1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4   *
5   * (C) SGI 2006, Christoph Lameter
6   * 	Cleaned up and restructured to ease the addition of alternative
7   * 	implementations of SLAB allocators.
8   * (C) Linux Foundation 2008-2013
9   *      Unified interface for all slab allocators
10   */
11  
12  #ifndef _LINUX_SLAB_H
13  #define	_LINUX_SLAB_H
14  
15  #include <linux/cache.h>
16  #include <linux/gfp.h>
17  #include <linux/overflow.h>
18  #include <linux/types.h>
19  #include <linux/workqueue.h>
20  #include <linux/percpu-refcount.h>
21  #include <linux/cleanup.h>
22  #include <linux/hash.h>
23  
24  enum _slab_flag_bits {
25  	_SLAB_CONSISTENCY_CHECKS,
26  	_SLAB_RED_ZONE,
27  	_SLAB_POISON,
28  	_SLAB_KMALLOC,
29  	_SLAB_HWCACHE_ALIGN,
30  	_SLAB_CACHE_DMA,
31  	_SLAB_CACHE_DMA32,
32  	_SLAB_STORE_USER,
33  	_SLAB_PANIC,
34  	_SLAB_TYPESAFE_BY_RCU,
35  	_SLAB_TRACE,
36  #ifdef CONFIG_DEBUG_OBJECTS
37  	_SLAB_DEBUG_OBJECTS,
38  #endif
39  	_SLAB_NOLEAKTRACE,
40  	_SLAB_NO_MERGE,
41  #ifdef CONFIG_FAILSLAB
42  	_SLAB_FAILSLAB,
43  #endif
44  #ifdef CONFIG_MEMCG
45  	_SLAB_ACCOUNT,
46  #endif
47  #ifdef CONFIG_KASAN_GENERIC
48  	_SLAB_KASAN,
49  #endif
50  	_SLAB_NO_USER_FLAGS,
51  #ifdef CONFIG_KFENCE
52  	_SLAB_SKIP_KFENCE,
53  #endif
54  #ifndef CONFIG_SLUB_TINY
55  	_SLAB_RECLAIM_ACCOUNT,
56  #endif
57  	_SLAB_OBJECT_POISON,
58  	_SLAB_CMPXCHG_DOUBLE,
59  #ifdef CONFIG_SLAB_OBJ_EXT
60  	_SLAB_NO_OBJ_EXT,
61  #endif
62  	_SLAB_FLAGS_LAST_BIT
63  };
64  
65  #define __SLAB_FLAG_BIT(nr)	((slab_flags_t __force)(1U << (nr)))
66  #define __SLAB_FLAG_UNUSED	((slab_flags_t __force)(0U))
67  
68  /*
69   * Flags to pass to kmem_cache_create().
70   * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
71   */
72  /* DEBUG: Perform (expensive) checks on alloc/free */
73  #define SLAB_CONSISTENCY_CHECKS	__SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
74  /* DEBUG: Red zone objs in a cache */
75  #define SLAB_RED_ZONE		__SLAB_FLAG_BIT(_SLAB_RED_ZONE)
76  /* DEBUG: Poison objects */
77  #define SLAB_POISON		__SLAB_FLAG_BIT(_SLAB_POISON)
78  /* Indicate a kmalloc slab */
79  #define SLAB_KMALLOC		__SLAB_FLAG_BIT(_SLAB_KMALLOC)
80  /* Align objs on cache lines */
81  #define SLAB_HWCACHE_ALIGN	__SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
82  /* Use GFP_DMA memory */
83  #define SLAB_CACHE_DMA		__SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
84  /* Use GFP_DMA32 memory */
85  #define SLAB_CACHE_DMA32	__SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
86  /* DEBUG: Store the last owner for bug hunting */
87  #define SLAB_STORE_USER		__SLAB_FLAG_BIT(_SLAB_STORE_USER)
88  /* Panic if kmem_cache_create() fails */
89  #define SLAB_PANIC		__SLAB_FLAG_BIT(_SLAB_PANIC)
90  /*
91   * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
92   *
93   * This delays freeing the SLAB page by a grace period, it does _NOT_
94   * delay object freeing. This means that if you do kmem_cache_free()
95   * that memory location is free to be reused at any time. Thus it may
96   * be possible to see another object there in the same RCU grace period.
97   *
98   * This feature only ensures the memory location backing the object
99   * stays valid, the trick to using this is relying on an independent
100   * object validation pass. Something like:
101   *
102   * begin:
103   *  rcu_read_lock();
104   *  obj = lockless_lookup(key);
105   *  if (obj) {
106   *    if (!try_get_ref(obj)) // might fail for free objects
107   *      rcu_read_unlock();
108   *      goto begin;
109   *
110   *    if (obj->key != key) { // not the object we expected
111   *      put_ref(obj);
112   *      rcu_read_unlock();
113   *      goto begin;
114   *    }
115   *  }
116   *  rcu_read_unlock();
117   *
118   * This is useful if we need to approach a kernel structure obliquely,
119   * from its address obtained without the usual locking. We can lock
120   * the structure to stabilize it and check it's still at the given address,
121   * only if we can be sure that the memory has not been meanwhile reused
122   * for some other kind of object (which our subsystem's lock might corrupt).
123   *
124   * rcu_read_lock before reading the address, then rcu_read_unlock after
125   * taking the spinlock within the structure expected at that address.
126   *
127   * Note that it is not possible to acquire a lock within a structure
128   * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
129   * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
130   * are not zeroed before being given to the slab, which means that any
131   * locks must be initialized after each and every kmem_struct_alloc().
132   * Alternatively, make the ctor passed to kmem_cache_create() initialize
133   * the locks at page-allocation time, as is done in __i915_request_ctor(),
134   * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
135   * to safely acquire those ctor-initialized locks under rcu_read_lock()
136   * protection.
137   *
138   * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
139   */
140  /* Defer freeing slabs to RCU */
141  #define SLAB_TYPESAFE_BY_RCU	__SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
142  /* Trace allocations and frees */
143  #define SLAB_TRACE		__SLAB_FLAG_BIT(_SLAB_TRACE)
144  
145  /* Flag to prevent checks on free */
146  #ifdef CONFIG_DEBUG_OBJECTS
147  # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
148  #else
149  # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_UNUSED
150  #endif
151  
152  /* Avoid kmemleak tracing */
153  #define SLAB_NOLEAKTRACE	__SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
154  
155  /*
156   * Prevent merging with compatible kmem caches. This flag should be used
157   * cautiously. Valid use cases:
158   *
159   * - caches created for self-tests (e.g. kunit)
160   * - general caches created and used by a subsystem, only when a
161   *   (subsystem-specific) debug option is enabled
162   * - performance critical caches, should be very rare and consulted with slab
163   *   maintainers, and not used together with CONFIG_SLUB_TINY
164   */
165  #define SLAB_NO_MERGE		__SLAB_FLAG_BIT(_SLAB_NO_MERGE)
166  
167  /* Fault injection mark */
168  #ifdef CONFIG_FAILSLAB
169  # define SLAB_FAILSLAB		__SLAB_FLAG_BIT(_SLAB_FAILSLAB)
170  #else
171  # define SLAB_FAILSLAB		__SLAB_FLAG_UNUSED
172  #endif
173  /* Account to memcg */
174  #ifdef CONFIG_MEMCG
175  # define SLAB_ACCOUNT		__SLAB_FLAG_BIT(_SLAB_ACCOUNT)
176  #else
177  # define SLAB_ACCOUNT		__SLAB_FLAG_UNUSED
178  #endif
179  
180  #ifdef CONFIG_KASAN_GENERIC
181  #define SLAB_KASAN		__SLAB_FLAG_BIT(_SLAB_KASAN)
182  #else
183  #define SLAB_KASAN		__SLAB_FLAG_UNUSED
184  #endif
185  
186  /*
187   * Ignore user specified debugging flags.
188   * Intended for caches created for self-tests so they have only flags
189   * specified in the code and other flags are ignored.
190   */
191  #define SLAB_NO_USER_FLAGS	__SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
192  
193  #ifdef CONFIG_KFENCE
194  #define SLAB_SKIP_KFENCE	__SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
195  #else
196  #define SLAB_SKIP_KFENCE	__SLAB_FLAG_UNUSED
197  #endif
198  
199  /* The following flags affect the page allocator grouping pages by mobility */
200  /* Objects are reclaimable */
201  #ifndef CONFIG_SLUB_TINY
202  #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
203  #else
204  #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_UNUSED
205  #endif
206  #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
207  
208  /* Slab created using create_boot_cache */
209  #ifdef CONFIG_SLAB_OBJ_EXT
210  #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
211  #else
212  #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_UNUSED
213  #endif
214  
215  /*
216   * freeptr_t represents a SLUB freelist pointer, which might be encoded
217   * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
218   */
219  typedef struct { unsigned long v; } freeptr_t;
220  
221  /*
222   * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
223   *
224   * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
225   *
226   * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
227   * Both make kfree a no-op.
228   */
229  #define ZERO_SIZE_PTR ((void *)16)
230  
231  #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
232  				(unsigned long)ZERO_SIZE_PTR)
233  
234  #include <linux/kasan.h>
235  
236  struct list_lru;
237  struct mem_cgroup;
238  /*
239   * struct kmem_cache related prototypes
240   */
241  bool slab_is_available(void);
242  
243  /**
244   * struct kmem_cache_args - Less common arguments for kmem_cache_create()
245   *
246   * Any uninitialized fields of the structure are interpreted as unused. The
247   * exception is @freeptr_offset where %0 is a valid value, so
248   * @use_freeptr_offset must be also set to %true in order to interpret the field
249   * as used. For @useroffset %0 is also valid, but only with non-%0
250   * @usersize.
251   *
252   * When %NULL args is passed to kmem_cache_create(), it is equivalent to all
253   * fields unused.
254   */
255  struct kmem_cache_args {
256  	/**
257  	 * @align: The required alignment for the objects.
258  	 *
259  	 * %0 means no specific alignment is requested.
260  	 */
261  	unsigned int align;
262  	/**
263  	 * @useroffset: Usercopy region offset.
264  	 *
265  	 * %0 is a valid offset, when @usersize is non-%0
266  	 */
267  	unsigned int useroffset;
268  	/**
269  	 * @usersize: Usercopy region size.
270  	 *
271  	 * %0 means no usercopy region is specified.
272  	 */
273  	unsigned int usersize;
274  	/**
275  	 * @freeptr_offset: Custom offset for the free pointer
276  	 * in &SLAB_TYPESAFE_BY_RCU caches
277  	 *
278  	 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
279  	 * outside of the object. This might cause the object to grow in size.
280  	 * Cache creators that have a reason to avoid this can specify a custom
281  	 * free pointer offset in their struct where the free pointer will be
282  	 * placed.
283  	 *
284  	 * Note that placing the free pointer inside the object requires the
285  	 * caller to ensure that no fields are invalidated that are required to
286  	 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
287  	 * details).
288  	 *
289  	 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
290  	 * is specified, %use_freeptr_offset must be set %true.
291  	 *
292  	 * Note that @ctor currently isn't supported with custom free pointers
293  	 * as a @ctor requires an external free pointer.
294  	 */
295  	unsigned int freeptr_offset;
296  	/**
297  	 * @use_freeptr_offset: Whether a @freeptr_offset is used.
298  	 */
299  	bool use_freeptr_offset;
300  	/**
301  	 * @ctor: A constructor for the objects.
302  	 *
303  	 * The constructor is invoked for each object in a newly allocated slab
304  	 * page. It is the cache user's responsibility to free object in the
305  	 * same state as after calling the constructor, or deal appropriately
306  	 * with any differences between a freshly constructed and a reallocated
307  	 * object.
308  	 *
309  	 * %NULL means no constructor.
310  	 */
311  	void (*ctor)(void *);
312  };
313  
314  struct kmem_cache *__kmem_cache_create_args(const char *name,
315  					    unsigned int object_size,
316  					    struct kmem_cache_args *args,
317  					    slab_flags_t flags);
318  static inline struct kmem_cache *
__kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))319  __kmem_cache_create(const char *name, unsigned int size, unsigned int align,
320  		    slab_flags_t flags, void (*ctor)(void *))
321  {
322  	struct kmem_cache_args kmem_args = {
323  		.align	= align,
324  		.ctor	= ctor,
325  	};
326  
327  	return __kmem_cache_create_args(name, size, &kmem_args, flags);
328  }
329  
330  /**
331   * kmem_cache_create_usercopy - Create a kmem cache with a region suitable
332   * for copying to userspace.
333   * @name: A string which is used in /proc/slabinfo to identify this cache.
334   * @size: The size of objects to be created in this cache.
335   * @align: The required alignment for the objects.
336   * @flags: SLAB flags
337   * @useroffset: Usercopy region offset
338   * @usersize: Usercopy region size
339   * @ctor: A constructor for the objects, or %NULL.
340   *
341   * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
342   * if whitelisting a single field is sufficient, or kmem_cache_create() with
343   * the necessary parameters passed via the args parameter (see
344   * &struct kmem_cache_args)
345   *
346   * Return: a pointer to the cache on success, NULL on failure.
347   */
348  static inline struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))349  kmem_cache_create_usercopy(const char *name, unsigned int size,
350  			   unsigned int align, slab_flags_t flags,
351  			   unsigned int useroffset, unsigned int usersize,
352  			   void (*ctor)(void *))
353  {
354  	struct kmem_cache_args kmem_args = {
355  		.align		= align,
356  		.ctor		= ctor,
357  		.useroffset	= useroffset,
358  		.usersize	= usersize,
359  	};
360  
361  	return __kmem_cache_create_args(name, size, &kmem_args, flags);
362  }
363  
364  /* If NULL is passed for @args, use this variant with default arguments. */
365  static inline struct kmem_cache *
__kmem_cache_default_args(const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)366  __kmem_cache_default_args(const char *name, unsigned int size,
367  			  struct kmem_cache_args *args,
368  			  slab_flags_t flags)
369  {
370  	struct kmem_cache_args kmem_default_args = {};
371  
372  	/* Make sure we don't get passed garbage. */
373  	if (WARN_ON_ONCE(args))
374  		return ERR_PTR(-EINVAL);
375  
376  	return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
377  }
378  
379  /**
380   * kmem_cache_create - Create a kmem cache.
381   * @__name: A string which is used in /proc/slabinfo to identify this cache.
382   * @__object_size: The size of objects to be created in this cache.
383   * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
384   *	    means defaults will be used for all the arguments.
385   *
386   * This is currently implemented as a macro using ``_Generic()`` to call
387   * either the new variant of the function, or a legacy one.
388   *
389   * The new variant has 4 parameters:
390   * ``kmem_cache_create(name, object_size, args, flags)``
391   *
392   * See __kmem_cache_create_args() which implements this.
393   *
394   * The legacy variant has 5 parameters:
395   * ``kmem_cache_create(name, object_size, align, flags, ctor)``
396   *
397   * The align and ctor parameters map to the respective fields of
398   * &struct kmem_cache_args
399   *
400   * Context: Cannot be called within a interrupt, but can be interrupted.
401   *
402   * Return: a pointer to the cache on success, NULL on failure.
403   */
404  #define kmem_cache_create(__name, __object_size, __args, ...)           \
405  	_Generic((__args),                                              \
406  		struct kmem_cache_args *: __kmem_cache_create_args,	\
407  		void *: __kmem_cache_default_args,			\
408  		default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
409  
410  void kmem_cache_destroy(struct kmem_cache *s);
411  int kmem_cache_shrink(struct kmem_cache *s);
412  
413  /*
414   * Please use this macro to create slab caches. Simply specify the
415   * name of the structure and maybe some flags that are listed above.
416   *
417   * The alignment of the struct determines object alignment. If you
418   * f.e. add ____cacheline_aligned_in_smp to the struct declaration
419   * then the objects will be properly aligned in SMP configurations.
420   */
421  #define KMEM_CACHE(__struct, __flags)                                   \
422  	__kmem_cache_create_args(#__struct, sizeof(struct __struct),    \
423  			&(struct kmem_cache_args) {			\
424  				.align	= __alignof__(struct __struct), \
425  			}, (__flags))
426  
427  /*
428   * To whitelist a single field for copying to/from usercopy, use this
429   * macro instead for KMEM_CACHE() above.
430   */
431  #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)						\
432  	__kmem_cache_create_args(#__struct, sizeof(struct __struct),				\
433  			&(struct kmem_cache_args) {						\
434  				.align		= __alignof__(struct __struct),			\
435  				.useroffset	= offsetof(struct __struct, __field),		\
436  				.usersize	= sizeof_field(struct __struct, __field),	\
437  			}, (__flags))
438  
439  /*
440   * Common kmalloc functions provided by all allocators
441   */
442  void * __must_check krealloc_noprof(const void *objp, size_t new_size,
443  				    gfp_t flags) __realloc_size(2);
444  #define krealloc(...)				alloc_hooks(krealloc_noprof(__VA_ARGS__))
445  
446  void kfree(const void *objp);
447  void kfree_sensitive(const void *objp);
448  size_t __ksize(const void *objp);
449  
450  DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
451  
452  /**
453   * ksize - Report actual allocation size of associated object
454   *
455   * @objp: Pointer returned from a prior kmalloc()-family allocation.
456   *
457   * This should not be used for writing beyond the originally requested
458   * allocation size. Either use krealloc() or round up the allocation size
459   * with kmalloc_size_roundup() prior to allocation. If this is used to
460   * access beyond the originally requested allocation size, UBSAN_BOUNDS
461   * and/or FORTIFY_SOURCE may trip, since they only know about the
462   * originally allocated size via the __alloc_size attribute.
463   */
464  size_t ksize(const void *objp);
465  
466  #ifdef CONFIG_PRINTK
467  bool kmem_dump_obj(void *object);
468  #else
kmem_dump_obj(void * object)469  static inline bool kmem_dump_obj(void *object) { return false; }
470  #endif
471  
472  /*
473   * Some archs want to perform DMA into kmalloc caches and need a guaranteed
474   * alignment larger than the alignment of a 64-bit integer.
475   * Setting ARCH_DMA_MINALIGN in arch headers allows that.
476   */
477  #ifdef ARCH_HAS_DMA_MINALIGN
478  #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
479  #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
480  #endif
481  #endif
482  
483  #ifndef ARCH_KMALLOC_MINALIGN
484  #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
485  #elif ARCH_KMALLOC_MINALIGN > 8
486  #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
487  #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
488  #endif
489  
490  /*
491   * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
492   * Intended for arches that get misalignment faults even for 64 bit integer
493   * aligned buffers.
494   */
495  #ifndef ARCH_SLAB_MINALIGN
496  #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
497  #endif
498  
499  /*
500   * Arches can define this function if they want to decide the minimum slab
501   * alignment at runtime. The value returned by the function must be a power
502   * of two and >= ARCH_SLAB_MINALIGN.
503   */
504  #ifndef arch_slab_minalign
arch_slab_minalign(void)505  static inline unsigned int arch_slab_minalign(void)
506  {
507  	return ARCH_SLAB_MINALIGN;
508  }
509  #endif
510  
511  /*
512   * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
513   * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
514   * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
515   */
516  #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
517  #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
518  #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
519  
520  /*
521   * Kmalloc array related definitions
522   */
523  
524  /*
525   * SLUB directly allocates requests fitting in to an order-1 page
526   * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
527   */
528  #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
529  #define KMALLOC_SHIFT_MAX	(MAX_PAGE_ORDER + PAGE_SHIFT)
530  #ifndef KMALLOC_SHIFT_LOW
531  #define KMALLOC_SHIFT_LOW	3
532  #endif
533  
534  /* Maximum allocatable size */
535  #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
536  /* Maximum size for which we actually use a slab cache */
537  #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
538  /* Maximum order allocatable via the slab allocator */
539  #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
540  
541  /*
542   * Kmalloc subsystem.
543   */
544  #ifndef KMALLOC_MIN_SIZE
545  #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
546  #endif
547  
548  /*
549   * This restriction comes from byte sized index implementation.
550   * Page size is normally 2^12 bytes and, in this case, if we want to use
551   * byte sized index which can represent 2^8 entries, the size of the object
552   * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
553   * If minimum size of kmalloc is less than 16, we use it as minimum object
554   * size and give up to use byte sized index.
555   */
556  #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
557                                 (KMALLOC_MIN_SIZE) : 16)
558  
559  #ifdef CONFIG_RANDOM_KMALLOC_CACHES
560  #define RANDOM_KMALLOC_CACHES_NR	15 // # of cache copies
561  #else
562  #define RANDOM_KMALLOC_CACHES_NR	0
563  #endif
564  
565  /*
566   * Whenever changing this, take care of that kmalloc_type() and
567   * create_kmalloc_caches() still work as intended.
568   *
569   * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
570   * is for accounted but unreclaimable and non-dma objects. All the other
571   * kmem caches can have both accounted and unaccounted objects.
572   */
573  enum kmalloc_cache_type {
574  	KMALLOC_NORMAL = 0,
575  #ifndef CONFIG_ZONE_DMA
576  	KMALLOC_DMA = KMALLOC_NORMAL,
577  #endif
578  #ifndef CONFIG_MEMCG
579  	KMALLOC_CGROUP = KMALLOC_NORMAL,
580  #endif
581  	KMALLOC_RANDOM_START = KMALLOC_NORMAL,
582  	KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
583  #ifdef CONFIG_SLUB_TINY
584  	KMALLOC_RECLAIM = KMALLOC_NORMAL,
585  #else
586  	KMALLOC_RECLAIM,
587  #endif
588  #ifdef CONFIG_ZONE_DMA
589  	KMALLOC_DMA,
590  #endif
591  #ifdef CONFIG_MEMCG
592  	KMALLOC_CGROUP,
593  #endif
594  	NR_KMALLOC_TYPES
595  };
596  
597  typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
598  
599  extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
600  
601  /*
602   * Define gfp bits that should not be set for KMALLOC_NORMAL.
603   */
604  #define KMALLOC_NOT_NORMAL_BITS					\
605  	(__GFP_RECLAIMABLE |					\
606  	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
607  	(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
608  
609  extern unsigned long random_kmalloc_seed;
610  
kmalloc_type(gfp_t flags,unsigned long caller)611  static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
612  {
613  	/*
614  	 * The most common case is KMALLOC_NORMAL, so test for it
615  	 * with a single branch for all the relevant flags.
616  	 */
617  	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
618  #ifdef CONFIG_RANDOM_KMALLOC_CACHES
619  		/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
620  		return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
621  						      ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
622  #else
623  		return KMALLOC_NORMAL;
624  #endif
625  
626  	/*
627  	 * At least one of the flags has to be set. Their priorities in
628  	 * decreasing order are:
629  	 *  1) __GFP_DMA
630  	 *  2) __GFP_RECLAIMABLE
631  	 *  3) __GFP_ACCOUNT
632  	 */
633  	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
634  		return KMALLOC_DMA;
635  	if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
636  		return KMALLOC_RECLAIM;
637  	else
638  		return KMALLOC_CGROUP;
639  }
640  
641  /*
642   * Figure out which kmalloc slab an allocation of a certain size
643   * belongs to.
644   * 0 = zero alloc
645   * 1 =  65 .. 96 bytes
646   * 2 = 129 .. 192 bytes
647   * n = 2^(n-1)+1 .. 2^n
648   *
649   * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
650   * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
651   * Callers where !size_is_constant should only be test modules, where runtime
652   * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
653   */
__kmalloc_index(size_t size,bool size_is_constant)654  static __always_inline unsigned int __kmalloc_index(size_t size,
655  						    bool size_is_constant)
656  {
657  	if (!size)
658  		return 0;
659  
660  	if (size <= KMALLOC_MIN_SIZE)
661  		return KMALLOC_SHIFT_LOW;
662  
663  	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
664  		return 1;
665  	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
666  		return 2;
667  	if (size <=          8) return 3;
668  	if (size <=         16) return 4;
669  	if (size <=         32) return 5;
670  	if (size <=         64) return 6;
671  	if (size <=        128) return 7;
672  	if (size <=        256) return 8;
673  	if (size <=        512) return 9;
674  	if (size <=       1024) return 10;
675  	if (size <=   2 * 1024) return 11;
676  	if (size <=   4 * 1024) return 12;
677  	if (size <=   8 * 1024) return 13;
678  	if (size <=  16 * 1024) return 14;
679  	if (size <=  32 * 1024) return 15;
680  	if (size <=  64 * 1024) return 16;
681  	if (size <= 128 * 1024) return 17;
682  	if (size <= 256 * 1024) return 18;
683  	if (size <= 512 * 1024) return 19;
684  	if (size <= 1024 * 1024) return 20;
685  	if (size <=  2 * 1024 * 1024) return 21;
686  
687  	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
688  		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
689  	else
690  		BUG();
691  
692  	/* Will never be reached. Needed because the compiler may complain */
693  	return -1;
694  }
695  static_assert(PAGE_SHIFT <= 20);
696  #define kmalloc_index(s) __kmalloc_index(s, true)
697  
698  #include <linux/alloc_tag.h>
699  
700  /**
701   * kmem_cache_alloc - Allocate an object
702   * @cachep: The cache to allocate from.
703   * @flags: See kmalloc().
704   *
705   * Allocate an object from this cache.
706   * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
707   *
708   * Return: pointer to the new object or %NULL in case of error
709   */
710  void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
711  			      gfp_t flags) __assume_slab_alignment __malloc;
712  #define kmem_cache_alloc(...)			alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
713  
714  void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
715  			    gfp_t gfpflags) __assume_slab_alignment __malloc;
716  #define kmem_cache_alloc_lru(...)	alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
717  
718  /**
719   * kmem_cache_charge - memcg charge an already allocated slab memory
720   * @objp: address of the slab object to memcg charge
721   * @gfpflags: describe the allocation context
722   *
723   * kmem_cache_charge allows charging a slab object to the current memcg,
724   * primarily in cases where charging at allocation time might not be possible
725   * because the target memcg is not known (i.e. softirq context)
726   *
727   * The objp should be pointer returned by the slab allocator functions like
728   * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge
729   * behavior can be controlled through gfpflags parameter, which affects how the
730   * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes
731   * that overcharging is requested instead of failure, but is not applied for the
732   * internal metadata allocation.
733   *
734   * There are several cases where it will return true even if the charging was
735   * not done:
736   * More specifically:
737   *
738   * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems.
739   * 2. Already charged slab objects.
740   * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc()
741   *    without __GFP_ACCOUNT
742   * 4. Allocating internal metadata has failed
743   *
744   * Return: true if charge was successful otherwise false.
745   */
746  bool kmem_cache_charge(void *objp, gfp_t gfpflags);
747  void kmem_cache_free(struct kmem_cache *s, void *objp);
748  
749  kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
750  				  unsigned int useroffset, unsigned int usersize,
751  				  void (*ctor)(void *));
752  
753  /*
754   * Bulk allocation and freeing operations. These are accelerated in an
755   * allocator specific way to avoid taking locks repeatedly or building
756   * metadata structures unnecessarily.
757   *
758   * Note that interrupts must be enabled when calling these functions.
759   */
760  void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
761  
762  int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
763  #define kmem_cache_alloc_bulk(...)	alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
764  
kfree_bulk(size_t size,void ** p)765  static __always_inline void kfree_bulk(size_t size, void **p)
766  {
767  	kmem_cache_free_bulk(NULL, size, p);
768  }
769  
770  void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
771  				   int node) __assume_slab_alignment __malloc;
772  #define kmem_cache_alloc_node(...)	alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
773  
774  /*
775   * These macros allow declaring a kmem_buckets * parameter alongside size, which
776   * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
777   * sites don't have to pass NULL.
778   */
779  #ifdef CONFIG_SLAB_BUCKETS
780  #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size), kmem_buckets *(_b)
781  #define PASS_BUCKET_PARAMS(_size, _b)	(_size), (_b)
782  #define PASS_BUCKET_PARAM(_b)		(_b)
783  #else
784  #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size)
785  #define PASS_BUCKET_PARAMS(_size, _b)	(_size)
786  #define PASS_BUCKET_PARAM(_b)		NULL
787  #endif
788  
789  /*
790   * The following functions are not to be used directly and are intended only
791   * for internal use from kmalloc() and kmalloc_node()
792   * with the exception of kunit tests
793   */
794  
795  void *__kmalloc_noprof(size_t size, gfp_t flags)
796  				__assume_kmalloc_alignment __alloc_size(1);
797  
798  void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
799  				__assume_kmalloc_alignment __alloc_size(1);
800  
801  void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
802  				__assume_kmalloc_alignment __alloc_size(3);
803  
804  void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
805  				  int node, size_t size)
806  				__assume_kmalloc_alignment __alloc_size(4);
807  
808  void *__kmalloc_large_noprof(size_t size, gfp_t flags)
809  				__assume_page_alignment __alloc_size(1);
810  
811  void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
812  				__assume_page_alignment __alloc_size(1);
813  
814  /**
815   * kmalloc - allocate kernel memory
816   * @size: how many bytes of memory are required.
817   * @flags: describe the allocation context
818   *
819   * kmalloc is the normal method of allocating memory
820   * for objects smaller than page size in the kernel.
821   *
822   * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
823   * bytes. For @size of power of two bytes, the alignment is also guaranteed
824   * to be at least to the size. For other sizes, the alignment is guaranteed to
825   * be at least the largest power-of-two divisor of @size.
826   *
827   * The @flags argument may be one of the GFP flags defined at
828   * include/linux/gfp_types.h and described at
829   * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
830   *
831   * The recommended usage of the @flags is described at
832   * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
833   *
834   * Below is a brief outline of the most useful GFP flags
835   *
836   * %GFP_KERNEL
837   *	Allocate normal kernel ram. May sleep.
838   *
839   * %GFP_NOWAIT
840   *	Allocation will not sleep.
841   *
842   * %GFP_ATOMIC
843   *	Allocation will not sleep.  May use emergency pools.
844   *
845   * Also it is possible to set different flags by OR'ing
846   * in one or more of the following additional @flags:
847   *
848   * %__GFP_ZERO
849   *	Zero the allocated memory before returning. Also see kzalloc().
850   *
851   * %__GFP_HIGH
852   *	This allocation has high priority and may use emergency pools.
853   *
854   * %__GFP_NOFAIL
855   *	Indicate that this allocation is in no way allowed to fail
856   *	(think twice before using).
857   *
858   * %__GFP_NORETRY
859   *	If memory is not immediately available,
860   *	then give up at once.
861   *
862   * %__GFP_NOWARN
863   *	If allocation fails, don't issue any warnings.
864   *
865   * %__GFP_RETRY_MAYFAIL
866   *	Try really hard to succeed the allocation but fail
867   *	eventually.
868   */
kmalloc_noprof(size_t size,gfp_t flags)869  static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
870  {
871  	if (__builtin_constant_p(size) && size) {
872  		unsigned int index;
873  
874  		if (size > KMALLOC_MAX_CACHE_SIZE)
875  			return __kmalloc_large_noprof(size, flags);
876  
877  		index = kmalloc_index(size);
878  		return __kmalloc_cache_noprof(
879  				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
880  				flags, size);
881  	}
882  	return __kmalloc_noprof(size, flags);
883  }
884  #define kmalloc(...)				alloc_hooks(kmalloc_noprof(__VA_ARGS__))
885  
886  #define kmem_buckets_alloc(_b, _size, _flags)	\
887  	alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
888  
889  #define kmem_buckets_alloc_track_caller(_b, _size, _flags)	\
890  	alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
891  
kmalloc_node_noprof(size_t size,gfp_t flags,int node)892  static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
893  {
894  	if (__builtin_constant_p(size) && size) {
895  		unsigned int index;
896  
897  		if (size > KMALLOC_MAX_CACHE_SIZE)
898  			return __kmalloc_large_node_noprof(size, flags, node);
899  
900  		index = kmalloc_index(size);
901  		return __kmalloc_cache_node_noprof(
902  				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
903  				flags, node, size);
904  	}
905  	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
906  }
907  #define kmalloc_node(...)			alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
908  
909  /**
910   * kmalloc_array - allocate memory for an array.
911   * @n: number of elements.
912   * @size: element size.
913   * @flags: the type of memory to allocate (see kmalloc).
914   */
kmalloc_array_noprof(size_t n,size_t size,gfp_t flags)915  static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
916  {
917  	size_t bytes;
918  
919  	if (unlikely(check_mul_overflow(n, size, &bytes)))
920  		return NULL;
921  	if (__builtin_constant_p(n) && __builtin_constant_p(size))
922  		return kmalloc_noprof(bytes, flags);
923  	return kmalloc_noprof(bytes, flags);
924  }
925  #define kmalloc_array(...)			alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
926  
927  /**
928   * krealloc_array - reallocate memory for an array.
929   * @p: pointer to the memory chunk to reallocate
930   * @new_n: new number of elements to alloc
931   * @new_size: new size of a single member of the array
932   * @flags: the type of memory to allocate (see kmalloc)
933   *
934   * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
935   * initial memory allocation, every subsequent call to this API for the same
936   * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
937   * __GFP_ZERO is not fully honored by this API.
938   *
939   * See krealloc_noprof() for further details.
940   *
941   * In any case, the contents of the object pointed to are preserved up to the
942   * lesser of the new and old sizes.
943   */
krealloc_array_noprof(void * p,size_t new_n,size_t new_size,gfp_t flags)944  static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
945  								       size_t new_n,
946  								       size_t new_size,
947  								       gfp_t flags)
948  {
949  	size_t bytes;
950  
951  	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
952  		return NULL;
953  
954  	return krealloc_noprof(p, bytes, flags);
955  }
956  #define krealloc_array(...)			alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
957  
958  /**
959   * kcalloc - allocate memory for an array. The memory is set to zero.
960   * @n: number of elements.
961   * @size: element size.
962   * @flags: the type of memory to allocate (see kmalloc).
963   */
964  #define kcalloc(n, size, flags)		kmalloc_array(n, size, (flags) | __GFP_ZERO)
965  
966  void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
967  					 unsigned long caller) __alloc_size(1);
968  #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
969  	__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
970  #define kmalloc_node_track_caller(...)		\
971  	alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
972  
973  /*
974   * kmalloc_track_caller is a special version of kmalloc that records the
975   * calling function of the routine calling it for slab leak tracking instead
976   * of just the calling function (confusing, eh?).
977   * It's useful when the call to kmalloc comes from a widely-used standard
978   * allocator where we care about the real place the memory allocation
979   * request comes from.
980   */
981  #define kmalloc_track_caller(...)		kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
982  
983  #define kmalloc_track_caller_noprof(...)	\
984  		kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
985  
kmalloc_array_node_noprof(size_t n,size_t size,gfp_t flags,int node)986  static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
987  							  int node)
988  {
989  	size_t bytes;
990  
991  	if (unlikely(check_mul_overflow(n, size, &bytes)))
992  		return NULL;
993  	if (__builtin_constant_p(n) && __builtin_constant_p(size))
994  		return kmalloc_node_noprof(bytes, flags, node);
995  	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
996  }
997  #define kmalloc_array_node(...)			alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
998  
999  #define kcalloc_node(_n, _size, _flags, _node)	\
1000  	kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
1001  
1002  /*
1003   * Shortcuts
1004   */
1005  #define kmem_cache_zalloc(_k, _flags)		kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
1006  
1007  /**
1008   * kzalloc - allocate memory. The memory is set to zero.
1009   * @size: how many bytes of memory are required.
1010   * @flags: the type of memory to allocate (see kmalloc).
1011   */
kzalloc_noprof(size_t size,gfp_t flags)1012  static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
1013  {
1014  	return kmalloc_noprof(size, flags | __GFP_ZERO);
1015  }
1016  #define kzalloc(...)				alloc_hooks(kzalloc_noprof(__VA_ARGS__))
1017  #define kzalloc_node(_size, _flags, _node)	kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1018  
1019  void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
1020  #define kvmalloc_node_noprof(size, flags, node)	\
1021  	__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
1022  #define kvmalloc_node(...)			alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
1023  
1024  #define kvmalloc(_size, _flags)			kvmalloc_node(_size, _flags, NUMA_NO_NODE)
1025  #define kvmalloc_noprof(_size, _flags)		kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
1026  #define kvzalloc(_size, _flags)			kvmalloc(_size, (_flags)|__GFP_ZERO)
1027  
1028  #define kvzalloc_node(_size, _flags, _node)	kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1029  #define kmem_buckets_valloc(_b, _size, _flags)	\
1030  	alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
1031  
1032  static inline __alloc_size(1, 2) void *
kvmalloc_array_node_noprof(size_t n,size_t size,gfp_t flags,int node)1033  kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
1034  {
1035  	size_t bytes;
1036  
1037  	if (unlikely(check_mul_overflow(n, size, &bytes)))
1038  		return NULL;
1039  
1040  	return kvmalloc_node_noprof(bytes, flags, node);
1041  }
1042  
1043  #define kvmalloc_array_noprof(...)		kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1044  #define kvcalloc_node_noprof(_n,_s,_f,_node)	kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
1045  #define kvcalloc_noprof(...)			kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1046  
1047  #define kvmalloc_array(...)			alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
1048  #define kvcalloc_node(...)			alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
1049  #define kvcalloc(...)				alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
1050  
1051  void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
1052  		__realloc_size(2);
1053  #define kvrealloc(...)				alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
1054  
1055  extern void kvfree(const void *addr);
1056  DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
1057  
1058  extern void kvfree_sensitive(const void *addr, size_t len);
1059  
1060  unsigned int kmem_cache_size(struct kmem_cache *s);
1061  
1062  /**
1063   * kmalloc_size_roundup - Report allocation bucket size for the given size
1064   *
1065   * @size: Number of bytes to round up from.
1066   *
1067   * This returns the number of bytes that would be available in a kmalloc()
1068   * allocation of @size bytes. For example, a 126 byte request would be
1069   * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
1070   * for the general-purpose kmalloc()-based allocations, and is not for the
1071   * pre-sized kmem_cache_alloc()-based allocations.)
1072   *
1073   * Use this to kmalloc() the full bucket size ahead of time instead of using
1074   * ksize() to query the size after an allocation.
1075   */
1076  size_t kmalloc_size_roundup(size_t size);
1077  
1078  void __init kmem_cache_init_late(void);
1079  
1080  #endif	/* _LINUX_SLAB_H */
1081