1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_HIGHMEM_H 3 #define _LINUX_HIGHMEM_H 4 5 #include <linux/fs.h> 6 #include <linux/kernel.h> 7 #include <linux/bug.h> 8 #include <linux/cacheflush.h> 9 #include <linux/kmsan.h> 10 #include <linux/mm.h> 11 #include <linux/uaccess.h> 12 #include <linux/hardirq.h> 13 14 #include "highmem-internal.h" 15 16 /** 17 * kmap - Map a page for long term usage 18 * @page: Pointer to the page to be mapped 19 * 20 * Returns: The virtual address of the mapping 21 * 22 * Can only be invoked from preemptible task context because on 32bit 23 * systems with CONFIG_HIGHMEM enabled this function might sleep. 24 * 25 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area 26 * this returns the virtual address of the direct kernel mapping. 27 * 28 * The returned virtual address is globally visible and valid up to the 29 * point where it is unmapped via kunmap(). The pointer can be handed to 30 * other contexts. 31 * 32 * For highmem pages on 32bit systems this can be slow as the mapping space 33 * is limited and protected by a global lock. In case that there is no 34 * mapping slot available the function blocks until a slot is released via 35 * kunmap(). 36 */ 37 static inline void *kmap(struct page *page); 38 39 /** 40 * kunmap - Unmap the virtual address mapped by kmap() 41 * @page: Pointer to the page which was mapped by kmap() 42 * 43 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of 44 * pages in the low memory area. 45 */ 46 static inline void kunmap(struct page *page); 47 48 /** 49 * kmap_to_page - Get the page for a kmap'ed address 50 * @addr: The address to look up 51 * 52 * Returns: The page which is mapped to @addr. 53 */ 54 static inline struct page *kmap_to_page(void *addr); 55 56 /** 57 * kmap_flush_unused - Flush all unused kmap mappings in order to 58 * remove stray mappings 59 */ 60 static inline void kmap_flush_unused(void); 61 62 /** 63 * kmap_local_page - Map a page for temporary usage 64 * @page: Pointer to the page to be mapped 65 * 66 * Returns: The virtual address of the mapping 67 * 68 * Can be invoked from any context, including interrupts. 69 * 70 * Requires careful handling when nesting multiple mappings because the map 71 * management is stack based. The unmap has to be in the reverse order of 72 * the map operation: 73 * 74 * addr1 = kmap_local_page(page1); 75 * addr2 = kmap_local_page(page2); 76 * ... 77 * kunmap_local(addr2); 78 * kunmap_local(addr1); 79 * 80 * Unmapping addr1 before addr2 is invalid and causes malfunction. 81 * 82 * Contrary to kmap() mappings the mapping is only valid in the context of 83 * the caller and cannot be handed to other contexts. 84 * 85 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 86 * virtual address of the direct mapping. Only real highmem pages are 87 * temporarily mapped. 88 * 89 * While kmap_local_page() is significantly faster than kmap() for the highmem 90 * case it comes with restrictions about the pointer validity. 91 * 92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 93 * disabling migration in order to keep the virtual address stable across 94 * preemption. No caller of kmap_local_page() can rely on this side effect. 95 */ 96 static inline void *kmap_local_page(struct page *page); 97 98 /** 99 * kmap_local_folio - Map a page in this folio for temporary usage 100 * @folio: The folio containing the page. 101 * @offset: The byte offset within the folio which identifies the page. 102 * 103 * Requires careful handling when nesting multiple mappings because the map 104 * management is stack based. The unmap has to be in the reverse order of 105 * the map operation:: 106 * 107 * addr1 = kmap_local_folio(folio1, offset1); 108 * addr2 = kmap_local_folio(folio2, offset2); 109 * ... 110 * kunmap_local(addr2); 111 * kunmap_local(addr1); 112 * 113 * Unmapping addr1 before addr2 is invalid and causes malfunction. 114 * 115 * Contrary to kmap() mappings the mapping is only valid in the context of 116 * the caller and cannot be handed to other contexts. 117 * 118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the 119 * virtual address of the direct mapping. Only real highmem pages are 120 * temporarily mapped. 121 * 122 * While it is significantly faster than kmap() for the highmem case it 123 * comes with restrictions about the pointer validity. 124 * 125 * On HIGHMEM enabled systems mapping a highmem page has the side effect of 126 * disabling migration in order to keep the virtual address stable across 127 * preemption. No caller of kmap_local_folio() can rely on this side effect. 128 * 129 * Context: Can be invoked from any context. 130 * Return: The virtual address of @offset. 131 */ 132 static inline void *kmap_local_folio(struct folio *folio, size_t offset); 133 134 /** 135 * kmap_atomic - Atomically map a page for temporary usage - Deprecated! 136 * @page: Pointer to the page to be mapped 137 * 138 * Returns: The virtual address of the mapping 139 * 140 * In fact a wrapper around kmap_local_page() which also disables pagefaults 141 * and, depending on PREEMPT_RT configuration, also CPU migration and 142 * preemption. Therefore users should not count on the latter two side effects. 143 * 144 * Mappings should always be released by kunmap_atomic(). 145 * 146 * Do not use in new code. Use kmap_local_page() instead. 147 * 148 * It is used in atomic context when code wants to access the contents of a 149 * page that might be allocated from high memory (see __GFP_HIGHMEM), for 150 * example a page in the pagecache. The API has two functions, and they 151 * can be used in a manner similar to the following:: 152 * 153 * // Find the page of interest. 154 * struct page *page = find_get_page(mapping, offset); 155 * 156 * // Gain access to the contents of that page. 157 * void *vaddr = kmap_atomic(page); 158 * 159 * // Do something to the contents of that page. 160 * memset(vaddr, 0, PAGE_SIZE); 161 * 162 * // Unmap that page. 163 * kunmap_atomic(vaddr); 164 * 165 * Note that the kunmap_atomic() call takes the result of the kmap_atomic() 166 * call, not the argument. 167 * 168 * If you need to map two pages because you want to copy from one page to 169 * another you need to keep the kmap_atomic calls strictly nested, like: 170 * 171 * vaddr1 = kmap_atomic(page1); 172 * vaddr2 = kmap_atomic(page2); 173 * 174 * memcpy(vaddr1, vaddr2, PAGE_SIZE); 175 * 176 * kunmap_atomic(vaddr2); 177 * kunmap_atomic(vaddr1); 178 */ 179 static inline void *kmap_atomic(struct page *page); 180 181 /* Highmem related interfaces for management code */ 182 static inline unsigned long nr_free_highpages(void); 183 static inline unsigned long totalhigh_pages(void); 184 185 #ifndef ARCH_HAS_FLUSH_ANON_PAGE flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)186 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) 187 { 188 } 189 #endif 190 191 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE flush_kernel_vmap_range(void * vaddr,int size)192 static inline void flush_kernel_vmap_range(void *vaddr, int size) 193 { 194 } invalidate_kernel_vmap_range(void * vaddr,int size)195 static inline void invalidate_kernel_vmap_range(void *vaddr, int size) 196 { 197 } 198 #endif 199 200 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ 201 #ifndef clear_user_highpage clear_user_highpage(struct page * page,unsigned long vaddr)202 static inline void clear_user_highpage(struct page *page, unsigned long vaddr) 203 { 204 void *addr = kmap_local_page(page); 205 clear_user_page(addr, vaddr, page); 206 kunmap_local(addr); 207 } 208 #endif 209 210 #ifndef vma_alloc_zeroed_movable_folio 211 /** 212 * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA. 213 * @vma: The VMA the page is to be allocated for. 214 * @vaddr: The virtual address the page will be inserted into. 215 * 216 * This function will allocate a page suitable for inserting into this 217 * VMA at this virtual address. It may be allocated from highmem or 218 * the movable zone. An architecture may provide its own implementation. 219 * 220 * Return: A folio containing one allocated and zeroed page or NULL if 221 * we are out of memory. 222 */ 223 static inline vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)224 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, 225 unsigned long vaddr) 226 { 227 struct folio *folio; 228 229 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr, false); 230 if (folio) 231 clear_user_highpage(&folio->page, vaddr); 232 233 return folio; 234 } 235 #endif 236 clear_highpage(struct page * page)237 static inline void clear_highpage(struct page *page) 238 { 239 void *kaddr = kmap_local_page(page); 240 clear_page(kaddr); 241 kunmap_local(kaddr); 242 } 243 clear_highpage_kasan_tagged(struct page * page)244 static inline void clear_highpage_kasan_tagged(struct page *page) 245 { 246 void *kaddr = kmap_local_page(page); 247 248 clear_page(kasan_reset_tag(kaddr)); 249 kunmap_local(kaddr); 250 } 251 252 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE 253 tag_clear_highpage(struct page * page)254 static inline void tag_clear_highpage(struct page *page) 255 { 256 } 257 258 #endif 259 260 /* 261 * If we pass in a base or tail page, we can zero up to PAGE_SIZE. 262 * If we pass in a head page, we can zero up to the size of the compound page. 263 */ 264 #ifdef CONFIG_HIGHMEM 265 void zero_user_segments(struct page *page, unsigned start1, unsigned end1, 266 unsigned start2, unsigned end2); 267 #else zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)268 static inline void zero_user_segments(struct page *page, 269 unsigned start1, unsigned end1, 270 unsigned start2, unsigned end2) 271 { 272 void *kaddr = kmap_local_page(page); 273 unsigned int i; 274 275 BUG_ON(end1 > page_size(page) || end2 > page_size(page)); 276 277 if (end1 > start1) 278 memset(kaddr + start1, 0, end1 - start1); 279 280 if (end2 > start2) 281 memset(kaddr + start2, 0, end2 - start2); 282 283 kunmap_local(kaddr); 284 for (i = 0; i < compound_nr(page); i++) 285 flush_dcache_page(page + i); 286 } 287 #endif 288 zero_user_segment(struct page * page,unsigned start,unsigned end)289 static inline void zero_user_segment(struct page *page, 290 unsigned start, unsigned end) 291 { 292 zero_user_segments(page, start, end, 0, 0); 293 } 294 zero_user(struct page * page,unsigned start,unsigned size)295 static inline void zero_user(struct page *page, 296 unsigned start, unsigned size) 297 { 298 zero_user_segments(page, start, start + size, 0, 0); 299 } 300 301 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE 302 copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)303 static inline void copy_user_highpage(struct page *to, struct page *from, 304 unsigned long vaddr, struct vm_area_struct *vma) 305 { 306 char *vfrom, *vto; 307 308 vfrom = kmap_local_page(from); 309 vto = kmap_local_page(to); 310 copy_user_page(vto, vfrom, vaddr, to); 311 kmsan_unpoison_memory(page_address(to), PAGE_SIZE); 312 kunmap_local(vto); 313 kunmap_local(vfrom); 314 } 315 316 #endif 317 318 #ifndef __HAVE_ARCH_COPY_HIGHPAGE 319 copy_highpage(struct page * to,struct page * from)320 static inline void copy_highpage(struct page *to, struct page *from) 321 { 322 char *vfrom, *vto; 323 324 vfrom = kmap_local_page(from); 325 vto = kmap_local_page(to); 326 copy_page(vto, vfrom); 327 kmsan_copy_page_meta(to, from); 328 kunmap_local(vto); 329 kunmap_local(vfrom); 330 } 331 332 #endif 333 334 #ifdef copy_mc_to_kernel 335 /* 336 * If architecture supports machine check exception handling, define the 337 * #MC versions of copy_user_highpage and copy_highpage. They copy a memory 338 * page with #MC in source page (@from) handled, and return the number 339 * of bytes not copied if there was a #MC, otherwise 0 for success. 340 */ copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)341 static inline int copy_mc_user_highpage(struct page *to, struct page *from, 342 unsigned long vaddr, struct vm_area_struct *vma) 343 { 344 unsigned long ret; 345 char *vfrom, *vto; 346 347 vfrom = kmap_local_page(from); 348 vto = kmap_local_page(to); 349 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE); 350 if (!ret) 351 kmsan_unpoison_memory(page_address(to), PAGE_SIZE); 352 kunmap_local(vto); 353 kunmap_local(vfrom); 354 355 if (ret) 356 memory_failure_queue(page_to_pfn(from), 0); 357 358 return ret; 359 } 360 copy_mc_highpage(struct page * to,struct page * from)361 static inline int copy_mc_highpage(struct page *to, struct page *from) 362 { 363 unsigned long ret; 364 char *vfrom, *vto; 365 366 vfrom = kmap_local_page(from); 367 vto = kmap_local_page(to); 368 ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE); 369 if (!ret) 370 kmsan_copy_page_meta(to, from); 371 kunmap_local(vto); 372 kunmap_local(vfrom); 373 374 if (ret) 375 memory_failure_queue(page_to_pfn(from), 0); 376 377 return ret; 378 } 379 #else copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)380 static inline int copy_mc_user_highpage(struct page *to, struct page *from, 381 unsigned long vaddr, struct vm_area_struct *vma) 382 { 383 copy_user_highpage(to, from, vaddr, vma); 384 return 0; 385 } 386 copy_mc_highpage(struct page * to,struct page * from)387 static inline int copy_mc_highpage(struct page *to, struct page *from) 388 { 389 copy_highpage(to, from); 390 return 0; 391 } 392 #endif 393 memcpy_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)394 static inline void memcpy_page(struct page *dst_page, size_t dst_off, 395 struct page *src_page, size_t src_off, 396 size_t len) 397 { 398 char *dst = kmap_local_page(dst_page); 399 char *src = kmap_local_page(src_page); 400 401 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE); 402 memcpy(dst + dst_off, src + src_off, len); 403 kunmap_local(src); 404 kunmap_local(dst); 405 } 406 memset_page(struct page * page,size_t offset,int val,size_t len)407 static inline void memset_page(struct page *page, size_t offset, int val, 408 size_t len) 409 { 410 char *addr = kmap_local_page(page); 411 412 VM_BUG_ON(offset + len > PAGE_SIZE); 413 memset(addr + offset, val, len); 414 kunmap_local(addr); 415 } 416 memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)417 static inline void memcpy_from_page(char *to, struct page *page, 418 size_t offset, size_t len) 419 { 420 char *from = kmap_local_page(page); 421 422 VM_BUG_ON(offset + len > PAGE_SIZE); 423 memcpy(to, from + offset, len); 424 kunmap_local(from); 425 } 426 memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)427 static inline void memcpy_to_page(struct page *page, size_t offset, 428 const char *from, size_t len) 429 { 430 char *to = kmap_local_page(page); 431 432 VM_BUG_ON(offset + len > PAGE_SIZE); 433 memcpy(to + offset, from, len); 434 flush_dcache_page(page); 435 kunmap_local(to); 436 } 437 memzero_page(struct page * page,size_t offset,size_t len)438 static inline void memzero_page(struct page *page, size_t offset, size_t len) 439 { 440 char *addr = kmap_local_page(page); 441 442 VM_BUG_ON(offset + len > PAGE_SIZE); 443 memset(addr + offset, 0, len); 444 flush_dcache_page(page); 445 kunmap_local(addr); 446 } 447 448 /** 449 * memcpy_from_folio - Copy a range of bytes from a folio. 450 * @to: The memory to copy to. 451 * @folio: The folio to read from. 452 * @offset: The first byte in the folio to read. 453 * @len: The number of bytes to copy. 454 */ memcpy_from_folio(char * to,struct folio * folio,size_t offset,size_t len)455 static inline void memcpy_from_folio(char *to, struct folio *folio, 456 size_t offset, size_t len) 457 { 458 VM_BUG_ON(offset + len > folio_size(folio)); 459 460 do { 461 const char *from = kmap_local_folio(folio, offset); 462 size_t chunk = len; 463 464 if (folio_test_highmem(folio) && 465 chunk > PAGE_SIZE - offset_in_page(offset)) 466 chunk = PAGE_SIZE - offset_in_page(offset); 467 memcpy(to, from, chunk); 468 kunmap_local(from); 469 470 to += chunk; 471 offset += chunk; 472 len -= chunk; 473 } while (len > 0); 474 } 475 476 /** 477 * memcpy_to_folio - Copy a range of bytes to a folio. 478 * @folio: The folio to write to. 479 * @offset: The first byte in the folio to store to. 480 * @from: The memory to copy from. 481 * @len: The number of bytes to copy. 482 */ memcpy_to_folio(struct folio * folio,size_t offset,const char * from,size_t len)483 static inline void memcpy_to_folio(struct folio *folio, size_t offset, 484 const char *from, size_t len) 485 { 486 VM_BUG_ON(offset + len > folio_size(folio)); 487 488 do { 489 char *to = kmap_local_folio(folio, offset); 490 size_t chunk = len; 491 492 if (folio_test_highmem(folio) && 493 chunk > PAGE_SIZE - offset_in_page(offset)) 494 chunk = PAGE_SIZE - offset_in_page(offset); 495 memcpy(to, from, chunk); 496 kunmap_local(to); 497 498 from += chunk; 499 offset += chunk; 500 len -= chunk; 501 } while (len > 0); 502 503 flush_dcache_folio(folio); 504 } 505 506 /** 507 * folio_zero_tail - Zero the tail of a folio. 508 * @folio: The folio to zero. 509 * @offset: The byte offset in the folio to start zeroing at. 510 * @kaddr: The address the folio is currently mapped to. 511 * 512 * If you have already used kmap_local_folio() to map a folio, written 513 * some data to it and now need to zero the end of the folio (and flush 514 * the dcache), you can use this function. If you do not have the 515 * folio kmapped (eg the folio has been partially populated by DMA), 516 * use folio_zero_range() or folio_zero_segment() instead. 517 * 518 * Return: An address which can be passed to kunmap_local(). 519 */ folio_zero_tail(struct folio * folio,size_t offset,void * kaddr)520 static inline __must_check void *folio_zero_tail(struct folio *folio, 521 size_t offset, void *kaddr) 522 { 523 size_t len = folio_size(folio) - offset; 524 525 if (folio_test_highmem(folio)) { 526 size_t max = PAGE_SIZE - offset_in_page(offset); 527 528 while (len > max) { 529 memset(kaddr, 0, max); 530 kunmap_local(kaddr); 531 len -= max; 532 offset += max; 533 max = PAGE_SIZE; 534 kaddr = kmap_local_folio(folio, offset); 535 } 536 } 537 538 memset(kaddr, 0, len); 539 flush_dcache_folio(folio); 540 541 return kaddr; 542 } 543 544 /** 545 * folio_fill_tail - Copy some data to a folio and pad with zeroes. 546 * @folio: The destination folio. 547 * @offset: The offset into @folio at which to start copying. 548 * @from: The data to copy. 549 * @len: How many bytes of data to copy. 550 * 551 * This function is most useful for filesystems which support inline data. 552 * When they want to copy data from the inode into the page cache, this 553 * function does everything for them. It supports large folios even on 554 * HIGHMEM configurations. 555 */ folio_fill_tail(struct folio * folio,size_t offset,const char * from,size_t len)556 static inline void folio_fill_tail(struct folio *folio, size_t offset, 557 const char *from, size_t len) 558 { 559 char *to = kmap_local_folio(folio, offset); 560 561 VM_BUG_ON(offset + len > folio_size(folio)); 562 563 if (folio_test_highmem(folio)) { 564 size_t max = PAGE_SIZE - offset_in_page(offset); 565 566 while (len > max) { 567 memcpy(to, from, max); 568 kunmap_local(to); 569 len -= max; 570 from += max; 571 offset += max; 572 max = PAGE_SIZE; 573 to = kmap_local_folio(folio, offset); 574 } 575 } 576 577 memcpy(to, from, len); 578 to = folio_zero_tail(folio, offset + len, to + len); 579 kunmap_local(to); 580 } 581 582 /** 583 * memcpy_from_file_folio - Copy some bytes from a file folio. 584 * @to: The destination buffer. 585 * @folio: The folio to copy from. 586 * @pos: The position in the file. 587 * @len: The maximum number of bytes to copy. 588 * 589 * Copy up to @len bytes from this folio. This may be limited by PAGE_SIZE 590 * if the folio comes from HIGHMEM, and by the size of the folio. 591 * 592 * Return: The number of bytes copied from the folio. 593 */ memcpy_from_file_folio(char * to,struct folio * folio,loff_t pos,size_t len)594 static inline size_t memcpy_from_file_folio(char *to, struct folio *folio, 595 loff_t pos, size_t len) 596 { 597 size_t offset = offset_in_folio(folio, pos); 598 char *from = kmap_local_folio(folio, offset); 599 600 if (folio_test_highmem(folio)) { 601 offset = offset_in_page(offset); 602 len = min_t(size_t, len, PAGE_SIZE - offset); 603 } else 604 len = min(len, folio_size(folio) - offset); 605 606 memcpy(to, from, len); 607 kunmap_local(from); 608 609 return len; 610 } 611 612 /** 613 * folio_zero_segments() - Zero two byte ranges in a folio. 614 * @folio: The folio to write to. 615 * @start1: The first byte to zero. 616 * @xend1: One more than the last byte in the first range. 617 * @start2: The first byte to zero in the second range. 618 * @xend2: One more than the last byte in the second range. 619 */ folio_zero_segments(struct folio * folio,size_t start1,size_t xend1,size_t start2,size_t xend2)620 static inline void folio_zero_segments(struct folio *folio, 621 size_t start1, size_t xend1, size_t start2, size_t xend2) 622 { 623 zero_user_segments(&folio->page, start1, xend1, start2, xend2); 624 } 625 626 /** 627 * folio_zero_segment() - Zero a byte range in a folio. 628 * @folio: The folio to write to. 629 * @start: The first byte to zero. 630 * @xend: One more than the last byte to zero. 631 */ folio_zero_segment(struct folio * folio,size_t start,size_t xend)632 static inline void folio_zero_segment(struct folio *folio, 633 size_t start, size_t xend) 634 { 635 zero_user_segments(&folio->page, start, xend, 0, 0); 636 } 637 638 /** 639 * folio_zero_range() - Zero a byte range in a folio. 640 * @folio: The folio to write to. 641 * @start: The first byte to zero. 642 * @length: The number of bytes to zero. 643 */ folio_zero_range(struct folio * folio,size_t start,size_t length)644 static inline void folio_zero_range(struct folio *folio, 645 size_t start, size_t length) 646 { 647 zero_user_segments(&folio->page, start, start + length, 0, 0); 648 } 649 650 /** 651 * folio_release_kmap - Unmap a folio and drop a refcount. 652 * @folio: The folio to release. 653 * @addr: The address previously returned by a call to kmap_local_folio(). 654 * 655 * It is common, eg in directory handling to kmap a folio. This function 656 * unmaps the folio and drops the refcount that was being held to keep the 657 * folio alive while we accessed it. 658 */ folio_release_kmap(struct folio * folio,void * addr)659 static inline void folio_release_kmap(struct folio *folio, void *addr) 660 { 661 kunmap_local(addr); 662 folio_put(folio); 663 } 664 unmap_and_put_page(struct page * page,void * addr)665 static inline void unmap_and_put_page(struct page *page, void *addr) 666 { 667 folio_release_kmap(page_folio(page), addr); 668 } 669 670 #endif /* _LINUX_HIGHMEM_H */ 671