1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * NET3:	Garbage Collector For AF_UNIX sockets
4   *
5   * Garbage Collector:
6   *	Copyright (C) Barak A. Pearlmutter.
7   *
8   * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
9   * If it doesn't work blame me, it worked when Barak sent it.
10   *
11   * Assumptions:
12   *
13   *  - object w/ a bit
14   *  - free list
15   *
16   * Current optimizations:
17   *
18   *  - explicit stack instead of recursion
19   *  - tail recurse on first born instead of immediate push/pop
20   *  - we gather the stuff that should not be killed into tree
21   *    and stack is just a path from root to the current pointer.
22   *
23   *  Future optimizations:
24   *
25   *  - don't just push entire root set; process in place
26   *
27   *  Fixes:
28   *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed.
29   *					Cope with changing max_files.
30   *	Al Viro		11 Oct 1998
31   *		Graph may have cycles. That is, we can send the descriptor
32   *		of foo to bar and vice versa. Current code chokes on that.
33   *		Fix: move SCM_RIGHTS ones into the separate list and then
34   *		skb_free() them all instead of doing explicit fput's.
35   *		Another problem: since fput() may block somebody may
36   *		create a new unix_socket when we are in the middle of sweep
37   *		phase. Fix: revert the logic wrt MARKED. Mark everything
38   *		upon the beginning and unmark non-junk ones.
39   *
40   *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
41   *		sent to connect()'ed but still not accept()'ed sockets.
42   *		Fixed. Old code had slightly different problem here:
43   *		extra fput() in situation when we passed the descriptor via
44   *		such socket and closed it (descriptor). That would happen on
45   *		each unix_gc() until the accept(). Since the struct file in
46   *		question would go to the free list and might be reused...
47   *		That might be the reason of random oopses on filp_close()
48   *		in unrelated processes.
49   *
50   *	AV		28 Feb 1999
51   *		Kill the explicit allocation of stack. Now we keep the tree
52   *		with root in dummy + pointer (gc_current) to one of the nodes.
53   *		Stack is represented as path from gc_current to dummy. Unmark
54   *		now means "add to tree". Push == "make it a son of gc_current".
55   *		Pop == "move gc_current to parent". We keep only pointers to
56   *		parents (->gc_tree).
57   *	AV		1 Mar 1999
58   *		Damn. Added missing check for ->dead in listen queues scanning.
59   *
60   *	Miklos Szeredi 25 Jun 2007
61   *		Reimplement with a cycle collecting algorithm. This should
62   *		solve several problems with the previous code, like being racy
63   *		wrt receive and holding up unrelated socket operations.
64   */
65  
66  #include <linux/kernel.h>
67  #include <linux/string.h>
68  #include <linux/socket.h>
69  #include <linux/un.h>
70  #include <linux/net.h>
71  #include <linux/fs.h>
72  #include <linux/skbuff.h>
73  #include <linux/netdevice.h>
74  #include <linux/file.h>
75  #include <linux/proc_fs.h>
76  #include <linux/mutex.h>
77  #include <linux/wait.h>
78  
79  #include <net/sock.h>
80  #include <net/af_unix.h>
81  #include <net/scm.h>
82  #include <net/tcp_states.h>
83  
unix_get_socket(struct file * filp)84  struct unix_sock *unix_get_socket(struct file *filp)
85  {
86  	struct inode *inode = file_inode(filp);
87  
88  	/* Socket ? */
89  	if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
90  		struct socket *sock = SOCKET_I(inode);
91  		const struct proto_ops *ops;
92  		struct sock *sk = sock->sk;
93  
94  		ops = READ_ONCE(sock->ops);
95  
96  		/* PF_UNIX ? */
97  		if (sk && ops && ops->family == PF_UNIX)
98  			return unix_sk(sk);
99  	}
100  
101  	return NULL;
102  }
103  
unix_edge_successor(struct unix_edge * edge)104  static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
105  {
106  	/* If an embryo socket has a fd,
107  	 * the listener indirectly holds the fd's refcnt.
108  	 */
109  	if (edge->successor->listener)
110  		return unix_sk(edge->successor->listener)->vertex;
111  
112  	return edge->successor->vertex;
113  }
114  
115  static bool unix_graph_maybe_cyclic;
116  static bool unix_graph_grouped;
117  
unix_update_graph(struct unix_vertex * vertex)118  static void unix_update_graph(struct unix_vertex *vertex)
119  {
120  	/* If the receiver socket is not inflight, no cyclic
121  	 * reference could be formed.
122  	 */
123  	if (!vertex)
124  		return;
125  
126  	unix_graph_maybe_cyclic = true;
127  	unix_graph_grouped = false;
128  }
129  
130  static LIST_HEAD(unix_unvisited_vertices);
131  
132  enum unix_vertex_index {
133  	UNIX_VERTEX_INDEX_MARK1,
134  	UNIX_VERTEX_INDEX_MARK2,
135  	UNIX_VERTEX_INDEX_START,
136  };
137  
138  static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
139  
unix_add_edge(struct scm_fp_list * fpl,struct unix_edge * edge)140  static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
141  {
142  	struct unix_vertex *vertex = edge->predecessor->vertex;
143  
144  	if (!vertex) {
145  		vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
146  		vertex->index = unix_vertex_unvisited_index;
147  		vertex->out_degree = 0;
148  		INIT_LIST_HEAD(&vertex->edges);
149  		INIT_LIST_HEAD(&vertex->scc_entry);
150  
151  		list_move_tail(&vertex->entry, &unix_unvisited_vertices);
152  		edge->predecessor->vertex = vertex;
153  	}
154  
155  	vertex->out_degree++;
156  	list_add_tail(&edge->vertex_entry, &vertex->edges);
157  
158  	unix_update_graph(unix_edge_successor(edge));
159  }
160  
unix_del_edge(struct scm_fp_list * fpl,struct unix_edge * edge)161  static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
162  {
163  	struct unix_vertex *vertex = edge->predecessor->vertex;
164  
165  	if (!fpl->dead)
166  		unix_update_graph(unix_edge_successor(edge));
167  
168  	list_del(&edge->vertex_entry);
169  	vertex->out_degree--;
170  
171  	if (!vertex->out_degree) {
172  		edge->predecessor->vertex = NULL;
173  		list_move_tail(&vertex->entry, &fpl->vertices);
174  	}
175  }
176  
unix_free_vertices(struct scm_fp_list * fpl)177  static void unix_free_vertices(struct scm_fp_list *fpl)
178  {
179  	struct unix_vertex *vertex, *next_vertex;
180  
181  	list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
182  		list_del(&vertex->entry);
183  		kfree(vertex);
184  	}
185  }
186  
187  static DEFINE_SPINLOCK(unix_gc_lock);
188  unsigned int unix_tot_inflight;
189  
unix_add_edges(struct scm_fp_list * fpl,struct unix_sock * receiver)190  void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
191  {
192  	int i = 0, j = 0;
193  
194  	spin_lock(&unix_gc_lock);
195  
196  	if (!fpl->count_unix)
197  		goto out;
198  
199  	do {
200  		struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
201  		struct unix_edge *edge;
202  
203  		if (!inflight)
204  			continue;
205  
206  		edge = fpl->edges + i++;
207  		edge->predecessor = inflight;
208  		edge->successor = receiver;
209  
210  		unix_add_edge(fpl, edge);
211  	} while (i < fpl->count_unix);
212  
213  	receiver->scm_stat.nr_unix_fds += fpl->count_unix;
214  	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
215  out:
216  	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
217  
218  	spin_unlock(&unix_gc_lock);
219  
220  	fpl->inflight = true;
221  
222  	unix_free_vertices(fpl);
223  }
224  
unix_del_edges(struct scm_fp_list * fpl)225  void unix_del_edges(struct scm_fp_list *fpl)
226  {
227  	struct unix_sock *receiver;
228  	int i = 0;
229  
230  	spin_lock(&unix_gc_lock);
231  
232  	if (!fpl->count_unix)
233  		goto out;
234  
235  	do {
236  		struct unix_edge *edge = fpl->edges + i++;
237  
238  		unix_del_edge(fpl, edge);
239  	} while (i < fpl->count_unix);
240  
241  	if (!fpl->dead) {
242  		receiver = fpl->edges[0].successor;
243  		receiver->scm_stat.nr_unix_fds -= fpl->count_unix;
244  	}
245  	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
246  out:
247  	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
248  
249  	spin_unlock(&unix_gc_lock);
250  
251  	fpl->inflight = false;
252  }
253  
unix_update_edges(struct unix_sock * receiver)254  void unix_update_edges(struct unix_sock *receiver)
255  {
256  	/* nr_unix_fds is only updated under unix_state_lock().
257  	 * If it's 0 here, the embryo socket is not part of the
258  	 * inflight graph, and GC will not see it, so no lock needed.
259  	 */
260  	if (!receiver->scm_stat.nr_unix_fds) {
261  		receiver->listener = NULL;
262  	} else {
263  		spin_lock(&unix_gc_lock);
264  		unix_update_graph(unix_sk(receiver->listener)->vertex);
265  		receiver->listener = NULL;
266  		spin_unlock(&unix_gc_lock);
267  	}
268  }
269  
unix_prepare_fpl(struct scm_fp_list * fpl)270  int unix_prepare_fpl(struct scm_fp_list *fpl)
271  {
272  	struct unix_vertex *vertex;
273  	int i;
274  
275  	if (!fpl->count_unix)
276  		return 0;
277  
278  	for (i = 0; i < fpl->count_unix; i++) {
279  		vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
280  		if (!vertex)
281  			goto err;
282  
283  		list_add(&vertex->entry, &fpl->vertices);
284  	}
285  
286  	fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
287  				    GFP_KERNEL_ACCOUNT);
288  	if (!fpl->edges)
289  		goto err;
290  
291  	return 0;
292  
293  err:
294  	unix_free_vertices(fpl);
295  	return -ENOMEM;
296  }
297  
unix_destroy_fpl(struct scm_fp_list * fpl)298  void unix_destroy_fpl(struct scm_fp_list *fpl)
299  {
300  	if (fpl->inflight)
301  		unix_del_edges(fpl);
302  
303  	kvfree(fpl->edges);
304  	unix_free_vertices(fpl);
305  }
306  
unix_vertex_dead(struct unix_vertex * vertex)307  static bool unix_vertex_dead(struct unix_vertex *vertex)
308  {
309  	struct unix_edge *edge;
310  	struct unix_sock *u;
311  	long total_ref;
312  
313  	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
314  		struct unix_vertex *next_vertex = unix_edge_successor(edge);
315  
316  		/* The vertex's fd can be received by a non-inflight socket. */
317  		if (!next_vertex)
318  			return false;
319  
320  		/* The vertex's fd can be received by an inflight socket in
321  		 * another SCC.
322  		 */
323  		if (next_vertex->scc_index != vertex->scc_index)
324  			return false;
325  	}
326  
327  	/* No receiver exists out of the same SCC. */
328  
329  	edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
330  	u = edge->predecessor;
331  	total_ref = file_count(u->sk.sk_socket->file);
332  
333  	/* If not close()d, total_ref > out_degree. */
334  	if (total_ref != vertex->out_degree)
335  		return false;
336  
337  	return true;
338  }
339  
unix_collect_skb(struct list_head * scc,struct sk_buff_head * hitlist)340  static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist)
341  {
342  	struct unix_vertex *vertex;
343  
344  	list_for_each_entry_reverse(vertex, scc, scc_entry) {
345  		struct sk_buff_head *queue;
346  		struct unix_edge *edge;
347  		struct unix_sock *u;
348  
349  		edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
350  		u = edge->predecessor;
351  		queue = &u->sk.sk_receive_queue;
352  
353  		spin_lock(&queue->lock);
354  
355  		if (u->sk.sk_state == TCP_LISTEN) {
356  			struct sk_buff *skb;
357  
358  			skb_queue_walk(queue, skb) {
359  				struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue;
360  
361  				spin_lock(&embryo_queue->lock);
362  				skb_queue_splice_init(embryo_queue, hitlist);
363  				spin_unlock(&embryo_queue->lock);
364  			}
365  		} else {
366  			skb_queue_splice_init(queue, hitlist);
367  		}
368  
369  		spin_unlock(&queue->lock);
370  	}
371  }
372  
unix_scc_cyclic(struct list_head * scc)373  static bool unix_scc_cyclic(struct list_head *scc)
374  {
375  	struct unix_vertex *vertex;
376  	struct unix_edge *edge;
377  
378  	/* SCC containing multiple vertices ? */
379  	if (!list_is_singular(scc))
380  		return true;
381  
382  	vertex = list_first_entry(scc, typeof(*vertex), scc_entry);
383  
384  	/* Self-reference or a embryo-listener circle ? */
385  	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
386  		if (unix_edge_successor(edge) == vertex)
387  			return true;
388  	}
389  
390  	return false;
391  }
392  
393  static LIST_HEAD(unix_visited_vertices);
394  static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
395  
__unix_walk_scc(struct unix_vertex * vertex,unsigned long * last_index,struct sk_buff_head * hitlist)396  static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index,
397  			    struct sk_buff_head *hitlist)
398  {
399  	LIST_HEAD(vertex_stack);
400  	struct unix_edge *edge;
401  	LIST_HEAD(edge_stack);
402  
403  next_vertex:
404  	/* Push vertex to vertex_stack and mark it as on-stack
405  	 * (index >= UNIX_VERTEX_INDEX_START).
406  	 * The vertex will be popped when finalising SCC later.
407  	 */
408  	list_add(&vertex->scc_entry, &vertex_stack);
409  
410  	vertex->index = *last_index;
411  	vertex->scc_index = *last_index;
412  	(*last_index)++;
413  
414  	/* Explore neighbour vertices (receivers of the current vertex's fd). */
415  	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
416  		struct unix_vertex *next_vertex = unix_edge_successor(edge);
417  
418  		if (!next_vertex)
419  			continue;
420  
421  		if (next_vertex->index == unix_vertex_unvisited_index) {
422  			/* Iterative deepening depth first search
423  			 *
424  			 *   1. Push a forward edge to edge_stack and set
425  			 *      the successor to vertex for the next iteration.
426  			 */
427  			list_add(&edge->stack_entry, &edge_stack);
428  
429  			vertex = next_vertex;
430  			goto next_vertex;
431  
432  			/*   2. Pop the edge directed to the current vertex
433  			 *      and restore the ancestor for backtracking.
434  			 */
435  prev_vertex:
436  			edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
437  			list_del_init(&edge->stack_entry);
438  
439  			next_vertex = vertex;
440  			vertex = edge->predecessor->vertex;
441  
442  			/* If the successor has a smaller scc_index, two vertices
443  			 * are in the same SCC, so propagate the smaller scc_index
444  			 * to skip SCC finalisation.
445  			 */
446  			vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
447  		} else if (next_vertex->index != unix_vertex_grouped_index) {
448  			/* Loop detected by a back/cross edge.
449  			 *
450  			 * The successor is on vertex_stack, so two vertices are in
451  			 * the same SCC.  If the successor has a smaller *scc_index*,
452  			 * propagate it to skip SCC finalisation.
453  			 */
454  			vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
455  		} else {
456  			/* The successor was already grouped as another SCC */
457  		}
458  	}
459  
460  	if (vertex->index == vertex->scc_index) {
461  		struct unix_vertex *v;
462  		struct list_head scc;
463  		bool scc_dead = true;
464  
465  		/* SCC finalised.
466  		 *
467  		 * If the scc_index was not updated, all the vertices above on
468  		 * vertex_stack are in the same SCC.  Group them using scc_entry.
469  		 */
470  		__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
471  
472  		list_for_each_entry_reverse(v, &scc, scc_entry) {
473  			/* Don't restart DFS from this vertex in unix_walk_scc(). */
474  			list_move_tail(&v->entry, &unix_visited_vertices);
475  
476  			/* Mark vertex as off-stack. */
477  			v->index = unix_vertex_grouped_index;
478  
479  			if (scc_dead)
480  				scc_dead = unix_vertex_dead(v);
481  		}
482  
483  		if (scc_dead)
484  			unix_collect_skb(&scc, hitlist);
485  		else if (!unix_graph_maybe_cyclic)
486  			unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
487  
488  		list_del(&scc);
489  	}
490  
491  	/* Need backtracking ? */
492  	if (!list_empty(&edge_stack))
493  		goto prev_vertex;
494  }
495  
unix_walk_scc(struct sk_buff_head * hitlist)496  static void unix_walk_scc(struct sk_buff_head *hitlist)
497  {
498  	unsigned long last_index = UNIX_VERTEX_INDEX_START;
499  
500  	unix_graph_maybe_cyclic = false;
501  
502  	/* Visit every vertex exactly once.
503  	 * __unix_walk_scc() moves visited vertices to unix_visited_vertices.
504  	 */
505  	while (!list_empty(&unix_unvisited_vertices)) {
506  		struct unix_vertex *vertex;
507  
508  		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
509  		__unix_walk_scc(vertex, &last_index, hitlist);
510  	}
511  
512  	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
513  	swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
514  
515  	unix_graph_grouped = true;
516  }
517  
unix_walk_scc_fast(struct sk_buff_head * hitlist)518  static void unix_walk_scc_fast(struct sk_buff_head *hitlist)
519  {
520  	unix_graph_maybe_cyclic = false;
521  
522  	while (!list_empty(&unix_unvisited_vertices)) {
523  		struct unix_vertex *vertex;
524  		struct list_head scc;
525  		bool scc_dead = true;
526  
527  		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
528  		list_add(&scc, &vertex->scc_entry);
529  
530  		list_for_each_entry_reverse(vertex, &scc, scc_entry) {
531  			list_move_tail(&vertex->entry, &unix_visited_vertices);
532  
533  			if (scc_dead)
534  				scc_dead = unix_vertex_dead(vertex);
535  		}
536  
537  		if (scc_dead)
538  			unix_collect_skb(&scc, hitlist);
539  		else if (!unix_graph_maybe_cyclic)
540  			unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
541  
542  		list_del(&scc);
543  	}
544  
545  	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
546  }
547  
548  static bool gc_in_progress;
549  
__unix_gc(struct work_struct * work)550  static void __unix_gc(struct work_struct *work)
551  {
552  	struct sk_buff_head hitlist;
553  	struct sk_buff *skb;
554  
555  	spin_lock(&unix_gc_lock);
556  
557  	if (!unix_graph_maybe_cyclic) {
558  		spin_unlock(&unix_gc_lock);
559  		goto skip_gc;
560  	}
561  
562  	__skb_queue_head_init(&hitlist);
563  
564  	if (unix_graph_grouped)
565  		unix_walk_scc_fast(&hitlist);
566  	else
567  		unix_walk_scc(&hitlist);
568  
569  	spin_unlock(&unix_gc_lock);
570  
571  	skb_queue_walk(&hitlist, skb) {
572  		if (UNIXCB(skb).fp)
573  			UNIXCB(skb).fp->dead = true;
574  	}
575  
576  	__skb_queue_purge(&hitlist);
577  skip_gc:
578  	WRITE_ONCE(gc_in_progress, false);
579  }
580  
581  static DECLARE_WORK(unix_gc_work, __unix_gc);
582  
unix_gc(void)583  void unix_gc(void)
584  {
585  	WRITE_ONCE(gc_in_progress, true);
586  	queue_work(system_unbound_wq, &unix_gc_work);
587  }
588  
589  #define UNIX_INFLIGHT_TRIGGER_GC 16000
590  #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
591  
wait_for_unix_gc(struct scm_fp_list * fpl)592  void wait_for_unix_gc(struct scm_fp_list *fpl)
593  {
594  	/* If number of inflight sockets is insane,
595  	 * force a garbage collect right now.
596  	 *
597  	 * Paired with the WRITE_ONCE() in unix_inflight(),
598  	 * unix_notinflight(), and __unix_gc().
599  	 */
600  	if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
601  	    !READ_ONCE(gc_in_progress))
602  		unix_gc();
603  
604  	/* Penalise users who want to send AF_UNIX sockets
605  	 * but whose sockets have not been received yet.
606  	 */
607  	if (!fpl || !fpl->count_unix ||
608  	    READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
609  		return;
610  
611  	if (READ_ONCE(gc_in_progress))
612  		flush_work(&unix_gc_work);
613  }
614