path);
2474  		}
2475  		return s;
2476  	}
2477  
2478  	nd->root.mnt = NULL;
2479  
2480  	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2481  	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2482  		error = nd_jump_root(nd);
2483  		if (unlikely(error))
2484  			return ERR_PTR(error);
2485  		return s;
2486  	}
2487  
2488  	/* Relative pathname -- get the starting-point it is relative to. */
2489  	if (nd->dfd == AT_FDCWD) {
2490  		if (flags & LOOKUP_RCU) {
2491  			struct fs_struct *fs = current->fs;
2492  			unsigned seq;
2493  
2494  			do {
2495  				seq = read_seqcount_begin(&fs->seq);
2496  				nd->path = fs->pwd;
2497  				nd->inode = nd->path.dentry->d_inode;
2498  				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2499  			} while (read_seqcount_retry(&fs->seq, seq));
2500  		} else {
2501  			get_fs_pwd(current->fs, &nd->path);
2502  			nd->inode = nd->path.dentry->d_inode;
2503  		}
2504  	} else {
2505  		/* Caller must check execute permissions on the starting path component */
2506  		struct fd f = fdget_raw(nd->dfd);
2507  		struct dentry *dentry;
2508  
2509  		if (!fd_file(f))
2510  			return ERR_PTR(-EBADF);
2511  
2512  		if (flags & LOOKUP_LINKAT_EMPTY) {
2513  			if (fd_file(f)->f_cred != current_cred() &&
2514  			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) {
2515  				fdput(f);
2516  				return ERR_PTR(-ENOENT);
2517  			}
2518  		}
2519  
2520  		dentry = fd_file(f)->f_path.dentry;
2521  
2522  		if (*s && unlikely(!d_can_lookup(dentry))) {
2523  			fdput(f);
2524  			return ERR_PTR(-ENOTDIR);
2525  		}
2526  
2527  		nd->path = fd_file(f)->f_path;
2528  		if (flags & LOOKUP_RCU) {
2529  			nd->inode = nd->path.dentry->d_inode;
2530  			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2531  		} else {
2532  			path_get(&nd->path);
2533  			nd->inode = nd->path.dentry->d_inode;
2534  		}
2535  		fdput(f);
2536  	}
2537  
2538  	/* For scoped-lookups we need to set the root to the dirfd as well. */
2539  	if (flags & LOOKUP_IS_SCOPED) {
2540  		nd->root = nd->path;
2541  		if (flags & LOOKUP_RCU) {
2542  			nd->root_seq = nd->seq;
2543  		} else {
2544  			path_get(&nd->root);
2545  			nd->state |= ND_ROOT_GRABBED;
2546  		}
2547  	}
2548  	return s;
2549  }
2550  
lookup_last(struct nameidata * nd)2551  static inline const char *lookup_last(struct nameidata *nd)
2552  {
2553  	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2554  		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2555  
2556  	return walk_component(nd, WALK_TRAILING);
2557  }
2558  
handle_lookup_down(struct nameidata * nd)2559  static int handle_lookup_down(struct nameidata *nd)
2560  {
2561  	if (!(nd->flags & LOOKUP_RCU))
2562  		dget(nd->path.dentry);
2563  	nd->next_seq = nd->seq;
2564  	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2565  }
2566  
2567  /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2568  static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2569  {
2570  	const char *s = path_init(nd, flags);
2571  	int err;
2572  
2573  	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2574  		err = handle_lookup_down(nd);
2575  		if (unlikely(err < 0))
2576  			s = ERR_PTR(err);
2577  	}
2578  
2579  	while (!(err = link_path_walk(s, nd)) &&
2580  	       (s = lookup_last(nd)) != NULL)
2581  		;
2582  	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2583  		err = handle_lookup_down(nd);
2584  		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2585  	}
2586  	if (!err)
2587  		err = complete_walk(nd);
2588  
2589  	if (!err && nd->flags & LOOKUP_DIRECTORY)
2590  		if (!d_can_lookup(nd->path.dentry))
2591  			err = -ENOTDIR;
2592  	if (!err) {
2593  		*path = nd->path;
2594  		nd->path.mnt = NULL;
2595  		nd->path.dentry = NULL;
2596  	}
2597  	terminate_walk(nd);
2598  	return err;
2599  }
2600  
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2601  int filename_lookup(int dfd, struct filename *name, unsigned flags,
2602  		    struct path *path, struct path *root)
2603  {
2604  	int retval;
2605  	struct nameidata nd;
2606  	if (IS_ERR(name))
2607  		return PTR_ERR(name);
2608  	set_nameidata(&nd, dfd, name, root);
2609  	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2610  	if (unlikely(retval == -ECHILD))
2611  		retval = path_lookupat(&nd, flags, path);
2612  	if (unlikely(retval == -ESTALE))
2613  		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2614  
2615  	if (likely(!retval))
2616  		audit_inode(name, path->dentry,
2617  			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2618  	restore_nameidata();
2619  	return retval;
2620  }
2621  
2622  /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2623  static int path_parentat(struct nameidata *nd, unsigned flags,
2624  				struct path *parent)
2625  {
2626  	const char *s = path_init(nd, flags);
2627  	int err = link_path_walk(s, nd);
2628  	if (!err)
2629  		err = complete_walk(nd);
2630  	if (!err) {
2631  		*parent = nd->path;
2632  		nd->path.mnt = NULL;
2633  		nd->path.dentry = NULL;
2634  	}
2635  	terminate_walk(nd);
2636  	return err;
2637  }
2638  
2639  /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2640  static int __filename_parentat(int dfd, struct filename *name,
2641  			       unsigned int flags, struct path *parent,
2642  			       struct qstr *last, int *type,
2643  			       const struct path *root)
2644  {
2645  	int retval;
2646  	struct nameidata nd;
2647  
2648  	if (IS_ERR(name))
2649  		return PTR_ERR(name);
2650  	set_nameidata(&nd, dfd, name, root);
2651  	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2652  	if (unlikely(retval == -ECHILD))
2653  		retval = path_parentat(&nd, flags, parent);
2654  	if (unlikely(retval == -ESTALE))
2655  		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2656  	if (likely(!retval)) {
2657  		*last = nd.last;
2658  		*type = nd.last_type;
2659  		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2660  	}
2661  	restore_nameidata();
2662  	return retval;
2663  }
2664  
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2665  static int filename_parentat(int dfd, struct filename *name,
2666  			     unsigned int flags, struct path *parent,
2667  			     struct qstr *last, int *type)
2668  {
2669  	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2670  }
2671  
2672  /* does lookup, returns the object with parent locked */
__kern_path_locked(int dfd,struct filename * name,struct path * path)2673  static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2674  {
2675  	struct dentry *d;
2676  	struct qstr last;
2677  	int type, error;
2678  
2679  	error = filename_parentat(dfd, name, 0, path, &last, &type);
2680  	if (error)
2681  		return ERR_PTR(error);
2682  	if (unlikely(type != LAST_NORM)) {
2683  		path_put(path);
2684  		return ERR_PTR(-EINVAL);
2685  	}
2686  	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2687  	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2688  	if (IS_ERR(d)) {
2689  		inode_unlock(path->dentry->d_inode);
2690  		path_put(path);
2691  	}
2692  	return d;
2693  }
2694  
kern_path_locked(const char * name,struct path * path)2695  struct dentry *kern_path_locked(const char *name, struct path *path)
2696  {
2697  	struct filename *filename = getname_kernel(name);
2698  	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2699  
2700  	putname(filename);
2701  	return res;
2702  }
2703  
user_path_locked_at(int dfd,const char __user * name,struct path * path)2704  struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2705  {
2706  	struct filename *filename = getname(name);
2707  	struct dentry *res = __kern_path_locked(dfd, filename, path);
2708  
2709  	putname(filename);
2710  	return res;
2711  }
2712  EXPORT_SYMBOL(user_path_locked_at);
2713  
kern_path(const char * name,unsigned int flags,struct path * path)2714  int kern_path(const char *name, unsigned int flags, struct path *path)
2715  {
2716  	struct filename *filename = getname_kernel(name);
2717  	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2718  
2719  	putname(filename);
2720  	return ret;
2721  
2722  }
2723  EXPORT_SYMBOL(kern_path);
2724  
2725  /**
2726   * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2727   * @filename: filename structure
2728   * @flags: lookup flags
2729   * @parent: pointer to struct path to fill
2730   * @last: last component
2731   * @type: type of the last component
2732   * @root: pointer to struct path of the base directory
2733   */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2734  int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2735  			   struct path *parent, struct qstr *last, int *type,
2736  			   const struct path *root)
2737  {
2738  	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2739  				    type, root);
2740  }
2741  EXPORT_SYMBOL(vfs_path_parent_lookup);
2742  
2743  /**
2744   * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2745   * @dentry:  pointer to dentry of the base directory
2746   * @mnt: pointer to vfs mount of the base directory
2747   * @name: pointer to file name
2748   * @flags: lookup flags
2749   * @path: pointer to struct path to fill
2750   */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2751  int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2752  		    const char *name, unsigned int flags,
2753  		    struct path *path)
2754  {
2755  	struct filename *filename;
2756  	struct path root = {.mnt = mnt, .dentry = dentry};
2757  	int ret;
2758  
2759  	filename = getname_kernel(name);
2760  	/* the first argument of filename_lookup() is ignored with root */
2761  	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2762  	putname(filename);
2763  	return ret;
2764  }
2765  EXPORT_SYMBOL(vfs_path_lookup);
2766  
lookup_one_common(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len,struct qstr * this)2767  static int lookup_one_common(struct mnt_idmap *idmap,
2768  			     const char *name, struct dentry *base, int len,
2769  			     struct qstr *this)
2770  {
2771  	this->name = name;
2772  	this->len = len;
2773  	this->hash = full_name_hash(base, name, len);
2774  	if (!len)
2775  		return -EACCES;
2776  
2777  	if (is_dot_dotdot(name, len))
2778  		return -EACCES;
2779  
2780  	while (len--) {
2781  		unsigned int c = *(const unsigned char *)name++;
2782  		if (c == '/' || c == '\0')
2783  			return -EACCES;
2784  	}
2785  	/*
2786  	 * See if the low-level filesystem might want
2787  	 * to use its own hash..
2788  	 */
2789  	if (base->d_flags & DCACHE_OP_HASH) {
2790  		int err = base->d_op->d_hash(base, this);
2791  		if (err < 0)
2792  			return err;
2793  	}
2794  
2795  	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2796  }
2797  
2798  /**
2799   * try_lookup_one_len - filesystem helper to lookup single pathname component
2800   * @name:	pathname component to lookup
2801   * @base:	base directory to lookup from
2802   * @len:	maximum length @len should be interpreted to
2803   *
2804   * Look up a dentry by name in the dcache, returning NULL if it does not
2805   * currently exist.  The function does not try to create a dentry.
2806   *
2807   * Note that this routine is purely a helper for filesystem usage and should
2808   * not be called by generic code.
2809   *
2810   * The caller must hold base->i_mutex.
2811   */
try_lookup_one_len(const char * name,struct dentry * base,int len)2812  struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2813  {
2814  	struct qstr this;
2815  	int err;
2816  
2817  	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2818  
2819  	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2820  	if (err)
2821  		return ERR_PTR(err);
2822  
2823  	return lookup_dcache(&this, base, 0);
2824  }
2825  EXPORT_SYMBOL(try_lookup_one_len);
2826  
2827  /**
2828   * lookup_one_len - filesystem helper to lookup single pathname component
2829   * @name:	pathname component to lookup
2830   * @base:	base directory to lookup from
2831   * @len:	maximum length @len should be interpreted to
2832   *
2833   * Note that this routine is purely a helper for filesystem usage and should
2834   * not be called by generic code.
2835   *
2836   * The caller must hold base->i_mutex.
2837   */
lookup_one_len(const char * name,struct dentry * base,int len)2838  struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2839  {
2840  	struct dentry *dentry;
2841  	struct qstr this;
2842  	int err;
2843  
2844  	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2845  
2846  	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2847  	if (err)
2848  		return ERR_PTR(err);
2849  
2850  	dentry = lookup_dcache(&this, base, 0);
2851  	return dentry ? dentry : __lookup_slow(&this, base, 0);
2852  }
2853  EXPORT_SYMBOL(lookup_one_len);
2854  
2855  /**
2856   * lookup_one - filesystem helper to lookup single pathname component
2857   * @idmap:	idmap of the mount the lookup is performed from
2858   * @name:	pathname component to lookup
2859   * @base:	base directory to lookup from
2860   * @len:	maximum length @len should be interpreted to
2861   *
2862   * Note that this routine is purely a helper for filesystem usage and should
2863   * not be called by generic code.
2864   *
2865   * The caller must hold base->i_mutex.
2866   */
lookup_one(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2867  struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2868  			  struct dentry *base, int len)
2869  {
2870  	struct dentry *dentry;
2871  	struct qstr this;
2872  	int err;
2873  
2874  	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2875  
2876  	err = lookup_one_common(idmap, name, base, len, &this);
2877  	if (err)
2878  		return ERR_PTR(err);
2879  
2880  	dentry = lookup_dcache(&this, base, 0);
2881  	return dentry ? dentry : __lookup_slow(&this, base, 0);
2882  }
2883  EXPORT_SYMBOL(lookup_one);
2884  
2885  /**
2886   * lookup_one_unlocked - filesystem helper to lookup single pathname component
2887   * @idmap:	idmap of the mount the lookup is performed from
2888   * @name:	pathname component to lookup
2889   * @base:	base directory to lookup from
2890   * @len:	maximum length @len should be interpreted to
2891   *
2892   * Note that this routine is purely a helper for filesystem usage and should
2893   * not be called by generic code.
2894   *
2895   * Unlike lookup_one_len, it should be called without the parent
2896   * i_mutex held, and will take the i_mutex itself if necessary.
2897   */
lookup_one_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2898  struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2899  				   const char *name, struct dentry *base,
2900  				   int len)
2901  {
2902  	struct qstr this;
2903  	int err;
2904  	struct dentry *ret;
2905  
2906  	err = lookup_one_common(idmap, name, base, len, &this);
2907  	if (err)
2908  		return ERR_PTR(err);
2909  
2910  	ret = lookup_dcache(&this, base, 0);
2911  	if (!ret)
2912  		ret = lookup_slow(&this, base, 0);
2913  	return ret;
2914  }
2915  EXPORT_SYMBOL(lookup_one_unlocked);
2916  
2917  /**
2918   * lookup_one_positive_unlocked - filesystem helper to lookup single
2919   *				  pathname component
2920   * @idmap:	idmap of the mount the lookup is performed from
2921   * @name:	pathname component to lookup
2922   * @base:	base directory to lookup from
2923   * @len:	maximum length @len should be interpreted to
2924   *
2925   * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2926   * known positive or ERR_PTR(). This is what most of the users want.
2927   *
2928   * Note that pinned negative with unlocked parent _can_ become positive at any
2929   * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2930   * positives have >d_inode stable, so this one avoids such problems.
2931   *
2932   * Note that this routine is purely a helper for filesystem usage and should
2933   * not be called by generic code.
2934   *
2935   * The helper should be called without i_mutex held.
2936   */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2937  struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2938  					    const char *name,
2939  					    struct dentry *base, int len)
2940  {
2941  	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2942  
2943  	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2944  		dput(ret);
2945  		ret = ERR_PTR(-ENOENT);
2946  	}
2947  	return ret;
2948  }
2949  EXPORT_SYMBOL(lookup_one_positive_unlocked);
2950  
2951  /**
2952   * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2953   * @name:	pathname component to lookup
2954   * @base:	base directory to lookup from
2955   * @len:	maximum length @len should be interpreted to
2956   *
2957   * Note that this routine is purely a helper for filesystem usage and should
2958   * not be called by generic code.
2959   *
2960   * Unlike lookup_one_len, it should be called without the parent
2961   * i_mutex held, and will take the i_mutex itself if necessary.
2962   */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2963  struct dentry *lookup_one_len_unlocked(const char *name,
2964  				       struct dentry *base, int len)
2965  {
2966  	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2967  }
2968  EXPORT_SYMBOL(lookup_one_len_unlocked);
2969  
2970  /*
2971   * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2972   * on negatives.  Returns known positive or ERR_PTR(); that's what
2973   * most of the users want.  Note that pinned negative with unlocked parent
2974   * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2975   * need to be very careful; pinned positives have ->d_inode stable, so
2976   * this one avoids such problems.
2977   */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2978  struct dentry *lookup_positive_unlocked(const char *name,
2979  				       struct dentry *base, int len)
2980  {
2981  	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2982  }
2983  EXPORT_SYMBOL(lookup_positive_unlocked);
2984  
2985  #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2986  int path_pts(struct path *path)
2987  {
2988  	/* Find something mounted on "pts" in the same directory as
2989  	 * the input path.
2990  	 */
2991  	struct dentry *parent = dget_parent(path->dentry);
2992  	struct dentry *child;
2993  	struct qstr this = QSTR_INIT("pts", 3);
2994  
2995  	if (unlikely(!path_connected(path->mnt, parent))) {
2996  		dput(parent);
2997  		return -ENOENT;
2998  	}
2999  	dput(path->dentry);
3000  	path->dentry = parent;
3001  	child = d_hash_and_lookup(parent, &this);
3002  	if (IS_ERR_OR_NULL(child))
3003  		return -ENOENT;
3004  
3005  	path->dentry = child;
3006  	dput(parent);
3007  	follow_down(path, 0);
3008  	return 0;
3009  }
3010  #endif
3011  
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3012  int user_path_at(int dfd, const char __user *name, unsigned flags,
3013  		 struct path *path)
3014  {
3015  	struct filename *filename = getname_flags(name, flags);
3016  	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3017  
3018  	putname(filename);
3019  	return ret;
3020  }
3021  EXPORT_SYMBOL(user_path_at);
3022  
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3023  int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3024  		   struct inode *inode)
3025  {
3026  	kuid_t fsuid = current_fsuid();
3027  
3028  	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3029  		return 0;
3030  	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3031  		return 0;
3032  	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3033  }
3034  EXPORT_SYMBOL(__check_sticky);
3035  
3036  /*
3037   *	Check whether we can remove a link victim from directory dir, check
3038   *  whether the type of victim is right.
3039   *  1. We can't do it if dir is read-only (done in permission())
3040   *  2. We should have write and exec permissions on dir
3041   *  3. We can't remove anything from append-only dir
3042   *  4. We can't do anything with immutable dir (done in permission())
3043   *  5. If the sticky bit on dir is set we should either
3044   *	a. be owner of dir, or
3045   *	b. be owner of victim, or
3046   *	c. have CAP_FOWNER capability
3047   *  6. If the victim is append-only or immutable we can't do antyhing with
3048   *     links pointing to it.
3049   *  7. If the victim has an unknown uid or gid we can't change the inode.
3050   *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3051   *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3052   * 10. We can't remove a root or mountpoint.
3053   * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3054   *     nfs_async_unlink().
3055   */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3056  static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3057  		      struct dentry *victim, bool isdir)
3058  {
3059  	struct inode *inode = d_backing_inode(victim);
3060  	int error;
3061  
3062  	if (d_is_negative(victim))
3063  		return -ENOENT;
3064  	BUG_ON(!inode);
3065  
3066  	BUG_ON(victim->d_parent->d_inode != dir);
3067  
3068  	/* Inode writeback is not safe when the uid or gid are invalid. */
3069  	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3070  	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3071  		return -EOVERFLOW;
3072  
3073  	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3074  
3075  	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3076  	if (error)
3077  		return error;
3078  	if (IS_APPEND(dir))
3079  		return -EPERM;
3080  
3081  	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3082  	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3083  	    HAS_UNMAPPED_ID(idmap, inode))
3084  		return -EPERM;
3085  	if (isdir) {
3086  		if (!d_is_dir(victim))
3087  			return -ENOTDIR;
3088  		if (IS_ROOT(victim))
3089  			return -EBUSY;
3090  	} else if (d_is_dir(victim))
3091  		return -EISDIR;
3092  	if (IS_DEADDIR(dir))
3093  		return -ENOENT;
3094  	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3095  		return -EBUSY;
3096  	return 0;
3097  }
3098  
3099  /*	Check whether we can create an object with dentry child in directory
3100   *  dir.
3101   *  1. We can't do it if child already exists (open has special treatment for
3102   *     this case, but since we are inlined it's OK)
3103   *  2. We can't do it if dir is read-only (done in permission())
3104   *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3105   *  4. We should have write and exec permissions on dir
3106   *  5. We can't do it if dir is immutable (done in permission())
3107   */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3108  static inline int may_create(struct mnt_idmap *idmap,
3109  			     struct inode *dir, struct dentry *child)
3110  {
3111  	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3112  	if (child->d_inode)
3113  		return -EEXIST;
3114  	if (IS_DEADDIR(dir))
3115  		return -ENOENT;
3116  	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3117  		return -EOVERFLOW;
3118  
3119  	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3120  }
3121  
3122  // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3123  static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3124  {
3125  	struct dentry *p = p1, *q = p2, *r;
3126  
3127  	while ((r = p->d_parent) != p2 && r != p)
3128  		p = r;
3129  	if (r == p2) {
3130  		// p is a child of p2 and an ancestor of p1 or p1 itself
3131  		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3132  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3133  		return p;
3134  	}
3135  	// p is the root of connected component that contains p1
3136  	// p2 does not occur on the path from p to p1
3137  	while ((r = q->d_parent) != p1 && r != p && r != q)
3138  		q = r;
3139  	if (r == p1) {
3140  		// q is a child of p1 and an ancestor of p2 or p2 itself
3141  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3142  		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3143  		return q;
3144  	} else if (likely(r == p)) {
3145  		// both p2 and p1 are descendents of p
3146  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3147  		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3148  		return NULL;
3149  	} else { // no common ancestor at the time we'd been called
3150  		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3151  		return ERR_PTR(-EXDEV);
3152  	}
3153  }
3154  
3155  /*
3156   * p1 and p2 should be directories on the same fs.
3157   */
lock_rename(struct dentry * p1,struct dentry * p2)3158  struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3159  {
3160  	if (p1 == p2) {
3161  		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3162  		return NULL;
3163  	}
3164  
3165  	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3166  	return lock_two_directories(p1, p2);
3167  }
3168  EXPORT_SYMBOL(lock_rename);
3169  
3170  /*
3171   * c1 and p2 should be on the same fs.
3172   */
lock_rename_child(struct dentry * c1,struct dentry * p2)3173  struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3174  {
3175  	if (READ_ONCE(c1->d_parent) == p2) {
3176  		/*
3177  		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3178  		 */
3179  		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3180  		/*
3181  		 * now that p2 is locked, nobody can move in or out of it,
3182  		 * so the test below is safe.
3183  		 */
3184  		if (likely(c1->d_parent == p2))
3185  			return NULL;
3186  
3187  		/*
3188  		 * c1 got moved out of p2 while we'd been taking locks;
3189  		 * unlock and fall back to slow case.
3190  		 */
3191  		inode_unlock(p2->d_inode);
3192  	}
3193  
3194  	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3195  	/*
3196  	 * nobody can move out of any directories on this fs.
3197  	 */
3198  	if (likely(c1->d_parent != p2))
3199  		return lock_two_directories(c1->d_parent, p2);
3200  
3201  	/*
3202  	 * c1 got moved into p2 while we were taking locks;
3203  	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3204  	 * for consistency with lock_rename().
3205  	 */
3206  	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3207  	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3208  	return NULL;
3209  }
3210  EXPORT_SYMBOL(lock_rename_child);
3211  
unlock_rename(struct dentry * p1,struct dentry * p2)3212  void unlock_rename(struct dentry *p1, struct dentry *p2)
3213  {
3214  	inode_unlock(p1->d_inode);
3215  	if (p1 != p2) {
3216  		inode_unlock(p2->d_inode);
3217  		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3218  	}
3219  }
3220  EXPORT_SYMBOL(unlock_rename);
3221  
3222  /**
3223   * vfs_prepare_mode - prepare the mode to be used for a new inode
3224   * @idmap:	idmap of the mount the inode was found from
3225   * @dir:	parent directory of the new inode
3226   * @mode:	mode of the new inode
3227   * @mask_perms:	allowed permission by the vfs
3228   * @type:	type of file to be created
3229   *
3230   * This helper consolidates and enforces vfs restrictions on the @mode of a new
3231   * object to be created.
3232   *
3233   * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3234   * the kernel documentation for mode_strip_umask()). Moving umask stripping
3235   * after setgid stripping allows the same ordering for both non-POSIX ACL and
3236   * POSIX ACL supporting filesystems.
3237   *
3238   * Note that it's currently valid for @type to be 0 if a directory is created.
3239   * Filesystems raise that flag individually and we need to check whether each
3240   * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3241   * non-zero type.
3242   *
3243   * Returns: mode to be passed to the filesystem
3244   */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3245  static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3246  				       const struct inode *dir, umode_t mode,
3247  				       umode_t mask_perms, umode_t type)
3248  {
3249  	mode = mode_strip_sgid(idmap, dir, mode);
3250  	mode = mode_strip_umask(dir, mode);
3251  
3252  	/*
3253  	 * Apply the vfs mandated allowed permission mask and set the type of
3254  	 * file to be created before we call into the filesystem.
3255  	 */
3256  	mode &= (mask_perms & ~S_IFMT);
3257  	mode |= (type & S_IFMT);
3258  
3259  	return mode;
3260  }
3261  
3262  /**
3263   * vfs_create - create new file
3264   * @idmap:	idmap of the mount the inode was found from
3265   * @dir:	inode of the parent directory
3266   * @dentry:	dentry of the child file
3267   * @mode:	mode of the child file
3268   * @want_excl:	whether the file must not yet exist
3269   *
3270   * Create a new file.
3271   *
3272   * If the inode has been found through an idmapped mount the idmap of
3273   * the vfsmount must be passed through @idmap. This function will then take
3274   * care to map the inode according to @idmap before checking permissions.
3275   * On non-idmapped mounts or if permission checking is to be performed on the
3276   * raw inode simply pass @nop_mnt_idmap.
3277   */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3278  int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3279  	       struct dentry *dentry, umode_t mode, bool want_excl)
3280  {
3281  	int error;
3282  
3283  	error = may_create(idmap, dir, dentry);
3284  	if (error)
3285  		return error;
3286  
3287  	if (!dir->i_op->create)
3288  		return -EACCES;	/* shouldn't it be ENOSYS? */
3289  
3290  	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3291  	error = security_inode_create(dir, dentry, mode);
3292  	if (error)
3293  		return error;
3294  	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3295  	if (!error)
3296  		fsnotify_create(dir, dentry);
3297  	return error;
3298  }
3299  EXPORT_SYMBOL(vfs_create);
3300  
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3301  int vfs_mkobj(struct dentry *dentry, umode_t mode,
3302  		int (*f)(struct dentry *, umode_t, void *),
3303  		void *arg)
3304  {
3305  	struct inode *dir = dentry->d_parent->d_inode;
3306  	int error = may_create(&nop_mnt_idmap, dir, dentry);
3307  	if (error)
3308  		return error;
3309  
3310  	mode &= S_IALLUGO;
3311  	mode |= S_IFREG;
3312  	error = security_inode_create(dir, dentry, mode);
3313  	if (error)
3314  		return error;
3315  	error = f(dentry, mode, arg);
3316  	if (!error)
3317  		fsnotify_create(dir, dentry);
3318  	return error;
3319  }
3320  EXPORT_SYMBOL(vfs_mkobj);
3321  
may_open_dev(const struct path * path)3322  bool may_open_dev(const struct path *path)
3323  {
3324  	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3325  		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3326  }
3327  
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3328  static int may_open(struct mnt_idmap *idmap, const struct path *path,
3329  		    int acc_mode, int flag)
3330  {
3331  	struct dentry *dentry = path->dentry;
3332  	struct inode *inode = dentry->d_inode;
3333  	int error;
3334  
3335  	if (!inode)
3336  		return -ENOENT;
3337  
3338  	switch (inode->i_mode & S_IFMT) {
3339  	case S_IFLNK:
3340  		return -ELOOP;
3341  	case S_IFDIR:
3342  		if (acc_mode & MAY_WRITE)
3343  			return -EISDIR;
3344  		if (acc_mode & MAY_EXEC)
3345  			return -EACCES;
3346  		break;
3347  	case S_IFBLK:
3348  	case S_IFCHR:
3349  		if (!may_open_dev(path))
3350  			return -EACCES;
3351  		fallthrough;
3352  	case S_IFIFO:
3353  	case S_IFSOCK:
3354  		if (acc_mode & MAY_EXEC)
3355  			return -EACCES;
3356  		flag &= ~O_TRUNC;
3357  		break;
3358  	case S_IFREG:
3359  		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3360  			return -EACCES;
3361  		break;
3362  	}
3363  
3364  	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3365  	if (error)
3366  		return error;
3367  
3368  	/*
3369  	 * An append-only file must be opened in append mode for writing.
3370  	 */
3371  	if (IS_APPEND(inode)) {
3372  		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3373  			return -EPERM;
3374  		if (flag & O_TRUNC)
3375  			return -EPERM;
3376  	}
3377  
3378  	/* O_NOATIME can only be set by the owner or superuser */
3379  	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3380  		return -EPERM;
3381  
3382  	return 0;
3383  }
3384  
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3385  static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3386  {
3387  	const struct path *path = &filp->f_path;
3388  	struct inode *inode = path->dentry->d_inode;
3389  	int error = get_write_access(inode);
3390  	if (error)
3391  		return error;
3392  
3393  	error = security_file_truncate(filp);
3394  	if (!error) {
3395  		error = do_truncate(idmap, path->dentry, 0,
3396  				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3397  				    filp);
3398  	}
3399  	put_write_access(inode);
3400  	return error;
3401  }
3402  
open_to_namei_flags(int flag)3403  static inline int open_to_namei_flags(int flag)
3404  {
3405  	if ((flag & O_ACCMODE) == 3)
3406  		flag--;
3407  	return flag;
3408  }
3409  
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3410  static int may_o_create(struct mnt_idmap *idmap,
3411  			const struct path *dir, struct dentry *dentry,
3412  			umode_t mode)
3413  {
3414  	int error = security_path_mknod(dir, dentry, mode, 0);
3415  	if (error)
3416  		return error;
3417  
3418  	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3419  		return -EOVERFLOW;
3420  
3421  	error = inode_permission(idmap, dir->dentry->d_inode,
3422  				 MAY_WRITE | MAY_EXEC);
3423  	if (error)
3424  		return error;
3425  
3426  	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3427  }
3428  
3429  /*
3430   * Attempt to atomically look up, create and open a file from a negative
3431   * dentry.
3432   *
3433   * Returns 0 if successful.  The file will have been created and attached to
3434   * @file by the filesystem calling finish_open().
3435   *
3436   * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3437   * be set.  The caller will need to perform the open themselves.  @path will
3438   * have been updated to point to the new dentry.  This may be negative.
3439   *
3440   * Returns an error code otherwise.
3441   */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3442  static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3443  				  struct file *file,
3444  				  int open_flag, umode_t mode)
3445  {
3446  	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3447  	struct inode *dir =  nd->path.dentry->d_inode;
3448  	int error;
3449  
3450  	if (nd->flags & LOOKUP_DIRECTORY)
3451  		open_flag |= O_DIRECTORY;
3452  
3453  	file->f_path.dentry = DENTRY_NOT_SET;
3454  	file->f_path.mnt = nd->path.mnt;
3455  	error = dir->i_op->atomic_open(dir, dentry, file,
3456  				       open_to_namei_flags(open_flag), mode);
3457  	d_lookup_done(dentry);
3458  	if (!error) {
3459  		if (file->f_mode & FMODE_OPENED) {
3460  			if (unlikely(dentry != file->f_path.dentry)) {
3461  				dput(dentry);
3462  				dentry = dget(file->f_path.dentry);
3463  			}
3464  		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3465  			error = -EIO;
3466  		} else {
3467  			if (file->f_path.dentry) {
3468  				dput(dentry);
3469  				dentry = file->f_path.dentry;
3470  			}
3471  			if (unlikely(d_is_negative(dentry)))
3472  				error = -ENOENT;
3473  		}
3474  	}
3475  	if (error) {
3476  		dput(dentry);
3477  		dentry = ERR_PTR(error);
3478  	}
3479  	return dentry;
3480  }
3481  
3482  /*
3483   * Look up and maybe create and open the last component.
3484   *
3485   * Must be called with parent locked (exclusive in O_CREAT case).
3486   *
3487   * Returns 0 on success, that is, if
3488   *  the file was successfully atomically created (if necessary) and opened, or
3489   *  the file was not completely opened at this time, though lookups and
3490   *  creations were performed.
3491   * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3492   * In the latter case dentry returned in @path might be negative if O_CREAT
3493   * hadn't been specified.
3494   *
3495   * An error code is returned on failure.
3496   */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3497  static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3498  				  const struct open_flags *op,
3499  				  bool got_write)
3500  {
3501  	struct mnt_idmap *idmap;
3502  	struct dentry *dir = nd->path.dentry;
3503  	struct inode *dir_inode = dir->d_inode;
3504  	int open_flag = op->open_flag;
3505  	struct dentry *dentry;
3506  	int error, create_error = 0;
3507  	umode_t mode = op->mode;
3508  	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3509  
3510  	if (unlikely(IS_DEADDIR(dir_inode)))
3511  		return ERR_PTR(-ENOENT);
3512  
3513  	file->f_mode &= ~FMODE_CREATED;
3514  	dentry = d_lookup(dir, &nd->last);
3515  	for (;;) {
3516  		if (!dentry) {
3517  			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3518  			if (IS_ERR(dentry))
3519  				return dentry;
3520  		}
3521  		if (d_in_lookup(dentry))
3522  			break;
3523  
3524  		error = d_revalidate(dentry, nd->flags);
3525  		if (likely(error > 0))
3526  			break;
3527  		if (error)
3528  			goto out_dput;
3529  		d_invalidate(dentry);
3530  		dput(dentry);
3531  		dentry = NULL;
3532  	}
3533  	if (dentry->d_inode) {
3534  		/* Cached positive dentry: will open in f_op->open */
3535  		return dentry;
3536  	}
3537  
3538  	if (open_flag & O_CREAT)
3539  		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3540  
3541  	/*
3542  	 * Checking write permission is tricky, bacuse we don't know if we are
3543  	 * going to actually need it: O_CREAT opens should work as long as the
3544  	 * file exists.  But checking existence breaks atomicity.  The trick is
3545  	 * to check access and if not granted clear O_CREAT from the flags.
3546  	 *
3547  	 * Another problem is returing the "right" error value (e.g. for an
3548  	 * O_EXCL open we want to return EEXIST not EROFS).
3549  	 */
3550  	if (unlikely(!got_write))
3551  		open_flag &= ~O_TRUNC;
3552  	idmap = mnt_idmap(nd->path.mnt);
3553  	if (open_flag & O_CREAT) {
3554  		if (open_flag & O_EXCL)
3555  			open_flag &= ~O_TRUNC;
3556  		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3557  		if (likely(got_write))
3558  			create_error = may_o_create(idmap, &nd->path,
3559  						    dentry, mode);
3560  		else
3561  			create_error = -EROFS;
3562  	}
3563  	if (create_error)
3564  		open_flag &= ~O_CREAT;
3565  	if (dir_inode->i_op->atomic_open) {
3566  		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3567  		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3568  			dentry = ERR_PTR(create_error);
3569  		return dentry;
3570  	}
3571  
3572  	if (d_in_lookup(dentry)) {
3573  		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3574  							     nd->flags);
3575  		d_lookup_done(dentry);
3576  		if (unlikely(res)) {
3577  			if (IS_ERR(res)) {
3578  				error = PTR_ERR(res);
3579  				goto out_dput;
3580  			}
3581  			dput(dentry);
3582  			dentry = res;
3583  		}
3584  	}
3585  
3586  	/* Negative dentry, just create the file */
3587  	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3588  		file->f_mode |= FMODE_CREATED;
3589  		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3590  		if (!dir_inode->i_op->create) {
3591  			error = -EACCES;
3592  			goto out_dput;
3593  		}
3594  
3595  		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3596  						mode, open_flag & O_EXCL);
3597  		if (error)
3598  			goto out_dput;
3599  	}
3600  	if (unlikely(create_error) && !dentry->d_inode) {
3601  		error = create_error;
3602  		goto out_dput;
3603  	}
3604  	return dentry;
3605  
3606  out_dput:
3607  	dput(dentry);
3608  	return ERR_PTR(error);
3609  }
3610  
trailing_slashes(struct nameidata * nd)3611  static inline bool trailing_slashes(struct nameidata *nd)
3612  {
3613  	return (bool)nd->last.name[nd->last.len];
3614  }
3615  
lookup_fast_for_open(struct nameidata * nd,int open_flag)3616  static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3617  {
3618  	struct dentry *dentry;
3619  
3620  	if (open_flag & O_CREAT) {
3621  		if (trailing_slashes(nd))
3622  			return ERR_PTR(-EISDIR);
3623  
3624  		/* Don't bother on an O_EXCL create */
3625  		if (open_flag & O_EXCL)
3626  			return NULL;
3627  	}
3628  
3629  	if (trailing_slashes(nd))
3630  		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3631  
3632  	dentry = lookup_fast(nd);
3633  	if (IS_ERR_OR_NULL(dentry))
3634  		return dentry;
3635  
3636  	if (open_flag & O_CREAT) {
3637  		/* Discard negative dentries. Need inode_lock to do the create */
3638  		if (!dentry->d_inode) {
3639  			if (!(nd->flags & LOOKUP_RCU))
3640  				dput(dentry);
3641  			dentry = NULL;
3642  		}
3643  	}
3644  	return dentry;
3645  }
3646  
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3647  static const char *open_last_lookups(struct nameidata *nd,
3648  		   struct file *file, const struct open_flags *op)
3649  {
3650  	struct dentry *dir = nd->path.dentry;
3651  	int open_flag = op->open_flag;
3652  	bool got_write = false;
3653  	struct dentry *dentry;
3654  	const char *res;
3655  
3656  	nd->flags |= op->intent;
3657  
3658  	if (nd->last_type != LAST_NORM) {
3659  		if (nd->depth)
3660  			put_link(nd);
3661  		return handle_dots(nd, nd->last_type);
3662  	}
3663  
3664  	/* We _can_ be in RCU mode here */
3665  	dentry = lookup_fast_for_open(nd, open_flag);
3666  	if (IS_ERR(dentry))
3667  		return ERR_CAST(dentry);
3668  
3669  	if (likely(dentry))
3670  		goto finish_lookup;
3671  
3672  	if (!(open_flag & O_CREAT)) {
3673  		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3674  			return ERR_PTR(-ECHILD);
3675  	} else {
3676  		if (nd->flags & LOOKUP_RCU) {
3677  			if (!try_to_unlazy(nd))
3678  				return ERR_PTR(-ECHILD);
3679  		}
3680  	}
3681  
3682  	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3683  		got_write = !mnt_want_write(nd->path.mnt);
3684  		/*
3685  		 * do _not_ fail yet - we might not need that or fail with
3686  		 * a different error; let lookup_open() decide; we'll be
3687  		 * dropping this one anyway.
3688  		 */
3689  	}
3690  	if (open_flag & O_CREAT)
3691  		inode_lock(dir->d_inode);
3692  	else
3693  		inode_lock_shared(dir->d_inode);
3694  	dentry = lookup_open(nd, file, op, got_write);
3695  	if (!IS_ERR(dentry)) {
3696  		if (file->f_mode & FMODE_CREATED)
3697  			fsnotify_create(dir->d_inode, dentry);
3698  		if (file->f_mode & FMODE_OPENED)
3699  			fsnotify_open(file);
3700  	}
3701  	if (open_flag & O_CREAT)
3702  		inode_unlock(dir->d_inode);
3703  	else
3704  		inode_unlock_shared(dir->d_inode);
3705  
3706  	if (got_write)
3707  		mnt_drop_write(nd->path.mnt);
3708  
3709  	if (IS_ERR(dentry))
3710  		return ERR_CAST(dentry);
3711  
3712  	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3713  		dput(nd->path.dentry);
3714  		nd->path.dentry = dentry;
3715  		return NULL;
3716  	}
3717  
3718  finish_lookup:
3719  	if (nd->depth)
3720  		put_link(nd);
3721  	res = step_into(nd, WALK_TRAILING, dentry);
3722  	if (unlikely(res))
3723  		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3724  	return res;
3725  }
3726  
3727  /*
3728   * Handle the last step of open()
3729   */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3730  static int do_open(struct nameidata *nd,
3731  		   struct file *file, const struct open_flags *op)
3732  {
3733  	struct mnt_idmap *idmap;
3734  	int open_flag = op->open_flag;
3735  	bool do_truncate;
3736  	int acc_mode;
3737  	int error;
3738  
3739  	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3740  		error = complete_walk(nd);
3741  		if (error)
3742  			return error;
3743  	}
3744  	if (!(file->f_mode & FMODE_CREATED))
3745  		audit_inode(nd->name, nd->path.dentry, 0);
3746  	idmap = mnt_idmap(nd->path.mnt);
3747  	if (open_flag & O_CREAT) {
3748  		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3749  			return -EEXIST;
3750  		if (d_is_dir(nd->path.dentry))
3751  			return -EISDIR;
3752  		error = may_create_in_sticky(idmap, nd,
3753  					     d_backing_inode(nd->path.dentry));
3754  		if (unlikely(error))
3755  			return error;
3756  	}
3757  	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3758  		return -ENOTDIR;
3759  
3760  	do_truncate = false;
3761  	acc_mode = op->acc_mode;
3762  	if (file->f_mode & FMODE_CREATED) {
3763  		/* Don't check for write permission, don't truncate */
3764  		open_flag &= ~O_TRUNC;
3765  		acc_mode = 0;
3766  	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3767  		error = mnt_want_write(nd->path.mnt);
3768  		if (error)
3769  			return error;
3770  		do_truncate = true;
3771  	}
3772  	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3773  	if (!error && !(file->f_mode & FMODE_OPENED))
3774  		error = vfs_open(&nd->path, file);
3775  	if (!error)
3776  		error = security_file_post_open(file, op->acc_mode);
3777  	if (!error && do_truncate)
3778  		error = handle_truncate(idmap, file);
3779  	if (unlikely(error > 0)) {
3780  		WARN_ON(1);
3781  		error = -EINVAL;
3782  	}
3783  	if (do_truncate)
3784  		mnt_drop_write(nd->path.mnt);
3785  	return error;
3786  }
3787  
3788  /**
3789   * vfs_tmpfile - create tmpfile
3790   * @idmap:	idmap of the mount the inode was found from
3791   * @parentpath:	pointer to the path of the base directory
3792   * @file:	file descriptor of the new tmpfile
3793   * @mode:	mode of the new tmpfile
3794   *
3795   * Create a temporary file.
3796   *
3797   * If the inode has been found through an idmapped mount the idmap of
3798   * the vfsmount must be passed through @idmap. This function will then take
3799   * care to map the inode according to @idmap before checking permissions.
3800   * On non-idmapped mounts or if permission checking is to be performed on the
3801   * raw inode simply pass @nop_mnt_idmap.
3802   */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)3803  int vfs_tmpfile(struct mnt_idmap *idmap,
3804  		const struct path *parentpath,
3805  		struct file *file, umode_t mode)
3806  {
3807  	struct dentry *child;
3808  	struct inode *dir = d_inode(parentpath->dentry);
3809  	struct inode *inode;
3810  	int error;
3811  	int open_flag = file->f_flags;
3812  
3813  	/* we want directory to be writable */
3814  	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3815  	if (error)
3816  		return error;
3817  	if (!dir->i_op->tmpfile)
3818  		return -EOPNOTSUPP;
3819  	child = d_alloc(parentpath->dentry, &slash_name);
3820  	if (unlikely(!child))
3821  		return -ENOMEM;
3822  	file->f_path.mnt = parentpath->mnt;
3823  	file->f_path.dentry = child;
3824  	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3825  	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3826  	dput(child);
3827  	if (file->f_mode & FMODE_OPENED)
3828  		fsnotify_open(file);
3829  	if (error)
3830  		return error;
3831  	/* Don't check for other permissions, the inode was just created */
3832  	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3833  	if (error)
3834  		return error;
3835  	inode = file_inode(file);
3836  	if (!(open_flag & O_EXCL)) {
3837  		spin_lock(&inode->i_lock);
3838  		inode->i_state |= I_LINKABLE;
3839  		spin_unlock(&inode->i_lock);
3840  	}
3841  	security_inode_post_create_tmpfile(idmap, inode);
3842  	return 0;
3843  }
3844  
3845  /**
3846   * kernel_tmpfile_open - open a tmpfile for kernel internal use
3847   * @idmap:	idmap of the mount the inode was found from
3848   * @parentpath:	path of the base directory
3849   * @mode:	mode of the new tmpfile
3850   * @open_flag:	flags
3851   * @cred:	credentials for open
3852   *
3853   * Create and open a temporary file.  The file is not accounted in nr_files,
3854   * hence this is only for kernel internal use, and must not be installed into
3855   * file tables or such.
3856   */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3857  struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3858  				 const struct path *parentpath,
3859  				 umode_t mode, int open_flag,
3860  				 const struct cred *cred)
3861  {
3862  	struct file *file;
3863  	int error;
3864  
3865  	file = alloc_empty_file_noaccount(open_flag, cred);
3866  	if (IS_ERR(file))
3867  		return file;
3868  
3869  	error = vfs_tmpfile(idmap, parentpath, file, mode);
3870  	if (error) {
3871  		fput(file);
3872  		file = ERR_PTR(error);
3873  	}
3874  	return file;
3875  }
3876  EXPORT_SYMBOL(kernel_tmpfile_open);
3877  
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3878  static int do_tmpfile(struct nameidata *nd, unsigned flags,
3879  		const struct open_flags *op,
3880  		struct file *file)
3881  {
3882  	struct path path;
3883  	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3884  
3885  	if (unlikely(error))
3886  		return error;
3887  	error = mnt_want_write(path.mnt);
3888  	if (unlikely(error))
3889  		goto out;
3890  	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3891  	if (error)
3892  		goto out2;
3893  	audit_inode(nd->name, file->f_path.dentry, 0);
3894  out2:
3895  	mnt_drop_write(path.mnt);
3896  out:
3897  	path_put(&path);
3898  	return error;
3899  }
3900  
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3901  static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3902  {
3903  	struct path path;
3904  	int error = path_lookupat(nd, flags, &path);
3905  	if (!error) {
3906  		audit_inode(nd->name, path.dentry, 0);
3907  		error = vfs_open(&path, file);
3908  		path_put(&path);
3909  	}
3910  	return error;
3911  }
3912  
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3913  static struct file *path_openat(struct nameidata *nd,
3914  			const struct open_flags *op, unsigned flags)
3915  {
3916  	struct file *file;
3917  	int error;
3918  
3919  	file = alloc_empty_file(op->open_flag, current_cred());
3920  	if (IS_ERR(file))
3921  		return file;
3922  
3923  	if (unlikely(file->f_flags & __O_TMPFILE)) {
3924  		error = do_tmpfile(nd, flags, op, file);
3925  	} else if (unlikely(file->f_flags & O_PATH)) {
3926  		error = do_o_path(nd, flags, file);
3927  	} else {
3928  		const char *s = path_init(nd, flags);
3929  		while (!(error = link_path_walk(s, nd)) &&
3930  		       (s = open_last_lookups(nd, file, op)) != NULL)
3931  			;
3932  		if (!error)
3933  			error = do_open(nd, file, op);
3934  		terminate_walk(nd);
3935  	}
3936  	if (likely(!error)) {
3937  		if (likely(file->f_mode & FMODE_OPENED))
3938  			return file;
3939  		WARN_ON(1);
3940  		error = -EINVAL;
3941  	}
3942  	fput(file);
3943  	if (error == -EOPENSTALE) {
3944  		if (flags & LOOKUP_RCU)
3945  			error = -ECHILD;
3946  		else
3947  			error = -ESTALE;
3948  	}
3949  	return ERR_PTR(error);
3950  }
3951  
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3952  struct file *do_filp_open(int dfd, struct filename *pathname,
3953  		const struct open_flags *op)
3954  {
3955  	struct nameidata nd;
3956  	int flags = op->lookup_flags;
3957  	struct file *filp;
3958  
3959  	set_nameidata(&nd, dfd, pathname, NULL);
3960  	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3961  	if (unlikely(filp == ERR_PTR(-ECHILD)))
3962  		filp = path_openat(&nd, op, flags);
3963  	if (unlikely(filp == ERR_PTR(-ESTALE)))
3964  		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3965  	restore_nameidata();
3966  	return filp;
3967  }
3968  
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)3969  struct file *do_file_open_root(const struct path *root,
3970  		const char *name, const struct open_flags *op)
3971  {
3972  	struct nameidata nd;
3973  	struct file *file;
3974  	struct filename *filename;
3975  	int flags = op->lookup_flags;
3976  
3977  	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3978  		return ERR_PTR(-ELOOP);
3979  
3980  	filename = getname_kernel(name);
3981  	if (IS_ERR(filename))
3982  		return ERR_CAST(filename);
3983  
3984  	set_nameidata(&nd, -1, filename, root);
3985  	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3986  	if (unlikely(file == ERR_PTR(-ECHILD)))
3987  		file = path_openat(&nd, op, flags);
3988  	if (unlikely(file == ERR_PTR(-ESTALE)))
3989  		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3990  	restore_nameidata();
3991  	putname(filename);
3992  	return file;
3993  }
3994  
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3995  static struct dentry *filename_create(int dfd, struct filename *name,
3996  				      struct path *path, unsigned int lookup_flags)
3997  {
3998  	struct dentry *dentry = ERR_PTR(-EEXIST);
3999  	struct qstr last;
4000  	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4001  	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4002  	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4003  	int type;
4004  	int err2;
4005  	int error;
4006  
4007  	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4008  	if (error)
4009  		return ERR_PTR(error);
4010  
4011  	/*
4012  	 * Yucky last component or no last component at all?
4013  	 * (foo/., foo/.., /////)
4014  	 */
4015  	if (unlikely(type != LAST_NORM))
4016  		goto out;
4017  
4018  	/* don't fail immediately if it's r/o, at least try to report other errors */
4019  	err2 = mnt_want_write(path->mnt);
4020  	/*
4021  	 * Do the final lookup.  Suppress 'create' if there is a trailing
4022  	 * '/', and a directory wasn't requested.
4023  	 */
4024  	if (last.name[last.len] && !want_dir)
4025  		create_flags = 0;
4026  	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4027  	dentry = lookup_one_qstr_excl(&last, path->dentry,
4028  				      reval_flag | create_flags);
4029  	if (IS_ERR(dentry))
4030  		goto unlock;
4031  
4032  	error = -EEXIST;
4033  	if (d_is_positive(dentry))
4034  		goto fail;
4035  
4036  	/*
4037  	 * Special case - lookup gave negative, but... we had foo/bar/
4038  	 * From the vfs_mknod() POV we just have a negative dentry -
4039  	 * all is fine. Let's be bastards - you had / on the end, you've
4040  	 * been asking for (non-existent) directory. -ENOENT for you.
4041  	 */
4042  	if (unlikely(!create_flags)) {
4043  		error = -ENOENT;
4044  		goto fail;
4045  	}
4046  	if (unlikely(err2)) {
4047  		error = err2;
4048  		goto fail;
4049  	}
4050  	return dentry;
4051  fail:
4052  	dput(dentry);
4053  	dentry = ERR_PTR(error);
4054  unlock:
4055  	inode_unlock(path->dentry->d_inode);
4056  	if (!err2)
4057  		mnt_drop_write(path->mnt);
4058  out:
4059  	path_put(path);
4060  	return dentry;
4061  }
4062  
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4063  struct dentry *kern_path_create(int dfd, const char *pathname,
4064  				struct path *path, unsigned int lookup_flags)
4065  {
4066  	struct filename *filename = getname_kernel(pathname);
4067  	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4068  
4069  	putname(filename);
4070  	return res;
4071  }
4072  EXPORT_SYMBOL(kern_path_create);
4073  
done_path_create(struct path * path,struct dentry * dentry)4074  void done_path_create(struct path *path, struct dentry *dentry)
4075  {
4076  	dput(dentry);
4077  	inode_unlock(path->dentry->d_inode);
4078  	mnt_drop_write(path->mnt);
4079  	path_put(path);
4080  }
4081  EXPORT_SYMBOL(done_path_create);
4082  
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4083  inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4084  				struct path *path, unsigned int lookup_flags)
4085  {
4086  	struct filename *filename = getname(pathname);
4087  	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4088  
4089  	putname(filename);
4090  	return res;
4091  }
4092  EXPORT_SYMBOL(user_path_create);
4093  
4094  /**
4095   * vfs_mknod - create device node or file
4096   * @idmap:	idmap of the mount the inode was found from
4097   * @dir:	inode of the parent directory
4098   * @dentry:	dentry of the child device node
4099   * @mode:	mode of the child device node
4100   * @dev:	device number of device to create
4101   *
4102   * Create a device node or file.
4103   *
4104   * If the inode has been found through an idmapped mount the idmap of
4105   * the vfsmount must be passed through @idmap. This function will then take
4106   * care to map the inode according to @idmap before checking permissions.
4107   * On non-idmapped mounts or if permission checking is to be performed on the
4108   * raw inode simply pass @nop_mnt_idmap.
4109   */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4110  int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4111  	      struct dentry *dentry, umode_t mode, dev_t dev)
4112  {
4113  	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4114  	int error = may_create(idmap, dir, dentry);
4115  
4116  	if (error)
4117  		return error;
4118  
4119  	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4120  	    !capable(CAP_MKNOD))
4121  		return -EPERM;
4122  
4123  	if (!dir->i_op->mknod)
4124  		return -EPERM;
4125  
4126  	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4127  	error = devcgroup_inode_mknod(mode, dev);
4128  	if (error)
4129  		return error;
4130  
4131  	error = security_inode_mknod(dir, dentry, mode, dev);
4132  	if (error)
4133  		return error;
4134  
4135  	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4136  	if (!error)
4137  		fsnotify_create(dir, dentry);
4138  	return error;
4139  }
4140  EXPORT_SYMBOL(vfs_mknod);
4141  
may_mknod(umode_t mode)4142  static int may_mknod(umode_t mode)
4143  {
4144  	switch (mode & S_IFMT) {
4145  	case S_IFREG:
4146  	case S_IFCHR:
4147  	case S_IFBLK:
4148  	case S_IFIFO:
4149  	case S_IFSOCK:
4150  	case 0: /* zero mode translates to S_IFREG */
4151  		return 0;
4152  	case S_IFDIR:
4153  		return -EPERM;
4154  	default:
4155  		return -EINVAL;
4156  	}
4157  }
4158  
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4159  static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4160  		unsigned int dev)
4161  {
4162  	struct mnt_idmap *idmap;
4163  	struct dentry *dentry;
4164  	struct path path;
4165  	int error;
4166  	unsigned int lookup_flags = 0;
4167  
4168  	error = may_mknod(mode);
4169  	if (error)
4170  		goto out1;
4171  retry:
4172  	dentry = filename_create(dfd, name, &path, lookup_flags);
4173  	error = PTR_ERR(dentry);
4174  	if (IS_ERR(dentry))
4175  		goto out1;
4176  
4177  	error = security_path_mknod(&path, dentry,
4178  			mode_strip_umask(path.dentry->d_inode, mode), dev);
4179  	if (error)
4180  		goto out2;
4181  
4182  	idmap = mnt_idmap(path.mnt);
4183  	switch (mode & S_IFMT) {
4184  		case 0: case S_IFREG:
4185  			error = vfs_create(idmap, path.dentry->d_inode,
4186  					   dentry, mode, true);
4187  			if (!error)
4188  				security_path_post_mknod(idmap, dentry);
4189  			break;
4190  		case S_IFCHR: case S_IFBLK:
4191  			error = vfs_mknod(idmap, path.dentry->d_inode,
4192  					  dentry, mode, new_decode_dev(dev));
4193  			break;
4194  		case S_IFIFO: case S_IFSOCK:
4195  			error = vfs_mknod(idmap, path.dentry->d_inode,
4196  					  dentry, mode, 0);
4197  			break;
4198  	}
4199  out2:
4200  	done_path_create(&path, dentry);
4201  	if (retry_estale(error, lookup_flags)) {
4202  		lookup_flags |= LOOKUP_REVAL;
4203  		goto retry;
4204  	}
4205  out1:
4206  	putname(name);
4207  	return error;
4208  }
4209  
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4210  SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4211  		unsigned int, dev)
4212  {
4213  	return do_mknodat(dfd, getname(filename), mode, dev);
4214  }
4215  
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4216  SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4217  {
4218  	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4219  }
4220  
4221  /**
4222   * vfs_mkdir - create directory
4223   * @idmap:	idmap of the mount the inode was found from
4224   * @dir:	inode of the parent directory
4225   * @dentry:	dentry of the child directory
4226   * @mode:	mode of the child directory
4227   *
4228   * Create a directory.
4229   *
4230   * If the inode has been found through an idmapped mount the idmap of
4231   * the vfsmount must be passed through @idmap. This function will then take
4232   * care to map the inode according to @idmap before checking permissions.
4233   * On non-idmapped mounts or if permission checking is to be performed on the
4234   * raw inode simply pass @nop_mnt_idmap.
4235   */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4236  int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4237  	      struct dentry *dentry, umode_t mode)
4238  {
4239  	int error;
4240  	unsigned max_links = dir->i_sb->s_max_links;
4241  
4242  	error = may_create(idmap, dir, dentry);
4243  	if (error)
4244  		return error;
4245  
4246  	if (!dir->i_op->mkdir)
4247  		return -EPERM;
4248  
4249  	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4250  	error = security_inode_mkdir(dir, dentry, mode);
4251  	if (error)
4252  		return error;
4253  
4254  	if (max_links && dir->i_nlink >= max_links)
4255  		return -EMLINK;
4256  
4257  	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4258  	if (!error)
4259  		fsnotify_mkdir(dir, dentry);
4260  	return error;
4261  }
4262  EXPORT_SYMBOL(vfs_mkdir);
4263  
do_mkdirat(int dfd,struct filename * name,umode_t mode)4264  int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4265  {
4266  	struct dentry *dentry;
4267  	struct path path;
4268  	int error;
4269  	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4270  
4271  retry:
4272  	dentry = filename_create(dfd, name, &path, lookup_flags);
4273  	error = PTR_ERR(dentry);
4274  	if (IS_ERR(dentry))
4275  		goto out_putname;
4276  
4277  	error = security_path_mkdir(&path, dentry,
4278  			mode_strip_umask(path.dentry->d_inode, mode));
4279  	if (!error) {
4280  		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4281  				  dentry, mode);
4282  	}
4283  	done_path_create(&path, dentry);
4284  	if (retry_estale(error, lookup_flags)) {
4285  		lookup_flags |= LOOKUP_REVAL;
4286  		goto retry;
4287  	}
4288  out_putname:
4289  	putname(name);
4290  	return error;
4291  }
4292  
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4293  SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4294  {
4295  	return do_mkdirat(dfd, getname(pathname), mode);
4296  }
4297  
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4298  SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4299  {
4300  	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4301  }
4302  
4303  /**
4304   * vfs_rmdir - remove directory
4305   * @idmap:	idmap of the mount the inode was found from
4306   * @dir:	inode of the parent directory
4307   * @dentry:	dentry of the child directory
4308   *
4309   * Remove a directory.
4310   *
4311   * If the inode has been found through an idmapped mount the idmap of
4312   * the vfsmount must be passed through @idmap. This function will then take
4313   * care to map the inode according to @idmap before checking permissions.
4314   * On non-idmapped mounts or if permission checking is to be performed on the
4315   * raw inode simply pass @nop_mnt_idmap.
4316   */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4317  int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4318  		     struct dentry *dentry)
4319  {
4320  	int error = may_delete(idmap, dir, dentry, 1);
4321  
4322  	if (error)
4323  		return error;
4324  
4325  	if (!dir->i_op->rmdir)
4326  		return -EPERM;
4327  
4328  	dget(dentry);
4329  	inode_lock(dentry->d_inode);
4330  
4331  	error = -EBUSY;
4332  	if (is_local_mountpoint(dentry) ||
4333  	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4334  		goto out;
4335  
4336  	error = security_inode_rmdir(dir, dentry);
4337  	if (error)
4338  		goto out;
4339  
4340  	error = dir->i_op->rmdir(dir, dentry);
4341  	if (error)
4342  		goto out;
4343  
4344  	shrink_dcache_parent(dentry);
4345  	dentry->d_inode->i_flags |= S_DEAD;
4346  	dont_mount(dentry);
4347  	detach_mounts(dentry);
4348  
4349  out:
4350  	inode_unlock(dentry->d_inode);
4351  	dput(dentry);
4352  	if (!error)
4353  		d_delete_notify(dir, dentry);
4354  	return error;
4355  }
4356  EXPORT_SYMBOL(vfs_rmdir);
4357  
do_rmdir(int dfd,struct filename * name)4358  int do_rmdir(int dfd, struct filename *name)
4359  {
4360  	int error;
4361  	struct dentry *dentry;
4362  	struct path path;
4363  	struct qstr last;
4364  	int type;
4365  	unsigned int lookup_flags = 0;
4366  retry:
4367  	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4368  	if (error)
4369  		goto exit1;
4370  
4371  	switch (type) {
4372  	case LAST_DOTDOT:
4373  		error = -ENOTEMPTY;
4374  		goto exit2;
4375  	case LAST_DOT:
4376  		error = -EINVAL;
4377  		goto exit2;
4378  	case LAST_ROOT:
4379  		error = -EBUSY;
4380  		goto exit2;
4381  	}
4382  
4383  	error = mnt_want_write(path.mnt);
4384  	if (error)
4385  		goto exit2;
4386  
4387  	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4388  	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4389  	error = PTR_ERR(dentry);
4390  	if (IS_ERR(dentry))
4391  		goto exit3;
4392  	if (!dentry->d_inode) {
4393  		error = -ENOENT;
4394  		goto exit4;
4395  	}
4396  	error = security_path_rmdir(&path, dentry);
4397  	if (error)
4398  		goto exit4;
4399  	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4400  exit4:
4401  	dput(dentry);
4402  exit3:
4403  	inode_unlock(path.dentry->d_inode);
4404  	mnt_drop_write(path.mnt);
4405  exit2:
4406  	path_put(&path);
4407  	if (retry_estale(error, lookup_flags)) {
4408  		lookup_flags |= LOOKUP_REVAL;
4409  		goto retry;
4410  	}
4411  exit1:
4412  	putname(name);
4413  	return error;
4414  }
4415  
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4416  SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4417  {
4418  	return do_rmdir(AT_FDCWD, getname(pathname));
4419  }
4420  
4421  /**
4422   * vfs_unlink - unlink a filesystem object
4423   * @idmap:	idmap of the mount the inode was found from
4424   * @dir:	parent directory
4425   * @dentry:	victim
4426   * @delegated_inode: returns victim inode, if the inode is delegated.
4427   *
4428   * The caller must hold dir->i_mutex.
4429   *
4430   * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4431   * return a reference to the inode in delegated_inode.  The caller
4432   * should then break the delegation on that inode and retry.  Because
4433   * breaking a delegation may take a long time, the caller should drop
4434   * dir->i_mutex before doing so.
4435   *
4436   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4437   * be appropriate for callers that expect the underlying filesystem not
4438   * to be NFS exported.
4439   *
4440   * If the inode has been found through an idmapped mount the idmap of
4441   * the vfsmount must be passed through @idmap. This function will then take
4442   * care to map the inode according to @idmap before checking permissions.
4443   * On non-idmapped mounts or if permission checking is to be performed on the
4444   * raw inode simply pass @nop_mnt_idmap.
4445   */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4446  int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4447  	       struct dentry *dentry, struct inode **delegated_inode)
4448  {
4449  	struct inode *target = dentry->d_inode;
4450  	int error = may_delete(idmap, dir, dentry, 0);
4451  
4452  	if (error)
4453  		return error;
4454  
4455  	if (!dir->i_op->unlink)
4456  		return -EPERM;
4457  
4458  	inode_lock(target);
4459  	if (IS_SWAPFILE(target))
4460  		error = -EPERM;
4461  	else if (is_local_mountpoint(dentry))
4462  		error = -EBUSY;
4463  	else {
4464  		error = security_inode_unlink(dir, dentry);
4465  		if (!error) {
4466  			error = try_break_deleg(target, delegated_inode);
4467  			if (error)
4468  				goto out;
4469  			error = dir->i_op->unlink(dir, dentry);
4470  			if (!error) {
4471  				dont_mount(dentry);
4472  				detach_mounts(dentry);
4473  			}
4474  		}
4475  	}
4476  out:
4477  	inode_unlock(target);
4478  
4479  	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4480  	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4481  		fsnotify_unlink(dir, dentry);
4482  	} else if (!error) {
4483  		fsnotify_link_count(target);
4484  		d_delete_notify(dir, dentry);
4485  	}
4486  
4487  	return error;
4488  }
4489  EXPORT_SYMBOL(vfs_unlink);
4490  
4491  /*
4492   * Make sure that the actual truncation of the file will occur outside its
4493   * directory's i_mutex.  Truncate can take a long time if there is a lot of
4494   * writeout happening, and we don't want to prevent access to the directory
4495   * while waiting on the I/O.
4496   */
do_unlinkat(int dfd,struct filename * name)4497  int do_unlinkat(int dfd, struct filename *name)
4498  {
4499  	int error;
4500  	struct dentry *dentry;
4501  	struct path path;
4502  	struct qstr last;
4503  	int type;
4504  	struct inode *inode = NULL;
4505  	struct inode *delegated_inode = NULL;
4506  	unsigned int lookup_flags = 0;
4507  retry:
4508  	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4509  	if (error)
4510  		goto exit1;
4511  
4512  	error = -EISDIR;
4513  	if (type != LAST_NORM)
4514  		goto exit2;
4515  
4516  	error = mnt_want_write(path.mnt);
4517  	if (error)
4518  		goto exit2;
4519  retry_deleg:
4520  	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4521  	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4522  	error = PTR_ERR(dentry);
4523  	if (!IS_ERR(dentry)) {
4524  
4525  		/* Why not before? Because we want correct error value */
4526  		if (last.name[last.len] || d_is_negative(dentry))
4527  			goto slashes;
4528  		inode = dentry->d_inode;
4529  		ihold(inode);
4530  		error = security_path_unlink(&path, dentry);
4531  		if (error)
4532  			goto exit3;
4533  		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4534  				   dentry, &delegated_inode);
4535  exit3:
4536  		dput(dentry);
4537  	}
4538  	inode_unlock(path.dentry->d_inode);
4539  	if (inode)
4540  		iput(inode);	/* truncate the inode here */
4541  	inode = NULL;
4542  	if (delegated_inode) {
4543  		error = break_deleg_wait(&delegated_inode);
4544  		if (!error)
4545  			goto retry_deleg;
4546  	}
4547  	mnt_drop_write(path.mnt);
4548  exit2:
4549  	path_put(&path);
4550  	if (retry_estale(error, lookup_flags)) {
4551  		lookup_flags |= LOOKUP_REVAL;
4552  		inode = NULL;
4553  		goto retry;
4554  	}
4555  exit1:
4556  	putname(name);
4557  	return error;
4558  
4559  slashes:
4560  	if (d_is_negative(dentry))
4561  		error = -ENOENT;
4562  	else if (d_is_dir(dentry))
4563  		error = -EISDIR;
4564  	else
4565  		error = -ENOTDIR;
4566  	goto exit3;
4567  }
4568  
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4569  SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4570  {
4571  	if ((flag & ~AT_REMOVEDIR) != 0)
4572  		return -EINVAL;
4573  
4574  	if (flag & AT_REMOVEDIR)
4575  		return do_rmdir(dfd, getname(pathname));
4576  	return do_unlinkat(dfd, getname(pathname));
4577  }
4578  
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4579  SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4580  {
4581  	return do_unlinkat(AT_FDCWD, getname(pathname));
4582  }
4583  
4584  /**
4585   * vfs_symlink - create symlink
4586   * @idmap:	idmap of the mount the inode was found from
4587   * @dir:	inode of the parent directory
4588   * @dentry:	dentry of the child symlink file
4589   * @oldname:	name of the file to link to
4590   *
4591   * Create a symlink.
4592   *
4593   * If the inode has been found through an idmapped mount the idmap of
4594   * the vfsmount must be passed through @idmap. This function will then take
4595   * care to map the inode according to @idmap before checking permissions.
4596   * On non-idmapped mounts or if permission checking is to be performed on the
4597   * raw inode simply pass @nop_mnt_idmap.
4598   */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4599  int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4600  		struct dentry *dentry, const char *oldname)
4601  {
4602  	int error;
4603  
4604  	error = may_create(idmap, dir, dentry);
4605  	if (error)
4606  		return error;
4607  
4608  	if (!dir->i_op->symlink)
4609  		return -EPERM;
4610  
4611  	error = security_inode_symlink(dir, dentry, oldname);
4612  	if (error)
4613  		return error;
4614  
4615  	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4616  	if (!error)
4617  		fsnotify_create(dir, dentry);
4618  	return error;
4619  }
4620  EXPORT_SYMBOL(vfs_symlink);
4621  
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4622  int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4623  {
4624  	int error;
4625  	struct dentry *dentry;
4626  	struct path path;
4627  	unsigned int lookup_flags = 0;
4628  
4629  	if (IS_ERR(from)) {
4630  		error = PTR_ERR(from);
4631  		goto out_putnames;
4632  	}
4633  retry:
4634  	dentry = filename_create(newdfd, to, &path, lookup_flags);
4635  	error = PTR_ERR(dentry);
4636  	if (IS_ERR(dentry))
4637  		goto out_putnames;
4638  
4639  	error = security_path_symlink(&path, dentry, from->name);
4640  	if (!error)
4641  		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4642  				    dentry, from->name);
4643  	done_path_create(&path, dentry);
4644  	if (retry_estale(error, lookup_flags)) {
4645  		lookup_flags |= LOOKUP_REVAL;
4646  		goto retry;
4647  	}
4648  out_putnames:
4649  	putname(to);
4650  	putname(from);
4651  	return error;
4652  }
4653  
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4654  SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4655  		int, newdfd, const char __user *, newname)
4656  {
4657  	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4658  }
4659  
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4660  SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4661  {
4662  	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4663  }
4664  
4665  /**
4666   * vfs_link - create a new link
4667   * @old_dentry:	object to be linked
4668   * @idmap:	idmap of the mount
4669   * @dir:	new parent
4670   * @new_dentry:	where to create the new link
4671   * @delegated_inode: returns inode needing a delegation break
4672   *
4673   * The caller must hold dir->i_mutex
4674   *
4675   * If vfs_link discovers a delegation on the to-be-linked file in need
4676   * of breaking, it will return -EWOULDBLOCK and return a reference to the
4677   * inode in delegated_inode.  The caller should then break the delegation
4678   * and retry.  Because breaking a delegation may take a long time, the
4679   * caller should drop the i_mutex before doing so.
4680   *
4681   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4682   * be appropriate for callers that expect the underlying filesystem not
4683   * to be NFS exported.
4684   *
4685   * If the inode has been found through an idmapped mount the idmap of
4686   * the vfsmount must be passed through @idmap. This function will then take
4687   * care to map the inode according to @idmap before checking permissions.
4688   * On non-idmapped mounts or if permission checking is to be performed on the
4689   * raw inode simply pass @nop_mnt_idmap.
4690   */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4691  int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4692  	     struct inode *dir, struct dentry *new_dentry,
4693  	     struct inode **delegated_inode)
4694  {
4695  	struct inode *inode = old_dentry->d_inode;
4696  	unsigned max_links = dir->i_sb->s_max_links;
4697  	int error;
4698  
4699  	if (!inode)
4700  		return -ENOENT;
4701  
4702  	error = may_create(idmap, dir, new_dentry);
4703  	if (error)
4704  		return error;
4705  
4706  	if (dir->i_sb != inode->i_sb)
4707  		return -EXDEV;
4708  
4709  	/*
4710  	 * A link to an append-only or immutable file cannot be created.
4711  	 */
4712  	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4713  		return -EPERM;
4714  	/*
4715  	 * Updating the link count will likely cause i_uid and i_gid to
4716  	 * be writen back improperly if their true value is unknown to
4717  	 * the vfs.
4718  	 */
4719  	if (HAS_UNMAPPED_ID(idmap, inode))
4720  		return -EPERM;
4721  	if (!dir->i_op->link)
4722  		return -EPERM;
4723  	if (S_ISDIR(inode->i_mode))
4724  		return -EPERM;
4725  
4726  	error = security_inode_link(old_dentry, dir, new_dentry);
4727  	if (error)
4728  		return error;
4729  
4730  	inode_lock(inode);
4731  	/* Make sure we don't allow creating hardlink to an unlinked file */
4732  	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4733  		error =  -ENOENT;
4734  	else if (max_links && inode->i_nlink >= max_links)
4735  		error = -EMLINK;
4736  	else {
4737  		error = try_break_deleg(inode, delegated_inode);
4738  		if (!error)
4739  			error = dir->i_op->link(old_dentry, dir, new_dentry);
4740  	}
4741  
4742  	if (!error && (inode->i_state & I_LINKABLE)) {
4743  		spin_lock(&inode->i_lock);
4744  		inode->i_state &= ~I_LINKABLE;
4745  		spin_unlock(&inode->i_lock);
4746  	}
4747  	inode_unlock(inode);
4748  	if (!error)
4749  		fsnotify_link(dir, inode, new_dentry);
4750  	return error;
4751  }
4752  EXPORT_SYMBOL(vfs_link);
4753  
4754  /*
4755   * Hardlinks are often used in delicate situations.  We avoid
4756   * security-related surprises by not following symlinks on the
4757   * newname.  --KAB
4758   *
4759   * We don't follow them on the oldname either to be compatible
4760   * with linux 2.0, and to avoid hard-linking to directories
4761   * and other special files.  --ADM
4762   */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4763  int do_linkat(int olddfd, struct filename *old, int newdfd,
4764  	      struct filename *new, int flags)
4765  {
4766  	struct mnt_idmap *idmap;
4767  	struct dentry *new_dentry;
4768  	struct path old_path, new_path;
4769  	struct inode *delegated_inode = NULL;
4770  	int how = 0;
4771  	int error;
4772  
4773  	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4774  		error = -EINVAL;
4775  		goto out_putnames;
4776  	}
4777  	/*
4778  	 * To use null names we require CAP_DAC_READ_SEARCH or
4779  	 * that the open-time creds of the dfd matches current.
4780  	 * This ensures that not everyone will be able to create
4781  	 * a hardlink using the passed file descriptor.
4782  	 */
4783  	if (flags & AT_EMPTY_PATH)
4784  		how |= LOOKUP_LINKAT_EMPTY;
4785  
4786  	if (flags & AT_SYMLINK_FOLLOW)
4787  		how |= LOOKUP_FOLLOW;
4788  retry:
4789  	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4790  	if (error)
4791  		goto out_putnames;
4792  
4793  	new_dentry = filename_create(newdfd, new, &new_path,
4794  					(how & LOOKUP_REVAL));
4795  	error = PTR_ERR(new_dentry);
4796  	if (IS_ERR(new_dentry))
4797  		goto out_putpath;
4798  
4799  	error = -EXDEV;
4800  	if (old_path.mnt != new_path.mnt)
4801  		goto out_dput;
4802  	idmap = mnt_idmap(new_path.mnt);
4803  	error = may_linkat(idmap, &old_path);
4804  	if (unlikely(error))
4805  		goto out_dput;
4806  	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4807  	if (error)
4808  		goto out_dput;
4809  	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4810  			 new_dentry, &delegated_inode);
4811  out_dput:
4812  	done_path_create(&new_path, new_dentry);
4813  	if (delegated_inode) {
4814  		error = break_deleg_wait(&delegated_inode);
4815  		if (!error) {
4816  			path_put(&old_path);
4817  			goto retry;
4818  		}
4819  	}
4820  	if (retry_estale(error, how)) {
4821  		path_put(&old_path);
4822  		how |= LOOKUP_REVAL;
4823  		goto retry;
4824  	}
4825  out_putpath:
4826  	path_put(&old_path);
4827  out_putnames:
4828  	putname(old);
4829  	putname(new);
4830  
4831  	return error;
4832  }
4833  
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4834  SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4835  		int, newdfd, const char __user *, newname, int, flags)
4836  {
4837  	return do_linkat(olddfd, getname_uflags(oldname, flags),
4838  		newdfd, getname(newname), flags);
4839  }
4840  
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4841  SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4842  {
4843  	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4844  }
4845  
4846  /**
4847   * vfs_rename - rename a filesystem object
4848   * @rd:		pointer to &struct renamedata info
4849   *
4850   * The caller must hold multiple mutexes--see lock_rename()).
4851   *
4852   * If vfs_rename discovers a delegation in need of breaking at either
4853   * the source or destination, it will return -EWOULDBLOCK and return a
4854   * reference to the inode in delegated_inode.  The caller should then
4855   * break the delegation and retry.  Because breaking a delegation may
4856   * take a long time, the caller should drop all locks before doing
4857   * so.
4858   *
4859   * Alternatively, a caller may pass NULL for delegated_inode.  This may
4860   * be appropriate for callers that expect the underlying filesystem not
4861   * to be NFS exported.
4862   *
4863   * The worst of all namespace operations - renaming directory. "Perverted"
4864   * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4865   * Problems:
4866   *
4867   *	a) we can get into loop creation.
4868   *	b) race potential - two innocent renames can create a loop together.
4869   *	   That's where 4.4BSD screws up. Current fix: serialization on
4870   *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4871   *	   story.
4872   *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4873   *	   and source (if it's a non-directory or a subdirectory that moves to
4874   *	   different parent).
4875   *	   And that - after we got ->i_mutex on parents (until then we don't know
4876   *	   whether the target exists).  Solution: try to be smart with locking
4877   *	   order for inodes.  We rely on the fact that tree topology may change
4878   *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4879   *	   move will be locked.  Thus we can rank directories by the tree
4880   *	   (ancestors first) and rank all non-directories after them.
4881   *	   That works since everybody except rename does "lock parent, lookup,
4882   *	   lock child" and rename is under ->s_vfs_rename_mutex.
4883   *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4884   *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4885   *	   we'd better make sure that there's no link(2) for them.
4886   *	d) conversion from fhandle to dentry may come in the wrong moment - when
4887   *	   we are removing the target. Solution: we will have to grab ->i_mutex
4888   *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4889   *	   ->i_mutex on parents, which works but leads to some truly excessive
4890   *	   locking].
4891   */
vfs_rename(struct renamedata * rd)4892  int vfs_rename(struct renamedata *rd)
4893  {
4894  	int error;
4895  	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4896  	struct dentry *old_dentry = rd->old_dentry;
4897  	struct dentry *new_dentry = rd->new_dentry;
4898  	struct inode **delegated_inode = rd->delegated_inode;
4899  	unsigned int flags = rd->flags;
4900  	bool is_dir = d_is_dir(old_dentry);
4901  	struct inode *source = old_dentry->d_inode;
4902  	struct inode *target = new_dentry->d_inode;
4903  	bool new_is_dir = false;
4904  	unsigned max_links = new_dir->i_sb->s_max_links;
4905  	struct name_snapshot old_name;
4906  	bool lock_old_subdir, lock_new_subdir;
4907  
4908  	if (source == target)
4909  		return 0;
4910  
4911  	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4912  	if (error)
4913  		return error;
4914  
4915  	if (!target) {
4916  		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4917  	} else {
4918  		new_is_dir = d_is_dir(new_dentry);
4919  
4920  		if (!(flags & RENAME_EXCHANGE))
4921  			error = may_delete(rd->new_mnt_idmap, new_dir,
4922  					   new_dentry, is_dir);
4923  		else
4924  			error = may_delete(rd->new_mnt_idmap, new_dir,
4925  					   new_dentry, new_is_dir);
4926  	}
4927  	if (error)
4928  		return error;
4929  
4930  	if (!old_dir->i_op->rename)
4931  		return -EPERM;
4932  
4933  	/*
4934  	 * If we are going to change the parent - check write permissions,
4935  	 * we'll need to flip '..'.
4936  	 */
4937  	if (new_dir != old_dir) {
4938  		if (is_dir) {
4939  			error = inode_permission(rd->old_mnt_idmap, source,
4940  						 MAY_WRITE);
4941  			if (error)
4942  				return error;
4943  		}
4944  		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4945  			error = inode_permission(rd->new_mnt_idmap, target,
4946  						 MAY_WRITE);
4947  			if (error)
4948  				return error;
4949  		}
4950  	}
4951  
4952  	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4953  				      flags);
4954  	if (error)
4955  		return error;
4956  
4957  	take_dentry_name_snapshot(&old_name, old_dentry);
4958  	dget(new_dentry);
4959  	/*
4960  	 * Lock children.
4961  	 * The source subdirectory needs to be locked on cross-directory
4962  	 * rename or cross-directory exchange since its parent changes.
4963  	 * The target subdirectory needs to be locked on cross-directory
4964  	 * exchange due to parent change and on any rename due to becoming
4965  	 * a victim.
4966  	 * Non-directories need locking in all cases (for NFS reasons);
4967  	 * they get locked after any subdirectories (in inode address order).
4968  	 *
4969  	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4970  	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4971  	 */
4972  	lock_old_subdir = new_dir != old_dir;
4973  	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4974  	if (is_dir) {
4975  		if (lock_old_subdir)
4976  			inode_lock_nested(source, I_MUTEX_CHILD);
4977  		if (target && (!new_is_dir || lock_new_subdir))
4978  			inode_lock(target);
4979  	} else if (new_is_dir) {
4980  		if (lock_new_subdir)
4981  			inode_lock_nested(target, I_MUTEX_CHILD);
4982  		inode_lock(source);
4983  	} else {
4984  		lock_two_nondirectories(source, target);
4985  	}
4986  
4987  	error = -EPERM;
4988  	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4989  		goto out;
4990  
4991  	error = -EBUSY;
4992  	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4993  		goto out;
4994  
4995  	if (max_links && new_dir != old_dir) {
4996  		error = -EMLINK;
4997  		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4998  			goto out;
4999  		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5000  		    old_dir->i_nlink >= max_links)
5001  			goto out;
5002  	}
5003  	if (!is_dir) {
5004  		error = try_break_deleg(source, delegated_inode);
5005  		if (error)
5006  			goto out;
5007  	}
5008  	if (target && !new_is_dir) {
5009  		error = try_break_deleg(target, delegated_inode);
5010  		if (error)
5011  			goto out;
5012  	}
5013  	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5014  				      new_dir, new_dentry, flags);
5015  	if (error)
5016  		goto out;
5017  
5018  	if (!(flags & RENAME_EXCHANGE) && target) {
5019  		if (is_dir) {
5020  			shrink_dcache_parent(new_dentry);
5021  			target->i_flags |= S_DEAD;
5022  		}
5023  		dont_mount(new_dentry);
5024  		detach_mounts(new_dentry);
5025  	}
5026  	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5027  		if (!(flags & RENAME_EXCHANGE))
5028  			d_move(old_dentry, new_dentry);
5029  		else
5030  			d_exchange(old_dentry, new_dentry);
5031  	}
5032  out:
5033  	if (!is_dir || lock_old_subdir)
5034  		inode_unlock(source);
5035  	if (target && (!new_is_dir || lock_new_subdir))
5036  		inode_unlock(target);
5037  	dput(new_dentry);
5038  	if (!error) {
5039  		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5040  			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5041  		if (flags & RENAME_EXCHANGE) {
5042  			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5043  				      new_is_dir, NULL, new_dentry);
5044  		}
5045  	}
5046  	release_dentry_name_snapshot(&old_name);
5047  
5048  	return error;
5049  }
5050  EXPORT_SYMBOL(vfs_rename);
5051  
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5052  int do_renameat2(int olddfd, struct filename *from, int newdfd,
5053  		 struct filename *to, unsigned int flags)
5054  {
5055  	struct renamedata rd;
5056  	struct dentry *old_dentry, *new_dentry;
5057  	struct dentry *trap;
5058  	struct path old_path, new_path;
5059  	struct qstr old_last, new_last;
5060  	int old_type, new_type;
5061  	struct inode *delegated_inode = NULL;
5062  	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5063  	bool should_retry = false;
5064  	int error = -EINVAL;
5065  
5066  	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5067  		goto put_names;
5068  
5069  	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5070  	    (flags & RENAME_EXCHANGE))
5071  		goto put_names;
5072  
5073  	if (flags & RENAME_EXCHANGE)
5074  		target_flags = 0;
5075  
5076  retry:
5077  	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5078  				  &old_last, &old_type);
5079  	if (error)
5080  		goto put_names;
5081  
5082  	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5083  				  &new_type);
5084  	if (error)
5085  		goto exit1;
5086  
5087  	error = -EXDEV;
5088  	if (old_path.mnt != new_path.mnt)
5089  		goto exit2;
5090  
5091  	error = -EBUSY;
5092  	if (old_type != LAST_NORM)
5093  		goto exit2;
5094  
5095  	if (flags & RENAME_NOREPLACE)
5096  		error = -EEXIST;
5097  	if (new_type != LAST_NORM)
5098  		goto exit2;
5099  
5100  	error = mnt_want_write(old_path.mnt);
5101  	if (error)
5102  		goto exit2;
5103  
5104  retry_deleg:
5105  	trap = lock_rename(new_path.dentry, old_path.dentry);
5106  	if (IS_ERR(trap)) {
5107  		error = PTR_ERR(trap);
5108  		goto exit_lock_rename;
5109  	}
5110  
5111  	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5112  					  lookup_flags);
5113  	error = PTR_ERR(old_dentry);
5114  	if (IS_ERR(old_dentry))
5115  		goto exit3;
5116  	/* source must exist */
5117  	error = -ENOENT;
5118  	if (d_is_negative(old_dentry))
5119  		goto exit4;
5120  	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5121  					  lookup_flags | target_flags);
5122  	error = PTR_ERR(new_dentry);
5123  	if (IS_ERR(new_dentry))
5124  		goto exit4;
5125  	error = -EEXIST;
5126  	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5127  		goto exit5;
5128  	if (flags & RENAME_EXCHANGE) {
5129  		error = -ENOENT;
5130  		if (d_is_negative(new_dentry))
5131  			goto exit5;
5132  
5133  		if (!d_is_dir(new_dentry)) {
5134  			error = -ENOTDIR;
5135  			if (new_last.name[new_last.len])
5136  				goto exit5;
5137  		}
5138  	}
5139  	/* unless the source is a directory trailing slashes give -ENOTDIR */
5140  	if (!d_is_dir(old_dentry)) {
5141  		error = -ENOTDIR;
5142  		if (old_last.name[old_last.len])
5143  			goto exit5;
5144  		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5145  			goto exit5;
5146  	}
5147  	/* source should not be ancestor of target */
5148  	error = -EINVAL;
5149  	if (old_dentry == trap)
5150  		goto exit5;
5151  	/* target should not be an ancestor of source */
5152  	if (!(flags & RENAME_EXCHANGE))
5153  		error = -ENOTEMPTY;
5154  	if (new_dentry == trap)
5155  		goto exit5;
5156  
5157  	error = security_path_rename(&old_path, old_dentry,
5158  				     &new_path, new_dentry, flags);
5159  	if (error)
5160  		goto exit5;
5161  
5162  	rd.old_dir	   = old_path.dentry->d_inode;
5163  	rd.old_dentry	   = old_dentry;
5164  	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5165  	rd.new_dir	   = new_path.dentry->d_inode;
5166  	rd.new_dentry	   = new_dentry;
5167  	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5168  	rd.delegated_inode = &delegated_inode;
5169  	rd.flags	   = flags;
5170  	error = vfs_rename(&rd);
5171  exit5:
5172  	dput(new_dentry);
5173  exit4:
5174  	dput(old_dentry);
5175  exit3:
5176  	unlock_rename(new_path.dentry, old_path.dentry);
5177  exit_lock_rename:
5178  	if (delegated_inode) {
5179  		error = break_deleg_wait(&delegated_inode);
5180  		if (!error)
5181  			goto retry_deleg;
5182  	}
5183  	mnt_drop_write(old_path.mnt);
5184  exit2:
5185  	if (retry_estale(error, lookup_flags))
5186  		should_retry = true;
5187  	path_put(&new_path);
5188  exit1:
5189  	path_put(&old_path);
5190  	if (should_retry) {
5191  		should_retry = false;
5192  		lookup_flags |= LOOKUP_REVAL;
5193  		goto retry;
5194  	}
5195  put_names:
5196  	putname(from);
5197  	putname(to);
5198  	return error;
5199  }
5200  
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5201  SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5202  		int, newdfd, const char __user *, newname, unsigned int, flags)
5203  {
5204  	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5205  				flags);
5206  }
5207  
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5208  SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5209  		int, newdfd, const char __user *, newname)
5210  {
5211  	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5212  				0);
5213  }
5214  
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5215  SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5216  {
5217  	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5218  				getname(newname), 0);
5219  }
5220  
readlink_copy(char __user * buffer,int buflen,const char * link)5221  int readlink_copy(char __user *buffer, int buflen, const char *link)
5222  {
5223  	int len = PTR_ERR(link);
5224  	if (IS_ERR(link))
5225  		goto out;
5226  
5227  	len = strlen(link);
5228  	if (len > (unsigned) buflen)
5229  		len = buflen;
5230  	if (copy_to_user(buffer, link, len))
5231  		len = -EFAULT;
5232  out:
5233  	return len;
5234  }
5235  
5236  /**
5237   * vfs_readlink - copy symlink body into userspace buffer
5238   * @dentry: dentry on which to get symbolic link
5239   * @buffer: user memory pointer
5240   * @buflen: size of buffer
5241   *
5242   * Does not touch atime.  That's up to the caller if necessary
5243   *
5244   * Does not call security hook.
5245   */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5246  int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5247  {
5248  	struct inode *inode = d_inode(dentry);
5249  	DEFINE_DELAYED_CALL(done);
5250  	const char *link;
5251  	int res;
5252  
5253  	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5254  		if (unlikely(inode->i_op->readlink))
5255  			return inode->i_op->readlink(dentry, buffer, buflen);
5256  
5257  		if (!d_is_symlink(dentry))
5258  			return -EINVAL;
5259  
5260  		spin_lock(&inode->i_lock);
5261  		inode->i_opflags |= IOP_DEFAULT_READLINK;
5262  		spin_unlock(&inode->i_lock);
5263  	}
5264  
5265  	link = READ_ONCE(inode->i_link);
5266  	if (!link) {
5267  		link = inode->i_op->get_link(dentry, inode, &done);
5268  		if (IS_ERR(link))
5269  			return PTR_ERR(link);
5270  	}
5271  	res = readlink_copy(buffer, buflen, link);
5272  	do_delayed_call(&done);
5273  	return res;
5274  }
5275  EXPORT_SYMBOL(vfs_readlink);
5276  
5277  /**
5278   * vfs_get_link - get symlink body
5279   * @dentry: dentry on which to get symbolic link
5280   * @done: caller needs to free returned data with this
5281   *
5282   * Calls security hook and i_op->get_link() on the supplied inode.
5283   *
5284   * It does not touch atime.  That's up to the caller if necessary.
5285   *
5286   * Does not work on "special" symlinks like /proc/$$/fd/N
5287   */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5288  const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5289  {
5290  	const char *res = ERR_PTR(-EINVAL);
5291  	struct inode *inode = d_inode(dentry);
5292  
5293  	if (d_is_symlink(dentry)) {
5294  		res = ERR_PTR(security_inode_readlink(dentry));
5295  		if (!res)
5296  			res = inode->i_op->get_link(dentry, inode, done);
5297  	}
5298  	return res;
5299  }
5300  EXPORT_SYMBOL(vfs_get_link);
5301  
5302  /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5303  const char *page_get_link(struct dentry *dentry, struct inode *inode,
5304  			  struct delayed_call *callback)
5305  {
5306  	char *kaddr;
5307  	struct page *page;
5308  	struct address_space *mapping = inode->i_mapping;
5309  
5310  	if (!dentry) {
5311  		page = find_get_page(mapping, 0);
5312  		if (!page)
5313  			return ERR_PTR(-ECHILD);
5314  		if (!PageUptodate(page)) {
5315  			put_page(page);
5316  			return ERR_PTR(-ECHILD);
5317  		}
5318  	} else {
5319  		page = read_mapping_page(mapping, 0, NULL);
5320  		if (IS_ERR(page))
5321  			return (char*)page;
5322  	}
5323  	set_delayed_call(callback, page_put_link, page);
5324  	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5325  	kaddr = page_address(page);
5326  	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5327  	return kaddr;
5328  }
5329  
5330  EXPORT_SYMBOL(page_get_link);
5331  
page_put_link(void * arg)5332  void page_put_link(void *arg)
5333  {
5334  	put_page(arg);
5335  }
5336  EXPORT_SYMBOL(page_put_link);
5337  
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5338  int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5339  {
5340  	DEFINE_DELAYED_CALL(done);
5341  	int res = readlink_copy(buffer, buflen,
5342  				page_get_link(dentry, d_inode(dentry),
5343  					      &done));
5344  	do_delayed_call(&done);
5345  	return res;
5346  }
5347  EXPORT_SYMBOL(page_readlink);
5348  
page_symlink(struct inode * inode,const char * symname,int len)5349  int page_symlink(struct inode *inode, const char *symname, int len)
5350  {
5351  	struct address_space *mapping = inode->i_mapping;
5352  	const struct address_space_operations *aops = mapping->a_ops;
5353  	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5354  	struct folio *folio;
5355  	void *fsdata = NULL;
5356  	int err;
5357  	unsigned int flags;
5358  
5359  retry:
5360  	if (nofs)
5361  		flags = memalloc_nofs_save();
5362  	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5363  	if (nofs)
5364  		memalloc_nofs_restore(flags);
5365  	if (err)
5366  		goto fail;
5367  
5368  	memcpy(folio_address(folio), symname, len - 1);
5369  
5370  	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5371  						folio, fsdata);
5372  	if (err < 0)
5373  		goto fail;
5374  	if (err < len-1)
5375  		goto retry;
5376  
5377  	mark_inode_dirty(inode);
5378  	return 0;
5379  fail:
5380  	return err;
5381  }
5382  EXPORT_SYMBOL(page_symlink);
5383  
5384  const struct inode_operations page_symlink_inode_operations = {
5385  	.get_link	= page_get_link,
5386  };
5387  EXPORT_SYMBOL(page_symlink_inode_operations);
5388