1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31 
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33 
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 7
43 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44 
45 #define KVM_REQ_SLEEP \
46 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
55 
56 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57 				     KVM_DIRTY_LOG_INITIALLY_SET)
58 
59 #define KVM_HAVE_MMU_RWLOCK
60 
61 /*
62  * Mode of operation configurable with kvm-arm.mode early param.
63  * See Documentation/admin-guide/kernel-parameters.txt for more information.
64  */
65 enum kvm_mode {
66 	KVM_MODE_DEFAULT,
67 	KVM_MODE_PROTECTED,
68 	KVM_MODE_NV,
69 	KVM_MODE_NONE,
70 };
71 #ifdef CONFIG_KVM
72 enum kvm_mode kvm_get_mode(void);
73 #else
kvm_get_mode(void)74 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
75 #endif
76 
77 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78 
79 extern unsigned int __ro_after_init kvm_sve_max_vl;
80 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
81 int __init kvm_arm_init_sve(void);
82 
83 u32 __attribute_const__ kvm_target_cpu(void);
84 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
85 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
86 
87 struct kvm_hyp_memcache {
88 	phys_addr_t head;
89 	unsigned long nr_pages;
90 };
91 
push_hyp_memcache(struct kvm_hyp_memcache * mc,phys_addr_t * p,phys_addr_t (* to_pa)(void * virt))92 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
93 				     phys_addr_t *p,
94 				     phys_addr_t (*to_pa)(void *virt))
95 {
96 	*p = mc->head;
97 	mc->head = to_pa(p);
98 	mc->nr_pages++;
99 }
100 
pop_hyp_memcache(struct kvm_hyp_memcache * mc,void * (* to_va)(phys_addr_t phys))101 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
102 				     void *(*to_va)(phys_addr_t phys))
103 {
104 	phys_addr_t *p = to_va(mc->head);
105 
106 	if (!mc->nr_pages)
107 		return NULL;
108 
109 	mc->head = *p;
110 	mc->nr_pages--;
111 
112 	return p;
113 }
114 
__topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,void * (* alloc_fn)(void * arg),phys_addr_t (* to_pa)(void * virt),void * arg)115 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
116 				       unsigned long min_pages,
117 				       void *(*alloc_fn)(void *arg),
118 				       phys_addr_t (*to_pa)(void *virt),
119 				       void *arg)
120 {
121 	while (mc->nr_pages < min_pages) {
122 		phys_addr_t *p = alloc_fn(arg);
123 
124 		if (!p)
125 			return -ENOMEM;
126 		push_hyp_memcache(mc, p, to_pa);
127 	}
128 
129 	return 0;
130 }
131 
__free_hyp_memcache(struct kvm_hyp_memcache * mc,void (* free_fn)(void * virt,void * arg),void * (* to_va)(phys_addr_t phys),void * arg)132 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
133 				       void (*free_fn)(void *virt, void *arg),
134 				       void *(*to_va)(phys_addr_t phys),
135 				       void *arg)
136 {
137 	while (mc->nr_pages)
138 		free_fn(pop_hyp_memcache(mc, to_va), arg);
139 }
140 
141 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
142 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
143 
144 struct kvm_vmid {
145 	atomic64_t id;
146 };
147 
148 struct kvm_s2_mmu {
149 	struct kvm_vmid vmid;
150 
151 	/*
152 	 * stage2 entry level table
153 	 *
154 	 * Two kvm_s2_mmu structures in the same VM can point to the same
155 	 * pgd here.  This happens when running a guest using a
156 	 * translation regime that isn't affected by its own stage-2
157 	 * translation, such as a non-VHE hypervisor running at vEL2, or
158 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
159 	 * canonical stage-2 page tables.
160 	 */
161 	phys_addr_t	pgd_phys;
162 	struct kvm_pgtable *pgt;
163 
164 	/*
165 	 * VTCR value used on the host. For a non-NV guest (or a NV
166 	 * guest that runs in a context where its own S2 doesn't
167 	 * apply), its T0SZ value reflects that of the IPA size.
168 	 *
169 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
170 	 * the guest.
171 	 */
172 	u64	vtcr;
173 
174 	/* The last vcpu id that ran on each physical CPU */
175 	int __percpu *last_vcpu_ran;
176 
177 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
178 	/*
179 	 * Memory cache used to split
180 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
181 	 * is used to allocate stage2 page tables while splitting huge
182 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
183 	 * influences both the capacity of the split page cache, and
184 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
185 	 * too high.
186 	 *
187 	 * Protected by kvm->slots_lock.
188 	 */
189 	struct kvm_mmu_memory_cache split_page_cache;
190 	uint64_t split_page_chunk_size;
191 
192 	struct kvm_arch *arch;
193 
194 	/*
195 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
196 	 * host to parse the guest S2.
197 	 * This either contains:
198 	 * - the virtual VTTBR programmed by the guest hypervisor with
199          *   CnP cleared
200 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
201 	 *
202 	 * We also cache the full VTCR which gets used for TLB invalidation,
203 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
204 	 * to be cached in a TLB" to the letter.
205 	 */
206 	u64	tlb_vttbr;
207 	u64	tlb_vtcr;
208 
209 	/*
210 	 * true when this represents a nested context where virtual
211 	 * HCR_EL2.VM == 1
212 	 */
213 	bool	nested_stage2_enabled;
214 
215 	/*
216 	 * true when this MMU needs to be unmapped before being used for a new
217 	 * purpose.
218 	 */
219 	bool	pending_unmap;
220 
221 	/*
222 	 *  0: Nobody is currently using this, check vttbr for validity
223 	 * >0: Somebody is actively using this.
224 	 */
225 	atomic_t refcnt;
226 };
227 
228 struct kvm_arch_memory_slot {
229 };
230 
231 /**
232  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
233  *
234  * @std_bmap: Bitmap of standard secure service calls
235  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
236  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
237  */
238 struct kvm_smccc_features {
239 	unsigned long std_bmap;
240 	unsigned long std_hyp_bmap;
241 	unsigned long vendor_hyp_bmap;
242 };
243 
244 typedef unsigned int pkvm_handle_t;
245 
246 struct kvm_protected_vm {
247 	pkvm_handle_t handle;
248 	struct kvm_hyp_memcache teardown_mc;
249 	bool enabled;
250 };
251 
252 struct kvm_mpidr_data {
253 	u64			mpidr_mask;
254 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
255 };
256 
kvm_mpidr_index(struct kvm_mpidr_data * data,u64 mpidr)257 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
258 {
259 	unsigned long index = 0, mask = data->mpidr_mask;
260 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
261 
262 	bitmap_gather(&index, &aff, &mask, fls(mask));
263 
264 	return index;
265 }
266 
267 struct kvm_sysreg_masks;
268 
269 enum fgt_group_id {
270 	__NO_FGT_GROUP__,
271 	HFGxTR_GROUP,
272 	HDFGRTR_GROUP,
273 	HDFGWTR_GROUP = HDFGRTR_GROUP,
274 	HFGITR_GROUP,
275 	HAFGRTR_GROUP,
276 
277 	/* Must be last */
278 	__NR_FGT_GROUP_IDS__
279 };
280 
281 struct kvm_arch {
282 	struct kvm_s2_mmu mmu;
283 
284 	/*
285 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
286 	 * architecture. We track them globally, as we present the
287 	 * same feature-set to all vcpus.
288 	 *
289 	 * Index 0 is currently spare.
290 	 */
291 	u64 fgu[__NR_FGT_GROUP_IDS__];
292 
293 	/*
294 	 * Stage 2 paging state for VMs with nested S2 using a virtual
295 	 * VMID.
296 	 */
297 	struct kvm_s2_mmu *nested_mmus;
298 	size_t nested_mmus_size;
299 	int nested_mmus_next;
300 
301 	/* Interrupt controller */
302 	struct vgic_dist	vgic;
303 
304 	/* Timers */
305 	struct arch_timer_vm_data timer_data;
306 
307 	/* Mandated version of PSCI */
308 	u32 psci_version;
309 
310 	/* Protects VM-scoped configuration data */
311 	struct mutex config_lock;
312 
313 	/*
314 	 * If we encounter a data abort without valid instruction syndrome
315 	 * information, report this to user space.  User space can (and
316 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
317 	 * supported.
318 	 */
319 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
320 	/* Memory Tagging Extension enabled for the guest */
321 #define KVM_ARCH_FLAG_MTE_ENABLED			1
322 	/* At least one vCPU has ran in the VM */
323 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
324 	/* The vCPU feature set for the VM is configured */
325 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
326 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
327 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
328 	/* VM counter offset */
329 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
330 	/* Timer PPIs made immutable */
331 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
332 	/* Initial ID reg values loaded */
333 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
334 	/* Fine-Grained UNDEF initialised */
335 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
336 	unsigned long flags;
337 
338 	/* VM-wide vCPU feature set */
339 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
340 
341 	/* MPIDR to vcpu index mapping, optional */
342 	struct kvm_mpidr_data *mpidr_data;
343 
344 	/*
345 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
346 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
347 	 */
348 	unsigned long *pmu_filter;
349 	struct arm_pmu *arm_pmu;
350 
351 	cpumask_var_t supported_cpus;
352 
353 	/* PMCR_EL0.N value for the guest */
354 	u8 pmcr_n;
355 
356 	/* Iterator for idreg debugfs */
357 	u8	idreg_debugfs_iter;
358 
359 	/* Hypercall features firmware registers' descriptor */
360 	struct kvm_smccc_features smccc_feat;
361 	struct maple_tree smccc_filter;
362 
363 	/*
364 	 * Emulated CPU ID registers per VM
365 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
366 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
367 	 *
368 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
369 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
370 	 */
371 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
372 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
373 	u64 id_regs[KVM_ARM_ID_REG_NUM];
374 
375 	u64 ctr_el0;
376 
377 	/* Masks for VNCR-baked sysregs */
378 	struct kvm_sysreg_masks	*sysreg_masks;
379 
380 	/*
381 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
382 	 * the associated pKVM instance in the hypervisor.
383 	 */
384 	struct kvm_protected_vm pkvm;
385 };
386 
387 struct kvm_vcpu_fault_info {
388 	u64 esr_el2;		/* Hyp Syndrom Register */
389 	u64 far_el2;		/* Hyp Fault Address Register */
390 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
391 	u64 disr_el1;		/* Deferred [SError] Status Register */
392 };
393 
394 /*
395  * VNCR() just places the VNCR_capable registers in the enum after
396  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
397  * from the VNCR base. As we don't require the enum to be otherwise ordered,
398  * we need the terrible hack below to ensure that we correctly size the
399  * sys_regs array, no matter what.
400  *
401  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
402  * treasure trove of bit hacks:
403  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
404  */
405 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
406 #define VNCR(r)						\
407 	__before_##r,					\
408 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
409 	__after_##r = __MAX__(__before_##r - 1, r)
410 
411 enum vcpu_sysreg {
412 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
413 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
414 	CLIDR_EL1,	/* Cache Level ID Register */
415 	CSSELR_EL1,	/* Cache Size Selection Register */
416 	TPIDR_EL0,	/* Thread ID, User R/W */
417 	TPIDRRO_EL0,	/* Thread ID, User R/O */
418 	TPIDR_EL1,	/* Thread ID, Privileged */
419 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
420 	PAR_EL1,	/* Physical Address Register */
421 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
422 	OSLSR_EL1,	/* OS Lock Status Register */
423 	DISR_EL1,	/* Deferred Interrupt Status Register */
424 
425 	/* Performance Monitors Registers */
426 	PMCR_EL0,	/* Control Register */
427 	PMSELR_EL0,	/* Event Counter Selection Register */
428 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
429 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
430 	PMCCNTR_EL0,	/* Cycle Counter Register */
431 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
432 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
433 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
434 	PMCNTENSET_EL0,	/* Count Enable Set Register */
435 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
436 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
437 	PMUSERENR_EL0,	/* User Enable Register */
438 
439 	/* Pointer Authentication Registers in a strict increasing order. */
440 	APIAKEYLO_EL1,
441 	APIAKEYHI_EL1,
442 	APIBKEYLO_EL1,
443 	APIBKEYHI_EL1,
444 	APDAKEYLO_EL1,
445 	APDAKEYHI_EL1,
446 	APDBKEYLO_EL1,
447 	APDBKEYHI_EL1,
448 	APGAKEYLO_EL1,
449 	APGAKEYHI_EL1,
450 
451 	/* Memory Tagging Extension registers */
452 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
453 	GCR_EL1,	/* Tag Control Register */
454 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
455 
456 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
457 
458 	/* FP/SIMD/SVE */
459 	SVCR,
460 	FPMR,
461 
462 	/* 32bit specific registers. */
463 	DACR32_EL2,	/* Domain Access Control Register */
464 	IFSR32_EL2,	/* Instruction Fault Status Register */
465 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
466 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
467 
468 	/* EL2 registers */
469 	SCTLR_EL2,	/* System Control Register (EL2) */
470 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
471 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
472 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
473 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
474 	ZCR_EL2,	/* SVE Control Register (EL2) */
475 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
476 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
477 	TCR_EL2,	/* Translation Control Register (EL2) */
478 	SPSR_EL2,	/* EL2 saved program status register */
479 	ELR_EL2,	/* EL2 exception link register */
480 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
481 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
482 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
483 	FAR_EL2,	/* Fault Address Register (EL2) */
484 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
485 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
486 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
487 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
488 	RVBAR_EL2,	/* Reset Vector Base Address Register */
489 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
490 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
491 	SP_EL2,		/* EL2 Stack Pointer */
492 	CNTHP_CTL_EL2,
493 	CNTHP_CVAL_EL2,
494 	CNTHV_CTL_EL2,
495 	CNTHV_CVAL_EL2,
496 
497 	__VNCR_START__,	/* Any VNCR-capable reg goes after this point */
498 
499 	VNCR(SCTLR_EL1),/* System Control Register */
500 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
501 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
502 	VNCR(ZCR_EL1),	/* SVE Control */
503 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
504 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
505 	VNCR(TCR_EL1),	/* Translation Control Register */
506 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
507 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
508 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
509 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
510 	VNCR(FAR_EL1),	/* Fault Address Register */
511 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
512 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
513 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
514 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
515 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
516 	VNCR(ELR_EL1),
517 	VNCR(SP_EL1),
518 	VNCR(SPSR_EL1),
519 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
520 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
521 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
522 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
523 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
524 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
525 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
526 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
527 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
528 
529 	/* Permission Indirection Extension registers */
530 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
531 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
532 
533 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
534 
535 	VNCR(HFGRTR_EL2),
536 	VNCR(HFGWTR_EL2),
537 	VNCR(HFGITR_EL2),
538 	VNCR(HDFGRTR_EL2),
539 	VNCR(HDFGWTR_EL2),
540 	VNCR(HAFGRTR_EL2),
541 
542 	VNCR(CNTVOFF_EL2),
543 	VNCR(CNTV_CVAL_EL0),
544 	VNCR(CNTV_CTL_EL0),
545 	VNCR(CNTP_CVAL_EL0),
546 	VNCR(CNTP_CTL_EL0),
547 
548 	VNCR(ICH_HCR_EL2),
549 
550 	NR_SYS_REGS	/* Nothing after this line! */
551 };
552 
553 struct kvm_sysreg_masks {
554 	struct {
555 		u64	res0;
556 		u64	res1;
557 	} mask[NR_SYS_REGS - __VNCR_START__];
558 };
559 
560 struct kvm_cpu_context {
561 	struct user_pt_regs regs;	/* sp = sp_el0 */
562 
563 	u64	spsr_abt;
564 	u64	spsr_und;
565 	u64	spsr_irq;
566 	u64	spsr_fiq;
567 
568 	struct user_fpsimd_state fp_regs;
569 
570 	u64 sys_regs[NR_SYS_REGS];
571 
572 	struct kvm_vcpu *__hyp_running_vcpu;
573 
574 	/* This pointer has to be 4kB aligned. */
575 	u64 *vncr_array;
576 };
577 
578 struct cpu_sve_state {
579 	__u64 zcr_el1;
580 
581 	/*
582 	 * Ordering is important since __sve_save_state/__sve_restore_state
583 	 * relies on it.
584 	 */
585 	__u32 fpsr;
586 	__u32 fpcr;
587 
588 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
589 	__u8 sve_regs[];
590 };
591 
592 /*
593  * This structure is instantiated on a per-CPU basis, and contains
594  * data that is:
595  *
596  * - tied to a single physical CPU, and
597  * - either have a lifetime that does not extend past vcpu_put()
598  * - or is an invariant for the lifetime of the system
599  *
600  * Use host_data_ptr(field) as a way to access a pointer to such a
601  * field.
602  */
603 struct kvm_host_data {
604 	struct kvm_cpu_context host_ctxt;
605 
606 	/*
607 	 * All pointers in this union are hyp VA.
608 	 * sve_state is only used in pKVM and if system_supports_sve().
609 	 */
610 	union {
611 		struct user_fpsimd_state *fpsimd_state;
612 		struct cpu_sve_state *sve_state;
613 	};
614 
615 	union {
616 		/* HYP VA pointer to the host storage for FPMR */
617 		u64	*fpmr_ptr;
618 		/*
619 		 * Used by pKVM only, as it needs to provide storage
620 		 * for the host
621 		 */
622 		u64	fpmr;
623 	};
624 
625 	/* Ownership of the FP regs */
626 	enum {
627 		FP_STATE_FREE,
628 		FP_STATE_HOST_OWNED,
629 		FP_STATE_GUEST_OWNED,
630 	} fp_owner;
631 
632 	/*
633 	 * host_debug_state contains the host registers which are
634 	 * saved and restored during world switches.
635 	 */
636 	 struct {
637 		/* {Break,watch}point registers */
638 		struct kvm_guest_debug_arch regs;
639 		/* Statistical profiling extension */
640 		u64 pmscr_el1;
641 		/* Self-hosted trace */
642 		u64 trfcr_el1;
643 		/* Values of trap registers for the host before guest entry. */
644 		u64 mdcr_el2;
645 	} host_debug_state;
646 };
647 
648 struct kvm_host_psci_config {
649 	/* PSCI version used by host. */
650 	u32 version;
651 	u32 smccc_version;
652 
653 	/* Function IDs used by host if version is v0.1. */
654 	struct psci_0_1_function_ids function_ids_0_1;
655 
656 	bool psci_0_1_cpu_suspend_implemented;
657 	bool psci_0_1_cpu_on_implemented;
658 	bool psci_0_1_cpu_off_implemented;
659 	bool psci_0_1_migrate_implemented;
660 };
661 
662 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
663 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
664 
665 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
666 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
667 
668 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
669 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
670 
671 struct vcpu_reset_state {
672 	unsigned long	pc;
673 	unsigned long	r0;
674 	bool		be;
675 	bool		reset;
676 };
677 
678 struct kvm_vcpu_arch {
679 	struct kvm_cpu_context ctxt;
680 
681 	/*
682 	 * Guest floating point state
683 	 *
684 	 * The architecture has two main floating point extensions,
685 	 * the original FPSIMD and SVE.  These have overlapping
686 	 * register views, with the FPSIMD V registers occupying the
687 	 * low 128 bits of the SVE Z registers.  When the core
688 	 * floating point code saves the register state of a task it
689 	 * records which view it saved in fp_type.
690 	 */
691 	void *sve_state;
692 	enum fp_type fp_type;
693 	unsigned int sve_max_vl;
694 
695 	/* Stage 2 paging state used by the hardware on next switch */
696 	struct kvm_s2_mmu *hw_mmu;
697 
698 	/* Values of trap registers for the guest. */
699 	u64 hcr_el2;
700 	u64 hcrx_el2;
701 	u64 mdcr_el2;
702 	u64 cptr_el2;
703 
704 	/* Exception Information */
705 	struct kvm_vcpu_fault_info fault;
706 
707 	/* Configuration flags, set once and for all before the vcpu can run */
708 	u8 cflags;
709 
710 	/* Input flags to the hypervisor code, potentially cleared after use */
711 	u8 iflags;
712 
713 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
714 	u8 sflags;
715 
716 	/*
717 	 * Don't run the guest (internal implementation need).
718 	 *
719 	 * Contrary to the flags above, this is set/cleared outside of
720 	 * a vcpu context, and thus cannot be mixed with the flags
721 	 * themselves (or the flag accesses need to be made atomic).
722 	 */
723 	bool pause;
724 
725 	/*
726 	 * We maintain more than a single set of debug registers to support
727 	 * debugging the guest from the host and to maintain separate host and
728 	 * guest state during world switches. vcpu_debug_state are the debug
729 	 * registers of the vcpu as the guest sees them.
730 	 *
731 	 * external_debug_state contains the debug values we want to debug the
732 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
733 	 *
734 	 * debug_ptr points to the set of debug registers that should be loaded
735 	 * onto the hardware when running the guest.
736 	 */
737 	struct kvm_guest_debug_arch *debug_ptr;
738 	struct kvm_guest_debug_arch vcpu_debug_state;
739 	struct kvm_guest_debug_arch external_debug_state;
740 
741 	/* VGIC state */
742 	struct vgic_cpu vgic_cpu;
743 	struct arch_timer_cpu timer_cpu;
744 	struct kvm_pmu pmu;
745 
746 	/*
747 	 * Guest registers we preserve during guest debugging.
748 	 *
749 	 * These shadow registers are updated by the kvm_handle_sys_reg
750 	 * trap handler if the guest accesses or updates them while we
751 	 * are using guest debug.
752 	 */
753 	struct {
754 		u32	mdscr_el1;
755 		bool	pstate_ss;
756 	} guest_debug_preserved;
757 
758 	/* vcpu power state */
759 	struct kvm_mp_state mp_state;
760 	spinlock_t mp_state_lock;
761 
762 	/* Cache some mmu pages needed inside spinlock regions */
763 	struct kvm_mmu_memory_cache mmu_page_cache;
764 
765 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
766 	u64 vsesr_el2;
767 
768 	/* Additional reset state */
769 	struct vcpu_reset_state	reset_state;
770 
771 	/* Guest PV state */
772 	struct {
773 		u64 last_steal;
774 		gpa_t base;
775 	} steal;
776 
777 	/* Per-vcpu CCSIDR override or NULL */
778 	u32 *ccsidr;
779 };
780 
781 /*
782  * Each 'flag' is composed of a comma-separated triplet:
783  *
784  * - the flag-set it belongs to in the vcpu->arch structure
785  * - the value for that flag
786  * - the mask for that flag
787  *
788  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
789  * unpack_vcpu_flag() extract the flag value from the triplet for
790  * direct use outside of the flag accessors.
791  */
792 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
793 
794 #define __unpack_flag(_set, _f, _m)	_f
795 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
796 
797 #define __build_check_flag(v, flagset, f, m)			\
798 	do {							\
799 		typeof(v->arch.flagset) *_fset;			\
800 								\
801 		/* Check that the flags fit in the mask */	\
802 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
803 		/* Check that the flags fit in the type */	\
804 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
805 	} while (0)
806 
807 #define __vcpu_get_flag(v, flagset, f, m)			\
808 	({							\
809 		__build_check_flag(v, flagset, f, m);		\
810 								\
811 		READ_ONCE(v->arch.flagset) & (m);		\
812 	})
813 
814 /*
815  * Note that the set/clear accessors must be preempt-safe in order to
816  * avoid nesting them with load/put which also manipulate flags...
817  */
818 #ifdef __KVM_NVHE_HYPERVISOR__
819 /* the nVHE hypervisor is always non-preemptible */
820 #define __vcpu_flags_preempt_disable()
821 #define __vcpu_flags_preempt_enable()
822 #else
823 #define __vcpu_flags_preempt_disable()	preempt_disable()
824 #define __vcpu_flags_preempt_enable()	preempt_enable()
825 #endif
826 
827 #define __vcpu_set_flag(v, flagset, f, m)			\
828 	do {							\
829 		typeof(v->arch.flagset) *fset;			\
830 								\
831 		__build_check_flag(v, flagset, f, m);		\
832 								\
833 		fset = &v->arch.flagset;			\
834 		__vcpu_flags_preempt_disable();			\
835 		if (HWEIGHT(m) > 1)				\
836 			*fset &= ~(m);				\
837 		*fset |= (f);					\
838 		__vcpu_flags_preempt_enable();			\
839 	} while (0)
840 
841 #define __vcpu_clear_flag(v, flagset, f, m)			\
842 	do {							\
843 		typeof(v->arch.flagset) *fset;			\
844 								\
845 		__build_check_flag(v, flagset, f, m);		\
846 								\
847 		fset = &v->arch.flagset;			\
848 		__vcpu_flags_preempt_disable();			\
849 		*fset &= ~(m);					\
850 		__vcpu_flags_preempt_enable();			\
851 	} while (0)
852 
853 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
854 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
855 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
856 
857 /* SVE exposed to guest */
858 #define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
859 /* SVE config completed */
860 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
861 /* PTRAUTH exposed to guest */
862 #define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
863 /* KVM_ARM_VCPU_INIT completed */
864 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
865 
866 /* Exception pending */
867 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
868 /*
869  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
870  * be set together with an exception...
871  */
872 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
873 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
874 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
875 
876 /* Helpers to encode exceptions with minimum fuss */
877 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
878 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
879 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
880 
881 /*
882  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
883  * values:
884  *
885  * For AArch32 EL1:
886  */
887 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
888 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
889 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
890 /* For AArch64: */
891 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
892 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
893 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
894 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
895 /* For AArch64 with NV: */
896 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
897 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
898 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
899 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
900 /* Guest debug is live */
901 #define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
902 /* Save SPE context if active  */
903 #define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
904 /* Save TRBE context if active  */
905 #define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
906 
907 /* SVE enabled for host EL0 */
908 #define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
909 /* SME enabled for EL0 */
910 #define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
911 /* Physical CPU not in supported_cpus */
912 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
913 /* WFIT instruction trapped */
914 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
915 /* vcpu system registers loaded on physical CPU */
916 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
917 /* Software step state is Active-pending */
918 #define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
919 /* PMUSERENR for the guest EL0 is on physical CPU */
920 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
921 /* WFI instruction trapped */
922 #define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
923 
924 
925 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
926 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
927 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
928 
929 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
930 
931 #define vcpu_sve_zcr_elx(vcpu)						\
932 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
933 
934 #define vcpu_sve_state_size(vcpu) ({					\
935 	size_t __size_ret;						\
936 	unsigned int __vcpu_vq;						\
937 									\
938 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
939 		__size_ret = 0;						\
940 	} else {							\
941 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
942 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
943 	}								\
944 									\
945 	__size_ret;							\
946 })
947 
948 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
949 				 KVM_GUESTDBG_USE_SW_BP | \
950 				 KVM_GUESTDBG_USE_HW | \
951 				 KVM_GUESTDBG_SINGLESTEP)
952 
953 #define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
954 			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
955 
956 #ifdef CONFIG_ARM64_PTR_AUTH
957 #define vcpu_has_ptrauth(vcpu)						\
958 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
959 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
960 	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
961 #else
962 #define vcpu_has_ptrauth(vcpu)		false
963 #endif
964 
965 #define vcpu_on_unsupported_cpu(vcpu)					\
966 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
967 
968 #define vcpu_set_on_unsupported_cpu(vcpu)				\
969 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
970 
971 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
972 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
973 
974 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
975 
976 /*
977  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
978  * memory backed version of a register, and not the one most recently
979  * accessed by a running VCPU.  For example, for userspace access or
980  * for system registers that are never context switched, but only
981  * emulated.
982  *
983  * Don't bother with VNCR-based accesses in the nVHE code, it has no
984  * business dealing with NV.
985  */
___ctxt_sys_reg(const struct kvm_cpu_context * ctxt,int r)986 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
987 {
988 #if !defined (__KVM_NVHE_HYPERVISOR__)
989 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
990 		     r >= __VNCR_START__ && ctxt->vncr_array))
991 		return &ctxt->vncr_array[r - __VNCR_START__];
992 #endif
993 	return (u64 *)&ctxt->sys_regs[r];
994 }
995 
996 #define __ctxt_sys_reg(c,r)						\
997 	({								\
998 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
999 			     (r) >= NR_SYS_REGS);			\
1000 		___ctxt_sys_reg(c, r);					\
1001 	})
1002 
1003 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1004 
1005 u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *, enum vcpu_sysreg);
1006 #define __vcpu_sys_reg(v,r)						\
1007 	(*({								\
1008 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1009 		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1010 		if (vcpu_has_nv((v)) && (r) >= __VNCR_START__)		\
1011 			*__r = kvm_vcpu_sanitise_vncr_reg((v), (r));	\
1012 		__r;							\
1013 	}))
1014 
1015 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1016 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1017 
__vcpu_read_sys_reg_from_cpu(int reg,u64 * val)1018 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1019 {
1020 	/*
1021 	 * *** VHE ONLY ***
1022 	 *
1023 	 * System registers listed in the switch are not saved on every
1024 	 * exit from the guest but are only saved on vcpu_put.
1025 	 *
1026 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1027 	 * should never be listed below, because the guest cannot modify its
1028 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1029 	 * thread when emulating cross-VCPU communication.
1030 	 */
1031 	if (!has_vhe())
1032 		return false;
1033 
1034 	switch (reg) {
1035 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1036 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1037 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1038 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1039 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1040 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1041 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1042 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1043 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1044 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1045 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1046 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1047 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1048 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1049 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1050 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1051 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1052 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1053 	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1054 	case PAR_EL1:		*val = read_sysreg_par();		break;
1055 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1056 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1057 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1058 	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1059 	default:		return false;
1060 	}
1061 
1062 	return true;
1063 }
1064 
__vcpu_write_sys_reg_to_cpu(u64 val,int reg)1065 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1066 {
1067 	/*
1068 	 * *** VHE ONLY ***
1069 	 *
1070 	 * System registers listed in the switch are not restored on every
1071 	 * entry to the guest but are only restored on vcpu_load.
1072 	 *
1073 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1074 	 * should never be listed below, because the MPIDR should only be set
1075 	 * once, before running the VCPU, and never changed later.
1076 	 */
1077 	if (!has_vhe())
1078 		return false;
1079 
1080 	switch (reg) {
1081 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1082 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1083 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1084 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1085 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1086 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1087 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1088 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1089 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1090 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1091 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1092 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1093 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1094 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1095 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1096 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1097 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1098 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1099 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1100 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1101 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1102 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1103 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1104 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1105 	default:		return false;
1106 	}
1107 
1108 	return true;
1109 }
1110 
1111 struct kvm_vm_stat {
1112 	struct kvm_vm_stat_generic generic;
1113 };
1114 
1115 struct kvm_vcpu_stat {
1116 	struct kvm_vcpu_stat_generic generic;
1117 	u64 hvc_exit_stat;
1118 	u64 wfe_exit_stat;
1119 	u64 wfi_exit_stat;
1120 	u64 mmio_exit_user;
1121 	u64 mmio_exit_kernel;
1122 	u64 signal_exits;
1123 	u64 exits;
1124 };
1125 
1126 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1127 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1128 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1129 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1130 
1131 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1132 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1133 
1134 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1135 			      struct kvm_vcpu_events *events);
1136 
1137 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1138 			      struct kvm_vcpu_events *events);
1139 
1140 void kvm_arm_halt_guest(struct kvm *kvm);
1141 void kvm_arm_resume_guest(struct kvm *kvm);
1142 
1143 #define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
1144 
1145 #ifndef __KVM_NVHE_HYPERVISOR__
1146 #define kvm_call_hyp_nvhe(f, ...)						\
1147 	({								\
1148 		struct arm_smccc_res res;				\
1149 									\
1150 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1151 				  ##__VA_ARGS__, &res);			\
1152 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1153 									\
1154 		res.a1;							\
1155 	})
1156 
1157 /*
1158  * The couple of isb() below are there to guarantee the same behaviour
1159  * on VHE as on !VHE, where the eret to EL1 acts as a context
1160  * synchronization event.
1161  */
1162 #define kvm_call_hyp(f, ...)						\
1163 	do {								\
1164 		if (has_vhe()) {					\
1165 			f(__VA_ARGS__);					\
1166 			isb();						\
1167 		} else {						\
1168 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1169 		}							\
1170 	} while(0)
1171 
1172 #define kvm_call_hyp_ret(f, ...)					\
1173 	({								\
1174 		typeof(f(__VA_ARGS__)) ret;				\
1175 									\
1176 		if (has_vhe()) {					\
1177 			ret = f(__VA_ARGS__);				\
1178 			isb();						\
1179 		} else {						\
1180 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1181 		}							\
1182 									\
1183 		ret;							\
1184 	})
1185 #else /* __KVM_NVHE_HYPERVISOR__ */
1186 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1187 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1188 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1189 #endif /* __KVM_NVHE_HYPERVISOR__ */
1190 
1191 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1192 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1193 
1194 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1195 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1196 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1197 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1198 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1199 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1200 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1201 
1202 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1203 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1204 
1205 int __init kvm_sys_reg_table_init(void);
1206 struct sys_reg_desc;
1207 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1208 				  unsigned int idx);
1209 int __init populate_nv_trap_config(void);
1210 
1211 bool lock_all_vcpus(struct kvm *kvm);
1212 void unlock_all_vcpus(struct kvm *kvm);
1213 
1214 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1215 
1216 /* MMIO helpers */
1217 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1218 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1219 
1220 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1221 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1222 
1223 /*
1224  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1225  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1226  * loaded is considered to be "in guest".
1227  */
kvm_arch_pmi_in_guest(struct kvm_vcpu * vcpu)1228 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1229 {
1230 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1231 }
1232 
1233 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1234 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1235 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1236 
1237 bool kvm_arm_pvtime_supported(void);
1238 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1239 			    struct kvm_device_attr *attr);
1240 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1241 			    struct kvm_device_attr *attr);
1242 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1243 			    struct kvm_device_attr *attr);
1244 
1245 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1246 int __init kvm_arm_vmid_alloc_init(void);
1247 void __init kvm_arm_vmid_alloc_free(void);
1248 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1249 void kvm_arm_vmid_clear_active(void);
1250 
kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch * vcpu_arch)1251 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1252 {
1253 	vcpu_arch->steal.base = INVALID_GPA;
1254 }
1255 
kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch * vcpu_arch)1256 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1257 {
1258 	return (vcpu_arch->steal.base != INVALID_GPA);
1259 }
1260 
1261 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1262 
1263 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1264 
1265 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1266 
1267 /*
1268  * How we access per-CPU host data depends on the where we access it from,
1269  * and the mode we're in:
1270  *
1271  * - VHE and nVHE hypervisor bits use their locally defined instance
1272  *
1273  * - the rest of the kernel use either the VHE or nVHE one, depending on
1274  *   the mode we're running in.
1275  *
1276  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1277  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1278  *   In this case, the EL1 code uses the *VHE* data as its private state
1279  *   (which makes sense in a way as there shouldn't be any shared state
1280  *   between the host and the hypervisor).
1281  *
1282  * Yes, this is all totally trivial. Shoot me now.
1283  */
1284 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1285 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1286 #else
1287 #define host_data_ptr(f)						\
1288 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1289 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1290 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1291 #endif
1292 
1293 /* Check whether the FP regs are owned by the guest */
guest_owns_fp_regs(void)1294 static inline bool guest_owns_fp_regs(void)
1295 {
1296 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1297 }
1298 
1299 /* Check whether the FP regs are owned by the host */
host_owns_fp_regs(void)1300 static inline bool host_owns_fp_regs(void)
1301 {
1302 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1303 }
1304 
kvm_init_host_cpu_context(struct kvm_cpu_context * cpu_ctxt)1305 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1306 {
1307 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1308 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1309 }
1310 
kvm_system_needs_idmapped_vectors(void)1311 static inline bool kvm_system_needs_idmapped_vectors(void)
1312 {
1313 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1314 }
1315 
kvm_arch_sync_events(struct kvm * kvm)1316 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1317 
1318 void kvm_arm_init_debug(void);
1319 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1320 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1321 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1322 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1323 
1324 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1325 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1326 
1327 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1328 			       struct kvm_device_attr *attr);
1329 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1330 			       struct kvm_device_attr *attr);
1331 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1332 			       struct kvm_device_attr *attr);
1333 
1334 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1335 			       struct kvm_arm_copy_mte_tags *copy_tags);
1336 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1337 				    struct kvm_arm_counter_offset *offset);
1338 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1339 					struct reg_mask_range *range);
1340 
1341 /* Guest/host FPSIMD coordination helpers */
1342 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1343 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1344 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1345 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1346 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1347 
kvm_pmu_counter_deferred(struct perf_event_attr * attr)1348 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1349 {
1350 	return (!has_vhe() && attr->exclude_host);
1351 }
1352 
1353 /* Flags for host debug state */
1354 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1355 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1356 
1357 #ifdef CONFIG_KVM
1358 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1359 void kvm_clr_pmu_events(u64 clr);
1360 bool kvm_set_pmuserenr(u64 val);
1361 #else
kvm_set_pmu_events(u64 set,struct perf_event_attr * attr)1362 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
kvm_clr_pmu_events(u64 clr)1363 static inline void kvm_clr_pmu_events(u64 clr) {}
kvm_set_pmuserenr(u64 val)1364 static inline bool kvm_set_pmuserenr(u64 val)
1365 {
1366 	return false;
1367 }
1368 #endif
1369 
1370 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1371 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1372 
1373 int __init kvm_set_ipa_limit(void);
1374 u32 kvm_get_pa_bits(struct kvm *kvm);
1375 
1376 #define __KVM_HAVE_ARCH_VM_ALLOC
1377 struct kvm *kvm_arch_alloc_vm(void);
1378 
1379 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1380 
1381 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1382 
1383 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1384 
1385 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1386 
1387 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1388 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1389 
1390 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1391 
1392 #define kvm_has_mte(kvm)					\
1393 	(system_supports_mte() &&				\
1394 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1395 
1396 #define kvm_supports_32bit_el0()				\
1397 	(system_supports_32bit_el0() &&				\
1398 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1399 
1400 #define kvm_vm_has_ran_once(kvm)					\
1401 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1402 
__vcpu_has_feature(const struct kvm_arch * ka,int feature)1403 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1404 {
1405 	return test_bit(feature, ka->vcpu_features);
1406 }
1407 
1408 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1409 
1410 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1411 
1412 int kvm_trng_call(struct kvm_vcpu *vcpu);
1413 #ifdef CONFIG_KVM
1414 extern phys_addr_t hyp_mem_base;
1415 extern phys_addr_t hyp_mem_size;
1416 void __init kvm_hyp_reserve(void);
1417 #else
kvm_hyp_reserve(void)1418 static inline void kvm_hyp_reserve(void) { }
1419 #endif
1420 
1421 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1422 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1423 
__vm_id_reg(struct kvm_arch * ka,u32 reg)1424 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1425 {
1426 	switch (reg) {
1427 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1428 		return &ka->id_regs[IDREG_IDX(reg)];
1429 	case SYS_CTR_EL0:
1430 		return &ka->ctr_el0;
1431 	default:
1432 		WARN_ON_ONCE(1);
1433 		return NULL;
1434 	}
1435 }
1436 
1437 #define kvm_read_vm_id_reg(kvm, reg)					\
1438 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1439 
1440 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1441 
1442 #define __expand_field_sign_unsigned(id, fld, val)			\
1443 	((u64)SYS_FIELD_VALUE(id, fld, val))
1444 
1445 #define __expand_field_sign_signed(id, fld, val)			\
1446 	({								\
1447 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1448 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1449 	})
1450 
1451 #define get_idreg_field_unsigned(kvm, id, fld)				\
1452 	({								\
1453 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1454 		FIELD_GET(id##_##fld##_MASK, __val);			\
1455 	})
1456 
1457 #define get_idreg_field_signed(kvm, id, fld)				\
1458 	({								\
1459 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1460 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1461 	})
1462 
1463 #define get_idreg_field_enum(kvm, id, fld)				\
1464 	get_idreg_field_unsigned(kvm, id, fld)
1465 
1466 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1467 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1468 
1469 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1470 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1471 
1472 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1473 	(id##_##fld##_SIGNED ?						\
1474 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1475 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1476 
1477 #define kvm_has_feat(kvm, id, fld, limit)				\
1478 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1479 
1480 #define kvm_has_feat_enum(kvm, id, fld, val)				\
1481 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1482 
1483 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1484 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1485 	kvm_cmp_feat(kvm, id, fld, <=, max))
1486 
1487 /* Check for a given level of PAuth support */
1488 #define kvm_has_pauth(k, l)						\
1489 	({								\
1490 		bool pa, pi, pa3;					\
1491 									\
1492 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1493 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1494 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1495 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1496 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1497 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1498 									\
1499 		(pa + pi + pa3) == 1;					\
1500 	})
1501 
1502 #define kvm_has_fpmr(k)					\
1503 	(system_supports_fpmr() &&			\
1504 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1505 
1506 #endif /* __ARM64_KVM_HOST_H__ */
1507