1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2021, Microsoft Corporation.
4  *
5  * Authors:
6  *   Beau Belgrave <beaub@linux.microsoft.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/cdev.h>
11 #include <linux/hashtable.h>
12 #include <linux/list.h>
13 #include <linux/io.h>
14 #include <linux/uio.h>
15 #include <linux/ioctl.h>
16 #include <linux/jhash.h>
17 #include <linux/refcount.h>
18 #include <linux/trace_events.h>
19 #include <linux/tracefs.h>
20 #include <linux/types.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/user_events.h>
25 #include "trace_dynevent.h"
26 #include "trace_output.h"
27 #include "trace.h"
28 
29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30 
31 #define FIELD_DEPTH_TYPE 0
32 #define FIELD_DEPTH_NAME 1
33 #define FIELD_DEPTH_SIZE 2
34 
35 /* Limit how long of an event name plus args within the subsystem. */
36 #define MAX_EVENT_DESC 512
37 #define EVENT_NAME(user_event) ((user_event)->reg_name)
38 #define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name)
39 #define MAX_FIELD_ARRAY_SIZE 1024
40 
41 /*
42  * Internal bits (kernel side only) to keep track of connected probes:
43  * These are used when status is requested in text form about an event. These
44  * bits are compared against an internal byte on the event to determine which
45  * probes to print out to the user.
46  *
47  * These do not reflect the mapped bytes between the user and kernel space.
48  */
49 #define EVENT_STATUS_FTRACE BIT(0)
50 #define EVENT_STATUS_PERF BIT(1)
51 #define EVENT_STATUS_OTHER BIT(7)
52 
53 /*
54  * Stores the system name, tables, and locks for a group of events. This
55  * allows isolation for events by various means.
56  */
57 struct user_event_group {
58 	char			*system_name;
59 	char			*system_multi_name;
60 	struct hlist_node	node;
61 	struct mutex		reg_mutex;
62 	DECLARE_HASHTABLE(register_table, 8);
63 	/* ID that moves forward within the group for multi-event names */
64 	u64			multi_id;
65 };
66 
67 /* Group for init_user_ns mapping, top-most group */
68 static struct user_event_group *init_group;
69 
70 /* Max allowed events for the whole system */
71 static unsigned int max_user_events = 32768;
72 
73 /* Current number of events on the whole system */
74 static unsigned int current_user_events;
75 
76 /*
77  * Stores per-event properties, as users register events
78  * within a file a user_event might be created if it does not
79  * already exist. These are globally used and their lifetime
80  * is tied to the refcnt member. These cannot go away until the
81  * refcnt reaches one.
82  */
83 struct user_event {
84 	struct user_event_group		*group;
85 	char				*reg_name;
86 	struct tracepoint		tracepoint;
87 	struct trace_event_call		call;
88 	struct trace_event_class	class;
89 	struct dyn_event		devent;
90 	struct hlist_node		node;
91 	struct list_head		fields;
92 	struct list_head		validators;
93 	struct work_struct		put_work;
94 	refcount_t			refcnt;
95 	int				min_size;
96 	int				reg_flags;
97 	char				status;
98 };
99 
100 /*
101  * Stores per-mm/event properties that enable an address to be
102  * updated properly for each task. As tasks are forked, we use
103  * these to track enablement sites that are tied to an event.
104  */
105 struct user_event_enabler {
106 	struct list_head	mm_enablers_link;
107 	struct user_event	*event;
108 	unsigned long		addr;
109 
110 	/* Track enable bit, flags, etc. Aligned for bitops. */
111 	unsigned long		values;
112 };
113 
114 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
115 #define ENABLE_VAL_BIT_MASK 0x3F
116 
117 /* Bit 6 is for faulting status of enablement */
118 #define ENABLE_VAL_FAULTING_BIT 6
119 
120 /* Bit 7 is for freeing status of enablement */
121 #define ENABLE_VAL_FREEING_BIT 7
122 
123 /* Bit 8 is for marking 32-bit on 64-bit */
124 #define ENABLE_VAL_32_ON_64_BIT 8
125 
126 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
127 
128 /* Only duplicate the bit and compat values */
129 #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
130 
131 #define ENABLE_BITOPS(e) (&(e)->values)
132 
133 #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
134 
135 #define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT)
136 
137 /* Used for asynchronous faulting in of pages */
138 struct user_event_enabler_fault {
139 	struct work_struct		work;
140 	struct user_event_mm		*mm;
141 	struct user_event_enabler	*enabler;
142 	int				attempt;
143 };
144 
145 static struct kmem_cache *fault_cache;
146 
147 /* Global list of memory descriptors using user_events */
148 static LIST_HEAD(user_event_mms);
149 static DEFINE_SPINLOCK(user_event_mms_lock);
150 
151 /*
152  * Stores per-file events references, as users register events
153  * within a file this structure is modified and freed via RCU.
154  * The lifetime of this struct is tied to the lifetime of the file.
155  * These are not shared and only accessible by the file that created it.
156  */
157 struct user_event_refs {
158 	struct rcu_head		rcu;
159 	int			count;
160 	struct user_event	*events[];
161 };
162 
163 struct user_event_file_info {
164 	struct user_event_group	*group;
165 	struct user_event_refs	*refs;
166 };
167 
168 #define VALIDATOR_ENSURE_NULL (1 << 0)
169 #define VALIDATOR_REL (1 << 1)
170 
171 struct user_event_validator {
172 	struct list_head	user_event_link;
173 	int			offset;
174 	int			flags;
175 };
176 
align_addr_bit(unsigned long * addr,int * bit,unsigned long * flags)177 static inline void align_addr_bit(unsigned long *addr, int *bit,
178 				  unsigned long *flags)
179 {
180 	if (IS_ALIGNED(*addr, sizeof(long))) {
181 #ifdef __BIG_ENDIAN
182 		/* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
183 		if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
184 			*bit += 32;
185 #endif
186 		return;
187 	}
188 
189 	*addr = ALIGN_DOWN(*addr, sizeof(long));
190 
191 	/*
192 	 * We only support 32 and 64 bit values. The only time we need
193 	 * to align is a 32 bit value on a 64 bit kernel, which on LE
194 	 * is always 32 bits, and on BE requires no change when unaligned.
195 	 */
196 #ifdef __LITTLE_ENDIAN
197 	*bit += 32;
198 #endif
199 }
200 
201 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
202 				   void *tpdata, bool *faulted);
203 
204 static int user_event_parse(struct user_event_group *group, char *name,
205 			    char *args, char *flags,
206 			    struct user_event **newuser, int reg_flags);
207 
208 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
209 static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
210 static void user_event_mm_put(struct user_event_mm *mm);
211 static int destroy_user_event(struct user_event *user);
212 static bool user_fields_match(struct user_event *user, int argc,
213 			      const char **argv);
214 
user_event_key(char * name)215 static u32 user_event_key(char *name)
216 {
217 	return jhash(name, strlen(name), 0);
218 }
219 
user_event_capable(u16 reg_flags)220 static bool user_event_capable(u16 reg_flags)
221 {
222 	/* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */
223 	if (reg_flags & USER_EVENT_REG_PERSIST) {
224 		if (!perfmon_capable())
225 			return false;
226 	}
227 
228 	return true;
229 }
230 
user_event_get(struct user_event * user)231 static struct user_event *user_event_get(struct user_event *user)
232 {
233 	refcount_inc(&user->refcnt);
234 
235 	return user;
236 }
237 
delayed_destroy_user_event(struct work_struct * work)238 static void delayed_destroy_user_event(struct work_struct *work)
239 {
240 	struct user_event *user = container_of(
241 		work, struct user_event, put_work);
242 
243 	mutex_lock(&event_mutex);
244 
245 	if (!refcount_dec_and_test(&user->refcnt))
246 		goto out;
247 
248 	if (destroy_user_event(user)) {
249 		/*
250 		 * The only reason this would fail here is if we cannot
251 		 * update the visibility of the event. In this case the
252 		 * event stays in the hashtable, waiting for someone to
253 		 * attempt to delete it later.
254 		 */
255 		pr_warn("user_events: Unable to delete event\n");
256 		refcount_set(&user->refcnt, 1);
257 	}
258 out:
259 	mutex_unlock(&event_mutex);
260 }
261 
user_event_put(struct user_event * user,bool locked)262 static void user_event_put(struct user_event *user, bool locked)
263 {
264 	bool delete;
265 
266 	if (unlikely(!user))
267 		return;
268 
269 	/*
270 	 * When the event is not enabled for auto-delete there will always
271 	 * be at least 1 reference to the event. During the event creation
272 	 * we initially set the refcnt to 2 to achieve this. In those cases
273 	 * the caller must acquire event_mutex and after decrement check if
274 	 * the refcnt is 1, meaning this is the last reference. When auto
275 	 * delete is enabled, there will only be 1 ref, IE: refcnt will be
276 	 * only set to 1 during creation to allow the below checks to go
277 	 * through upon the last put. The last put must always be done with
278 	 * the event mutex held.
279 	 */
280 	if (!locked) {
281 		lockdep_assert_not_held(&event_mutex);
282 		delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
283 	} else {
284 		lockdep_assert_held(&event_mutex);
285 		delete = refcount_dec_and_test(&user->refcnt);
286 	}
287 
288 	if (!delete)
289 		return;
290 
291 	/*
292 	 * We now have the event_mutex in all cases, which ensures that
293 	 * no new references will be taken until event_mutex is released.
294 	 * New references come through find_user_event(), which requires
295 	 * the event_mutex to be held.
296 	 */
297 
298 	if (user->reg_flags & USER_EVENT_REG_PERSIST) {
299 		/* We should not get here when persist flag is set */
300 		pr_alert("BUG: Auto-delete engaged on persistent event\n");
301 		goto out;
302 	}
303 
304 	/*
305 	 * Unfortunately we have to attempt the actual destroy in a work
306 	 * queue. This is because not all cases handle a trace_event_call
307 	 * being removed within the class->reg() operation for unregister.
308 	 */
309 	INIT_WORK(&user->put_work, delayed_destroy_user_event);
310 
311 	/*
312 	 * Since the event is still in the hashtable, we have to re-inc
313 	 * the ref count to 1. This count will be decremented and checked
314 	 * in the work queue to ensure it's still the last ref. This is
315 	 * needed because a user-process could register the same event in
316 	 * between the time of event_mutex release and the work queue
317 	 * running the delayed destroy. If we removed the item now from
318 	 * the hashtable, this would result in a timing window where a
319 	 * user process would fail a register because the trace_event_call
320 	 * register would fail in the tracing layers.
321 	 */
322 	refcount_set(&user->refcnt, 1);
323 
324 	if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
325 		/*
326 		 * If we fail we must wait for an admin to attempt delete or
327 		 * another register/close of the event, whichever is first.
328 		 */
329 		pr_warn("user_events: Unable to queue delayed destroy\n");
330 	}
331 out:
332 	/* Ensure if we didn't have event_mutex before we unlock it */
333 	if (!locked)
334 		mutex_unlock(&event_mutex);
335 }
336 
user_event_group_destroy(struct user_event_group * group)337 static void user_event_group_destroy(struct user_event_group *group)
338 {
339 	kfree(group->system_name);
340 	kfree(group->system_multi_name);
341 	kfree(group);
342 }
343 
user_event_group_system_name(void)344 static char *user_event_group_system_name(void)
345 {
346 	char *system_name;
347 	int len = sizeof(USER_EVENTS_SYSTEM) + 1;
348 
349 	system_name = kmalloc(len, GFP_KERNEL);
350 
351 	if (!system_name)
352 		return NULL;
353 
354 	snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
355 
356 	return system_name;
357 }
358 
user_event_group_system_multi_name(void)359 static char *user_event_group_system_multi_name(void)
360 {
361 	return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL);
362 }
363 
current_user_event_group(void)364 static struct user_event_group *current_user_event_group(void)
365 {
366 	return init_group;
367 }
368 
user_event_group_create(void)369 static struct user_event_group *user_event_group_create(void)
370 {
371 	struct user_event_group *group;
372 
373 	group = kzalloc(sizeof(*group), GFP_KERNEL);
374 
375 	if (!group)
376 		return NULL;
377 
378 	group->system_name = user_event_group_system_name();
379 
380 	if (!group->system_name)
381 		goto error;
382 
383 	group->system_multi_name = user_event_group_system_multi_name();
384 
385 	if (!group->system_multi_name)
386 		goto error;
387 
388 	mutex_init(&group->reg_mutex);
389 	hash_init(group->register_table);
390 
391 	return group;
392 error:
393 	if (group)
394 		user_event_group_destroy(group);
395 
396 	return NULL;
397 };
398 
user_event_enabler_destroy(struct user_event_enabler * enabler,bool locked)399 static void user_event_enabler_destroy(struct user_event_enabler *enabler,
400 				       bool locked)
401 {
402 	list_del_rcu(&enabler->mm_enablers_link);
403 
404 	/* No longer tracking the event via the enabler */
405 	user_event_put(enabler->event, locked);
406 
407 	kfree(enabler);
408 }
409 
user_event_mm_fault_in(struct user_event_mm * mm,unsigned long uaddr,int attempt)410 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
411 				  int attempt)
412 {
413 	bool unlocked;
414 	int ret;
415 
416 	/*
417 	 * Normally this is low, ensure that it cannot be taken advantage of by
418 	 * bad user processes to cause excessive looping.
419 	 */
420 	if (attempt > 10)
421 		return -EFAULT;
422 
423 	mmap_read_lock(mm->mm);
424 
425 	/* Ensure MM has tasks, cannot use after exit_mm() */
426 	if (refcount_read(&mm->tasks) == 0) {
427 		ret = -ENOENT;
428 		goto out;
429 	}
430 
431 	ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
432 			       &unlocked);
433 out:
434 	mmap_read_unlock(mm->mm);
435 
436 	return ret;
437 }
438 
439 static int user_event_enabler_write(struct user_event_mm *mm,
440 				    struct user_event_enabler *enabler,
441 				    bool fixup_fault, int *attempt);
442 
user_event_enabler_fault_fixup(struct work_struct * work)443 static void user_event_enabler_fault_fixup(struct work_struct *work)
444 {
445 	struct user_event_enabler_fault *fault = container_of(
446 		work, struct user_event_enabler_fault, work);
447 	struct user_event_enabler *enabler = fault->enabler;
448 	struct user_event_mm *mm = fault->mm;
449 	unsigned long uaddr = enabler->addr;
450 	int attempt = fault->attempt;
451 	int ret;
452 
453 	ret = user_event_mm_fault_in(mm, uaddr, attempt);
454 
455 	if (ret && ret != -ENOENT) {
456 		struct user_event *user = enabler->event;
457 
458 		pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
459 			mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
460 	}
461 
462 	/* Prevent state changes from racing */
463 	mutex_lock(&event_mutex);
464 
465 	/* User asked for enabler to be removed during fault */
466 	if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
467 		user_event_enabler_destroy(enabler, true);
468 		goto out;
469 	}
470 
471 	/*
472 	 * If we managed to get the page, re-issue the write. We do not
473 	 * want to get into a possible infinite loop, which is why we only
474 	 * attempt again directly if the page came in. If we couldn't get
475 	 * the page here, then we will try again the next time the event is
476 	 * enabled/disabled.
477 	 */
478 	clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
479 
480 	if (!ret) {
481 		mmap_read_lock(mm->mm);
482 		user_event_enabler_write(mm, enabler, true, &attempt);
483 		mmap_read_unlock(mm->mm);
484 	}
485 out:
486 	mutex_unlock(&event_mutex);
487 
488 	/* In all cases we no longer need the mm or fault */
489 	user_event_mm_put(mm);
490 	kmem_cache_free(fault_cache, fault);
491 }
492 
user_event_enabler_queue_fault(struct user_event_mm * mm,struct user_event_enabler * enabler,int attempt)493 static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
494 					   struct user_event_enabler *enabler,
495 					   int attempt)
496 {
497 	struct user_event_enabler_fault *fault;
498 
499 	fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
500 
501 	if (!fault)
502 		return false;
503 
504 	INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
505 	fault->mm = user_event_mm_get(mm);
506 	fault->enabler = enabler;
507 	fault->attempt = attempt;
508 
509 	/* Don't try to queue in again while we have a pending fault */
510 	set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
511 
512 	if (!schedule_work(&fault->work)) {
513 		/* Allow another attempt later */
514 		clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
515 
516 		user_event_mm_put(mm);
517 		kmem_cache_free(fault_cache, fault);
518 
519 		return false;
520 	}
521 
522 	return true;
523 }
524 
user_event_enabler_write(struct user_event_mm * mm,struct user_event_enabler * enabler,bool fixup_fault,int * attempt)525 static int user_event_enabler_write(struct user_event_mm *mm,
526 				    struct user_event_enabler *enabler,
527 				    bool fixup_fault, int *attempt)
528 {
529 	unsigned long uaddr = enabler->addr;
530 	unsigned long *ptr;
531 	struct page *page;
532 	void *kaddr;
533 	int bit = ENABLE_BIT(enabler);
534 	int ret;
535 
536 	lockdep_assert_held(&event_mutex);
537 	mmap_assert_locked(mm->mm);
538 
539 	*attempt += 1;
540 
541 	/* Ensure MM has tasks, cannot use after exit_mm() */
542 	if (refcount_read(&mm->tasks) == 0)
543 		return -ENOENT;
544 
545 	if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
546 		     test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
547 		return -EBUSY;
548 
549 	align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
550 
551 	ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
552 				    &page, NULL);
553 
554 	if (unlikely(ret <= 0)) {
555 		if (!fixup_fault)
556 			return -EFAULT;
557 
558 		if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
559 			pr_warn("user_events: Unable to queue fault handler\n");
560 
561 		return -EFAULT;
562 	}
563 
564 	kaddr = kmap_local_page(page);
565 	ptr = kaddr + (uaddr & ~PAGE_MASK);
566 
567 	/* Update bit atomically, user tracers must be atomic as well */
568 	if (enabler->event && enabler->event->status)
569 		set_bit(bit, ptr);
570 	else
571 		clear_bit(bit, ptr);
572 
573 	kunmap_local(kaddr);
574 	unpin_user_pages_dirty_lock(&page, 1, true);
575 
576 	return 0;
577 }
578 
user_event_enabler_exists(struct user_event_mm * mm,unsigned long uaddr,unsigned char bit)579 static bool user_event_enabler_exists(struct user_event_mm *mm,
580 				      unsigned long uaddr, unsigned char bit)
581 {
582 	struct user_event_enabler *enabler;
583 
584 	list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
585 		if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
586 			return true;
587 	}
588 
589 	return false;
590 }
591 
user_event_enabler_update(struct user_event * user)592 static void user_event_enabler_update(struct user_event *user)
593 {
594 	struct user_event_enabler *enabler;
595 	struct user_event_mm *next;
596 	struct user_event_mm *mm;
597 	int attempt;
598 
599 	lockdep_assert_held(&event_mutex);
600 
601 	/*
602 	 * We need to build a one-shot list of all the mms that have an
603 	 * enabler for the user_event passed in. This list is only valid
604 	 * while holding the event_mutex. The only reason for this is due
605 	 * to the global mm list being RCU protected and we use methods
606 	 * which can wait (mmap_read_lock and pin_user_pages_remote).
607 	 *
608 	 * NOTE: user_event_mm_get_all() increments the ref count of each
609 	 * mm that is added to the list to prevent removal timing windows.
610 	 * We must always put each mm after they are used, which may wait.
611 	 */
612 	mm = user_event_mm_get_all(user);
613 
614 	while (mm) {
615 		next = mm->next;
616 		mmap_read_lock(mm->mm);
617 
618 		list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
619 			if (enabler->event == user) {
620 				attempt = 0;
621 				user_event_enabler_write(mm, enabler, true, &attempt);
622 			}
623 		}
624 
625 		mmap_read_unlock(mm->mm);
626 		user_event_mm_put(mm);
627 		mm = next;
628 	}
629 }
630 
user_event_enabler_dup(struct user_event_enabler * orig,struct user_event_mm * mm)631 static bool user_event_enabler_dup(struct user_event_enabler *orig,
632 				   struct user_event_mm *mm)
633 {
634 	struct user_event_enabler *enabler;
635 
636 	/* Skip pending frees */
637 	if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
638 		return true;
639 
640 	enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
641 
642 	if (!enabler)
643 		return false;
644 
645 	enabler->event = user_event_get(orig->event);
646 	enabler->addr = orig->addr;
647 
648 	/* Only dup part of value (ignore future flags, etc) */
649 	enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
650 
651 	/* Enablers not exposed yet, RCU not required */
652 	list_add(&enabler->mm_enablers_link, &mm->enablers);
653 
654 	return true;
655 }
656 
user_event_mm_get(struct user_event_mm * mm)657 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
658 {
659 	refcount_inc(&mm->refcnt);
660 
661 	return mm;
662 }
663 
user_event_mm_get_all(struct user_event * user)664 static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
665 {
666 	struct user_event_mm *found = NULL;
667 	struct user_event_enabler *enabler;
668 	struct user_event_mm *mm;
669 
670 	/*
671 	 * We use the mm->next field to build a one-shot list from the global
672 	 * RCU protected list. To build this list the event_mutex must be held.
673 	 * This lets us build a list without requiring allocs that could fail
674 	 * when user based events are most wanted for diagnostics.
675 	 */
676 	lockdep_assert_held(&event_mutex);
677 
678 	/*
679 	 * We do not want to block fork/exec while enablements are being
680 	 * updated, so we use RCU to walk the current tasks that have used
681 	 * user_events ABI for 1 or more events. Each enabler found in each
682 	 * task that matches the event being updated has a write to reflect
683 	 * the kernel state back into the process. Waits/faults must not occur
684 	 * during this. So we scan the list under RCU for all the mm that have
685 	 * the event within it. This is needed because mm_read_lock() can wait.
686 	 * Each user mm returned has a ref inc to handle remove RCU races.
687 	 */
688 	rcu_read_lock();
689 
690 	list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
691 		list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
692 			if (enabler->event == user) {
693 				mm->next = found;
694 				found = user_event_mm_get(mm);
695 				break;
696 			}
697 		}
698 	}
699 
700 	rcu_read_unlock();
701 
702 	return found;
703 }
704 
user_event_mm_alloc(struct task_struct * t)705 static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
706 {
707 	struct user_event_mm *user_mm;
708 
709 	user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
710 
711 	if (!user_mm)
712 		return NULL;
713 
714 	user_mm->mm = t->mm;
715 	INIT_LIST_HEAD(&user_mm->enablers);
716 	refcount_set(&user_mm->refcnt, 1);
717 	refcount_set(&user_mm->tasks, 1);
718 
719 	/*
720 	 * The lifetime of the memory descriptor can slightly outlast
721 	 * the task lifetime if a ref to the user_event_mm is taken
722 	 * between list_del_rcu() and call_rcu(). Therefore we need
723 	 * to take a reference to it to ensure it can live this long
724 	 * under this corner case. This can also occur in clones that
725 	 * outlast the parent.
726 	 */
727 	mmgrab(user_mm->mm);
728 
729 	return user_mm;
730 }
731 
user_event_mm_attach(struct user_event_mm * user_mm,struct task_struct * t)732 static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
733 {
734 	unsigned long flags;
735 
736 	spin_lock_irqsave(&user_event_mms_lock, flags);
737 	list_add_rcu(&user_mm->mms_link, &user_event_mms);
738 	spin_unlock_irqrestore(&user_event_mms_lock, flags);
739 
740 	t->user_event_mm = user_mm;
741 }
742 
current_user_event_mm(void)743 static struct user_event_mm *current_user_event_mm(void)
744 {
745 	struct user_event_mm *user_mm = current->user_event_mm;
746 
747 	if (user_mm)
748 		goto inc;
749 
750 	user_mm = user_event_mm_alloc(current);
751 
752 	if (!user_mm)
753 		goto error;
754 
755 	user_event_mm_attach(user_mm, current);
756 inc:
757 	refcount_inc(&user_mm->refcnt);
758 error:
759 	return user_mm;
760 }
761 
user_event_mm_destroy(struct user_event_mm * mm)762 static void user_event_mm_destroy(struct user_event_mm *mm)
763 {
764 	struct user_event_enabler *enabler, *next;
765 
766 	list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
767 		user_event_enabler_destroy(enabler, false);
768 
769 	mmdrop(mm->mm);
770 	kfree(mm);
771 }
772 
user_event_mm_put(struct user_event_mm * mm)773 static void user_event_mm_put(struct user_event_mm *mm)
774 {
775 	if (mm && refcount_dec_and_test(&mm->refcnt))
776 		user_event_mm_destroy(mm);
777 }
778 
delayed_user_event_mm_put(struct work_struct * work)779 static void delayed_user_event_mm_put(struct work_struct *work)
780 {
781 	struct user_event_mm *mm;
782 
783 	mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
784 	user_event_mm_put(mm);
785 }
786 
user_event_mm_remove(struct task_struct * t)787 void user_event_mm_remove(struct task_struct *t)
788 {
789 	struct user_event_mm *mm;
790 	unsigned long flags;
791 
792 	might_sleep();
793 
794 	mm = t->user_event_mm;
795 	t->user_event_mm = NULL;
796 
797 	/* Clone will increment the tasks, only remove if last clone */
798 	if (!refcount_dec_and_test(&mm->tasks))
799 		return;
800 
801 	/* Remove the mm from the list, so it can no longer be enabled */
802 	spin_lock_irqsave(&user_event_mms_lock, flags);
803 	list_del_rcu(&mm->mms_link);
804 	spin_unlock_irqrestore(&user_event_mms_lock, flags);
805 
806 	/*
807 	 * We need to wait for currently occurring writes to stop within
808 	 * the mm. This is required since exit_mm() snaps the current rss
809 	 * stats and clears them. On the final mmdrop(), check_mm() will
810 	 * report a bug if these increment.
811 	 *
812 	 * All writes/pins are done under mmap_read lock, take the write
813 	 * lock to ensure in-progress faults have completed. Faults that
814 	 * are pending but yet to run will check the task count and skip
815 	 * the fault since the mm is going away.
816 	 */
817 	mmap_write_lock(mm->mm);
818 	mmap_write_unlock(mm->mm);
819 
820 	/*
821 	 * Put for mm must be done after RCU delay to handle new refs in
822 	 * between the list_del_rcu() and now. This ensures any get refs
823 	 * during rcu_read_lock() are accounted for during list removal.
824 	 *
825 	 * CPU A			|	CPU B
826 	 * ---------------------------------------------------------------
827 	 * user_event_mm_remove()	|	rcu_read_lock();
828 	 * list_del_rcu()		|	list_for_each_entry_rcu();
829 	 * call_rcu()			|	refcount_inc();
830 	 * .				|	rcu_read_unlock();
831 	 * schedule_work()		|	.
832 	 * user_event_mm_put()		|	.
833 	 *
834 	 * mmdrop() cannot be called in the softirq context of call_rcu()
835 	 * so we use a work queue after call_rcu() to run within.
836 	 */
837 	INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
838 	queue_rcu_work(system_wq, &mm->put_rwork);
839 }
840 
user_event_mm_dup(struct task_struct * t,struct user_event_mm * old_mm)841 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
842 {
843 	struct user_event_mm *mm = user_event_mm_alloc(t);
844 	struct user_event_enabler *enabler;
845 
846 	if (!mm)
847 		return;
848 
849 	rcu_read_lock();
850 
851 	list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
852 		if (!user_event_enabler_dup(enabler, mm))
853 			goto error;
854 	}
855 
856 	rcu_read_unlock();
857 
858 	user_event_mm_attach(mm, t);
859 	return;
860 error:
861 	rcu_read_unlock();
862 	user_event_mm_destroy(mm);
863 }
864 
current_user_event_enabler_exists(unsigned long uaddr,unsigned char bit)865 static bool current_user_event_enabler_exists(unsigned long uaddr,
866 					      unsigned char bit)
867 {
868 	struct user_event_mm *user_mm = current_user_event_mm();
869 	bool exists;
870 
871 	if (!user_mm)
872 		return false;
873 
874 	exists = user_event_enabler_exists(user_mm, uaddr, bit);
875 
876 	user_event_mm_put(user_mm);
877 
878 	return exists;
879 }
880 
881 static struct user_event_enabler
user_event_enabler_create(struct user_reg * reg,struct user_event * user,int * write_result)882 *user_event_enabler_create(struct user_reg *reg, struct user_event *user,
883 			   int *write_result)
884 {
885 	struct user_event_enabler *enabler;
886 	struct user_event_mm *user_mm;
887 	unsigned long uaddr = (unsigned long)reg->enable_addr;
888 	int attempt = 0;
889 
890 	user_mm = current_user_event_mm();
891 
892 	if (!user_mm)
893 		return NULL;
894 
895 	enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
896 
897 	if (!enabler)
898 		goto out;
899 
900 	enabler->event = user;
901 	enabler->addr = uaddr;
902 	enabler->values = reg->enable_bit;
903 
904 #if BITS_PER_LONG >= 64
905 	if (reg->enable_size == 4)
906 		set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
907 #endif
908 
909 retry:
910 	/* Prevents state changes from racing with new enablers */
911 	mutex_lock(&event_mutex);
912 
913 	/* Attempt to reflect the current state within the process */
914 	mmap_read_lock(user_mm->mm);
915 	*write_result = user_event_enabler_write(user_mm, enabler, false,
916 						 &attempt);
917 	mmap_read_unlock(user_mm->mm);
918 
919 	/*
920 	 * If the write works, then we will track the enabler. A ref to the
921 	 * underlying user_event is held by the enabler to prevent it going
922 	 * away while the enabler is still in use by a process. The ref is
923 	 * removed when the enabler is destroyed. This means a event cannot
924 	 * be forcefully deleted from the system until all tasks using it
925 	 * exit or run exec(), which includes forks and clones.
926 	 */
927 	if (!*write_result) {
928 		user_event_get(user);
929 		list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
930 	}
931 
932 	mutex_unlock(&event_mutex);
933 
934 	if (*write_result) {
935 		/* Attempt to fault-in and retry if it worked */
936 		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
937 			goto retry;
938 
939 		kfree(enabler);
940 		enabler = NULL;
941 	}
942 out:
943 	user_event_mm_put(user_mm);
944 
945 	return enabler;
946 }
947 
948 static __always_inline __must_check
user_event_last_ref(struct user_event * user)949 bool user_event_last_ref(struct user_event *user)
950 {
951 	int last = 0;
952 
953 	if (user->reg_flags & USER_EVENT_REG_PERSIST)
954 		last = 1;
955 
956 	return refcount_read(&user->refcnt) == last;
957 }
958 
959 static __always_inline __must_check
copy_nofault(void * addr,size_t bytes,struct iov_iter * i)960 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
961 {
962 	size_t ret;
963 
964 	pagefault_disable();
965 
966 	ret = copy_from_iter_nocache(addr, bytes, i);
967 
968 	pagefault_enable();
969 
970 	return ret;
971 }
972 
user_event_get_fields(struct trace_event_call * call)973 static struct list_head *user_event_get_fields(struct trace_event_call *call)
974 {
975 	struct user_event *user = (struct user_event *)call->data;
976 
977 	return &user->fields;
978 }
979 
980 /*
981  * Parses a register command for user_events
982  * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
983  *
984  * Example event named 'test' with a 20 char 'msg' field with an unsigned int
985  * 'id' field after:
986  * test char[20] msg;unsigned int id
987  *
988  * NOTE: Offsets are from the user data perspective, they are not from the
989  * trace_entry/buffer perspective. We automatically add the common properties
990  * sizes to the offset for the user.
991  *
992  * Upon success user_event has its ref count increased by 1.
993  */
user_event_parse_cmd(struct user_event_group * group,char * raw_command,struct user_event ** newuser,int reg_flags)994 static int user_event_parse_cmd(struct user_event_group *group,
995 				char *raw_command, struct user_event **newuser,
996 				int reg_flags)
997 {
998 	char *name = raw_command;
999 	char *args = strpbrk(name, " ");
1000 	char *flags;
1001 
1002 	if (args)
1003 		*args++ = '\0';
1004 
1005 	flags = strpbrk(name, ":");
1006 
1007 	if (flags)
1008 		*flags++ = '\0';
1009 
1010 	return user_event_parse(group, name, args, flags, newuser, reg_flags);
1011 }
1012 
user_field_array_size(const char * type)1013 static int user_field_array_size(const char *type)
1014 {
1015 	const char *start = strchr(type, '[');
1016 	char val[8];
1017 	char *bracket;
1018 	int size = 0;
1019 
1020 	if (start == NULL)
1021 		return -EINVAL;
1022 
1023 	if (strscpy(val, start + 1, sizeof(val)) <= 0)
1024 		return -EINVAL;
1025 
1026 	bracket = strchr(val, ']');
1027 
1028 	if (!bracket)
1029 		return -EINVAL;
1030 
1031 	*bracket = '\0';
1032 
1033 	if (kstrtouint(val, 0, &size))
1034 		return -EINVAL;
1035 
1036 	if (size > MAX_FIELD_ARRAY_SIZE)
1037 		return -EINVAL;
1038 
1039 	return size;
1040 }
1041 
user_field_size(const char * type)1042 static int user_field_size(const char *type)
1043 {
1044 	/* long is not allowed from a user, since it's ambigious in size */
1045 	if (strcmp(type, "s64") == 0)
1046 		return sizeof(s64);
1047 	if (strcmp(type, "u64") == 0)
1048 		return sizeof(u64);
1049 	if (strcmp(type, "s32") == 0)
1050 		return sizeof(s32);
1051 	if (strcmp(type, "u32") == 0)
1052 		return sizeof(u32);
1053 	if (strcmp(type, "int") == 0)
1054 		return sizeof(int);
1055 	if (strcmp(type, "unsigned int") == 0)
1056 		return sizeof(unsigned int);
1057 	if (strcmp(type, "s16") == 0)
1058 		return sizeof(s16);
1059 	if (strcmp(type, "u16") == 0)
1060 		return sizeof(u16);
1061 	if (strcmp(type, "short") == 0)
1062 		return sizeof(short);
1063 	if (strcmp(type, "unsigned short") == 0)
1064 		return sizeof(unsigned short);
1065 	if (strcmp(type, "s8") == 0)
1066 		return sizeof(s8);
1067 	if (strcmp(type, "u8") == 0)
1068 		return sizeof(u8);
1069 	if (strcmp(type, "char") == 0)
1070 		return sizeof(char);
1071 	if (strcmp(type, "unsigned char") == 0)
1072 		return sizeof(unsigned char);
1073 	if (str_has_prefix(type, "char["))
1074 		return user_field_array_size(type);
1075 	if (str_has_prefix(type, "unsigned char["))
1076 		return user_field_array_size(type);
1077 	if (str_has_prefix(type, "__data_loc "))
1078 		return sizeof(u32);
1079 	if (str_has_prefix(type, "__rel_loc "))
1080 		return sizeof(u32);
1081 
1082 	/* Uknown basic type, error */
1083 	return -EINVAL;
1084 }
1085 
user_event_destroy_validators(struct user_event * user)1086 static void user_event_destroy_validators(struct user_event *user)
1087 {
1088 	struct user_event_validator *validator, *next;
1089 	struct list_head *head = &user->validators;
1090 
1091 	list_for_each_entry_safe(validator, next, head, user_event_link) {
1092 		list_del(&validator->user_event_link);
1093 		kfree(validator);
1094 	}
1095 }
1096 
user_event_destroy_fields(struct user_event * user)1097 static void user_event_destroy_fields(struct user_event *user)
1098 {
1099 	struct ftrace_event_field *field, *next;
1100 	struct list_head *head = &user->fields;
1101 
1102 	list_for_each_entry_safe(field, next, head, link) {
1103 		list_del(&field->link);
1104 		kfree(field);
1105 	}
1106 }
1107 
user_event_add_field(struct user_event * user,const char * type,const char * name,int offset,int size,int is_signed,int filter_type)1108 static int user_event_add_field(struct user_event *user, const char *type,
1109 				const char *name, int offset, int size,
1110 				int is_signed, int filter_type)
1111 {
1112 	struct user_event_validator *validator;
1113 	struct ftrace_event_field *field;
1114 	int validator_flags = 0;
1115 
1116 	field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
1117 
1118 	if (!field)
1119 		return -ENOMEM;
1120 
1121 	if (str_has_prefix(type, "__data_loc "))
1122 		goto add_validator;
1123 
1124 	if (str_has_prefix(type, "__rel_loc ")) {
1125 		validator_flags |= VALIDATOR_REL;
1126 		goto add_validator;
1127 	}
1128 
1129 	goto add_field;
1130 
1131 add_validator:
1132 	if (strstr(type, "char") != NULL)
1133 		validator_flags |= VALIDATOR_ENSURE_NULL;
1134 
1135 	validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
1136 
1137 	if (!validator) {
1138 		kfree(field);
1139 		return -ENOMEM;
1140 	}
1141 
1142 	validator->flags = validator_flags;
1143 	validator->offset = offset;
1144 
1145 	/* Want sequential access when validating */
1146 	list_add_tail(&validator->user_event_link, &user->validators);
1147 
1148 add_field:
1149 	field->type = type;
1150 	field->name = name;
1151 	field->offset = offset;
1152 	field->size = size;
1153 	field->is_signed = is_signed;
1154 	field->filter_type = filter_type;
1155 
1156 	if (filter_type == FILTER_OTHER)
1157 		field->filter_type = filter_assign_type(type);
1158 
1159 	list_add(&field->link, &user->fields);
1160 
1161 	/*
1162 	 * Min size from user writes that are required, this does not include
1163 	 * the size of trace_entry (common fields).
1164 	 */
1165 	user->min_size = (offset + size) - sizeof(struct trace_entry);
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Parses the values of a field within the description
1172  * Format: type name [size]
1173  */
user_event_parse_field(char * field,struct user_event * user,u32 * offset)1174 static int user_event_parse_field(char *field, struct user_event *user,
1175 				  u32 *offset)
1176 {
1177 	char *part, *type, *name;
1178 	u32 depth = 0, saved_offset = *offset;
1179 	int len, size = -EINVAL;
1180 	bool is_struct = false;
1181 
1182 	field = skip_spaces(field);
1183 
1184 	if (*field == '\0')
1185 		return 0;
1186 
1187 	/* Handle types that have a space within */
1188 	len = str_has_prefix(field, "unsigned ");
1189 	if (len)
1190 		goto skip_next;
1191 
1192 	len = str_has_prefix(field, "struct ");
1193 	if (len) {
1194 		is_struct = true;
1195 		goto skip_next;
1196 	}
1197 
1198 	len = str_has_prefix(field, "__data_loc unsigned ");
1199 	if (len)
1200 		goto skip_next;
1201 
1202 	len = str_has_prefix(field, "__data_loc ");
1203 	if (len)
1204 		goto skip_next;
1205 
1206 	len = str_has_prefix(field, "__rel_loc unsigned ");
1207 	if (len)
1208 		goto skip_next;
1209 
1210 	len = str_has_prefix(field, "__rel_loc ");
1211 	if (len)
1212 		goto skip_next;
1213 
1214 	goto parse;
1215 skip_next:
1216 	type = field;
1217 	field = strpbrk(field + len, " ");
1218 
1219 	if (field == NULL)
1220 		return -EINVAL;
1221 
1222 	*field++ = '\0';
1223 	depth++;
1224 parse:
1225 	name = NULL;
1226 
1227 	while ((part = strsep(&field, " ")) != NULL) {
1228 		switch (depth++) {
1229 		case FIELD_DEPTH_TYPE:
1230 			type = part;
1231 			break;
1232 		case FIELD_DEPTH_NAME:
1233 			name = part;
1234 			break;
1235 		case FIELD_DEPTH_SIZE:
1236 			if (!is_struct)
1237 				return -EINVAL;
1238 
1239 			if (kstrtou32(part, 10, &size))
1240 				return -EINVAL;
1241 			break;
1242 		default:
1243 			return -EINVAL;
1244 		}
1245 	}
1246 
1247 	if (depth < FIELD_DEPTH_SIZE || !name)
1248 		return -EINVAL;
1249 
1250 	if (depth == FIELD_DEPTH_SIZE)
1251 		size = user_field_size(type);
1252 
1253 	if (size == 0)
1254 		return -EINVAL;
1255 
1256 	if (size < 0)
1257 		return size;
1258 
1259 	*offset = saved_offset + size;
1260 
1261 	return user_event_add_field(user, type, name, saved_offset, size,
1262 				    type[0] != 'u', FILTER_OTHER);
1263 }
1264 
user_event_parse_fields(struct user_event * user,char * args)1265 static int user_event_parse_fields(struct user_event *user, char *args)
1266 {
1267 	char *field;
1268 	u32 offset = sizeof(struct trace_entry);
1269 	int ret = -EINVAL;
1270 
1271 	if (args == NULL)
1272 		return 0;
1273 
1274 	while ((field = strsep(&args, ";")) != NULL) {
1275 		ret = user_event_parse_field(field, user, &offset);
1276 
1277 		if (ret)
1278 			break;
1279 	}
1280 
1281 	return ret;
1282 }
1283 
1284 static struct trace_event_fields user_event_fields_array[1];
1285 
user_field_format(const char * type)1286 static const char *user_field_format(const char *type)
1287 {
1288 	if (strcmp(type, "s64") == 0)
1289 		return "%lld";
1290 	if (strcmp(type, "u64") == 0)
1291 		return "%llu";
1292 	if (strcmp(type, "s32") == 0)
1293 		return "%d";
1294 	if (strcmp(type, "u32") == 0)
1295 		return "%u";
1296 	if (strcmp(type, "int") == 0)
1297 		return "%d";
1298 	if (strcmp(type, "unsigned int") == 0)
1299 		return "%u";
1300 	if (strcmp(type, "s16") == 0)
1301 		return "%d";
1302 	if (strcmp(type, "u16") == 0)
1303 		return "%u";
1304 	if (strcmp(type, "short") == 0)
1305 		return "%d";
1306 	if (strcmp(type, "unsigned short") == 0)
1307 		return "%u";
1308 	if (strcmp(type, "s8") == 0)
1309 		return "%d";
1310 	if (strcmp(type, "u8") == 0)
1311 		return "%u";
1312 	if (strcmp(type, "char") == 0)
1313 		return "%d";
1314 	if (strcmp(type, "unsigned char") == 0)
1315 		return "%u";
1316 	if (strstr(type, "char[") != NULL)
1317 		return "%s";
1318 
1319 	/* Unknown, likely struct, allowed treat as 64-bit */
1320 	return "%llu";
1321 }
1322 
user_field_is_dyn_string(const char * type,const char ** str_func)1323 static bool user_field_is_dyn_string(const char *type, const char **str_func)
1324 {
1325 	if (str_has_prefix(type, "__data_loc ")) {
1326 		*str_func = "__get_str";
1327 		goto check;
1328 	}
1329 
1330 	if (str_has_prefix(type, "__rel_loc ")) {
1331 		*str_func = "__get_rel_str";
1332 		goto check;
1333 	}
1334 
1335 	return false;
1336 check:
1337 	return strstr(type, "char") != NULL;
1338 }
1339 
1340 #define LEN_OR_ZERO (len ? len - pos : 0)
user_dyn_field_set_string(int argc,const char ** argv,int * iout,char * buf,int len,bool * colon)1341 static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1342 				     char *buf, int len, bool *colon)
1343 {
1344 	int pos = 0, i = *iout;
1345 
1346 	*colon = false;
1347 
1348 	for (; i < argc; ++i) {
1349 		if (i != *iout)
1350 			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1351 
1352 		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1353 
1354 		if (strchr(argv[i], ';')) {
1355 			++i;
1356 			*colon = true;
1357 			break;
1358 		}
1359 	}
1360 
1361 	/* Actual set, advance i */
1362 	if (len != 0)
1363 		*iout = i;
1364 
1365 	return pos + 1;
1366 }
1367 
user_field_set_string(struct ftrace_event_field * field,char * buf,int len,bool colon)1368 static int user_field_set_string(struct ftrace_event_field *field,
1369 				 char *buf, int len, bool colon)
1370 {
1371 	int pos = 0;
1372 
1373 	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1374 	pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1375 	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1376 
1377 	if (str_has_prefix(field->type, "struct "))
1378 		pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
1379 
1380 	if (colon)
1381 		pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1382 
1383 	return pos + 1;
1384 }
1385 
user_event_set_print_fmt(struct user_event * user,char * buf,int len)1386 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1387 {
1388 	struct ftrace_event_field *field;
1389 	struct list_head *head = &user->fields;
1390 	int pos = 0, depth = 0;
1391 	const char *str_func;
1392 
1393 	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1394 
1395 	list_for_each_entry_reverse(field, head, link) {
1396 		if (depth != 0)
1397 			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1398 
1399 		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1400 				field->name, user_field_format(field->type));
1401 
1402 		depth++;
1403 	}
1404 
1405 	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1406 
1407 	list_for_each_entry_reverse(field, head, link) {
1408 		if (user_field_is_dyn_string(field->type, &str_func))
1409 			pos += snprintf(buf + pos, LEN_OR_ZERO,
1410 					", %s(%s)", str_func, field->name);
1411 		else
1412 			pos += snprintf(buf + pos, LEN_OR_ZERO,
1413 					", REC->%s", field->name);
1414 	}
1415 
1416 	return pos + 1;
1417 }
1418 #undef LEN_OR_ZERO
1419 
user_event_create_print_fmt(struct user_event * user)1420 static int user_event_create_print_fmt(struct user_event *user)
1421 {
1422 	char *print_fmt;
1423 	int len;
1424 
1425 	len = user_event_set_print_fmt(user, NULL, 0);
1426 
1427 	print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
1428 
1429 	if (!print_fmt)
1430 		return -ENOMEM;
1431 
1432 	user_event_set_print_fmt(user, print_fmt, len);
1433 
1434 	user->call.print_fmt = print_fmt;
1435 
1436 	return 0;
1437 }
1438 
user_event_print_trace(struct trace_iterator * iter,int flags,struct trace_event * event)1439 static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1440 						int flags,
1441 						struct trace_event *event)
1442 {
1443 	return print_event_fields(iter, event);
1444 }
1445 
1446 static struct trace_event_functions user_event_funcs = {
1447 	.trace = user_event_print_trace,
1448 };
1449 
user_event_set_call_visible(struct user_event * user,bool visible)1450 static int user_event_set_call_visible(struct user_event *user, bool visible)
1451 {
1452 	int ret;
1453 	const struct cred *old_cred;
1454 	struct cred *cred;
1455 
1456 	cred = prepare_creds();
1457 
1458 	if (!cred)
1459 		return -ENOMEM;
1460 
1461 	/*
1462 	 * While by default tracefs is locked down, systems can be configured
1463 	 * to allow user_event files to be less locked down. The extreme case
1464 	 * being "other" has read/write access to user_events_data/status.
1465 	 *
1466 	 * When not locked down, processes may not have permissions to
1467 	 * add/remove calls themselves to tracefs. We need to temporarily
1468 	 * switch to root file permission to allow for this scenario.
1469 	 */
1470 	cred->fsuid = GLOBAL_ROOT_UID;
1471 
1472 	old_cred = override_creds(cred);
1473 
1474 	if (visible)
1475 		ret = trace_add_event_call(&user->call);
1476 	else
1477 		ret = trace_remove_event_call(&user->call);
1478 
1479 	revert_creds(old_cred);
1480 	put_cred(cred);
1481 
1482 	return ret;
1483 }
1484 
destroy_user_event(struct user_event * user)1485 static int destroy_user_event(struct user_event *user)
1486 {
1487 	int ret = 0;
1488 
1489 	lockdep_assert_held(&event_mutex);
1490 
1491 	/* Must destroy fields before call removal */
1492 	user_event_destroy_fields(user);
1493 
1494 	ret = user_event_set_call_visible(user, false);
1495 
1496 	if (ret)
1497 		return ret;
1498 
1499 	dyn_event_remove(&user->devent);
1500 	hash_del(&user->node);
1501 
1502 	user_event_destroy_validators(user);
1503 
1504 	/* If we have different names, both must be freed */
1505 	if (EVENT_NAME(user) != EVENT_TP_NAME(user))
1506 		kfree(EVENT_TP_NAME(user));
1507 
1508 	kfree(user->call.print_fmt);
1509 	kfree(EVENT_NAME(user));
1510 	kfree(user);
1511 
1512 	if (current_user_events > 0)
1513 		current_user_events--;
1514 	else
1515 		pr_alert("BUG: Bad current_user_events\n");
1516 
1517 	return ret;
1518 }
1519 
find_user_event(struct user_event_group * group,char * name,int argc,const char ** argv,u32 flags,u32 * outkey)1520 static struct user_event *find_user_event(struct user_event_group *group,
1521 					  char *name, int argc, const char **argv,
1522 					  u32 flags, u32 *outkey)
1523 {
1524 	struct user_event *user;
1525 	u32 key = user_event_key(name);
1526 
1527 	*outkey = key;
1528 
1529 	hash_for_each_possible(group->register_table, user, node, key) {
1530 		/*
1531 		 * Single-format events shouldn't return multi-format
1532 		 * events. Callers expect the underlying tracepoint to match
1533 		 * the name exactly in these cases. Only check like-formats.
1534 		 */
1535 		if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags))
1536 			continue;
1537 
1538 		if (strcmp(EVENT_NAME(user), name))
1539 			continue;
1540 
1541 		if (user_fields_match(user, argc, argv))
1542 			return user_event_get(user);
1543 
1544 		/* Scan others if this is a multi-format event */
1545 		if (EVENT_MULTI_FORMAT(flags))
1546 			continue;
1547 
1548 		return ERR_PTR(-EADDRINUSE);
1549 	}
1550 
1551 	return NULL;
1552 }
1553 
user_event_validate(struct user_event * user,void * data,int len)1554 static int user_event_validate(struct user_event *user, void *data, int len)
1555 {
1556 	struct list_head *head = &user->validators;
1557 	struct user_event_validator *validator;
1558 	void *pos, *end = data + len;
1559 	u32 loc, offset, size;
1560 
1561 	list_for_each_entry(validator, head, user_event_link) {
1562 		pos = data + validator->offset;
1563 
1564 		/* Already done min_size check, no bounds check here */
1565 		loc = *(u32 *)pos;
1566 		offset = loc & 0xffff;
1567 		size = loc >> 16;
1568 
1569 		if (likely(validator->flags & VALIDATOR_REL))
1570 			pos += offset + sizeof(loc);
1571 		else
1572 			pos = data + offset;
1573 
1574 		pos += size;
1575 
1576 		if (unlikely(pos > end))
1577 			return -EFAULT;
1578 
1579 		if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1580 			if (unlikely(*(char *)(pos - 1) != '\0'))
1581 				return -EFAULT;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 /*
1588  * Writes the user supplied payload out to a trace file.
1589  */
user_event_ftrace(struct user_event * user,struct iov_iter * i,void * tpdata,bool * faulted)1590 static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
1591 			      void *tpdata, bool *faulted)
1592 {
1593 	struct trace_event_file *file;
1594 	struct trace_entry *entry;
1595 	struct trace_event_buffer event_buffer;
1596 	size_t size = sizeof(*entry) + i->count;
1597 
1598 	file = (struct trace_event_file *)tpdata;
1599 
1600 	if (!file ||
1601 	    !(file->flags & EVENT_FILE_FL_ENABLED) ||
1602 	    trace_trigger_soft_disabled(file))
1603 		return;
1604 
1605 	/* Allocates and fills trace_entry, + 1 of this is data payload */
1606 	entry = trace_event_buffer_reserve(&event_buffer, file, size);
1607 
1608 	if (unlikely(!entry))
1609 		return;
1610 
1611 	if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
1612 		goto discard;
1613 
1614 	if (!list_empty(&user->validators) &&
1615 	    unlikely(user_event_validate(user, entry, size)))
1616 		goto discard;
1617 
1618 	trace_event_buffer_commit(&event_buffer);
1619 
1620 	return;
1621 discard:
1622 	*faulted = true;
1623 	__trace_event_discard_commit(event_buffer.buffer,
1624 				     event_buffer.event);
1625 }
1626 
1627 #ifdef CONFIG_PERF_EVENTS
1628 /*
1629  * Writes the user supplied payload out to perf ring buffer.
1630  */
user_event_perf(struct user_event * user,struct iov_iter * i,void * tpdata,bool * faulted)1631 static void user_event_perf(struct user_event *user, struct iov_iter *i,
1632 			    void *tpdata, bool *faulted)
1633 {
1634 	struct hlist_head *perf_head;
1635 
1636 	perf_head = this_cpu_ptr(user->call.perf_events);
1637 
1638 	if (perf_head && !hlist_empty(perf_head)) {
1639 		struct trace_entry *perf_entry;
1640 		struct pt_regs *regs;
1641 		size_t size = sizeof(*perf_entry) + i->count;
1642 		int context;
1643 
1644 		perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1645 						  &regs, &context);
1646 
1647 		if (unlikely(!perf_entry))
1648 			return;
1649 
1650 		perf_fetch_caller_regs(regs);
1651 
1652 		if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
1653 			goto discard;
1654 
1655 		if (!list_empty(&user->validators) &&
1656 		    unlikely(user_event_validate(user, perf_entry, size)))
1657 			goto discard;
1658 
1659 		perf_trace_buf_submit(perf_entry, size, context,
1660 				      user->call.event.type, 1, regs,
1661 				      perf_head, NULL);
1662 
1663 		return;
1664 discard:
1665 		*faulted = true;
1666 		perf_swevent_put_recursion_context(context);
1667 	}
1668 }
1669 #endif
1670 
1671 /*
1672  * Update the enabled bit among all user processes.
1673  */
update_enable_bit_for(struct user_event * user)1674 static void update_enable_bit_for(struct user_event *user)
1675 {
1676 	struct tracepoint *tp = &user->tracepoint;
1677 	char status = 0;
1678 
1679 	if (atomic_read(&tp->key.enabled) > 0) {
1680 		struct tracepoint_func *probe_func_ptr;
1681 		user_event_func_t probe_func;
1682 
1683 		rcu_read_lock_sched();
1684 
1685 		probe_func_ptr = rcu_dereference_sched(tp->funcs);
1686 
1687 		if (probe_func_ptr) {
1688 			do {
1689 				probe_func = probe_func_ptr->func;
1690 
1691 				if (probe_func == user_event_ftrace)
1692 					status |= EVENT_STATUS_FTRACE;
1693 #ifdef CONFIG_PERF_EVENTS
1694 				else if (probe_func == user_event_perf)
1695 					status |= EVENT_STATUS_PERF;
1696 #endif
1697 				else
1698 					status |= EVENT_STATUS_OTHER;
1699 			} while ((++probe_func_ptr)->func);
1700 		}
1701 
1702 		rcu_read_unlock_sched();
1703 	}
1704 
1705 	user->status = status;
1706 
1707 	user_event_enabler_update(user);
1708 }
1709 
1710 /*
1711  * Register callback for our events from tracing sub-systems.
1712  */
user_event_reg(struct trace_event_call * call,enum trace_reg type,void * data)1713 static int user_event_reg(struct trace_event_call *call,
1714 			  enum trace_reg type,
1715 			  void *data)
1716 {
1717 	struct user_event *user = (struct user_event *)call->data;
1718 	int ret = 0;
1719 
1720 	if (!user)
1721 		return -ENOENT;
1722 
1723 	switch (type) {
1724 	case TRACE_REG_REGISTER:
1725 		ret = tracepoint_probe_register(call->tp,
1726 						call->class->probe,
1727 						data);
1728 		if (!ret)
1729 			goto inc;
1730 		break;
1731 
1732 	case TRACE_REG_UNREGISTER:
1733 		tracepoint_probe_unregister(call->tp,
1734 					    call->class->probe,
1735 					    data);
1736 		goto dec;
1737 
1738 #ifdef CONFIG_PERF_EVENTS
1739 	case TRACE_REG_PERF_REGISTER:
1740 		ret = tracepoint_probe_register(call->tp,
1741 						call->class->perf_probe,
1742 						data);
1743 		if (!ret)
1744 			goto inc;
1745 		break;
1746 
1747 	case TRACE_REG_PERF_UNREGISTER:
1748 		tracepoint_probe_unregister(call->tp,
1749 					    call->class->perf_probe,
1750 					    data);
1751 		goto dec;
1752 
1753 	case TRACE_REG_PERF_OPEN:
1754 	case TRACE_REG_PERF_CLOSE:
1755 	case TRACE_REG_PERF_ADD:
1756 	case TRACE_REG_PERF_DEL:
1757 		break;
1758 #endif
1759 	}
1760 
1761 	return ret;
1762 inc:
1763 	user_event_get(user);
1764 	update_enable_bit_for(user);
1765 	return 0;
1766 dec:
1767 	update_enable_bit_for(user);
1768 	user_event_put(user, true);
1769 	return 0;
1770 }
1771 
user_event_create(const char * raw_command)1772 static int user_event_create(const char *raw_command)
1773 {
1774 	struct user_event_group *group;
1775 	struct user_event *user;
1776 	char *name;
1777 	int ret;
1778 
1779 	if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1780 		return -ECANCELED;
1781 
1782 	raw_command += USER_EVENTS_PREFIX_LEN;
1783 	raw_command = skip_spaces(raw_command);
1784 
1785 	name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
1786 
1787 	if (!name)
1788 		return -ENOMEM;
1789 
1790 	group = current_user_event_group();
1791 
1792 	if (!group) {
1793 		kfree(name);
1794 		return -ENOENT;
1795 	}
1796 
1797 	mutex_lock(&group->reg_mutex);
1798 
1799 	/* Dyn events persist, otherwise they would cleanup immediately */
1800 	ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
1801 
1802 	if (!ret)
1803 		user_event_put(user, false);
1804 
1805 	mutex_unlock(&group->reg_mutex);
1806 
1807 	if (ret)
1808 		kfree(name);
1809 
1810 	return ret;
1811 }
1812 
user_event_show(struct seq_file * m,struct dyn_event * ev)1813 static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1814 {
1815 	struct user_event *user = container_of(ev, struct user_event, devent);
1816 	struct ftrace_event_field *field;
1817 	struct list_head *head;
1818 	int depth = 0;
1819 
1820 	seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1821 
1822 	head = trace_get_fields(&user->call);
1823 
1824 	list_for_each_entry_reverse(field, head, link) {
1825 		if (depth == 0)
1826 			seq_puts(m, " ");
1827 		else
1828 			seq_puts(m, "; ");
1829 
1830 		seq_printf(m, "%s %s", field->type, field->name);
1831 
1832 		if (str_has_prefix(field->type, "struct "))
1833 			seq_printf(m, " %d", field->size);
1834 
1835 		depth++;
1836 	}
1837 
1838 	seq_puts(m, "\n");
1839 
1840 	return 0;
1841 }
1842 
user_event_is_busy(struct dyn_event * ev)1843 static bool user_event_is_busy(struct dyn_event *ev)
1844 {
1845 	struct user_event *user = container_of(ev, struct user_event, devent);
1846 
1847 	return !user_event_last_ref(user);
1848 }
1849 
user_event_free(struct dyn_event * ev)1850 static int user_event_free(struct dyn_event *ev)
1851 {
1852 	struct user_event *user = container_of(ev, struct user_event, devent);
1853 
1854 	if (!user_event_last_ref(user))
1855 		return -EBUSY;
1856 
1857 	if (!user_event_capable(user->reg_flags))
1858 		return -EPERM;
1859 
1860 	return destroy_user_event(user);
1861 }
1862 
user_field_match(struct ftrace_event_field * field,int argc,const char ** argv,int * iout)1863 static bool user_field_match(struct ftrace_event_field *field, int argc,
1864 			     const char **argv, int *iout)
1865 {
1866 	char *field_name = NULL, *dyn_field_name = NULL;
1867 	bool colon = false, match = false;
1868 	int dyn_len, len;
1869 
1870 	if (*iout >= argc)
1871 		return false;
1872 
1873 	dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1874 					    0, &colon);
1875 
1876 	len = user_field_set_string(field, field_name, 0, colon);
1877 
1878 	if (dyn_len != len)
1879 		return false;
1880 
1881 	dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1882 	field_name = kmalloc(len, GFP_KERNEL);
1883 
1884 	if (!dyn_field_name || !field_name)
1885 		goto out;
1886 
1887 	user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1888 				  dyn_len, &colon);
1889 
1890 	user_field_set_string(field, field_name, len, colon);
1891 
1892 	match = strcmp(dyn_field_name, field_name) == 0;
1893 out:
1894 	kfree(dyn_field_name);
1895 	kfree(field_name);
1896 
1897 	return match;
1898 }
1899 
user_fields_match(struct user_event * user,int argc,const char ** argv)1900 static bool user_fields_match(struct user_event *user, int argc,
1901 			      const char **argv)
1902 {
1903 	struct ftrace_event_field *field;
1904 	struct list_head *head = &user->fields;
1905 	int i = 0;
1906 
1907 	if (argc == 0)
1908 		return list_empty(head);
1909 
1910 	list_for_each_entry_reverse(field, head, link) {
1911 		if (!user_field_match(field, argc, argv, &i))
1912 			return false;
1913 	}
1914 
1915 	if (i != argc)
1916 		return false;
1917 
1918 	return true;
1919 }
1920 
user_event_match(const char * system,const char * event,int argc,const char ** argv,struct dyn_event * ev)1921 static bool user_event_match(const char *system, const char *event,
1922 			     int argc, const char **argv, struct dyn_event *ev)
1923 {
1924 	struct user_event *user = container_of(ev, struct user_event, devent);
1925 	bool match;
1926 
1927 	match = strcmp(EVENT_NAME(user), event) == 0;
1928 
1929 	if (match && system) {
1930 		match = strcmp(system, user->group->system_name) == 0 ||
1931 			strcmp(system, user->group->system_multi_name) == 0;
1932 	}
1933 
1934 	if (match)
1935 		match = user_fields_match(user, argc, argv);
1936 
1937 	return match;
1938 }
1939 
1940 static struct dyn_event_operations user_event_dops = {
1941 	.create = user_event_create,
1942 	.show = user_event_show,
1943 	.is_busy = user_event_is_busy,
1944 	.free = user_event_free,
1945 	.match = user_event_match,
1946 };
1947 
user_event_trace_register(struct user_event * user)1948 static int user_event_trace_register(struct user_event *user)
1949 {
1950 	int ret;
1951 
1952 	ret = register_trace_event(&user->call.event);
1953 
1954 	if (!ret)
1955 		return -ENODEV;
1956 
1957 	ret = user_event_set_call_visible(user, true);
1958 
1959 	if (ret)
1960 		unregister_trace_event(&user->call.event);
1961 
1962 	return ret;
1963 }
1964 
user_event_set_tp_name(struct user_event * user)1965 static int user_event_set_tp_name(struct user_event *user)
1966 {
1967 	lockdep_assert_held(&user->group->reg_mutex);
1968 
1969 	if (EVENT_MULTI_FORMAT(user->reg_flags)) {
1970 		char *multi_name;
1971 
1972 		multi_name = kasprintf(GFP_KERNEL_ACCOUNT, "%s.%llx",
1973 				       user->reg_name, user->group->multi_id);
1974 
1975 		if (!multi_name)
1976 			return -ENOMEM;
1977 
1978 		user->call.name = multi_name;
1979 		user->tracepoint.name = multi_name;
1980 
1981 		/* Inc to ensure unique multi-event name next time */
1982 		user->group->multi_id++;
1983 	} else {
1984 		/* Non Multi-format uses register name */
1985 		user->call.name = user->reg_name;
1986 		user->tracepoint.name = user->reg_name;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 /*
1993  * Counts how many ';' without a trailing space are in the args.
1994  */
count_semis_no_space(char * args)1995 static int count_semis_no_space(char *args)
1996 {
1997 	int count = 0;
1998 
1999 	while ((args = strchr(args, ';'))) {
2000 		args++;
2001 
2002 		if (!isspace(*args))
2003 			count++;
2004 	}
2005 
2006 	return count;
2007 }
2008 
2009 /*
2010  * Copies the arguments while ensuring all ';' have a trailing space.
2011  */
insert_space_after_semis(char * args,int count)2012 static char *insert_space_after_semis(char *args, int count)
2013 {
2014 	char *fixed, *pos;
2015 	int len;
2016 
2017 	len = strlen(args) + count;
2018 	fixed = kmalloc(len + 1, GFP_KERNEL);
2019 
2020 	if (!fixed)
2021 		return NULL;
2022 
2023 	pos = fixed;
2024 
2025 	/* Insert a space after ';' if there is no trailing space. */
2026 	while (*args) {
2027 		*pos = *args++;
2028 
2029 		if (*pos++ == ';' && !isspace(*args))
2030 			*pos++ = ' ';
2031 	}
2032 
2033 	*pos = '\0';
2034 
2035 	return fixed;
2036 }
2037 
user_event_argv_split(char * args,int * argc)2038 static char **user_event_argv_split(char *args, int *argc)
2039 {
2040 	char **split;
2041 	char *fixed;
2042 	int count;
2043 
2044 	/* Count how many ';' without a trailing space */
2045 	count = count_semis_no_space(args);
2046 
2047 	/* No fixup is required */
2048 	if (!count)
2049 		return argv_split(GFP_KERNEL, args, argc);
2050 
2051 	/* We must fixup 'field;field' to 'field; field' */
2052 	fixed = insert_space_after_semis(args, count);
2053 
2054 	if (!fixed)
2055 		return NULL;
2056 
2057 	/* We do a normal split afterwards */
2058 	split = argv_split(GFP_KERNEL, fixed, argc);
2059 
2060 	/* We can free since argv_split makes a copy */
2061 	kfree(fixed);
2062 
2063 	return split;
2064 }
2065 
2066 /*
2067  * Parses the event name, arguments and flags then registers if successful.
2068  * The name buffer lifetime is owned by this method for success cases only.
2069  * Upon success the returned user_event has its ref count increased by 1.
2070  */
user_event_parse(struct user_event_group * group,char * name,char * args,char * flags,struct user_event ** newuser,int reg_flags)2071 static int user_event_parse(struct user_event_group *group, char *name,
2072 			    char *args, char *flags,
2073 			    struct user_event **newuser, int reg_flags)
2074 {
2075 	struct user_event *user;
2076 	char **argv = NULL;
2077 	int argc = 0;
2078 	int ret;
2079 	u32 key;
2080 
2081 	/* Currently don't support any text based flags */
2082 	if (flags != NULL)
2083 		return -EINVAL;
2084 
2085 	if (!user_event_capable(reg_flags))
2086 		return -EPERM;
2087 
2088 	if (args) {
2089 		argv = user_event_argv_split(args, &argc);
2090 
2091 		if (!argv)
2092 			return -ENOMEM;
2093 	}
2094 
2095 	/* Prevent dyn_event from racing */
2096 	mutex_lock(&event_mutex);
2097 	user = find_user_event(group, name, argc, (const char **)argv,
2098 			       reg_flags, &key);
2099 	mutex_unlock(&event_mutex);
2100 
2101 	if (argv)
2102 		argv_free(argv);
2103 
2104 	if (IS_ERR(user))
2105 		return PTR_ERR(user);
2106 
2107 	if (user) {
2108 		*newuser = user;
2109 		/*
2110 		 * Name is allocated by caller, free it since it already exists.
2111 		 * Caller only worries about failure cases for freeing.
2112 		 */
2113 		kfree(name);
2114 
2115 		return 0;
2116 	}
2117 
2118 	user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
2119 
2120 	if (!user)
2121 		return -ENOMEM;
2122 
2123 	INIT_LIST_HEAD(&user->class.fields);
2124 	INIT_LIST_HEAD(&user->fields);
2125 	INIT_LIST_HEAD(&user->validators);
2126 
2127 	user->group = group;
2128 	user->reg_name = name;
2129 	user->reg_flags = reg_flags;
2130 
2131 	ret = user_event_set_tp_name(user);
2132 
2133 	if (ret)
2134 		goto put_user;
2135 
2136 	ret = user_event_parse_fields(user, args);
2137 
2138 	if (ret)
2139 		goto put_user;
2140 
2141 	ret = user_event_create_print_fmt(user);
2142 
2143 	if (ret)
2144 		goto put_user;
2145 
2146 	user->call.data = user;
2147 	user->call.class = &user->class;
2148 	user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
2149 	user->call.tp = &user->tracepoint;
2150 	user->call.event.funcs = &user_event_funcs;
2151 
2152 	if (EVENT_MULTI_FORMAT(user->reg_flags))
2153 		user->class.system = group->system_multi_name;
2154 	else
2155 		user->class.system = group->system_name;
2156 
2157 	user->class.fields_array = user_event_fields_array;
2158 	user->class.get_fields = user_event_get_fields;
2159 	user->class.reg = user_event_reg;
2160 	user->class.probe = user_event_ftrace;
2161 #ifdef CONFIG_PERF_EVENTS
2162 	user->class.perf_probe = user_event_perf;
2163 #endif
2164 
2165 	mutex_lock(&event_mutex);
2166 
2167 	if (current_user_events >= max_user_events) {
2168 		ret = -EMFILE;
2169 		goto put_user_lock;
2170 	}
2171 
2172 	ret = user_event_trace_register(user);
2173 
2174 	if (ret)
2175 		goto put_user_lock;
2176 
2177 	if (user->reg_flags & USER_EVENT_REG_PERSIST) {
2178 		/* Ensure we track self ref and caller ref (2) */
2179 		refcount_set(&user->refcnt, 2);
2180 	} else {
2181 		/* Ensure we track only caller ref (1) */
2182 		refcount_set(&user->refcnt, 1);
2183 	}
2184 
2185 	dyn_event_init(&user->devent, &user_event_dops);
2186 	dyn_event_add(&user->devent, &user->call);
2187 	hash_add(group->register_table, &user->node, key);
2188 	current_user_events++;
2189 
2190 	mutex_unlock(&event_mutex);
2191 
2192 	*newuser = user;
2193 	return 0;
2194 put_user_lock:
2195 	mutex_unlock(&event_mutex);
2196 put_user:
2197 	user_event_destroy_fields(user);
2198 	user_event_destroy_validators(user);
2199 	kfree(user->call.print_fmt);
2200 
2201 	/* Caller frees reg_name on error, but not multi-name */
2202 	if (EVENT_NAME(user) != EVENT_TP_NAME(user))
2203 		kfree(EVENT_TP_NAME(user));
2204 
2205 	kfree(user);
2206 	return ret;
2207 }
2208 
2209 /*
2210  * Deletes previously created events if they are no longer being used.
2211  */
delete_user_event(struct user_event_group * group,char * name)2212 static int delete_user_event(struct user_event_group *group, char *name)
2213 {
2214 	struct user_event *user;
2215 	struct hlist_node *tmp;
2216 	u32 key = user_event_key(name);
2217 	int ret = -ENOENT;
2218 
2219 	/* Attempt to delete all event(s) with the name passed in */
2220 	hash_for_each_possible_safe(group->register_table, user, tmp, node, key) {
2221 		if (strcmp(EVENT_NAME(user), name))
2222 			continue;
2223 
2224 		if (!user_event_last_ref(user))
2225 			return -EBUSY;
2226 
2227 		if (!user_event_capable(user->reg_flags))
2228 			return -EPERM;
2229 
2230 		ret = destroy_user_event(user);
2231 
2232 		if (ret)
2233 			goto out;
2234 	}
2235 out:
2236 	return ret;
2237 }
2238 
2239 /*
2240  * Validates the user payload and writes via iterator.
2241  */
user_events_write_core(struct file * file,struct iov_iter * i)2242 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
2243 {
2244 	struct user_event_file_info *info = file->private_data;
2245 	struct user_event_refs *refs;
2246 	struct user_event *user = NULL;
2247 	struct tracepoint *tp;
2248 	ssize_t ret = i->count;
2249 	int idx;
2250 
2251 	if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
2252 		return -EFAULT;
2253 
2254 	if (idx < 0)
2255 		return -EINVAL;
2256 
2257 	rcu_read_lock_sched();
2258 
2259 	refs = rcu_dereference_sched(info->refs);
2260 
2261 	/*
2262 	 * The refs->events array is protected by RCU, and new items may be
2263 	 * added. But the user retrieved from indexing into the events array
2264 	 * shall be immutable while the file is opened.
2265 	 */
2266 	if (likely(refs && idx < refs->count))
2267 		user = refs->events[idx];
2268 
2269 	rcu_read_unlock_sched();
2270 
2271 	if (unlikely(user == NULL))
2272 		return -ENOENT;
2273 
2274 	if (unlikely(i->count < user->min_size))
2275 		return -EINVAL;
2276 
2277 	tp = &user->tracepoint;
2278 
2279 	/*
2280 	 * It's possible key.enabled disables after this check, however
2281 	 * we don't mind if a few events are included in this condition.
2282 	 */
2283 	if (likely(atomic_read(&tp->key.enabled) > 0)) {
2284 		struct tracepoint_func *probe_func_ptr;
2285 		user_event_func_t probe_func;
2286 		struct iov_iter copy;
2287 		void *tpdata;
2288 		bool faulted;
2289 
2290 		if (unlikely(fault_in_iov_iter_readable(i, i->count)))
2291 			return -EFAULT;
2292 
2293 		faulted = false;
2294 
2295 		rcu_read_lock_sched();
2296 
2297 		probe_func_ptr = rcu_dereference_sched(tp->funcs);
2298 
2299 		if (probe_func_ptr) {
2300 			do {
2301 				copy = *i;
2302 				probe_func = probe_func_ptr->func;
2303 				tpdata = probe_func_ptr->data;
2304 				probe_func(user, &copy, tpdata, &faulted);
2305 			} while ((++probe_func_ptr)->func);
2306 		}
2307 
2308 		rcu_read_unlock_sched();
2309 
2310 		if (unlikely(faulted))
2311 			return -EFAULT;
2312 	} else
2313 		return -EBADF;
2314 
2315 	return ret;
2316 }
2317 
user_events_open(struct inode * node,struct file * file)2318 static int user_events_open(struct inode *node, struct file *file)
2319 {
2320 	struct user_event_group *group;
2321 	struct user_event_file_info *info;
2322 
2323 	group = current_user_event_group();
2324 
2325 	if (!group)
2326 		return -ENOENT;
2327 
2328 	info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
2329 
2330 	if (!info)
2331 		return -ENOMEM;
2332 
2333 	info->group = group;
2334 
2335 	file->private_data = info;
2336 
2337 	return 0;
2338 }
2339 
user_events_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)2340 static ssize_t user_events_write(struct file *file, const char __user *ubuf,
2341 				 size_t count, loff_t *ppos)
2342 {
2343 	struct iov_iter i;
2344 
2345 	if (unlikely(*ppos != 0))
2346 		return -EFAULT;
2347 
2348 	if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i)))
2349 		return -EFAULT;
2350 
2351 	return user_events_write_core(file, &i);
2352 }
2353 
user_events_write_iter(struct kiocb * kp,struct iov_iter * i)2354 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
2355 {
2356 	return user_events_write_core(kp->ki_filp, i);
2357 }
2358 
user_events_ref_add(struct user_event_file_info * info,struct user_event * user)2359 static int user_events_ref_add(struct user_event_file_info *info,
2360 			       struct user_event *user)
2361 {
2362 	struct user_event_group *group = info->group;
2363 	struct user_event_refs *refs, *new_refs;
2364 	int i, size, count = 0;
2365 
2366 	refs = rcu_dereference_protected(info->refs,
2367 					 lockdep_is_held(&group->reg_mutex));
2368 
2369 	if (refs) {
2370 		count = refs->count;
2371 
2372 		for (i = 0; i < count; ++i)
2373 			if (refs->events[i] == user)
2374 				return i;
2375 	}
2376 
2377 	size = struct_size(refs, events, count + 1);
2378 
2379 	new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
2380 
2381 	if (!new_refs)
2382 		return -ENOMEM;
2383 
2384 	new_refs->count = count + 1;
2385 
2386 	for (i = 0; i < count; ++i)
2387 		new_refs->events[i] = refs->events[i];
2388 
2389 	new_refs->events[i] = user_event_get(user);
2390 
2391 	rcu_assign_pointer(info->refs, new_refs);
2392 
2393 	if (refs)
2394 		kfree_rcu(refs, rcu);
2395 
2396 	return i;
2397 }
2398 
user_reg_get(struct user_reg __user * ureg,struct user_reg * kreg)2399 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2400 {
2401 	u32 size;
2402 	long ret;
2403 
2404 	ret = get_user(size, &ureg->size);
2405 
2406 	if (ret)
2407 		return ret;
2408 
2409 	if (size > PAGE_SIZE)
2410 		return -E2BIG;
2411 
2412 	if (size < offsetofend(struct user_reg, write_index))
2413 		return -EINVAL;
2414 
2415 	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2416 
2417 	if (ret)
2418 		return ret;
2419 
2420 	/* Ensure only valid flags */
2421 	if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
2422 		return -EINVAL;
2423 
2424 	/* Ensure supported size */
2425 	switch (kreg->enable_size) {
2426 	case 4:
2427 		/* 32-bit */
2428 		break;
2429 #if BITS_PER_LONG >= 64
2430 	case 8:
2431 		/* 64-bit */
2432 		break;
2433 #endif
2434 	default:
2435 		return -EINVAL;
2436 	}
2437 
2438 	/* Ensure natural alignment */
2439 	if (kreg->enable_addr % kreg->enable_size)
2440 		return -EINVAL;
2441 
2442 	/* Ensure bit range for size */
2443 	if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2444 		return -EINVAL;
2445 
2446 	/* Ensure accessible */
2447 	if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2448 		       kreg->enable_size))
2449 		return -EFAULT;
2450 
2451 	kreg->size = size;
2452 
2453 	return 0;
2454 }
2455 
2456 /*
2457  * Registers a user_event on behalf of a user process.
2458  */
user_events_ioctl_reg(struct user_event_file_info * info,unsigned long uarg)2459 static long user_events_ioctl_reg(struct user_event_file_info *info,
2460 				  unsigned long uarg)
2461 {
2462 	struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2463 	struct user_reg reg;
2464 	struct user_event *user;
2465 	struct user_event_enabler *enabler;
2466 	char *name;
2467 	long ret;
2468 	int write_result;
2469 
2470 	ret = user_reg_get(ureg, &reg);
2471 
2472 	if (ret)
2473 		return ret;
2474 
2475 	/*
2476 	 * Prevent users from using the same address and bit multiple times
2477 	 * within the same mm address space. This can cause unexpected behavior
2478 	 * for user processes that is far easier to debug if this is explictly
2479 	 * an error upon registering.
2480 	 */
2481 	if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2482 					      reg.enable_bit))
2483 		return -EADDRINUSE;
2484 
2485 	name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2486 			    MAX_EVENT_DESC);
2487 
2488 	if (IS_ERR(name)) {
2489 		ret = PTR_ERR(name);
2490 		return ret;
2491 	}
2492 
2493 	ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
2494 
2495 	if (ret) {
2496 		kfree(name);
2497 		return ret;
2498 	}
2499 
2500 	ret = user_events_ref_add(info, user);
2501 
2502 	/* No longer need parse ref, ref_add either worked or not */
2503 	user_event_put(user, false);
2504 
2505 	/* Positive number is index and valid */
2506 	if (ret < 0)
2507 		return ret;
2508 
2509 	/*
2510 	 * user_events_ref_add succeeded:
2511 	 * At this point we have a user_event, it's lifetime is bound by the
2512 	 * reference count, not this file. If anything fails, the user_event
2513 	 * still has a reference until the file is released. During release
2514 	 * any remaining references (from user_events_ref_add) are decremented.
2515 	 *
2516 	 * Attempt to create an enabler, which too has a lifetime tied in the
2517 	 * same way for the event. Once the task that caused the enabler to be
2518 	 * created exits or issues exec() then the enablers it has created
2519 	 * will be destroyed and the ref to the event will be decremented.
2520 	 */
2521 	enabler = user_event_enabler_create(&reg, user, &write_result);
2522 
2523 	if (!enabler)
2524 		return -ENOMEM;
2525 
2526 	/* Write failed/faulted, give error back to caller */
2527 	if (write_result)
2528 		return write_result;
2529 
2530 	put_user((u32)ret, &ureg->write_index);
2531 
2532 	return 0;
2533 }
2534 
2535 /*
2536  * Deletes a user_event on behalf of a user process.
2537  */
user_events_ioctl_del(struct user_event_file_info * info,unsigned long uarg)2538 static long user_events_ioctl_del(struct user_event_file_info *info,
2539 				  unsigned long uarg)
2540 {
2541 	void __user *ubuf = (void __user *)uarg;
2542 	char *name;
2543 	long ret;
2544 
2545 	name = strndup_user(ubuf, MAX_EVENT_DESC);
2546 
2547 	if (IS_ERR(name))
2548 		return PTR_ERR(name);
2549 
2550 	/* event_mutex prevents dyn_event from racing */
2551 	mutex_lock(&event_mutex);
2552 	ret = delete_user_event(info->group, name);
2553 	mutex_unlock(&event_mutex);
2554 
2555 	kfree(name);
2556 
2557 	return ret;
2558 }
2559 
user_unreg_get(struct user_unreg __user * ureg,struct user_unreg * kreg)2560 static long user_unreg_get(struct user_unreg __user *ureg,
2561 			   struct user_unreg *kreg)
2562 {
2563 	u32 size;
2564 	long ret;
2565 
2566 	ret = get_user(size, &ureg->size);
2567 
2568 	if (ret)
2569 		return ret;
2570 
2571 	if (size > PAGE_SIZE)
2572 		return -E2BIG;
2573 
2574 	if (size < offsetofend(struct user_unreg, disable_addr))
2575 		return -EINVAL;
2576 
2577 	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2578 
2579 	/* Ensure no reserved values, since we don't support any yet */
2580 	if (kreg->__reserved || kreg->__reserved2)
2581 		return -EINVAL;
2582 
2583 	return ret;
2584 }
2585 
user_event_mm_clear_bit(struct user_event_mm * user_mm,unsigned long uaddr,unsigned char bit,unsigned long flags)2586 static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2587 				   unsigned long uaddr, unsigned char bit,
2588 				   unsigned long flags)
2589 {
2590 	struct user_event_enabler enabler;
2591 	int result;
2592 	int attempt = 0;
2593 
2594 	memset(&enabler, 0, sizeof(enabler));
2595 	enabler.addr = uaddr;
2596 	enabler.values = bit | flags;
2597 retry:
2598 	/* Prevents state changes from racing with new enablers */
2599 	mutex_lock(&event_mutex);
2600 
2601 	/* Force the bit to be cleared, since no event is attached */
2602 	mmap_read_lock(user_mm->mm);
2603 	result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
2604 	mmap_read_unlock(user_mm->mm);
2605 
2606 	mutex_unlock(&event_mutex);
2607 
2608 	if (result) {
2609 		/* Attempt to fault-in and retry if it worked */
2610 		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
2611 			goto retry;
2612 	}
2613 
2614 	return result;
2615 }
2616 
2617 /*
2618  * Unregisters an enablement address/bit within a task/user mm.
2619  */
user_events_ioctl_unreg(unsigned long uarg)2620 static long user_events_ioctl_unreg(unsigned long uarg)
2621 {
2622 	struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2623 	struct user_event_mm *mm = current->user_event_mm;
2624 	struct user_event_enabler *enabler, *next;
2625 	struct user_unreg reg;
2626 	unsigned long flags;
2627 	long ret;
2628 
2629 	ret = user_unreg_get(ureg, &reg);
2630 
2631 	if (ret)
2632 		return ret;
2633 
2634 	if (!mm)
2635 		return -ENOENT;
2636 
2637 	flags = 0;
2638 	ret = -ENOENT;
2639 
2640 	/*
2641 	 * Flags freeing and faulting are used to indicate if the enabler is in
2642 	 * use at all. When faulting is set a page-fault is occurring asyncly.
2643 	 * During async fault if freeing is set, the enabler will be destroyed.
2644 	 * If no async fault is happening, we can destroy it now since we hold
2645 	 * the event_mutex during these checks.
2646 	 */
2647 	mutex_lock(&event_mutex);
2648 
2649 	list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
2650 		if (enabler->addr == reg.disable_addr &&
2651 		    ENABLE_BIT(enabler) == reg.disable_bit) {
2652 			set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2653 
2654 			/* We must keep compat flags for the clear */
2655 			flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
2656 
2657 			if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
2658 				user_event_enabler_destroy(enabler, true);
2659 
2660 			/* Removed at least one */
2661 			ret = 0;
2662 		}
2663 	}
2664 
2665 	mutex_unlock(&event_mutex);
2666 
2667 	/* Ensure bit is now cleared for user, regardless of event status */
2668 	if (!ret)
2669 		ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2670 					      reg.disable_bit, flags);
2671 
2672 	return ret;
2673 }
2674 
2675 /*
2676  * Handles the ioctl from user mode to register or alter operations.
2677  */
user_events_ioctl(struct file * file,unsigned int cmd,unsigned long uarg)2678 static long user_events_ioctl(struct file *file, unsigned int cmd,
2679 			      unsigned long uarg)
2680 {
2681 	struct user_event_file_info *info = file->private_data;
2682 	struct user_event_group *group = info->group;
2683 	long ret = -ENOTTY;
2684 
2685 	switch (cmd) {
2686 	case DIAG_IOCSREG:
2687 		mutex_lock(&group->reg_mutex);
2688 		ret = user_events_ioctl_reg(info, uarg);
2689 		mutex_unlock(&group->reg_mutex);
2690 		break;
2691 
2692 	case DIAG_IOCSDEL:
2693 		mutex_lock(&group->reg_mutex);
2694 		ret = user_events_ioctl_del(info, uarg);
2695 		mutex_unlock(&group->reg_mutex);
2696 		break;
2697 
2698 	case DIAG_IOCSUNREG:
2699 		mutex_lock(&group->reg_mutex);
2700 		ret = user_events_ioctl_unreg(uarg);
2701 		mutex_unlock(&group->reg_mutex);
2702 		break;
2703 	}
2704 
2705 	return ret;
2706 }
2707 
2708 /*
2709  * Handles the final close of the file from user mode.
2710  */
user_events_release(struct inode * node,struct file * file)2711 static int user_events_release(struct inode *node, struct file *file)
2712 {
2713 	struct user_event_file_info *info = file->private_data;
2714 	struct user_event_group *group;
2715 	struct user_event_refs *refs;
2716 	int i;
2717 
2718 	if (!info)
2719 		return -EINVAL;
2720 
2721 	group = info->group;
2722 
2723 	/*
2724 	 * Ensure refs cannot change under any situation by taking the
2725 	 * register mutex during the final freeing of the references.
2726 	 */
2727 	mutex_lock(&group->reg_mutex);
2728 
2729 	refs = info->refs;
2730 
2731 	if (!refs)
2732 		goto out;
2733 
2734 	/*
2735 	 * The lifetime of refs has reached an end, it's tied to this file.
2736 	 * The underlying user_events are ref counted, and cannot be freed.
2737 	 * After this decrement, the user_events may be freed elsewhere.
2738 	 */
2739 	for (i = 0; i < refs->count; ++i)
2740 		user_event_put(refs->events[i], false);
2741 
2742 out:
2743 	file->private_data = NULL;
2744 
2745 	mutex_unlock(&group->reg_mutex);
2746 
2747 	kfree(refs);
2748 	kfree(info);
2749 
2750 	return 0;
2751 }
2752 
2753 static const struct file_operations user_data_fops = {
2754 	.open		= user_events_open,
2755 	.write		= user_events_write,
2756 	.write_iter	= user_events_write_iter,
2757 	.unlocked_ioctl	= user_events_ioctl,
2758 	.release	= user_events_release,
2759 };
2760 
user_seq_start(struct seq_file * m,loff_t * pos)2761 static void *user_seq_start(struct seq_file *m, loff_t *pos)
2762 {
2763 	if (*pos)
2764 		return NULL;
2765 
2766 	return (void *)1;
2767 }
2768 
user_seq_next(struct seq_file * m,void * p,loff_t * pos)2769 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2770 {
2771 	++*pos;
2772 	return NULL;
2773 }
2774 
user_seq_stop(struct seq_file * m,void * p)2775 static void user_seq_stop(struct seq_file *m, void *p)
2776 {
2777 }
2778 
user_seq_show(struct seq_file * m,void * p)2779 static int user_seq_show(struct seq_file *m, void *p)
2780 {
2781 	struct user_event_group *group = m->private;
2782 	struct user_event *user;
2783 	char status;
2784 	int i, active = 0, busy = 0;
2785 
2786 	if (!group)
2787 		return -EINVAL;
2788 
2789 	mutex_lock(&group->reg_mutex);
2790 
2791 	hash_for_each(group->register_table, i, user, node) {
2792 		status = user->status;
2793 
2794 		seq_printf(m, "%s", EVENT_TP_NAME(user));
2795 
2796 		if (status != 0)
2797 			seq_puts(m, " #");
2798 
2799 		if (status != 0) {
2800 			seq_puts(m, " Used by");
2801 			if (status & EVENT_STATUS_FTRACE)
2802 				seq_puts(m, " ftrace");
2803 			if (status & EVENT_STATUS_PERF)
2804 				seq_puts(m, " perf");
2805 			if (status & EVENT_STATUS_OTHER)
2806 				seq_puts(m, " other");
2807 			busy++;
2808 		}
2809 
2810 		seq_puts(m, "\n");
2811 		active++;
2812 	}
2813 
2814 	mutex_unlock(&group->reg_mutex);
2815 
2816 	seq_puts(m, "\n");
2817 	seq_printf(m, "Active: %d\n", active);
2818 	seq_printf(m, "Busy: %d\n", busy);
2819 
2820 	return 0;
2821 }
2822 
2823 static const struct seq_operations user_seq_ops = {
2824 	.start	= user_seq_start,
2825 	.next	= user_seq_next,
2826 	.stop	= user_seq_stop,
2827 	.show	= user_seq_show,
2828 };
2829 
user_status_open(struct inode * node,struct file * file)2830 static int user_status_open(struct inode *node, struct file *file)
2831 {
2832 	struct user_event_group *group;
2833 	int ret;
2834 
2835 	group = current_user_event_group();
2836 
2837 	if (!group)
2838 		return -ENOENT;
2839 
2840 	ret = seq_open(file, &user_seq_ops);
2841 
2842 	if (!ret) {
2843 		/* Chain group to seq_file */
2844 		struct seq_file *m = file->private_data;
2845 
2846 		m->private = group;
2847 	}
2848 
2849 	return ret;
2850 }
2851 
2852 static const struct file_operations user_status_fops = {
2853 	.open		= user_status_open,
2854 	.read		= seq_read,
2855 	.llseek		= seq_lseek,
2856 	.release	= seq_release,
2857 };
2858 
2859 /*
2860  * Creates a set of tracefs files to allow user mode interactions.
2861  */
create_user_tracefs(void)2862 static int create_user_tracefs(void)
2863 {
2864 	struct dentry *edata, *emmap;
2865 
2866 	edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2867 				    NULL, NULL, &user_data_fops);
2868 
2869 	if (!edata) {
2870 		pr_warn("Could not create tracefs 'user_events_data' entry\n");
2871 		goto err;
2872 	}
2873 
2874 	emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
2875 				    NULL, NULL, &user_status_fops);
2876 
2877 	if (!emmap) {
2878 		tracefs_remove(edata);
2879 		pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2880 		goto err;
2881 	}
2882 
2883 	return 0;
2884 err:
2885 	return -ENODEV;
2886 }
2887 
set_max_user_events_sysctl(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2888 static int set_max_user_events_sysctl(const struct ctl_table *table, int write,
2889 				      void *buffer, size_t *lenp, loff_t *ppos)
2890 {
2891 	int ret;
2892 
2893 	mutex_lock(&event_mutex);
2894 
2895 	ret = proc_douintvec(table, write, buffer, lenp, ppos);
2896 
2897 	mutex_unlock(&event_mutex);
2898 
2899 	return ret;
2900 }
2901 
2902 static struct ctl_table user_event_sysctls[] = {
2903 	{
2904 		.procname	= "user_events_max",
2905 		.data		= &max_user_events,
2906 		.maxlen		= sizeof(unsigned int),
2907 		.mode		= 0644,
2908 		.proc_handler	= set_max_user_events_sysctl,
2909 	},
2910 };
2911 
trace_events_user_init(void)2912 static int __init trace_events_user_init(void)
2913 {
2914 	int ret;
2915 
2916 	fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2917 
2918 	if (!fault_cache)
2919 		return -ENOMEM;
2920 
2921 	init_group = user_event_group_create();
2922 
2923 	if (!init_group) {
2924 		kmem_cache_destroy(fault_cache);
2925 		return -ENOMEM;
2926 	}
2927 
2928 	ret = create_user_tracefs();
2929 
2930 	if (ret) {
2931 		pr_warn("user_events could not register with tracefs\n");
2932 		user_event_group_destroy(init_group);
2933 		kmem_cache_destroy(fault_cache);
2934 		init_group = NULL;
2935 		return ret;
2936 	}
2937 
2938 	if (dyn_event_register(&user_event_dops))
2939 		pr_warn("user_events could not register with dyn_events\n");
2940 
2941 	register_sysctl_init("kernel", user_event_sysctls);
2942 
2943 	return 0;
2944 }
2945 
2946 fs_initcall(trace_events_user_init);
2947