1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #include "io-submitter.h"
7 
8 #include <linux/bio.h>
9 #include <linux/kernel.h>
10 #include <linux/mutex.h>
11 
12 #include "memory-alloc.h"
13 #include "permassert.h"
14 
15 #include "data-vio.h"
16 #include "logger.h"
17 #include "types.h"
18 #include "vdo.h"
19 #include "vio.h"
20 
21 /*
22  * Submission of bio operations to the underlying storage device will go through a separate work
23  * queue thread (or more than one) to prevent blocking in other threads if the storage device has a
24  * full queue. The plug structure allows that thread to do better batching of requests to make the
25  * I/O more efficient.
26  *
27  * When multiple worker threads are used, a thread is chosen for a I/O operation submission based
28  * on the PBN, so a given PBN will consistently wind up on the same thread. Flush operations are
29  * assigned round-robin.
30  *
31  * The map (protected by the mutex) collects pending I/O operations so that the worker thread can
32  * reorder them to try to encourage I/O request merging in the request queue underneath.
33  */
34 struct bio_queue_data {
35 	struct vdo_work_queue *queue;
36 	struct blk_plug plug;
37 	struct int_map *map;
38 	struct mutex lock;
39 	unsigned int queue_number;
40 };
41 
42 struct io_submitter {
43 	unsigned int num_bio_queues_used;
44 	unsigned int bio_queue_rotation_interval;
45 	struct bio_queue_data bio_queue_data[];
46 };
47 
start_bio_queue(void * ptr)48 static void start_bio_queue(void *ptr)
49 {
50 	struct bio_queue_data *bio_queue_data = ptr;
51 
52 	blk_start_plug(&bio_queue_data->plug);
53 }
54 
finish_bio_queue(void * ptr)55 static void finish_bio_queue(void *ptr)
56 {
57 	struct bio_queue_data *bio_queue_data = ptr;
58 
59 	blk_finish_plug(&bio_queue_data->plug);
60 }
61 
62 static const struct vdo_work_queue_type bio_queue_type = {
63 	.start = start_bio_queue,
64 	.finish = finish_bio_queue,
65 	.max_priority = BIO_Q_MAX_PRIORITY,
66 	.default_priority = BIO_Q_DATA_PRIORITY,
67 };
68 
69 /**
70  * count_all_bios() - Determine which bio counter to use.
71  * @vio: The vio associated with the bio.
72  * @bio: The bio to count.
73  */
count_all_bios(struct vio * vio,struct bio * bio)74 static void count_all_bios(struct vio *vio, struct bio *bio)
75 {
76 	struct atomic_statistics *stats = &vio->completion.vdo->stats;
77 
78 	if (is_data_vio(vio)) {
79 		vdo_count_bios(&stats->bios_out, bio);
80 		return;
81 	}
82 
83 	vdo_count_bios(&stats->bios_meta, bio);
84 	if (vio->type == VIO_TYPE_RECOVERY_JOURNAL)
85 		vdo_count_bios(&stats->bios_journal, bio);
86 	else if (vio->type == VIO_TYPE_BLOCK_MAP)
87 		vdo_count_bios(&stats->bios_page_cache, bio);
88 }
89 
90 /**
91  * assert_in_bio_zone() - Assert that a vio is in the correct bio zone and not in interrupt
92  *                        context.
93  * @vio: The vio to check.
94  */
assert_in_bio_zone(struct vio * vio)95 static void assert_in_bio_zone(struct vio *vio)
96 {
97 	VDO_ASSERT_LOG_ONLY(!in_interrupt(), "not in interrupt context");
98 	assert_vio_in_bio_zone(vio);
99 }
100 
101 /**
102  * send_bio_to_device() - Update stats and tracing info, then submit the supplied bio to the OS for
103  *                        processing.
104  * @vio: The vio associated with the bio.
105  * @bio: The bio to submit to the OS.
106  */
send_bio_to_device(struct vio * vio,struct bio * bio)107 static void send_bio_to_device(struct vio *vio, struct bio *bio)
108 {
109 	struct vdo *vdo = vio->completion.vdo;
110 
111 	assert_in_bio_zone(vio);
112 	atomic64_inc(&vdo->stats.bios_submitted);
113 	count_all_bios(vio, bio);
114 	bio_set_dev(bio, vdo_get_backing_device(vdo));
115 	submit_bio_noacct(bio);
116 }
117 
118 /**
119  * vdo_submit_vio() - Submits a vio's bio to the underlying block device. May block if the device
120  *		      is busy. This callback should be used by vios which did not attempt to merge.
121  */
vdo_submit_vio(struct vdo_completion * completion)122 void vdo_submit_vio(struct vdo_completion *completion)
123 {
124 	struct vio *vio = as_vio(completion);
125 
126 	send_bio_to_device(vio, vio->bio);
127 }
128 
129 /**
130  * get_bio_list() - Extract the list of bios to submit from a vio.
131  * @vio: The vio submitting I/O.
132  *
133  * The list will always contain at least one entry (the bio for the vio on which it is called), but
134  * other bios may have been merged with it as well.
135  *
136  * Return: bio  The head of the bio list to submit.
137  */
get_bio_list(struct vio * vio)138 static struct bio *get_bio_list(struct vio *vio)
139 {
140 	struct bio *bio;
141 	struct io_submitter *submitter = vio->completion.vdo->io_submitter;
142 	struct bio_queue_data *bio_queue_data = &(submitter->bio_queue_data[vio->bio_zone]);
143 
144 	assert_in_bio_zone(vio);
145 
146 	mutex_lock(&bio_queue_data->lock);
147 	vdo_int_map_remove(bio_queue_data->map,
148 			   vio->bios_merged.head->bi_iter.bi_sector);
149 	vdo_int_map_remove(bio_queue_data->map,
150 			   vio->bios_merged.tail->bi_iter.bi_sector);
151 	bio = vio->bios_merged.head;
152 	bio_list_init(&vio->bios_merged);
153 	mutex_unlock(&bio_queue_data->lock);
154 
155 	return bio;
156 }
157 
158 /**
159  * submit_data_vio() - Submit a data_vio's bio to the storage below along with
160  *		       any bios that have been merged with it.
161  *
162  * Context: This call may block and so should only be called from a bio thread.
163  */
submit_data_vio(struct vdo_completion * completion)164 static void submit_data_vio(struct vdo_completion *completion)
165 {
166 	struct bio *bio, *next;
167 	struct vio *vio = as_vio(completion);
168 
169 	assert_in_bio_zone(vio);
170 	for (bio = get_bio_list(vio); bio != NULL; bio = next) {
171 		next = bio->bi_next;
172 		bio->bi_next = NULL;
173 		send_bio_to_device((struct vio *) bio->bi_private, bio);
174 	}
175 }
176 
177 /**
178  * get_mergeable_locked() - Attempt to find an already queued bio that the current bio can be
179  *                          merged with.
180  * @map: The bio map to use for merging.
181  * @vio: The vio we want to merge.
182  * @back_merge: Set to true for a back merge, false for a front merge.
183  *
184  * There are two types of merging possible, forward and backward, which are distinguished by a flag
185  * that uses kernel elevator terminology.
186  *
187  * Return: the vio to merge to, NULL if no merging is possible.
188  */
get_mergeable_locked(struct int_map * map,struct vio * vio,bool back_merge)189 static struct vio *get_mergeable_locked(struct int_map *map, struct vio *vio,
190 					bool back_merge)
191 {
192 	struct bio *bio = vio->bio;
193 	sector_t merge_sector = bio->bi_iter.bi_sector;
194 	struct vio *vio_merge;
195 
196 	if (back_merge)
197 		merge_sector -= VDO_SECTORS_PER_BLOCK;
198 	else
199 		merge_sector += VDO_SECTORS_PER_BLOCK;
200 
201 	vio_merge = vdo_int_map_get(map, merge_sector);
202 
203 	if (vio_merge == NULL)
204 		return NULL;
205 
206 	if (vio->completion.priority != vio_merge->completion.priority)
207 		return NULL;
208 
209 	if (bio_data_dir(bio) != bio_data_dir(vio_merge->bio))
210 		return NULL;
211 
212 	if (bio_list_empty(&vio_merge->bios_merged))
213 		return NULL;
214 
215 	if (back_merge) {
216 		return (vio_merge->bios_merged.tail->bi_iter.bi_sector == merge_sector ?
217 			vio_merge : NULL);
218 	}
219 
220 	return (vio_merge->bios_merged.head->bi_iter.bi_sector == merge_sector ?
221 		vio_merge : NULL);
222 }
223 
map_merged_vio(struct int_map * bio_map,struct vio * vio)224 static int map_merged_vio(struct int_map *bio_map, struct vio *vio)
225 {
226 	int result;
227 	sector_t bio_sector;
228 
229 	bio_sector = vio->bios_merged.head->bi_iter.bi_sector;
230 	result = vdo_int_map_put(bio_map, bio_sector, vio, true, NULL);
231 	if (result != VDO_SUCCESS)
232 		return result;
233 
234 	bio_sector = vio->bios_merged.tail->bi_iter.bi_sector;
235 	return vdo_int_map_put(bio_map, bio_sector, vio, true, NULL);
236 }
237 
merge_to_prev_tail(struct int_map * bio_map,struct vio * vio,struct vio * prev_vio)238 static int merge_to_prev_tail(struct int_map *bio_map, struct vio *vio,
239 			      struct vio *prev_vio)
240 {
241 	vdo_int_map_remove(bio_map, prev_vio->bios_merged.tail->bi_iter.bi_sector);
242 	bio_list_merge(&prev_vio->bios_merged, &vio->bios_merged);
243 	return map_merged_vio(bio_map, prev_vio);
244 }
245 
merge_to_next_head(struct int_map * bio_map,struct vio * vio,struct vio * next_vio)246 static int merge_to_next_head(struct int_map *bio_map, struct vio *vio,
247 			      struct vio *next_vio)
248 {
249 	/*
250 	 * Handle "next merge" and "gap fill" cases the same way so as to reorder bios in a way
251 	 * that's compatible with using funnel queues in work queues. This avoids removing an
252 	 * existing completion.
253 	 */
254 	vdo_int_map_remove(bio_map, next_vio->bios_merged.head->bi_iter.bi_sector);
255 	bio_list_merge_head(&next_vio->bios_merged, &vio->bios_merged);
256 	return map_merged_vio(bio_map, next_vio);
257 }
258 
259 /**
260  * try_bio_map_merge() - Attempt to merge a vio's bio with other pending I/Os.
261  * @vio: The vio to merge.
262  *
263  * Currently this is only used for data_vios, but is broken out for future use with metadata vios.
264  *
265  * Return: whether or not the vio was merged.
266  */
try_bio_map_merge(struct vio * vio)267 static bool try_bio_map_merge(struct vio *vio)
268 {
269 	int result;
270 	bool merged = true;
271 	struct bio *bio = vio->bio;
272 	struct vio *prev_vio, *next_vio;
273 	struct vdo *vdo = vio->completion.vdo;
274 	struct bio_queue_data *bio_queue_data =
275 		&vdo->io_submitter->bio_queue_data[vio->bio_zone];
276 
277 	bio->bi_next = NULL;
278 	bio_list_init(&vio->bios_merged);
279 	bio_list_add(&vio->bios_merged, bio);
280 
281 	mutex_lock(&bio_queue_data->lock);
282 	prev_vio = get_mergeable_locked(bio_queue_data->map, vio, true);
283 	next_vio = get_mergeable_locked(bio_queue_data->map, vio, false);
284 	if (prev_vio == next_vio)
285 		next_vio = NULL;
286 
287 	if ((prev_vio == NULL) && (next_vio == NULL)) {
288 		/* no merge. just add to bio_queue */
289 		merged = false;
290 		result = vdo_int_map_put(bio_queue_data->map,
291 					 bio->bi_iter.bi_sector,
292 					 vio, true, NULL);
293 	} else if (next_vio == NULL) {
294 		/* Only prev. merge to prev's tail */
295 		result = merge_to_prev_tail(bio_queue_data->map, vio, prev_vio);
296 	} else {
297 		/* Only next. merge to next's head */
298 		result = merge_to_next_head(bio_queue_data->map, vio, next_vio);
299 	}
300 	mutex_unlock(&bio_queue_data->lock);
301 
302 	/* We don't care about failure of int_map_put in this case. */
303 	VDO_ASSERT_LOG_ONLY(result == VDO_SUCCESS, "bio map insertion succeeds");
304 	return merged;
305 }
306 
307 /**
308  * vdo_submit_data_vio() - Submit I/O for a data_vio.
309  * @data_vio: the data_vio for which to issue I/O.
310  *
311  * If possible, this I/O will be merged other pending I/Os. Otherwise, the data_vio will be sent to
312  * the appropriate bio zone directly.
313  */
vdo_submit_data_vio(struct data_vio * data_vio)314 void vdo_submit_data_vio(struct data_vio *data_vio)
315 {
316 	if (try_bio_map_merge(&data_vio->vio))
317 		return;
318 
319 	launch_data_vio_bio_zone_callback(data_vio, submit_data_vio);
320 }
321 
322 /**
323  * __submit_metadata_vio() - Submit I/O for a metadata vio.
324  * @vio: the vio for which to issue I/O
325  * @physical: the physical block number to read or write
326  * @callback: the bio endio function which will be called after the I/O completes
327  * @error_handler: the handler for submission or I/O errors (may be NULL)
328  * @operation: the type of I/O to perform
329  * @data: the buffer to read or write (may be NULL)
330  *
331  * The vio is enqueued on a vdo bio queue so that bio submission (which may block) does not block
332  * other vdo threads.
333  *
334  * That the error handler will run on the correct thread is only true so long as the thread calling
335  * this function, and the thread set in the endio callback are the same, as well as the fact that
336  * no error can occur on the bio queue. Currently this is true for all callers, but additional care
337  * will be needed if this ever changes.
338  */
__submit_metadata_vio(struct vio * vio,physical_block_number_t physical,bio_end_io_t callback,vdo_action_fn error_handler,blk_opf_t operation,char * data)339 void __submit_metadata_vio(struct vio *vio, physical_block_number_t physical,
340 			   bio_end_io_t callback, vdo_action_fn error_handler,
341 			   blk_opf_t operation, char *data)
342 {
343 	int result;
344 	struct vdo_completion *completion = &vio->completion;
345 	const struct admin_state_code *code = vdo_get_admin_state(completion->vdo);
346 
347 
348 	VDO_ASSERT_LOG_ONLY(!code->quiescent, "I/O not allowed in state %s", code->name);
349 
350 	vdo_reset_completion(completion);
351 	completion->error_handler = error_handler;
352 	result = vio_reset_bio(vio, data, callback, operation | REQ_META, physical);
353 	if (result != VDO_SUCCESS) {
354 		continue_vio(vio, result);
355 		return;
356 	}
357 
358 	vdo_set_completion_callback(completion, vdo_submit_vio,
359 				    get_vio_bio_zone_thread_id(vio));
360 	vdo_launch_completion_with_priority(completion, get_metadata_priority(vio));
361 }
362 
363 /**
364  * vdo_make_io_submitter() - Create an io_submitter structure.
365  * @thread_count: Number of bio-submission threads to set up.
366  * @rotation_interval: Interval to use when rotating between bio-submission threads when enqueuing
367  *                     completions.
368  * @max_requests_active: Number of bios for merge tracking.
369  * @vdo: The vdo which will use this submitter.
370  * @io_submitter: pointer to the new data structure.
371  *
372  * Return: VDO_SUCCESS or an error.
373  */
vdo_make_io_submitter(unsigned int thread_count,unsigned int rotation_interval,unsigned int max_requests_active,struct vdo * vdo,struct io_submitter ** io_submitter_ptr)374 int vdo_make_io_submitter(unsigned int thread_count, unsigned int rotation_interval,
375 			  unsigned int max_requests_active, struct vdo *vdo,
376 			  struct io_submitter **io_submitter_ptr)
377 {
378 	unsigned int i;
379 	struct io_submitter *io_submitter;
380 	int result;
381 
382 	result = vdo_allocate_extended(struct io_submitter, thread_count,
383 				       struct bio_queue_data, "bio submission data",
384 				       &io_submitter);
385 	if (result != VDO_SUCCESS)
386 		return result;
387 
388 	io_submitter->bio_queue_rotation_interval = rotation_interval;
389 
390 	/* Setup for each bio-submission work queue */
391 	for (i = 0; i < thread_count; i++) {
392 		struct bio_queue_data *bio_queue_data = &io_submitter->bio_queue_data[i];
393 
394 		mutex_init(&bio_queue_data->lock);
395 		/*
396 		 * One I/O operation per request, but both first & last sector numbers.
397 		 *
398 		 * If requests are assigned to threads round-robin, they should be distributed
399 		 * quite evenly. But if they're assigned based on PBN, things can sometimes be very
400 		 * uneven. So for now, we'll assume that all requests *may* wind up on one thread,
401 		 * and thus all in the same map.
402 		 */
403 		result = vdo_int_map_create(max_requests_active * 2,
404 					    &bio_queue_data->map);
405 		if (result != VDO_SUCCESS) {
406 			/*
407 			 * Clean up the partially initialized bio-queue entirely and indicate that
408 			 * initialization failed.
409 			 */
410 			vdo_log_error("bio map initialization failed %d", result);
411 			vdo_cleanup_io_submitter(io_submitter);
412 			vdo_free_io_submitter(io_submitter);
413 			return result;
414 		}
415 
416 		bio_queue_data->queue_number = i;
417 		result = vdo_make_thread(vdo, vdo->thread_config.bio_threads[i],
418 					 &bio_queue_type, 1, (void **) &bio_queue_data);
419 		if (result != VDO_SUCCESS) {
420 			/*
421 			 * Clean up the partially initialized bio-queue entirely and indicate that
422 			 * initialization failed.
423 			 */
424 			vdo_int_map_free(vdo_forget(bio_queue_data->map));
425 			vdo_log_error("bio queue initialization failed %d", result);
426 			vdo_cleanup_io_submitter(io_submitter);
427 			vdo_free_io_submitter(io_submitter);
428 			return result;
429 		}
430 
431 		bio_queue_data->queue = vdo->threads[vdo->thread_config.bio_threads[i]].queue;
432 		io_submitter->num_bio_queues_used++;
433 	}
434 
435 	*io_submitter_ptr = io_submitter;
436 
437 	return VDO_SUCCESS;
438 }
439 
440 /**
441  * vdo_cleanup_io_submitter() - Tear down the io_submitter fields as needed for a physical layer.
442  * @io_submitter: The I/O submitter data to tear down (may be NULL).
443  */
vdo_cleanup_io_submitter(struct io_submitter * io_submitter)444 void vdo_cleanup_io_submitter(struct io_submitter *io_submitter)
445 {
446 	int i;
447 
448 	if (io_submitter == NULL)
449 		return;
450 
451 	for (i = io_submitter->num_bio_queues_used - 1; i >= 0; i--)
452 		vdo_finish_work_queue(io_submitter->bio_queue_data[i].queue);
453 }
454 
455 /**
456  * vdo_free_io_submitter() - Free the io_submitter fields and structure as needed.
457  * @io_submitter: The I/O submitter data to destroy.
458  *
459  * This must be called after vdo_cleanup_io_submitter(). It is used to release resources late in
460  * the shutdown process to avoid or reduce the chance of race conditions.
461  */
vdo_free_io_submitter(struct io_submitter * io_submitter)462 void vdo_free_io_submitter(struct io_submitter *io_submitter)
463 {
464 	int i;
465 
466 	if (io_submitter == NULL)
467 		return;
468 
469 	for (i = io_submitter->num_bio_queues_used - 1; i >= 0; i--) {
470 		io_submitter->num_bio_queues_used--;
471 		/* vdo_destroy() will free the work queue, so just give up our reference to it. */
472 		vdo_forget(io_submitter->bio_queue_data[i].queue);
473 		vdo_int_map_free(vdo_forget(io_submitter->bio_queue_data[i].map));
474 	}
475 	vdo_free(io_submitter);
476 }
477