1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * tools/testing/selftests/kvm/include/x86_64/processor.h
4   *
5   * Copyright (C) 2018, Google LLC.
6   */
7  
8  #ifndef SELFTEST_KVM_PROCESSOR_H
9  #define SELFTEST_KVM_PROCESSOR_H
10  
11  #include <assert.h>
12  #include <stdint.h>
13  #include <syscall.h>
14  
15  #include <asm/msr-index.h>
16  #include <asm/prctl.h>
17  
18  #include <linux/kvm_para.h>
19  #include <linux/stringify.h>
20  
21  #include "kvm_util.h"
22  #include "ucall_common.h"
23  
24  extern bool host_cpu_is_intel;
25  extern bool host_cpu_is_amd;
26  extern uint64_t guest_tsc_khz;
27  
28  #ifndef MAX_NR_CPUID_ENTRIES
29  #define MAX_NR_CPUID_ENTRIES 100
30  #endif
31  
32  /* Forced emulation prefix, used to invoke the emulator unconditionally. */
33  #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34  
35  #define NMI_VECTOR		0x02
36  
37  #define X86_EFLAGS_FIXED	 (1u << 1)
38  
39  #define X86_CR4_VME		(1ul << 0)
40  #define X86_CR4_PVI		(1ul << 1)
41  #define X86_CR4_TSD		(1ul << 2)
42  #define X86_CR4_DE		(1ul << 3)
43  #define X86_CR4_PSE		(1ul << 4)
44  #define X86_CR4_PAE		(1ul << 5)
45  #define X86_CR4_MCE		(1ul << 6)
46  #define X86_CR4_PGE		(1ul << 7)
47  #define X86_CR4_PCE		(1ul << 8)
48  #define X86_CR4_OSFXSR		(1ul << 9)
49  #define X86_CR4_OSXMMEXCPT	(1ul << 10)
50  #define X86_CR4_UMIP		(1ul << 11)
51  #define X86_CR4_LA57		(1ul << 12)
52  #define X86_CR4_VMXE		(1ul << 13)
53  #define X86_CR4_SMXE		(1ul << 14)
54  #define X86_CR4_FSGSBASE	(1ul << 16)
55  #define X86_CR4_PCIDE		(1ul << 17)
56  #define X86_CR4_OSXSAVE		(1ul << 18)
57  #define X86_CR4_SMEP		(1ul << 20)
58  #define X86_CR4_SMAP		(1ul << 21)
59  #define X86_CR4_PKE		(1ul << 22)
60  
61  struct xstate_header {
62  	u64				xstate_bv;
63  	u64				xcomp_bv;
64  	u64				reserved[6];
65  } __attribute__((packed));
66  
67  struct xstate {
68  	u8				i387[512];
69  	struct xstate_header		header;
70  	u8				extended_state_area[0];
71  } __attribute__ ((packed, aligned (64)));
72  
73  #define XFEATURE_MASK_FP		BIT_ULL(0)
74  #define XFEATURE_MASK_SSE		BIT_ULL(1)
75  #define XFEATURE_MASK_YMM		BIT_ULL(2)
76  #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
77  #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
78  #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
79  #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
80  #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
81  #define XFEATURE_MASK_PT		BIT_ULL(8)
82  #define XFEATURE_MASK_PKRU		BIT_ULL(9)
83  #define XFEATURE_MASK_PASID		BIT_ULL(10)
84  #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
85  #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
86  #define XFEATURE_MASK_LBR		BIT_ULL(15)
87  #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
88  #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
89  
90  #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
91  					 XFEATURE_MASK_ZMM_Hi256 | \
92  					 XFEATURE_MASK_Hi16_ZMM)
93  #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
94  					 XFEATURE_MASK_XTILE_CFG)
95  
96  /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
97  enum cpuid_output_regs {
98  	KVM_CPUID_EAX,
99  	KVM_CPUID_EBX,
100  	KVM_CPUID_ECX,
101  	KVM_CPUID_EDX
102  };
103  
104  /*
105   * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106   * passed by value with no overhead.
107   */
108  struct kvm_x86_cpu_feature {
109  	u32	function;
110  	u16	index;
111  	u8	reg;
112  	u8	bit;
113  };
114  #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
115  ({										\
116  	struct kvm_x86_cpu_feature feature = {					\
117  		.function = fn,							\
118  		.index = idx,							\
119  		.reg = KVM_CPUID_##gpr,						\
120  		.bit = __bit,							\
121  	};									\
122  										\
123  	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
124  			  (fn & 0xc0000000) == 0x40000000 ||			\
125  			  (fn & 0xc0000000) == 0x80000000 ||			\
126  			  (fn & 0xc0000000) == 0xc0000000);			\
127  	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
128  	feature;								\
129  })
130  
131  /*
132   * Basic Leafs, a.k.a. Intel defined
133   */
134  #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135  #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136  #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137  #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138  #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139  #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140  #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141  #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142  #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143  #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144  #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145  #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146  #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147  #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148  #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149  #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150  #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151  #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152  #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153  #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154  #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155  #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156  #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157  #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158  #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159  #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160  #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161  #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162  #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163  #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164  #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165  #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166  #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167  #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168  #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169  #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170  #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171  #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172  #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173  #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174  #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175  #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176  #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177  #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178  #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179  #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180  #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181  
182  /*
183   * Extended Leafs, a.k.a. AMD defined
184   */
185  #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186  #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
187  #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
188  #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
189  #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
190  #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
191  #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
192  #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
193  #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
194  #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
195  #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
196  #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
197  #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
198  #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
199  #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
200  #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
201  #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
202  
203  /*
204   * KVM defined paravirt features.
205   */
206  #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
207  #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
208  #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
209  #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
210  #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
211  #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
212  #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
213  #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
214  /* Bit 8 apparently isn't used?!?! */
215  #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
216  #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
217  #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
218  #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
219  #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
220  #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
221  #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
222  #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
223  #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
224  
225  /*
226   * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
227   * value/property as opposed to a single-bit feature.  Again, pack the info
228   * into a 64-bit value to pass by value with no overhead.
229   */
230  struct kvm_x86_cpu_property {
231  	u32	function;
232  	u8	index;
233  	u8	reg;
234  	u8	lo_bit;
235  	u8	hi_bit;
236  };
237  #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
238  ({										\
239  	struct kvm_x86_cpu_property property = {				\
240  		.function = fn,							\
241  		.index = idx,							\
242  		.reg = KVM_CPUID_##gpr,						\
243  		.lo_bit = low_bit,						\
244  		.hi_bit = high_bit,						\
245  	};									\
246  										\
247  	kvm_static_assert(low_bit < high_bit);					\
248  	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
249  			  (fn & 0xc0000000) == 0x40000000 ||			\
250  			  (fn & 0xc0000000) == 0x80000000 ||			\
251  			  (fn & 0xc0000000) == 0xc0000000);			\
252  	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
253  	property;								\
254  })
255  
256  #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
257  #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
258  #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
259  #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
260  #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
261  #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
262  #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
263  #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
264  #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
265  
266  #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
267  #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
268  #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
269  #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
270  
271  #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
272  #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
273  #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
274  #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
275  #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
276  #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
277  #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
278  #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
279  
280  #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
281  
282  #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
283  #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
284  #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
285  #define X86_PROPERTY_GUEST_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
286  #define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
287  #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
288  
289  #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
290  
291  /*
292   * Intel's architectural PMU events are bizarre.  They have a "feature" bit
293   * that indicates the feature is _not_ supported, and a property that states
294   * the length of the bit mask of unsupported features.  A feature is supported
295   * if the size of the bit mask is larger than the "unavailable" bit, and said
296   * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
297   * arch events for general purpose counters.  Fixed counters are supported if a
298   * feature flag is set **OR** the total number of fixed counters is greater
299   * than index of the counter.
300   *
301   * Wrap the events for general purpose and fixed counters to simplify checking
302   * whether or not a given architectural event is supported.
303   */
304  struct kvm_x86_pmu_feature {
305  	struct kvm_x86_cpu_feature f;
306  };
307  #define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
308  ({									\
309  	struct kvm_x86_pmu_feature feature = {				\
310  		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
311  	};								\
312  									\
313  	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
314  			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
315  	feature;							\
316  })
317  
318  #define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
319  #define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
320  #define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
321  #define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
322  #define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
323  #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
324  #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
325  #define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
326  
327  #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
328  #define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
329  #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
330  #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
331  
x86_family(unsigned int eax)332  static inline unsigned int x86_family(unsigned int eax)
333  {
334  	unsigned int x86;
335  
336  	x86 = (eax >> 8) & 0xf;
337  
338  	if (x86 == 0xf)
339  		x86 += (eax >> 20) & 0xff;
340  
341  	return x86;
342  }
343  
x86_model(unsigned int eax)344  static inline unsigned int x86_model(unsigned int eax)
345  {
346  	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
347  }
348  
349  /* Page table bitfield declarations */
350  #define PTE_PRESENT_MASK        BIT_ULL(0)
351  #define PTE_WRITABLE_MASK       BIT_ULL(1)
352  #define PTE_USER_MASK           BIT_ULL(2)
353  #define PTE_ACCESSED_MASK       BIT_ULL(5)
354  #define PTE_DIRTY_MASK          BIT_ULL(6)
355  #define PTE_LARGE_MASK          BIT_ULL(7)
356  #define PTE_GLOBAL_MASK         BIT_ULL(8)
357  #define PTE_NX_MASK             BIT_ULL(63)
358  
359  #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
360  
361  #define PAGE_SHIFT		12
362  #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
363  #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
364  
365  #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
366  #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
367  #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
368  
369  #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
370  #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
371  
372  /* General Registers in 64-Bit Mode */
373  struct gpr64_regs {
374  	u64 rax;
375  	u64 rcx;
376  	u64 rdx;
377  	u64 rbx;
378  	u64 rsp;
379  	u64 rbp;
380  	u64 rsi;
381  	u64 rdi;
382  	u64 r8;
383  	u64 r9;
384  	u64 r10;
385  	u64 r11;
386  	u64 r12;
387  	u64 r13;
388  	u64 r14;
389  	u64 r15;
390  };
391  
392  struct desc64 {
393  	uint16_t limit0;
394  	uint16_t base0;
395  	unsigned base1:8, type:4, s:1, dpl:2, p:1;
396  	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
397  	uint32_t base3;
398  	uint32_t zero1;
399  } __attribute__((packed));
400  
401  struct desc_ptr {
402  	uint16_t size;
403  	uint64_t address;
404  } __attribute__((packed));
405  
406  struct kvm_x86_state {
407  	struct kvm_xsave *xsave;
408  	struct kvm_vcpu_events events;
409  	struct kvm_mp_state mp_state;
410  	struct kvm_regs regs;
411  	struct kvm_xcrs xcrs;
412  	struct kvm_sregs sregs;
413  	struct kvm_debugregs debugregs;
414  	union {
415  		struct kvm_nested_state nested;
416  		char nested_[16384];
417  	};
418  	struct kvm_msrs msrs;
419  };
420  
get_desc64_base(const struct desc64 * desc)421  static inline uint64_t get_desc64_base(const struct desc64 *desc)
422  {
423  	return ((uint64_t)desc->base3 << 32) |
424  		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
425  }
426  
rdtsc(void)427  static inline uint64_t rdtsc(void)
428  {
429  	uint32_t eax, edx;
430  	uint64_t tsc_val;
431  	/*
432  	 * The lfence is to wait (on Intel CPUs) until all previous
433  	 * instructions have been executed. If software requires RDTSC to be
434  	 * executed prior to execution of any subsequent instruction, it can
435  	 * execute LFENCE immediately after RDTSC
436  	 */
437  	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
438  	tsc_val = ((uint64_t)edx) << 32 | eax;
439  	return tsc_val;
440  }
441  
rdtscp(uint32_t * aux)442  static inline uint64_t rdtscp(uint32_t *aux)
443  {
444  	uint32_t eax, edx;
445  
446  	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
447  	return ((uint64_t)edx) << 32 | eax;
448  }
449  
rdmsr(uint32_t msr)450  static inline uint64_t rdmsr(uint32_t msr)
451  {
452  	uint32_t a, d;
453  
454  	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
455  
456  	return a | ((uint64_t) d << 32);
457  }
458  
wrmsr(uint32_t msr,uint64_t value)459  static inline void wrmsr(uint32_t msr, uint64_t value)
460  {
461  	uint32_t a = value;
462  	uint32_t d = value >> 32;
463  
464  	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
465  }
466  
467  
inw(uint16_t port)468  static inline uint16_t inw(uint16_t port)
469  {
470  	uint16_t tmp;
471  
472  	__asm__ __volatile__("in %%dx, %%ax"
473  		: /* output */ "=a" (tmp)
474  		: /* input */ "d" (port));
475  
476  	return tmp;
477  }
478  
get_es(void)479  static inline uint16_t get_es(void)
480  {
481  	uint16_t es;
482  
483  	__asm__ __volatile__("mov %%es, %[es]"
484  			     : /* output */ [es]"=rm"(es));
485  	return es;
486  }
487  
get_cs(void)488  static inline uint16_t get_cs(void)
489  {
490  	uint16_t cs;
491  
492  	__asm__ __volatile__("mov %%cs, %[cs]"
493  			     : /* output */ [cs]"=rm"(cs));
494  	return cs;
495  }
496  
get_ss(void)497  static inline uint16_t get_ss(void)
498  {
499  	uint16_t ss;
500  
501  	__asm__ __volatile__("mov %%ss, %[ss]"
502  			     : /* output */ [ss]"=rm"(ss));
503  	return ss;
504  }
505  
get_ds(void)506  static inline uint16_t get_ds(void)
507  {
508  	uint16_t ds;
509  
510  	__asm__ __volatile__("mov %%ds, %[ds]"
511  			     : /* output */ [ds]"=rm"(ds));
512  	return ds;
513  }
514  
get_fs(void)515  static inline uint16_t get_fs(void)
516  {
517  	uint16_t fs;
518  
519  	__asm__ __volatile__("mov %%fs, %[fs]"
520  			     : /* output */ [fs]"=rm"(fs));
521  	return fs;
522  }
523  
get_gs(void)524  static inline uint16_t get_gs(void)
525  {
526  	uint16_t gs;
527  
528  	__asm__ __volatile__("mov %%gs, %[gs]"
529  			     : /* output */ [gs]"=rm"(gs));
530  	return gs;
531  }
532  
get_tr(void)533  static inline uint16_t get_tr(void)
534  {
535  	uint16_t tr;
536  
537  	__asm__ __volatile__("str %[tr]"
538  			     : /* output */ [tr]"=rm"(tr));
539  	return tr;
540  }
541  
get_cr0(void)542  static inline uint64_t get_cr0(void)
543  {
544  	uint64_t cr0;
545  
546  	__asm__ __volatile__("mov %%cr0, %[cr0]"
547  			     : /* output */ [cr0]"=r"(cr0));
548  	return cr0;
549  }
550  
get_cr3(void)551  static inline uint64_t get_cr3(void)
552  {
553  	uint64_t cr3;
554  
555  	__asm__ __volatile__("mov %%cr3, %[cr3]"
556  			     : /* output */ [cr3]"=r"(cr3));
557  	return cr3;
558  }
559  
get_cr4(void)560  static inline uint64_t get_cr4(void)
561  {
562  	uint64_t cr4;
563  
564  	__asm__ __volatile__("mov %%cr4, %[cr4]"
565  			     : /* output */ [cr4]"=r"(cr4));
566  	return cr4;
567  }
568  
set_cr4(uint64_t val)569  static inline void set_cr4(uint64_t val)
570  {
571  	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
572  }
573  
xgetbv(u32 index)574  static inline u64 xgetbv(u32 index)
575  {
576  	u32 eax, edx;
577  
578  	__asm__ __volatile__("xgetbv;"
579  		     : "=a" (eax), "=d" (edx)
580  		     : "c" (index));
581  	return eax | ((u64)edx << 32);
582  }
583  
xsetbv(u32 index,u64 value)584  static inline void xsetbv(u32 index, u64 value)
585  {
586  	u32 eax = value;
587  	u32 edx = value >> 32;
588  
589  	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
590  }
591  
wrpkru(u32 pkru)592  static inline void wrpkru(u32 pkru)
593  {
594  	/* Note, ECX and EDX are architecturally required to be '0'. */
595  	asm volatile(".byte 0x0f,0x01,0xef\n\t"
596  		     : : "a" (pkru), "c"(0), "d"(0));
597  }
598  
get_gdt(void)599  static inline struct desc_ptr get_gdt(void)
600  {
601  	struct desc_ptr gdt;
602  	__asm__ __volatile__("sgdt %[gdt]"
603  			     : /* output */ [gdt]"=m"(gdt));
604  	return gdt;
605  }
606  
get_idt(void)607  static inline struct desc_ptr get_idt(void)
608  {
609  	struct desc_ptr idt;
610  	__asm__ __volatile__("sidt %[idt]"
611  			     : /* output */ [idt]"=m"(idt));
612  	return idt;
613  }
614  
outl(uint16_t port,uint32_t value)615  static inline void outl(uint16_t port, uint32_t value)
616  {
617  	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
618  }
619  
__cpuid(uint32_t function,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)620  static inline void __cpuid(uint32_t function, uint32_t index,
621  			   uint32_t *eax, uint32_t *ebx,
622  			   uint32_t *ecx, uint32_t *edx)
623  {
624  	*eax = function;
625  	*ecx = index;
626  
627  	asm volatile("cpuid"
628  	    : "=a" (*eax),
629  	      "=b" (*ebx),
630  	      "=c" (*ecx),
631  	      "=d" (*edx)
632  	    : "0" (*eax), "2" (*ecx)
633  	    : "memory");
634  }
635  
cpuid(uint32_t function,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)636  static inline void cpuid(uint32_t function,
637  			 uint32_t *eax, uint32_t *ebx,
638  			 uint32_t *ecx, uint32_t *edx)
639  {
640  	return __cpuid(function, 0, eax, ebx, ecx, edx);
641  }
642  
this_cpu_fms(void)643  static inline uint32_t this_cpu_fms(void)
644  {
645  	uint32_t eax, ebx, ecx, edx;
646  
647  	cpuid(1, &eax, &ebx, &ecx, &edx);
648  	return eax;
649  }
650  
this_cpu_family(void)651  static inline uint32_t this_cpu_family(void)
652  {
653  	return x86_family(this_cpu_fms());
654  }
655  
this_cpu_model(void)656  static inline uint32_t this_cpu_model(void)
657  {
658  	return x86_model(this_cpu_fms());
659  }
660  
this_cpu_vendor_string_is(const char * vendor)661  static inline bool this_cpu_vendor_string_is(const char *vendor)
662  {
663  	const uint32_t *chunk = (const uint32_t *)vendor;
664  	uint32_t eax, ebx, ecx, edx;
665  
666  	cpuid(0, &eax, &ebx, &ecx, &edx);
667  	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
668  }
669  
this_cpu_is_intel(void)670  static inline bool this_cpu_is_intel(void)
671  {
672  	return this_cpu_vendor_string_is("GenuineIntel");
673  }
674  
675  /*
676   * Exclude early K5 samples with a vendor string of "AMDisbetter!"
677   */
this_cpu_is_amd(void)678  static inline bool this_cpu_is_amd(void)
679  {
680  	return this_cpu_vendor_string_is("AuthenticAMD");
681  }
682  
__this_cpu_has(uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)683  static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
684  				      uint8_t reg, uint8_t lo, uint8_t hi)
685  {
686  	uint32_t gprs[4];
687  
688  	__cpuid(function, index,
689  		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
690  		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
691  
692  	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
693  }
694  
this_cpu_has(struct kvm_x86_cpu_feature feature)695  static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
696  {
697  	return __this_cpu_has(feature.function, feature.index,
698  			      feature.reg, feature.bit, feature.bit);
699  }
700  
this_cpu_property(struct kvm_x86_cpu_property property)701  static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
702  {
703  	return __this_cpu_has(property.function, property.index,
704  			      property.reg, property.lo_bit, property.hi_bit);
705  }
706  
this_cpu_has_p(struct kvm_x86_cpu_property property)707  static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
708  {
709  	uint32_t max_leaf;
710  
711  	switch (property.function & 0xc0000000) {
712  	case 0:
713  		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
714  		break;
715  	case 0x40000000:
716  		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
717  		break;
718  	case 0x80000000:
719  		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
720  		break;
721  	case 0xc0000000:
722  		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
723  	}
724  	return max_leaf >= property.function;
725  }
726  
this_pmu_has(struct kvm_x86_pmu_feature feature)727  static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
728  {
729  	uint32_t nr_bits;
730  
731  	if (feature.f.reg == KVM_CPUID_EBX) {
732  		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
733  		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
734  	}
735  
736  	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
737  	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
738  	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
739  }
740  
this_cpu_supported_xcr0(void)741  static __always_inline uint64_t this_cpu_supported_xcr0(void)
742  {
743  	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
744  		return 0;
745  
746  	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
747  	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
748  }
749  
750  typedef u32		__attribute__((vector_size(16))) sse128_t;
751  #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
752  #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
753  #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
754  
read_sse_reg(int reg,sse128_t * data)755  static inline void read_sse_reg(int reg, sse128_t *data)
756  {
757  	switch (reg) {
758  	case 0:
759  		asm("movdqa %%xmm0, %0" : "=m"(*data));
760  		break;
761  	case 1:
762  		asm("movdqa %%xmm1, %0" : "=m"(*data));
763  		break;
764  	case 2:
765  		asm("movdqa %%xmm2, %0" : "=m"(*data));
766  		break;
767  	case 3:
768  		asm("movdqa %%xmm3, %0" : "=m"(*data));
769  		break;
770  	case 4:
771  		asm("movdqa %%xmm4, %0" : "=m"(*data));
772  		break;
773  	case 5:
774  		asm("movdqa %%xmm5, %0" : "=m"(*data));
775  		break;
776  	case 6:
777  		asm("movdqa %%xmm6, %0" : "=m"(*data));
778  		break;
779  	case 7:
780  		asm("movdqa %%xmm7, %0" : "=m"(*data));
781  		break;
782  	default:
783  		BUG();
784  	}
785  }
786  
write_sse_reg(int reg,const sse128_t * data)787  static inline void write_sse_reg(int reg, const sse128_t *data)
788  {
789  	switch (reg) {
790  	case 0:
791  		asm("movdqa %0, %%xmm0" : : "m"(*data));
792  		break;
793  	case 1:
794  		asm("movdqa %0, %%xmm1" : : "m"(*data));
795  		break;
796  	case 2:
797  		asm("movdqa %0, %%xmm2" : : "m"(*data));
798  		break;
799  	case 3:
800  		asm("movdqa %0, %%xmm3" : : "m"(*data));
801  		break;
802  	case 4:
803  		asm("movdqa %0, %%xmm4" : : "m"(*data));
804  		break;
805  	case 5:
806  		asm("movdqa %0, %%xmm5" : : "m"(*data));
807  		break;
808  	case 6:
809  		asm("movdqa %0, %%xmm6" : : "m"(*data));
810  		break;
811  	case 7:
812  		asm("movdqa %0, %%xmm7" : : "m"(*data));
813  		break;
814  	default:
815  		BUG();
816  	}
817  }
818  
cpu_relax(void)819  static inline void cpu_relax(void)
820  {
821  	asm volatile("rep; nop" ::: "memory");
822  }
823  
udelay(unsigned long usec)824  static inline void udelay(unsigned long usec)
825  {
826  	uint64_t start, now, cycles;
827  
828  	GUEST_ASSERT(guest_tsc_khz);
829  	cycles = guest_tsc_khz / 1000 * usec;
830  
831  	/*
832  	 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
833  	 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
834  	 */
835  	start = rdtsc();
836  	do {
837  		now = rdtsc();
838  	} while (now - start < cycles);
839  }
840  
841  #define ud2()			\
842  	__asm__ __volatile__(	\
843  		"ud2\n"	\
844  		)
845  
846  #define hlt()			\
847  	__asm__ __volatile__(	\
848  		"hlt\n"	\
849  		)
850  
851  struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
852  void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
853  void kvm_x86_state_cleanup(struct kvm_x86_state *state);
854  
855  const struct kvm_msr_list *kvm_get_msr_index_list(void);
856  const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
857  bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
858  uint64_t kvm_get_feature_msr(uint64_t msr_index);
859  
vcpu_msrs_get(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)860  static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
861  				 struct kvm_msrs *msrs)
862  {
863  	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
864  
865  	TEST_ASSERT(r == msrs->nmsrs,
866  		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
867  		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
868  }
vcpu_msrs_set(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)869  static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
870  {
871  	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
872  
873  	TEST_ASSERT(r == msrs->nmsrs,
874  		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
875  		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
876  }
vcpu_debugregs_get(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)877  static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
878  				      struct kvm_debugregs *debugregs)
879  {
880  	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
881  }
vcpu_debugregs_set(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)882  static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
883  				      struct kvm_debugregs *debugregs)
884  {
885  	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
886  }
vcpu_xsave_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)887  static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
888  				  struct kvm_xsave *xsave)
889  {
890  	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
891  }
vcpu_xsave2_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)892  static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
893  				   struct kvm_xsave *xsave)
894  {
895  	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
896  }
vcpu_xsave_set(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)897  static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
898  				  struct kvm_xsave *xsave)
899  {
900  	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
901  }
vcpu_xcrs_get(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)902  static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
903  				 struct kvm_xcrs *xcrs)
904  {
905  	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
906  }
vcpu_xcrs_set(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)907  static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
908  {
909  	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
910  }
911  
912  const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
913  					       uint32_t function, uint32_t index);
914  const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
915  
kvm_cpu_fms(void)916  static inline uint32_t kvm_cpu_fms(void)
917  {
918  	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
919  }
920  
kvm_cpu_family(void)921  static inline uint32_t kvm_cpu_family(void)
922  {
923  	return x86_family(kvm_cpu_fms());
924  }
925  
kvm_cpu_model(void)926  static inline uint32_t kvm_cpu_model(void)
927  {
928  	return x86_model(kvm_cpu_fms());
929  }
930  
931  bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
932  		   struct kvm_x86_cpu_feature feature);
933  
kvm_cpu_has(struct kvm_x86_cpu_feature feature)934  static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
935  {
936  	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
937  }
938  
939  uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
940  			    struct kvm_x86_cpu_property property);
941  
kvm_cpu_property(struct kvm_x86_cpu_property property)942  static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
943  {
944  	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
945  }
946  
kvm_cpu_has_p(struct kvm_x86_cpu_property property)947  static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
948  {
949  	uint32_t max_leaf;
950  
951  	switch (property.function & 0xc0000000) {
952  	case 0:
953  		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
954  		break;
955  	case 0x40000000:
956  		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
957  		break;
958  	case 0x80000000:
959  		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
960  		break;
961  	case 0xc0000000:
962  		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
963  	}
964  	return max_leaf >= property.function;
965  }
966  
kvm_pmu_has(struct kvm_x86_pmu_feature feature)967  static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
968  {
969  	uint32_t nr_bits;
970  
971  	if (feature.f.reg == KVM_CPUID_EBX) {
972  		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
973  		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
974  	}
975  
976  	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
977  	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
978  	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
979  }
980  
kvm_cpu_supported_xcr0(void)981  static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
982  {
983  	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
984  		return 0;
985  
986  	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
987  	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
988  }
989  
kvm_cpuid2_size(int nr_entries)990  static inline size_t kvm_cpuid2_size(int nr_entries)
991  {
992  	return sizeof(struct kvm_cpuid2) +
993  	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
994  }
995  
996  /*
997   * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
998   * entries sized to hold @nr_entries.  The caller is responsible for freeing
999   * the struct.
1000   */
allocate_kvm_cpuid2(int nr_entries)1001  static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1002  {
1003  	struct kvm_cpuid2 *cpuid;
1004  
1005  	cpuid = malloc(kvm_cpuid2_size(nr_entries));
1006  	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1007  
1008  	cpuid->nent = nr_entries;
1009  
1010  	return cpuid;
1011  }
1012  
1013  void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1014  
__vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function,uint32_t index)1015  static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1016  							      uint32_t function,
1017  							      uint32_t index)
1018  {
1019  	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1020  							  function, index);
1021  }
1022  
vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)1023  static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1024  							    uint32_t function)
1025  {
1026  	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1027  }
1028  
__vcpu_set_cpuid(struct kvm_vcpu * vcpu)1029  static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1030  {
1031  	int r;
1032  
1033  	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1034  	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1035  	if (r)
1036  		return r;
1037  
1038  	/* On success, refresh the cache to pick up adjustments made by KVM. */
1039  	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1040  	return 0;
1041  }
1042  
vcpu_set_cpuid(struct kvm_vcpu * vcpu)1043  static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1044  {
1045  	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1046  	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1047  
1048  	/* Refresh the cache to pick up adjustments made by KVM. */
1049  	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1050  }
1051  
1052  void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1053  			     struct kvm_x86_cpu_property property,
1054  			     uint32_t value);
1055  void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1056  
1057  void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1058  
vcpu_cpuid_has(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1059  static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1060  				  struct kvm_x86_cpu_feature feature)
1061  {
1062  	struct kvm_cpuid_entry2 *entry;
1063  
1064  	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1065  	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1066  }
1067  
1068  void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1069  				     struct kvm_x86_cpu_feature feature,
1070  				     bool set);
1071  
vcpu_set_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1072  static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1073  					  struct kvm_x86_cpu_feature feature)
1074  {
1075  	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1076  
1077  }
1078  
vcpu_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1079  static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1080  					    struct kvm_x86_cpu_feature feature)
1081  {
1082  	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1083  }
1084  
1085  uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1086  int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1087  
1088  /*
1089   * Assert on an MSR access(es) and pretty print the MSR name when possible.
1090   * Note, the caller provides the stringified name so that the name of macro is
1091   * printed, not the value the macro resolves to (due to macro expansion).
1092   */
1093  #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1094  do {										\
1095  	if (__builtin_constant_p(msr)) {					\
1096  		TEST_ASSERT(cond, fmt, str, args);				\
1097  	} else if (!(cond)) {							\
1098  		char buf[16];							\
1099  										\
1100  		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1101  		TEST_ASSERT(cond, fmt, buf, args);				\
1102  	}									\
1103  } while (0)
1104  
1105  /*
1106   * Returns true if KVM should return the last written value when reading an MSR
1107   * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1108   * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1109   * out MSRs that are not durable _and_ that a selftest wants to write.
1110   */
is_durable_msr(uint32_t msr)1111  static inline bool is_durable_msr(uint32_t msr)
1112  {
1113  	return msr != MSR_IA32_TSC;
1114  }
1115  
1116  #define vcpu_set_msr(vcpu, msr, val)							\
1117  do {											\
1118  	uint64_t r, v = val;								\
1119  											\
1120  	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1121  			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1122  	if (!is_durable_msr(msr))							\
1123  		break;									\
1124  	r = vcpu_get_msr(vcpu, msr);							\
1125  	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1126  } while (0)
1127  
1128  void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1129  void kvm_init_vm_address_properties(struct kvm_vm *vm);
1130  bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1131  
1132  struct ex_regs {
1133  	uint64_t rax, rcx, rdx, rbx;
1134  	uint64_t rbp, rsi, rdi;
1135  	uint64_t r8, r9, r10, r11;
1136  	uint64_t r12, r13, r14, r15;
1137  	uint64_t vector;
1138  	uint64_t error_code;
1139  	uint64_t rip;
1140  	uint64_t cs;
1141  	uint64_t rflags;
1142  };
1143  
1144  struct idt_entry {
1145  	uint16_t offset0;
1146  	uint16_t selector;
1147  	uint16_t ist : 3;
1148  	uint16_t : 5;
1149  	uint16_t type : 4;
1150  	uint16_t : 1;
1151  	uint16_t dpl : 2;
1152  	uint16_t p : 1;
1153  	uint16_t offset1;
1154  	uint32_t offset2; uint32_t reserved;
1155  };
1156  
1157  void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1158  			void (*handler)(struct ex_regs *));
1159  
1160  /* If a toddler were to say "abracadabra". */
1161  #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1162  
1163  /*
1164   * KVM selftest exception fixup uses registers to coordinate with the exception
1165   * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1166   * per-CPU data.  Using only registers avoids having to map memory into the
1167   * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1168   * for recursive faults when accessing memory in the handler.  The downside to
1169   * using registers is that it restricts what registers can be used by the actual
1170   * instruction.  But, selftests are 64-bit only, making register* pressure a
1171   * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1172   * by the callee, and except for r11 are not implicit parameters to any
1173   * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1174   * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1175   * is higher priority than testing non-faulting SYSCALL/SYSRET.
1176   *
1177   * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1178   * is guaranteed to be non-zero on fault.
1179   *
1180   * REGISTER INPUTS:
1181   * r9  = MAGIC
1182   * r10 = RIP
1183   * r11 = new RIP on fault
1184   *
1185   * REGISTER OUTPUTS:
1186   * r9  = exception vector (non-zero)
1187   * r10 = error code
1188   */
1189  #define __KVM_ASM_SAFE(insn, fep)				\
1190  	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1191  	"lea 1f(%%rip), %%r10\n\t"				\
1192  	"lea 2f(%%rip), %%r11\n\t"				\
1193  	fep "1: " insn "\n\t"					\
1194  	"xor %%r9, %%r9\n\t"					\
1195  	"2:\n\t"						\
1196  	"mov  %%r9b, %[vector]\n\t"				\
1197  	"mov  %%r10, %[error_code]\n\t"
1198  
1199  #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1200  #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1201  
1202  #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1203  #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1204  
1205  #define kvm_asm_safe(insn, inputs...)					\
1206  ({									\
1207  	uint64_t ign_error_code;					\
1208  	uint8_t vector;							\
1209  									\
1210  	asm volatile(KVM_ASM_SAFE(insn)					\
1211  		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1212  		     : inputs						\
1213  		     : KVM_ASM_SAFE_CLOBBERS);				\
1214  	vector;								\
1215  })
1216  
1217  #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1218  ({									\
1219  	uint8_t vector;							\
1220  									\
1221  	asm volatile(KVM_ASM_SAFE(insn)					\
1222  		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1223  		     : inputs						\
1224  		     : KVM_ASM_SAFE_CLOBBERS);				\
1225  	vector;								\
1226  })
1227  
1228  #define kvm_asm_safe_fep(insn, inputs...)				\
1229  ({									\
1230  	uint64_t ign_error_code;					\
1231  	uint8_t vector;							\
1232  									\
1233  	asm volatile(KVM_ASM_SAFE(insn)					\
1234  		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1235  		     : inputs						\
1236  		     : KVM_ASM_SAFE_CLOBBERS);				\
1237  	vector;								\
1238  })
1239  
1240  #define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1241  ({									\
1242  	uint8_t vector;							\
1243  									\
1244  	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1245  		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1246  		     : inputs						\
1247  		     : KVM_ASM_SAFE_CLOBBERS);				\
1248  	vector;								\
1249  })
1250  
1251  #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1252  static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1253  {									\
1254  	uint64_t error_code;						\
1255  	uint8_t vector;							\
1256  	uint32_t a, d;							\
1257  									\
1258  	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1259  		     : "=a"(a), "=d"(d),				\
1260  		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1261  		     : "c"(idx)						\
1262  		     : KVM_ASM_SAFE_CLOBBERS);				\
1263  									\
1264  	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1265  	return vector;							\
1266  }
1267  
1268  /*
1269   * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1270   * use ECX as in input index, and EDX:EAX as a 64-bit output.
1271   */
1272  #define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1273  	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1274  	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1275  
1276  BUILD_READ_U64_SAFE_HELPERS(rdmsr)
BUILD_READ_U64_SAFE_HELPERS(rdpmc)1277  BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1278  BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1279  
1280  static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1281  {
1282  	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1283  }
1284  
xsetbv_safe(uint32_t index,uint64_t value)1285  static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1286  {
1287  	u32 eax = value;
1288  	u32 edx = value >> 32;
1289  
1290  	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1291  }
1292  
1293  bool kvm_is_tdp_enabled(void);
1294  
kvm_is_pmu_enabled(void)1295  static inline bool kvm_is_pmu_enabled(void)
1296  {
1297  	return get_kvm_param_bool("enable_pmu");
1298  }
1299  
kvm_is_forced_emulation_enabled(void)1300  static inline bool kvm_is_forced_emulation_enabled(void)
1301  {
1302  	return !!get_kvm_param_integer("force_emulation_prefix");
1303  }
1304  
1305  uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1306  				    int *level);
1307  uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1308  
1309  uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1310  		       uint64_t a3);
1311  uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1312  void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1313  
__kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1314  static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1315  						     uint64_t size, uint64_t flags)
1316  {
1317  	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1318  }
1319  
kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1320  static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1321  					       uint64_t flags)
1322  {
1323  	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1324  
1325  	GUEST_ASSERT(!ret);
1326  }
1327  
1328  void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1329  
1330  #define vm_xsave_require_permission(xfeature)	\
1331  	__vm_xsave_require_permission(xfeature, #xfeature)
1332  
1333  enum pg_level {
1334  	PG_LEVEL_NONE,
1335  	PG_LEVEL_4K,
1336  	PG_LEVEL_2M,
1337  	PG_LEVEL_1G,
1338  	PG_LEVEL_512G,
1339  	PG_LEVEL_NUM
1340  };
1341  
1342  #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1343  #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1344  
1345  #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1346  #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1347  #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1348  
1349  void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1350  void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1351  		    uint64_t nr_bytes, int level);
1352  
1353  /*
1354   * Basic CPU control in CR0
1355   */
1356  #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1357  #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1358  #define X86_CR0_EM          (1UL<<2) /* Emulation */
1359  #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1360  #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1361  #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1362  #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1363  #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1364  #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1365  #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1366  #define X86_CR0_PG          (1UL<<31) /* Paging */
1367  
1368  #define PFERR_PRESENT_BIT 0
1369  #define PFERR_WRITE_BIT 1
1370  #define PFERR_USER_BIT 2
1371  #define PFERR_RSVD_BIT 3
1372  #define PFERR_FETCH_BIT 4
1373  #define PFERR_PK_BIT 5
1374  #define PFERR_SGX_BIT 15
1375  #define PFERR_GUEST_FINAL_BIT 32
1376  #define PFERR_GUEST_PAGE_BIT 33
1377  #define PFERR_IMPLICIT_ACCESS_BIT 48
1378  
1379  #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1380  #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1381  #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1382  #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1383  #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1384  #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1385  #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1386  #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1387  #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1388  #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1389  
1390  bool sys_clocksource_is_based_on_tsc(void);
1391  
1392  #endif /* SELFTEST_KVM_PROCESSOR_H */
1393