1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/arch_timer.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
50 #include <asm/exec.h>
51 #include <asm/fpsimd.h>
52 #include <asm/mmu_context.h>
53 #include <asm/mte.h>
54 #include <asm/processor.h>
55 #include <asm/pointer_auth.h>
56 #include <asm/stacktrace.h>
57 #include <asm/switch_to.h>
58 #include <asm/system_misc.h>
59 
60 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
61 #include <linux/stackprotector.h>
62 unsigned long __stack_chk_guard __ro_after_init;
63 EXPORT_SYMBOL(__stack_chk_guard);
64 #endif
65 
66 /*
67  * Function pointers to optional machine specific functions
68  */
69 void (*pm_power_off)(void);
70 EXPORT_SYMBOL_GPL(pm_power_off);
71 
72 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)73 void __noreturn arch_cpu_idle_dead(void)
74 {
75        cpu_die();
76 }
77 #endif
78 
79 /*
80  * Called by kexec, immediately prior to machine_kexec().
81  *
82  * This must completely disable all secondary CPUs; simply causing those CPUs
83  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
84  * kexec'd kernel to use any and all RAM as it sees fit, without having to
85  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
86  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
87  */
machine_shutdown(void)88 void machine_shutdown(void)
89 {
90 	smp_shutdown_nonboot_cpus(reboot_cpu);
91 }
92 
93 /*
94  * Halting simply requires that the secondary CPUs stop performing any
95  * activity (executing tasks, handling interrupts). smp_send_stop()
96  * achieves this.
97  */
machine_halt(void)98 void machine_halt(void)
99 {
100 	local_irq_disable();
101 	smp_send_stop();
102 	while (1);
103 }
104 
105 /*
106  * Power-off simply requires that the secondary CPUs stop performing any
107  * activity (executing tasks, handling interrupts). smp_send_stop()
108  * achieves this. When the system power is turned off, it will take all CPUs
109  * with it.
110  */
machine_power_off(void)111 void machine_power_off(void)
112 {
113 	local_irq_disable();
114 	smp_send_stop();
115 	do_kernel_power_off();
116 }
117 
118 /*
119  * Restart requires that the secondary CPUs stop performing any activity
120  * while the primary CPU resets the system. Systems with multiple CPUs must
121  * provide a HW restart implementation, to ensure that all CPUs reset at once.
122  * This is required so that any code running after reset on the primary CPU
123  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
124  * executing pre-reset code, and using RAM that the primary CPU's code wishes
125  * to use. Implementing such co-ordination would be essentially impossible.
126  */
machine_restart(char * cmd)127 void machine_restart(char *cmd)
128 {
129 	/* Disable interrupts first */
130 	local_irq_disable();
131 	smp_send_stop();
132 
133 	/*
134 	 * UpdateCapsule() depends on the system being reset via
135 	 * ResetSystem().
136 	 */
137 	if (efi_enabled(EFI_RUNTIME_SERVICES))
138 		efi_reboot(reboot_mode, NULL);
139 
140 	/* Now call the architecture specific reboot code. */
141 	do_kernel_restart(cmd);
142 
143 	/*
144 	 * Whoops - the architecture was unable to reboot.
145 	 */
146 	printk("Reboot failed -- System halted\n");
147 	while (1);
148 }
149 
150 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
151 static const char *const btypes[] = {
152 	bstr(NONE, "--"),
153 	bstr(  JC, "jc"),
154 	bstr(   C, "-c"),
155 	bstr(  J , "j-")
156 };
157 #undef bstr
158 
print_pstate(struct pt_regs * regs)159 static void print_pstate(struct pt_regs *regs)
160 {
161 	u64 pstate = regs->pstate;
162 
163 	if (compat_user_mode(regs)) {
164 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
165 			pstate,
166 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
167 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
168 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
169 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
170 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
171 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
172 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
173 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
174 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
175 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
176 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
177 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
178 	} else {
179 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
180 					       PSR_BTYPE_SHIFT];
181 
182 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
183 			pstate,
184 			pstate & PSR_N_BIT ? 'N' : 'n',
185 			pstate & PSR_Z_BIT ? 'Z' : 'z',
186 			pstate & PSR_C_BIT ? 'C' : 'c',
187 			pstate & PSR_V_BIT ? 'V' : 'v',
188 			pstate & PSR_D_BIT ? 'D' : 'd',
189 			pstate & PSR_A_BIT ? 'A' : 'a',
190 			pstate & PSR_I_BIT ? 'I' : 'i',
191 			pstate & PSR_F_BIT ? 'F' : 'f',
192 			pstate & PSR_PAN_BIT ? '+' : '-',
193 			pstate & PSR_UAO_BIT ? '+' : '-',
194 			pstate & PSR_TCO_BIT ? '+' : '-',
195 			pstate & PSR_DIT_BIT ? '+' : '-',
196 			pstate & PSR_SSBS_BIT ? '+' : '-',
197 			btype_str);
198 	}
199 }
200 
__show_regs(struct pt_regs * regs)201 void __show_regs(struct pt_regs *regs)
202 {
203 	int i, top_reg;
204 	u64 lr, sp;
205 
206 	if (compat_user_mode(regs)) {
207 		lr = regs->compat_lr;
208 		sp = regs->compat_sp;
209 		top_reg = 12;
210 	} else {
211 		lr = regs->regs[30];
212 		sp = regs->sp;
213 		top_reg = 29;
214 	}
215 
216 	show_regs_print_info(KERN_DEFAULT);
217 	print_pstate(regs);
218 
219 	if (!user_mode(regs)) {
220 		printk("pc : %pS\n", (void *)regs->pc);
221 		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
222 	} else {
223 		printk("pc : %016llx\n", regs->pc);
224 		printk("lr : %016llx\n", lr);
225 	}
226 
227 	printk("sp : %016llx\n", sp);
228 
229 	if (system_uses_irq_prio_masking())
230 		printk("pmr_save: %08llx\n", regs->pmr_save);
231 
232 	i = top_reg;
233 
234 	while (i >= 0) {
235 		printk("x%-2d: %016llx", i, regs->regs[i]);
236 
237 		while (i-- % 3)
238 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
239 
240 		pr_cont("\n");
241 	}
242 }
243 
show_regs(struct pt_regs * regs)244 void show_regs(struct pt_regs *regs)
245 {
246 	__show_regs(regs);
247 	dump_backtrace(regs, NULL, KERN_DEFAULT);
248 }
249 
tls_thread_flush(void)250 static void tls_thread_flush(void)
251 {
252 	write_sysreg(0, tpidr_el0);
253 	if (system_supports_tpidr2())
254 		write_sysreg_s(0, SYS_TPIDR2_EL0);
255 
256 	if (is_compat_task()) {
257 		current->thread.uw.tp_value = 0;
258 
259 		/*
260 		 * We need to ensure ordering between the shadow state and the
261 		 * hardware state, so that we don't corrupt the hardware state
262 		 * with a stale shadow state during context switch.
263 		 */
264 		barrier();
265 		write_sysreg(0, tpidrro_el0);
266 	}
267 }
268 
flush_tagged_addr_state(void)269 static void flush_tagged_addr_state(void)
270 {
271 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
272 		clear_thread_flag(TIF_TAGGED_ADDR);
273 }
274 
flush_poe(void)275 static void flush_poe(void)
276 {
277 	if (!system_supports_poe())
278 		return;
279 
280 	write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
281 }
282 
flush_thread(void)283 void flush_thread(void)
284 {
285 	fpsimd_flush_thread();
286 	tls_thread_flush();
287 	flush_ptrace_hw_breakpoint(current);
288 	flush_tagged_addr_state();
289 	flush_poe();
290 }
291 
arch_release_task_struct(struct task_struct * tsk)292 void arch_release_task_struct(struct task_struct *tsk)
293 {
294 	fpsimd_release_task(tsk);
295 }
296 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)297 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
298 {
299 	if (current->mm)
300 		fpsimd_preserve_current_state();
301 	*dst = *src;
302 
303 	/*
304 	 * Detach src's sve_state (if any) from dst so that it does not
305 	 * get erroneously used or freed prematurely.  dst's copies
306 	 * will be allocated on demand later on if dst uses SVE.
307 	 * For consistency, also clear TIF_SVE here: this could be done
308 	 * later in copy_process(), but to avoid tripping up future
309 	 * maintainers it is best not to leave TIF flags and buffers in
310 	 * an inconsistent state, even temporarily.
311 	 */
312 	dst->thread.sve_state = NULL;
313 	clear_tsk_thread_flag(dst, TIF_SVE);
314 
315 	/*
316 	 * In the unlikely event that we create a new thread with ZA
317 	 * enabled we should retain the ZA and ZT state so duplicate
318 	 * it here.  This may be shortly freed if we exec() or if
319 	 * CLONE_SETTLS but it's simpler to do it here. To avoid
320 	 * confusing the rest of the code ensure that we have a
321 	 * sve_state allocated whenever sme_state is allocated.
322 	 */
323 	if (thread_za_enabled(&src->thread)) {
324 		dst->thread.sve_state = kzalloc(sve_state_size(src),
325 						GFP_KERNEL);
326 		if (!dst->thread.sve_state)
327 			return -ENOMEM;
328 
329 		dst->thread.sme_state = kmemdup(src->thread.sme_state,
330 						sme_state_size(src),
331 						GFP_KERNEL);
332 		if (!dst->thread.sme_state) {
333 			kfree(dst->thread.sve_state);
334 			dst->thread.sve_state = NULL;
335 			return -ENOMEM;
336 		}
337 	} else {
338 		dst->thread.sme_state = NULL;
339 		clear_tsk_thread_flag(dst, TIF_SME);
340 	}
341 
342 	dst->thread.fp_type = FP_STATE_FPSIMD;
343 
344 	/* clear any pending asynchronous tag fault raised by the parent */
345 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
346 
347 	return 0;
348 }
349 
350 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
351 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)352 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
353 {
354 	unsigned long clone_flags = args->flags;
355 	unsigned long stack_start = args->stack;
356 	unsigned long tls = args->tls;
357 	struct pt_regs *childregs = task_pt_regs(p);
358 
359 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
360 
361 	/*
362 	 * In case p was allocated the same task_struct pointer as some
363 	 * other recently-exited task, make sure p is disassociated from
364 	 * any cpu that may have run that now-exited task recently.
365 	 * Otherwise we could erroneously skip reloading the FPSIMD
366 	 * registers for p.
367 	 */
368 	fpsimd_flush_task_state(p);
369 
370 	ptrauth_thread_init_kernel(p);
371 
372 	if (likely(!args->fn)) {
373 		*childregs = *current_pt_regs();
374 		childregs->regs[0] = 0;
375 
376 		/*
377 		 * Read the current TLS pointer from tpidr_el0 as it may be
378 		 * out-of-sync with the saved value.
379 		 */
380 		*task_user_tls(p) = read_sysreg(tpidr_el0);
381 		if (system_supports_tpidr2())
382 			p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
383 
384 		if (system_supports_poe())
385 			p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
386 
387 		if (stack_start) {
388 			if (is_compat_thread(task_thread_info(p)))
389 				childregs->compat_sp = stack_start;
390 			else
391 				childregs->sp = stack_start;
392 		}
393 
394 		/*
395 		 * If a TLS pointer was passed to clone, use it for the new
396 		 * thread.  We also reset TPIDR2 if it's in use.
397 		 */
398 		if (clone_flags & CLONE_SETTLS) {
399 			p->thread.uw.tp_value = tls;
400 			p->thread.tpidr2_el0 = 0;
401 		}
402 	} else {
403 		/*
404 		 * A kthread has no context to ERET to, so ensure any buggy
405 		 * ERET is treated as an illegal exception return.
406 		 *
407 		 * When a user task is created from a kthread, childregs will
408 		 * be initialized by start_thread() or start_compat_thread().
409 		 */
410 		memset(childregs, 0, sizeof(struct pt_regs));
411 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
412 
413 		p->thread.cpu_context.x19 = (unsigned long)args->fn;
414 		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
415 
416 		if (system_supports_poe())
417 			p->thread.por_el0 = POR_EL0_INIT;
418 	}
419 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
420 	p->thread.cpu_context.sp = (unsigned long)childregs;
421 	/*
422 	 * For the benefit of the unwinder, set up childregs->stackframe
423 	 * as the final frame for the new task.
424 	 */
425 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
426 
427 	ptrace_hw_copy_thread(p);
428 
429 	return 0;
430 }
431 
tls_preserve_current_state(void)432 void tls_preserve_current_state(void)
433 {
434 	*task_user_tls(current) = read_sysreg(tpidr_el0);
435 	if (system_supports_tpidr2() && !is_compat_task())
436 		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
437 }
438 
tls_thread_switch(struct task_struct * next)439 static void tls_thread_switch(struct task_struct *next)
440 {
441 	tls_preserve_current_state();
442 
443 	if (is_compat_thread(task_thread_info(next)))
444 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
445 	else if (!arm64_kernel_unmapped_at_el0())
446 		write_sysreg(0, tpidrro_el0);
447 
448 	write_sysreg(*task_user_tls(next), tpidr_el0);
449 	if (system_supports_tpidr2())
450 		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
451 }
452 
453 /*
454  * Force SSBS state on context-switch, since it may be lost after migrating
455  * from a CPU which treats the bit as RES0 in a heterogeneous system.
456  */
ssbs_thread_switch(struct task_struct * next)457 static void ssbs_thread_switch(struct task_struct *next)
458 {
459 	/*
460 	 * Nothing to do for kernel threads, but 'regs' may be junk
461 	 * (e.g. idle task) so check the flags and bail early.
462 	 */
463 	if (unlikely(next->flags & PF_KTHREAD))
464 		return;
465 
466 	/*
467 	 * If all CPUs implement the SSBS extension, then we just need to
468 	 * context-switch the PSTATE field.
469 	 */
470 	if (alternative_has_cap_unlikely(ARM64_SSBS))
471 		return;
472 
473 	spectre_v4_enable_task_mitigation(next);
474 }
475 
476 /*
477  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
478  * shadow copy so that we can restore this upon entry from userspace.
479  *
480  * This is *only* for exception entry from EL0, and is not valid until we
481  * __switch_to() a user task.
482  */
483 DEFINE_PER_CPU(struct task_struct *, __entry_task);
484 
entry_task_switch(struct task_struct * next)485 static void entry_task_switch(struct task_struct *next)
486 {
487 	__this_cpu_write(__entry_task, next);
488 }
489 
490 /*
491  * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
492  * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
493  * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
494  * required or PR_TSC_SIGSEGV is set.
495  */
update_cntkctl_el1(struct task_struct * next)496 static void update_cntkctl_el1(struct task_struct *next)
497 {
498 	struct thread_info *ti = task_thread_info(next);
499 
500 	if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
501 	    has_erratum_handler(read_cntvct_el0) ||
502 	    (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
503 	     this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
504 	     is_compat_thread(ti)))
505 		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
506 	else
507 		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
508 }
509 
cntkctl_thread_switch(struct task_struct * prev,struct task_struct * next)510 static void cntkctl_thread_switch(struct task_struct *prev,
511 				  struct task_struct *next)
512 {
513 	if ((read_ti_thread_flags(task_thread_info(prev)) &
514 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
515 	    (read_ti_thread_flags(task_thread_info(next)) &
516 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
517 		update_cntkctl_el1(next);
518 }
519 
do_set_tsc_mode(unsigned int val)520 static int do_set_tsc_mode(unsigned int val)
521 {
522 	bool tsc_sigsegv;
523 
524 	if (val == PR_TSC_SIGSEGV)
525 		tsc_sigsegv = true;
526 	else if (val == PR_TSC_ENABLE)
527 		tsc_sigsegv = false;
528 	else
529 		return -EINVAL;
530 
531 	preempt_disable();
532 	update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
533 	update_cntkctl_el1(current);
534 	preempt_enable();
535 
536 	return 0;
537 }
538 
permission_overlay_switch(struct task_struct * next)539 static void permission_overlay_switch(struct task_struct *next)
540 {
541 	if (!system_supports_poe())
542 		return;
543 
544 	current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
545 	if (current->thread.por_el0 != next->thread.por_el0) {
546 		write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
547 	}
548 }
549 
550 /*
551  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
552  * this function must be called with preemption disabled and the update to
553  * sctlr_user must be made in the same preemption disabled block so that
554  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
555  */
update_sctlr_el1(u64 sctlr)556 void update_sctlr_el1(u64 sctlr)
557 {
558 	/*
559 	 * EnIA must not be cleared while in the kernel as this is necessary for
560 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
561 	 */
562 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
563 
564 	/* ISB required for the kernel uaccess routines when setting TCF0. */
565 	isb();
566 }
567 
568 /*
569  * Thread switching.
570  */
571 __notrace_funcgraph __sched
__switch_to(struct task_struct * prev,struct task_struct * next)572 struct task_struct *__switch_to(struct task_struct *prev,
573 				struct task_struct *next)
574 {
575 	struct task_struct *last;
576 
577 	fpsimd_thread_switch(next);
578 	tls_thread_switch(next);
579 	hw_breakpoint_thread_switch(next);
580 	contextidr_thread_switch(next);
581 	entry_task_switch(next);
582 	ssbs_thread_switch(next);
583 	cntkctl_thread_switch(prev, next);
584 	ptrauth_thread_switch_user(next);
585 	permission_overlay_switch(next);
586 
587 	/*
588 	 * Complete any pending TLB or cache maintenance on this CPU in case
589 	 * the thread migrates to a different CPU.
590 	 * This full barrier is also required by the membarrier system
591 	 * call.
592 	 */
593 	dsb(ish);
594 
595 	/*
596 	 * MTE thread switching must happen after the DSB above to ensure that
597 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
598 	 * registers.
599 	 */
600 	mte_thread_switch(next);
601 	/* avoid expensive SCTLR_EL1 accesses if no change */
602 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
603 		update_sctlr_el1(next->thread.sctlr_user);
604 
605 	/* the actual thread switch */
606 	last = cpu_switch_to(prev, next);
607 
608 	return last;
609 }
610 
611 struct wchan_info {
612 	unsigned long	pc;
613 	int		count;
614 };
615 
get_wchan_cb(void * arg,unsigned long pc)616 static bool get_wchan_cb(void *arg, unsigned long pc)
617 {
618 	struct wchan_info *wchan_info = arg;
619 
620 	if (!in_sched_functions(pc)) {
621 		wchan_info->pc = pc;
622 		return false;
623 	}
624 	return wchan_info->count++ < 16;
625 }
626 
__get_wchan(struct task_struct * p)627 unsigned long __get_wchan(struct task_struct *p)
628 {
629 	struct wchan_info wchan_info = {
630 		.pc = 0,
631 		.count = 0,
632 	};
633 
634 	if (!try_get_task_stack(p))
635 		return 0;
636 
637 	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
638 
639 	put_task_stack(p);
640 
641 	return wchan_info.pc;
642 }
643 
arch_align_stack(unsigned long sp)644 unsigned long arch_align_stack(unsigned long sp)
645 {
646 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
647 		sp -= get_random_u32_below(PAGE_SIZE);
648 	return sp & ~0xf;
649 }
650 
651 #ifdef CONFIG_COMPAT
compat_elf_check_arch(const struct elf32_hdr * hdr)652 int compat_elf_check_arch(const struct elf32_hdr *hdr)
653 {
654 	if (!system_supports_32bit_el0())
655 		return false;
656 
657 	if ((hdr)->e_machine != EM_ARM)
658 		return false;
659 
660 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
661 		return false;
662 
663 	/*
664 	 * Prevent execve() of a 32-bit program from a deadline task
665 	 * if the restricted affinity mask would be inadmissible on an
666 	 * asymmetric system.
667 	 */
668 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
669 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
670 }
671 #endif
672 
673 /*
674  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
675  */
arch_setup_new_exec(void)676 void arch_setup_new_exec(void)
677 {
678 	unsigned long mmflags = 0;
679 
680 	if (is_compat_task()) {
681 		mmflags = MMCF_AARCH32;
682 
683 		/*
684 		 * Restrict the CPU affinity mask for a 32-bit task so that
685 		 * it contains only 32-bit-capable CPUs.
686 		 *
687 		 * From the perspective of the task, this looks similar to
688 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
689 		 * at the point of execve(), although we try a bit harder to
690 		 * honour the cpuset hierarchy.
691 		 */
692 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
693 			force_compatible_cpus_allowed_ptr(current);
694 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
695 		relax_compatible_cpus_allowed_ptr(current);
696 	}
697 
698 	current->mm->context.flags = mmflags;
699 	ptrauth_thread_init_user();
700 	mte_thread_init_user();
701 	do_set_tsc_mode(PR_TSC_ENABLE);
702 
703 	if (task_spec_ssb_noexec(current)) {
704 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
705 					 PR_SPEC_ENABLE);
706 	}
707 }
708 
709 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
710 /*
711  * Control the relaxed ABI allowing tagged user addresses into the kernel.
712  */
713 static unsigned int tagged_addr_disabled;
714 
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)715 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
716 {
717 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
718 	struct thread_info *ti = task_thread_info(task);
719 
720 	if (is_compat_thread(ti))
721 		return -EINVAL;
722 
723 	if (system_supports_mte())
724 		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
725 			| PR_MTE_TAG_MASK;
726 
727 	if (arg & ~valid_mask)
728 		return -EINVAL;
729 
730 	/*
731 	 * Do not allow the enabling of the tagged address ABI if globally
732 	 * disabled via sysctl abi.tagged_addr_disabled.
733 	 */
734 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
735 		return -EINVAL;
736 
737 	if (set_mte_ctrl(task, arg) != 0)
738 		return -EINVAL;
739 
740 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
741 
742 	return 0;
743 }
744 
get_tagged_addr_ctrl(struct task_struct * task)745 long get_tagged_addr_ctrl(struct task_struct *task)
746 {
747 	long ret = 0;
748 	struct thread_info *ti = task_thread_info(task);
749 
750 	if (is_compat_thread(ti))
751 		return -EINVAL;
752 
753 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
754 		ret = PR_TAGGED_ADDR_ENABLE;
755 
756 	ret |= get_mte_ctrl(task);
757 
758 	return ret;
759 }
760 
761 /*
762  * Global sysctl to disable the tagged user addresses support. This control
763  * only prevents the tagged address ABI enabling via prctl() and does not
764  * disable it for tasks that already opted in to the relaxed ABI.
765  */
766 
767 static struct ctl_table tagged_addr_sysctl_table[] = {
768 	{
769 		.procname	= "tagged_addr_disabled",
770 		.mode		= 0644,
771 		.data		= &tagged_addr_disabled,
772 		.maxlen		= sizeof(int),
773 		.proc_handler	= proc_dointvec_minmax,
774 		.extra1		= SYSCTL_ZERO,
775 		.extra2		= SYSCTL_ONE,
776 	},
777 };
778 
tagged_addr_init(void)779 static int __init tagged_addr_init(void)
780 {
781 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
782 		return -EINVAL;
783 	return 0;
784 }
785 
786 core_initcall(tagged_addr_init);
787 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
788 
789 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)790 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
791 			 bool has_interp, bool is_interp)
792 {
793 	/*
794 	 * For dynamically linked executables the interpreter is
795 	 * responsible for setting PROT_BTI on everything except
796 	 * itself.
797 	 */
798 	if (is_interp != has_interp)
799 		return prot;
800 
801 	if (!(state->flags & ARM64_ELF_BTI))
802 		return prot;
803 
804 	if (prot & PROT_EXEC)
805 		prot |= PROT_BTI;
806 
807 	return prot;
808 }
809 #endif
810 
get_tsc_mode(unsigned long adr)811 int get_tsc_mode(unsigned long adr)
812 {
813 	unsigned int val;
814 
815 	if (is_compat_task())
816 		return -EINVAL;
817 
818 	if (test_thread_flag(TIF_TSC_SIGSEGV))
819 		val = PR_TSC_SIGSEGV;
820 	else
821 		val = PR_TSC_ENABLE;
822 
823 	return put_user(val, (unsigned int __user *)adr);
824 }
825 
set_tsc_mode(unsigned int val)826 int set_tsc_mode(unsigned int val)
827 {
828 	if (is_compat_task())
829 		return -EINVAL;
830 
831 	return do_set_tsc_mode(val);
832 }
833