1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains code to reset and initialize USB host controllers.
4  * Some of it includes work-arounds for PCI hardware and BIOS quirks.
5  * It may need to run early during booting -- before USB would normally
6  * initialize -- to ensure that Linux doesn't use any legacy modes.
7  *
8  *  Copyright (c) 1999 Martin Mares <mj@ucw.cz>
9  *  (and others)
10  */
11 
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/of.h>
20 #include <linux/iopoll.h>
21 
22 #include "pci-quirks.h"
23 #include "xhci-ext-caps.h"
24 
25 
26 #define UHCI_USBLEGSUP		0xc0		/* legacy support */
27 #define UHCI_USBCMD		0		/* command register */
28 #define UHCI_USBINTR		4		/* interrupt register */
29 #define UHCI_USBLEGSUP_RWC	0x8f00		/* the R/WC bits */
30 #define UHCI_USBLEGSUP_RO	0x5040		/* R/O and reserved bits */
31 #define UHCI_USBCMD_RUN		0x0001		/* RUN/STOP bit */
32 #define UHCI_USBCMD_HCRESET	0x0002		/* Host Controller reset */
33 #define UHCI_USBCMD_EGSM	0x0008		/* Global Suspend Mode */
34 #define UHCI_USBCMD_CONFIGURE	0x0040		/* Config Flag */
35 #define UHCI_USBINTR_RESUME	0x0002		/* Resume interrupt enable */
36 
37 #define OHCI_CONTROL		0x04
38 #define OHCI_CMDSTATUS		0x08
39 #define OHCI_INTRSTATUS		0x0c
40 #define OHCI_INTRENABLE		0x10
41 #define OHCI_INTRDISABLE	0x14
42 #define OHCI_FMINTERVAL		0x34
43 #define OHCI_HCFS		(3 << 6)	/* hc functional state */
44 #define OHCI_HCR		(1 << 0)	/* host controller reset */
45 #define OHCI_OCR		(1 << 3)	/* ownership change request */
46 #define OHCI_CTRL_RWC		(1 << 9)	/* remote wakeup connected */
47 #define OHCI_CTRL_IR		(1 << 8)	/* interrupt routing */
48 #define OHCI_INTR_OC		(1 << 30)	/* ownership change */
49 
50 #define EHCI_HCC_PARAMS		0x08		/* extended capabilities */
51 #define EHCI_USBCMD		0		/* command register */
52 #define EHCI_USBCMD_RUN		(1 << 0)	/* RUN/STOP bit */
53 #define EHCI_USBSTS		4		/* status register */
54 #define EHCI_USBSTS_HALTED	(1 << 12)	/* HCHalted bit */
55 #define EHCI_USBINTR		8		/* interrupt register */
56 #define EHCI_CONFIGFLAG		0x40		/* configured flag register */
57 #define EHCI_USBLEGSUP		0		/* legacy support register */
58 #define EHCI_USBLEGSUP_BIOS	(1 << 16)	/* BIOS semaphore */
59 #define EHCI_USBLEGSUP_OS	(1 << 24)	/* OS semaphore */
60 #define EHCI_USBLEGCTLSTS	4		/* legacy control/status */
61 #define EHCI_USBLEGCTLSTS_SOOE	(1 << 13)	/* SMI on ownership change */
62 
63 /* ASMEDIA quirk use */
64 #define ASMT_DATA_WRITE0_REG	0xF8
65 #define ASMT_DATA_WRITE1_REG	0xFC
66 #define ASMT_CONTROL_REG	0xE0
67 #define ASMT_CONTROL_WRITE_BIT	0x02
68 #define ASMT_WRITEREG_CMD	0x10423
69 #define ASMT_FLOWCTL_ADDR	0xFA30
70 #define ASMT_FLOWCTL_DATA	0xBA
71 #define ASMT_PSEUDO_DATA	0
72 
73 /* Intel quirk use */
74 #define USB_INTEL_XUSB2PR      0xD0
75 #define USB_INTEL_USB2PRM      0xD4
76 #define USB_INTEL_USB3_PSSEN   0xD8
77 #define USB_INTEL_USB3PRM      0xDC
78 
79 #ifdef CONFIG_USB_PCI_AMD
80 /* AMD quirk use */
81 #define	AB_REG_BAR_LOW		0xe0
82 #define	AB_REG_BAR_HIGH		0xe1
83 #define	AB_REG_BAR_SB700	0xf0
84 #define	AB_INDX(addr)		((addr) + 0x00)
85 #define	AB_DATA(addr)		((addr) + 0x04)
86 #define	AX_INDXC		0x30
87 #define	AX_DATAC		0x34
88 
89 #define PT_ADDR_INDX		0xE8
90 #define PT_READ_INDX		0xE4
91 #define PT_SIG_1_ADDR		0xA520
92 #define PT_SIG_2_ADDR		0xA521
93 #define PT_SIG_3_ADDR		0xA522
94 #define PT_SIG_4_ADDR		0xA523
95 #define PT_SIG_1_DATA		0x78
96 #define PT_SIG_2_DATA		0x56
97 #define PT_SIG_3_DATA		0x34
98 #define PT_SIG_4_DATA		0x12
99 #define PT4_P1_REG		0xB521
100 #define PT4_P2_REG		0xB522
101 #define PT2_P1_REG		0xD520
102 #define PT2_P2_REG		0xD521
103 #define PT1_P1_REG		0xD522
104 #define PT1_P2_REG		0xD523
105 
106 #define	NB_PCIE_INDX_ADDR	0xe0
107 #define	NB_PCIE_INDX_DATA	0xe4
108 #define	PCIE_P_CNTL		0x10040
109 #define	BIF_NB			0x10002
110 #define	NB_PIF0_PWRDOWN_0	0x01100012
111 #define	NB_PIF0_PWRDOWN_1	0x01100013
112 
113 /*
114  * amd_chipset_gen values represent AMD different chipset generations
115  */
116 enum amd_chipset_gen {
117 	NOT_AMD_CHIPSET = 0,
118 	AMD_CHIPSET_SB600,
119 	AMD_CHIPSET_SB700,
120 	AMD_CHIPSET_SB800,
121 	AMD_CHIPSET_HUDSON2,
122 	AMD_CHIPSET_BOLTON,
123 	AMD_CHIPSET_YANGTZE,
124 	AMD_CHIPSET_TAISHAN,
125 	AMD_CHIPSET_UNKNOWN,
126 };
127 
128 struct amd_chipset_type {
129 	enum amd_chipset_gen gen;
130 	u8 rev;
131 };
132 
133 static struct amd_chipset_info {
134 	struct pci_dev	*nb_dev;
135 	struct pci_dev	*smbus_dev;
136 	int nb_type;
137 	struct amd_chipset_type sb_type;
138 	int isoc_reqs;
139 	int probe_count;
140 	bool need_pll_quirk;
141 } amd_chipset;
142 
143 static DEFINE_SPINLOCK(amd_lock);
144 
145 /*
146  * amd_chipset_sb_type_init - initialize amd chipset southbridge type
147  *
148  * AMD FCH/SB generation and revision is identified by SMBus controller
149  * vendor, device and revision IDs.
150  *
151  * Returns: 1 if it is an AMD chipset, 0 otherwise.
152  */
amd_chipset_sb_type_init(struct amd_chipset_info * pinfo)153 static int amd_chipset_sb_type_init(struct amd_chipset_info *pinfo)
154 {
155 	u8 rev = 0;
156 	pinfo->sb_type.gen = AMD_CHIPSET_UNKNOWN;
157 
158 	pinfo->smbus_dev = pci_get_device(PCI_VENDOR_ID_ATI,
159 			PCI_DEVICE_ID_ATI_SBX00_SMBUS, NULL);
160 	if (pinfo->smbus_dev) {
161 		rev = pinfo->smbus_dev->revision;
162 		if (rev >= 0x10 && rev <= 0x1f)
163 			pinfo->sb_type.gen = AMD_CHIPSET_SB600;
164 		else if (rev >= 0x30 && rev <= 0x3f)
165 			pinfo->sb_type.gen = AMD_CHIPSET_SB700;
166 		else if (rev >= 0x40 && rev <= 0x4f)
167 			pinfo->sb_type.gen = AMD_CHIPSET_SB800;
168 	} else {
169 		pinfo->smbus_dev = pci_get_device(PCI_VENDOR_ID_AMD,
170 				PCI_DEVICE_ID_AMD_HUDSON2_SMBUS, NULL);
171 
172 		if (pinfo->smbus_dev) {
173 			rev = pinfo->smbus_dev->revision;
174 			if (rev >= 0x11 && rev <= 0x14)
175 				pinfo->sb_type.gen = AMD_CHIPSET_HUDSON2;
176 			else if (rev >= 0x15 && rev <= 0x18)
177 				pinfo->sb_type.gen = AMD_CHIPSET_BOLTON;
178 			else if (rev >= 0x39 && rev <= 0x3a)
179 				pinfo->sb_type.gen = AMD_CHIPSET_YANGTZE;
180 		} else {
181 			pinfo->smbus_dev = pci_get_device(PCI_VENDOR_ID_AMD,
182 							  0x145c, NULL);
183 			if (pinfo->smbus_dev) {
184 				rev = pinfo->smbus_dev->revision;
185 				pinfo->sb_type.gen = AMD_CHIPSET_TAISHAN;
186 			} else {
187 				pinfo->sb_type.gen = NOT_AMD_CHIPSET;
188 				return 0;
189 			}
190 		}
191 	}
192 	pinfo->sb_type.rev = rev;
193 	return 1;
194 }
195 
sb800_prefetch(struct device * dev,int on)196 void sb800_prefetch(struct device *dev, int on)
197 {
198 	u16 misc;
199 	struct pci_dev *pdev = to_pci_dev(dev);
200 
201 	pci_read_config_word(pdev, 0x50, &misc);
202 	if (on == 0)
203 		pci_write_config_word(pdev, 0x50, misc & 0xfcff);
204 	else
205 		pci_write_config_word(pdev, 0x50, misc | 0x0300);
206 }
207 EXPORT_SYMBOL_GPL(sb800_prefetch);
208 
usb_amd_find_chipset_info(void)209 static void usb_amd_find_chipset_info(void)
210 {
211 	unsigned long flags;
212 	struct amd_chipset_info info = { };
213 
214 	spin_lock_irqsave(&amd_lock, flags);
215 
216 	/* probe only once */
217 	if (amd_chipset.probe_count > 0) {
218 		amd_chipset.probe_count++;
219 		spin_unlock_irqrestore(&amd_lock, flags);
220 		return;
221 	}
222 	spin_unlock_irqrestore(&amd_lock, flags);
223 
224 	if (!amd_chipset_sb_type_init(&info)) {
225 		goto commit;
226 	}
227 
228 	switch (info.sb_type.gen) {
229 	case AMD_CHIPSET_SB700:
230 		info.need_pll_quirk = info.sb_type.rev <= 0x3B;
231 		break;
232 	case AMD_CHIPSET_SB800:
233 	case AMD_CHIPSET_HUDSON2:
234 	case AMD_CHIPSET_BOLTON:
235 		info.need_pll_quirk = true;
236 		break;
237 	default:
238 		info.need_pll_quirk = false;
239 		break;
240 	}
241 
242 	if (!info.need_pll_quirk) {
243 		if (info.smbus_dev) {
244 			pci_dev_put(info.smbus_dev);
245 			info.smbus_dev = NULL;
246 		}
247 		goto commit;
248 	}
249 
250 	info.nb_dev = pci_get_device(PCI_VENDOR_ID_AMD, 0x9601, NULL);
251 	if (info.nb_dev) {
252 		info.nb_type = 1;
253 	} else {
254 		info.nb_dev = pci_get_device(PCI_VENDOR_ID_AMD, 0x1510, NULL);
255 		if (info.nb_dev) {
256 			info.nb_type = 2;
257 		} else {
258 			info.nb_dev = pci_get_device(PCI_VENDOR_ID_AMD,
259 						     0x9600, NULL);
260 			if (info.nb_dev)
261 				info.nb_type = 3;
262 		}
263 	}
264 
265 	printk(KERN_DEBUG "QUIRK: Enable AMD PLL fix\n");
266 
267 commit:
268 
269 	spin_lock_irqsave(&amd_lock, flags);
270 	if (amd_chipset.probe_count > 0) {
271 		/* race - someone else was faster - drop devices */
272 
273 		/* Mark that we where here */
274 		amd_chipset.probe_count++;
275 
276 		spin_unlock_irqrestore(&amd_lock, flags);
277 
278 		pci_dev_put(info.nb_dev);
279 		pci_dev_put(info.smbus_dev);
280 
281 	} else {
282 		/* no race - commit the result */
283 		info.probe_count++;
284 		amd_chipset = info;
285 		spin_unlock_irqrestore(&amd_lock, flags);
286 	}
287 }
288 
usb_hcd_amd_remote_wakeup_quirk(struct pci_dev * pdev)289 int usb_hcd_amd_remote_wakeup_quirk(struct pci_dev *pdev)
290 {
291 	/* Make sure amd chipset type has already been initialized */
292 	usb_amd_find_chipset_info();
293 	if (amd_chipset.sb_type.gen == AMD_CHIPSET_YANGTZE ||
294 	    amd_chipset.sb_type.gen == AMD_CHIPSET_TAISHAN) {
295 		dev_dbg(&pdev->dev, "QUIRK: Enable AMD remote wakeup fix\n");
296 		return 1;
297 	}
298 	return 0;
299 }
300 EXPORT_SYMBOL_GPL(usb_hcd_amd_remote_wakeup_quirk);
301 
usb_amd_hang_symptom_quirk(void)302 bool usb_amd_hang_symptom_quirk(void)
303 {
304 	u8 rev;
305 
306 	usb_amd_find_chipset_info();
307 	rev = amd_chipset.sb_type.rev;
308 	/* SB600 and old version of SB700 have hang symptom bug */
309 	return amd_chipset.sb_type.gen == AMD_CHIPSET_SB600 ||
310 			(amd_chipset.sb_type.gen == AMD_CHIPSET_SB700 &&
311 			 rev >= 0x3a && rev <= 0x3b);
312 }
313 EXPORT_SYMBOL_GPL(usb_amd_hang_symptom_quirk);
314 
usb_amd_prefetch_quirk(void)315 bool usb_amd_prefetch_quirk(void)
316 {
317 	usb_amd_find_chipset_info();
318 	/* SB800 needs pre-fetch fix */
319 	return amd_chipset.sb_type.gen == AMD_CHIPSET_SB800;
320 }
321 EXPORT_SYMBOL_GPL(usb_amd_prefetch_quirk);
322 
usb_amd_quirk_pll_check(void)323 bool usb_amd_quirk_pll_check(void)
324 {
325 	usb_amd_find_chipset_info();
326 	return amd_chipset.need_pll_quirk;
327 }
328 EXPORT_SYMBOL_GPL(usb_amd_quirk_pll_check);
329 
330 /*
331  * The hardware normally enables the A-link power management feature, which
332  * lets the system lower the power consumption in idle states.
333  *
334  * This USB quirk prevents the link going into that lower power state
335  * during isochronous transfers.
336  *
337  * Without this quirk, isochronous stream on OHCI/EHCI/xHCI controllers of
338  * some AMD platforms may stutter or have breaks occasionally.
339  */
usb_amd_quirk_pll(int disable)340 static void usb_amd_quirk_pll(int disable)
341 {
342 	u32 addr, addr_low, addr_high, val;
343 	u32 bit = disable ? 0 : 1;
344 	unsigned long flags;
345 
346 	spin_lock_irqsave(&amd_lock, flags);
347 
348 	if (disable) {
349 		amd_chipset.isoc_reqs++;
350 		if (amd_chipset.isoc_reqs > 1) {
351 			spin_unlock_irqrestore(&amd_lock, flags);
352 			return;
353 		}
354 	} else {
355 		amd_chipset.isoc_reqs--;
356 		if (amd_chipset.isoc_reqs > 0) {
357 			spin_unlock_irqrestore(&amd_lock, flags);
358 			return;
359 		}
360 	}
361 
362 	if (amd_chipset.sb_type.gen == AMD_CHIPSET_SB800 ||
363 			amd_chipset.sb_type.gen == AMD_CHIPSET_HUDSON2 ||
364 			amd_chipset.sb_type.gen == AMD_CHIPSET_BOLTON) {
365 		outb_p(AB_REG_BAR_LOW, 0xcd6);
366 		addr_low = inb_p(0xcd7);
367 		outb_p(AB_REG_BAR_HIGH, 0xcd6);
368 		addr_high = inb_p(0xcd7);
369 		addr = addr_high << 8 | addr_low;
370 
371 		outl_p(0x30, AB_INDX(addr));
372 		outl_p(0x40, AB_DATA(addr));
373 		outl_p(0x34, AB_INDX(addr));
374 		val = inl_p(AB_DATA(addr));
375 	} else if (amd_chipset.sb_type.gen == AMD_CHIPSET_SB700 &&
376 			amd_chipset.sb_type.rev <= 0x3b) {
377 		pci_read_config_dword(amd_chipset.smbus_dev,
378 					AB_REG_BAR_SB700, &addr);
379 		outl(AX_INDXC, AB_INDX(addr));
380 		outl(0x40, AB_DATA(addr));
381 		outl(AX_DATAC, AB_INDX(addr));
382 		val = inl(AB_DATA(addr));
383 	} else {
384 		spin_unlock_irqrestore(&amd_lock, flags);
385 		return;
386 	}
387 
388 	if (disable) {
389 		val &= ~0x08;
390 		val |= (1 << 4) | (1 << 9);
391 	} else {
392 		val |= 0x08;
393 		val &= ~((1 << 4) | (1 << 9));
394 	}
395 	outl_p(val, AB_DATA(addr));
396 
397 	if (!amd_chipset.nb_dev) {
398 		spin_unlock_irqrestore(&amd_lock, flags);
399 		return;
400 	}
401 
402 	if (amd_chipset.nb_type == 1 || amd_chipset.nb_type == 3) {
403 		addr = PCIE_P_CNTL;
404 		pci_write_config_dword(amd_chipset.nb_dev,
405 					NB_PCIE_INDX_ADDR, addr);
406 		pci_read_config_dword(amd_chipset.nb_dev,
407 					NB_PCIE_INDX_DATA, &val);
408 
409 		val &= ~(1 | (1 << 3) | (1 << 4) | (1 << 9) | (1 << 12));
410 		val |= bit | (bit << 3) | (bit << 12);
411 		val |= ((!bit) << 4) | ((!bit) << 9);
412 		pci_write_config_dword(amd_chipset.nb_dev,
413 					NB_PCIE_INDX_DATA, val);
414 
415 		addr = BIF_NB;
416 		pci_write_config_dword(amd_chipset.nb_dev,
417 					NB_PCIE_INDX_ADDR, addr);
418 		pci_read_config_dword(amd_chipset.nb_dev,
419 					NB_PCIE_INDX_DATA, &val);
420 		val &= ~(1 << 8);
421 		val |= bit << 8;
422 
423 		pci_write_config_dword(amd_chipset.nb_dev,
424 					NB_PCIE_INDX_DATA, val);
425 	} else if (amd_chipset.nb_type == 2) {
426 		addr = NB_PIF0_PWRDOWN_0;
427 		pci_write_config_dword(amd_chipset.nb_dev,
428 					NB_PCIE_INDX_ADDR, addr);
429 		pci_read_config_dword(amd_chipset.nb_dev,
430 					NB_PCIE_INDX_DATA, &val);
431 		if (disable)
432 			val &= ~(0x3f << 7);
433 		else
434 			val |= 0x3f << 7;
435 
436 		pci_write_config_dword(amd_chipset.nb_dev,
437 					NB_PCIE_INDX_DATA, val);
438 
439 		addr = NB_PIF0_PWRDOWN_1;
440 		pci_write_config_dword(amd_chipset.nb_dev,
441 					NB_PCIE_INDX_ADDR, addr);
442 		pci_read_config_dword(amd_chipset.nb_dev,
443 					NB_PCIE_INDX_DATA, &val);
444 		if (disable)
445 			val &= ~(0x3f << 7);
446 		else
447 			val |= 0x3f << 7;
448 
449 		pci_write_config_dword(amd_chipset.nb_dev,
450 					NB_PCIE_INDX_DATA, val);
451 	}
452 
453 	spin_unlock_irqrestore(&amd_lock, flags);
454 	return;
455 }
456 
usb_amd_quirk_pll_disable(void)457 void usb_amd_quirk_pll_disable(void)
458 {
459 	usb_amd_quirk_pll(1);
460 }
461 EXPORT_SYMBOL_GPL(usb_amd_quirk_pll_disable);
462 
usb_amd_quirk_pll_enable(void)463 void usb_amd_quirk_pll_enable(void)
464 {
465 	usb_amd_quirk_pll(0);
466 }
467 EXPORT_SYMBOL_GPL(usb_amd_quirk_pll_enable);
468 
usb_amd_dev_put(void)469 void usb_amd_dev_put(void)
470 {
471 	struct pci_dev *nb, *smbus;
472 	unsigned long flags;
473 
474 	spin_lock_irqsave(&amd_lock, flags);
475 
476 	amd_chipset.probe_count--;
477 	if (amd_chipset.probe_count > 0) {
478 		spin_unlock_irqrestore(&amd_lock, flags);
479 		return;
480 	}
481 
482 	/* save them to pci_dev_put outside of spinlock */
483 	nb    = amd_chipset.nb_dev;
484 	smbus = amd_chipset.smbus_dev;
485 
486 	amd_chipset.nb_dev = NULL;
487 	amd_chipset.smbus_dev = NULL;
488 	amd_chipset.nb_type = 0;
489 	memset(&amd_chipset.sb_type, 0, sizeof(amd_chipset.sb_type));
490 	amd_chipset.isoc_reqs = 0;
491 	amd_chipset.need_pll_quirk = false;
492 
493 	spin_unlock_irqrestore(&amd_lock, flags);
494 
495 	pci_dev_put(nb);
496 	pci_dev_put(smbus);
497 }
498 EXPORT_SYMBOL_GPL(usb_amd_dev_put);
499 
500 /*
501  * Check if port is disabled in BIOS on AMD Promontory host.
502  * BIOS Disabled ports may wake on connect/disconnect and need
503  * driver workaround to keep them disabled.
504  * Returns true if port is marked disabled.
505  */
usb_amd_pt_check_port(struct device * device,int port)506 bool usb_amd_pt_check_port(struct device *device, int port)
507 {
508 	unsigned char value, port_shift;
509 	struct pci_dev *pdev;
510 	u16 reg;
511 
512 	pdev = to_pci_dev(device);
513 	pci_write_config_word(pdev, PT_ADDR_INDX, PT_SIG_1_ADDR);
514 
515 	pci_read_config_byte(pdev, PT_READ_INDX, &value);
516 	if (value != PT_SIG_1_DATA)
517 		return false;
518 
519 	pci_write_config_word(pdev, PT_ADDR_INDX, PT_SIG_2_ADDR);
520 
521 	pci_read_config_byte(pdev, PT_READ_INDX, &value);
522 	if (value != PT_SIG_2_DATA)
523 		return false;
524 
525 	pci_write_config_word(pdev, PT_ADDR_INDX, PT_SIG_3_ADDR);
526 
527 	pci_read_config_byte(pdev, PT_READ_INDX, &value);
528 	if (value != PT_SIG_3_DATA)
529 		return false;
530 
531 	pci_write_config_word(pdev, PT_ADDR_INDX, PT_SIG_4_ADDR);
532 
533 	pci_read_config_byte(pdev, PT_READ_INDX, &value);
534 	if (value != PT_SIG_4_DATA)
535 		return false;
536 
537 	/* Check disabled port setting, if bit is set port is enabled */
538 	switch (pdev->device) {
539 	case 0x43b9:
540 	case 0x43ba:
541 	/*
542 	 * device is AMD_PROMONTORYA_4(0x43b9) or PROMONTORYA_3(0x43ba)
543 	 * PT4_P1_REG bits[7..1] represents USB2.0 ports 6 to 0
544 	 * PT4_P2_REG bits[6..0] represents ports 13 to 7
545 	 */
546 		if (port > 6) {
547 			reg = PT4_P2_REG;
548 			port_shift = port - 7;
549 		} else {
550 			reg = PT4_P1_REG;
551 			port_shift = port + 1;
552 		}
553 		break;
554 	case 0x43bb:
555 	/*
556 	 * device is AMD_PROMONTORYA_2(0x43bb)
557 	 * PT2_P1_REG bits[7..5] represents USB2.0 ports 2 to 0
558 	 * PT2_P2_REG bits[5..0] represents ports 9 to 3
559 	 */
560 		if (port > 2) {
561 			reg = PT2_P2_REG;
562 			port_shift = port - 3;
563 		} else {
564 			reg = PT2_P1_REG;
565 			port_shift = port + 5;
566 		}
567 		break;
568 	case 0x43bc:
569 	/*
570 	 * device is AMD_PROMONTORYA_1(0x43bc)
571 	 * PT1_P1_REG[7..4] represents USB2.0 ports 3 to 0
572 	 * PT1_P2_REG[5..0] represents ports 9 to 4
573 	 */
574 		if (port > 3) {
575 			reg = PT1_P2_REG;
576 			port_shift = port - 4;
577 		} else {
578 			reg = PT1_P1_REG;
579 			port_shift = port + 4;
580 		}
581 		break;
582 	default:
583 		return false;
584 	}
585 	pci_write_config_word(pdev, PT_ADDR_INDX, reg);
586 	pci_read_config_byte(pdev, PT_READ_INDX, &value);
587 
588 	return !(value & BIT(port_shift));
589 }
590 EXPORT_SYMBOL_GPL(usb_amd_pt_check_port);
591 #endif /* CONFIG_USB_PCI_AMD */
592 
usb_asmedia_wait_write(struct pci_dev * pdev)593 static int usb_asmedia_wait_write(struct pci_dev *pdev)
594 {
595 	unsigned long retry_count;
596 	unsigned char value;
597 
598 	for (retry_count = 1000; retry_count > 0; --retry_count) {
599 
600 		pci_read_config_byte(pdev, ASMT_CONTROL_REG, &value);
601 
602 		if (value == 0xff) {
603 			dev_err(&pdev->dev, "%s: check_ready ERROR", __func__);
604 			return -EIO;
605 		}
606 
607 		if ((value & ASMT_CONTROL_WRITE_BIT) == 0)
608 			return 0;
609 
610 		udelay(50);
611 	}
612 
613 	dev_warn(&pdev->dev, "%s: check_write_ready timeout", __func__);
614 	return -ETIMEDOUT;
615 }
616 
usb_asmedia_modifyflowcontrol(struct pci_dev * pdev)617 void usb_asmedia_modifyflowcontrol(struct pci_dev *pdev)
618 {
619 	if (usb_asmedia_wait_write(pdev) != 0)
620 		return;
621 
622 	/* send command and address to device */
623 	pci_write_config_dword(pdev, ASMT_DATA_WRITE0_REG, ASMT_WRITEREG_CMD);
624 	pci_write_config_dword(pdev, ASMT_DATA_WRITE1_REG, ASMT_FLOWCTL_ADDR);
625 	pci_write_config_byte(pdev, ASMT_CONTROL_REG, ASMT_CONTROL_WRITE_BIT);
626 
627 	if (usb_asmedia_wait_write(pdev) != 0)
628 		return;
629 
630 	/* send data to device */
631 	pci_write_config_dword(pdev, ASMT_DATA_WRITE0_REG, ASMT_FLOWCTL_DATA);
632 	pci_write_config_dword(pdev, ASMT_DATA_WRITE1_REG, ASMT_PSEUDO_DATA);
633 	pci_write_config_byte(pdev, ASMT_CONTROL_REG, ASMT_CONTROL_WRITE_BIT);
634 }
635 EXPORT_SYMBOL_GPL(usb_asmedia_modifyflowcontrol);
636 
io_type_enabled(struct pci_dev * pdev,unsigned int mask)637 static inline int io_type_enabled(struct pci_dev *pdev, unsigned int mask)
638 {
639 	u16 cmd;
640 
641 	return !pci_read_config_word(pdev, PCI_COMMAND, &cmd) && (cmd & mask);
642 }
643 
644 #define mmio_enabled(dev) io_type_enabled(dev, PCI_COMMAND_MEMORY)
645 
646 #if defined(CONFIG_HAS_IOPORT) && IS_ENABLED(CONFIG_USB_UHCI_HCD)
647 /*
648  * Make sure the controller is completely inactive, unable to
649  * generate interrupts or do DMA.
650  */
uhci_reset_hc(struct pci_dev * pdev,unsigned long base)651 void uhci_reset_hc(struct pci_dev *pdev, unsigned long base)
652 {
653 	/* Turn off PIRQ enable and SMI enable.  (This also turns off the
654 	 * BIOS's USB Legacy Support.)  Turn off all the R/WC bits too.
655 	 */
656 	pci_write_config_word(pdev, UHCI_USBLEGSUP, UHCI_USBLEGSUP_RWC);
657 
658 	/* Reset the HC - this will force us to get a
659 	 * new notification of any already connected
660 	 * ports due to the virtual disconnect that it
661 	 * implies.
662 	 */
663 	outw(UHCI_USBCMD_HCRESET, base + UHCI_USBCMD);
664 	mb();
665 	udelay(5);
666 	if (inw(base + UHCI_USBCMD) & UHCI_USBCMD_HCRESET)
667 		dev_warn(&pdev->dev, "HCRESET not completed yet!\n");
668 
669 	/* Just to be safe, disable interrupt requests and
670 	 * make sure the controller is stopped.
671 	 */
672 	outw(0, base + UHCI_USBINTR);
673 	outw(0, base + UHCI_USBCMD);
674 }
675 EXPORT_SYMBOL_GPL(uhci_reset_hc);
676 
677 /*
678  * Initialize a controller that was newly discovered or has just been
679  * resumed.  In either case we can't be sure of its previous state.
680  *
681  * Returns: 1 if the controller was reset, 0 otherwise.
682  */
uhci_check_and_reset_hc(struct pci_dev * pdev,unsigned long base)683 int uhci_check_and_reset_hc(struct pci_dev *pdev, unsigned long base)
684 {
685 	u16 legsup;
686 	unsigned int cmd, intr;
687 
688 	/*
689 	 * When restarting a suspended controller, we expect all the
690 	 * settings to be the same as we left them:
691 	 *
692 	 *	PIRQ and SMI disabled, no R/W bits set in USBLEGSUP;
693 	 *	Controller is stopped and configured with EGSM set;
694 	 *	No interrupts enabled except possibly Resume Detect.
695 	 *
696 	 * If any of these conditions are violated we do a complete reset.
697 	 */
698 	pci_read_config_word(pdev, UHCI_USBLEGSUP, &legsup);
699 	if (legsup & ~(UHCI_USBLEGSUP_RO | UHCI_USBLEGSUP_RWC)) {
700 		dev_dbg(&pdev->dev, "%s: legsup = 0x%04x\n",
701 				__func__, legsup);
702 		goto reset_needed;
703 	}
704 
705 	cmd = inw(base + UHCI_USBCMD);
706 	if ((cmd & UHCI_USBCMD_RUN) || !(cmd & UHCI_USBCMD_CONFIGURE) ||
707 			!(cmd & UHCI_USBCMD_EGSM)) {
708 		dev_dbg(&pdev->dev, "%s: cmd = 0x%04x\n",
709 				__func__, cmd);
710 		goto reset_needed;
711 	}
712 
713 	intr = inw(base + UHCI_USBINTR);
714 	if (intr & (~UHCI_USBINTR_RESUME)) {
715 		dev_dbg(&pdev->dev, "%s: intr = 0x%04x\n",
716 				__func__, intr);
717 		goto reset_needed;
718 	}
719 	return 0;
720 
721 reset_needed:
722 	dev_dbg(&pdev->dev, "Performing full reset\n");
723 	uhci_reset_hc(pdev, base);
724 	return 1;
725 }
726 EXPORT_SYMBOL_GPL(uhci_check_and_reset_hc);
727 
728 #define pio_enabled(dev) io_type_enabled(dev, PCI_COMMAND_IO)
729 
quirk_usb_handoff_uhci(struct pci_dev * pdev)730 static void quirk_usb_handoff_uhci(struct pci_dev *pdev)
731 {
732 	unsigned long base = 0;
733 	int i;
734 
735 	if (!pio_enabled(pdev))
736 		return;
737 
738 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
739 		if ((pci_resource_flags(pdev, i) & IORESOURCE_IO)) {
740 			base = pci_resource_start(pdev, i);
741 			break;
742 		}
743 
744 	if (base)
745 		uhci_check_and_reset_hc(pdev, base);
746 }
747 
748 #else /* defined(CONFIG_HAS_IOPORT && IS_ENABLED(CONFIG_USB_UHCI_HCD) */
749 
quirk_usb_handoff_uhci(struct pci_dev * pdev)750 static void quirk_usb_handoff_uhci(struct pci_dev *pdev) {}
751 
752 #endif /* defined(CONFIG_HAS_IOPORT && IS_ENABLED(CONFIG_USB_UHCI_HCD) */
753 
mmio_resource_enabled(struct pci_dev * pdev,int idx)754 static int mmio_resource_enabled(struct pci_dev *pdev, int idx)
755 {
756 	return pci_resource_start(pdev, idx) && mmio_enabled(pdev);
757 }
758 
quirk_usb_handoff_ohci(struct pci_dev * pdev)759 static void quirk_usb_handoff_ohci(struct pci_dev *pdev)
760 {
761 	void __iomem *base;
762 	u32 control;
763 	u32 fminterval = 0;
764 	bool no_fminterval = false;
765 	int cnt;
766 
767 	if (!mmio_resource_enabled(pdev, 0))
768 		return;
769 
770 	base = pci_ioremap_bar(pdev, 0);
771 	if (base == NULL)
772 		return;
773 
774 	/*
775 	 * ULi M5237 OHCI controller locks the whole system when accessing
776 	 * the OHCI_FMINTERVAL offset.
777 	 */
778 	if (pdev->vendor == PCI_VENDOR_ID_AL && pdev->device == 0x5237)
779 		no_fminterval = true;
780 
781 	control = readl(base + OHCI_CONTROL);
782 
783 /* On PA-RISC, PDC can leave IR set incorrectly; ignore it there. */
784 #ifdef __hppa__
785 #define	OHCI_CTRL_MASK		(OHCI_CTRL_RWC | OHCI_CTRL_IR)
786 #else
787 #define	OHCI_CTRL_MASK		OHCI_CTRL_RWC
788 
789 	if (control & OHCI_CTRL_IR) {
790 		int wait_time = 500; /* arbitrary; 5 seconds */
791 		writel(OHCI_INTR_OC, base + OHCI_INTRENABLE);
792 		writel(OHCI_OCR, base + OHCI_CMDSTATUS);
793 		while (wait_time > 0 &&
794 				readl(base + OHCI_CONTROL) & OHCI_CTRL_IR) {
795 			wait_time -= 10;
796 			msleep(10);
797 		}
798 		if (wait_time <= 0)
799 			dev_warn(&pdev->dev,
800 				 "OHCI: BIOS handoff failed (BIOS bug?) %08x\n",
801 				 readl(base + OHCI_CONTROL));
802 	}
803 #endif
804 
805 	/* disable interrupts */
806 	writel((u32) ~0, base + OHCI_INTRDISABLE);
807 
808 	/* Go into the USB_RESET state, preserving RWC (and possibly IR) */
809 	writel(control & OHCI_CTRL_MASK, base + OHCI_CONTROL);
810 	readl(base + OHCI_CONTROL);
811 
812 	/* software reset of the controller, preserving HcFmInterval */
813 	if (!no_fminterval)
814 		fminterval = readl(base + OHCI_FMINTERVAL);
815 
816 	writel(OHCI_HCR, base + OHCI_CMDSTATUS);
817 
818 	/* reset requires max 10 us delay */
819 	for (cnt = 30; cnt > 0; --cnt) {	/* ... allow extra time */
820 		if ((readl(base + OHCI_CMDSTATUS) & OHCI_HCR) == 0)
821 			break;
822 		udelay(1);
823 	}
824 
825 	if (!no_fminterval)
826 		writel(fminterval, base + OHCI_FMINTERVAL);
827 
828 	/* Now the controller is safely in SUSPEND and nothing can wake it up */
829 	iounmap(base);
830 }
831 
832 static const struct dmi_system_id ehci_dmi_nohandoff_table[] = {
833 	{
834 		/*  Pegatron Lucid (ExoPC) */
835 		.matches = {
836 			DMI_MATCH(DMI_BOARD_NAME, "EXOPG06411"),
837 			DMI_MATCH(DMI_BIOS_VERSION, "Lucid-CE-133"),
838 		},
839 	},
840 	{
841 		/*  Pegatron Lucid (Ordissimo AIRIS) */
842 		.matches = {
843 			DMI_MATCH(DMI_BOARD_NAME, "M11JB"),
844 			DMI_MATCH(DMI_BIOS_VERSION, "Lucid-"),
845 		},
846 	},
847 	{
848 		/*  Pegatron Lucid (Ordissimo) */
849 		.matches = {
850 			DMI_MATCH(DMI_BOARD_NAME, "Ordissimo"),
851 			DMI_MATCH(DMI_BIOS_VERSION, "Lucid-"),
852 		},
853 	},
854 	{
855 		/* HASEE E200 */
856 		.matches = {
857 			DMI_MATCH(DMI_BOARD_VENDOR, "HASEE"),
858 			DMI_MATCH(DMI_BOARD_NAME, "E210"),
859 			DMI_MATCH(DMI_BIOS_VERSION, "6.00"),
860 		},
861 	},
862 	{ }
863 };
864 
ehci_bios_handoff(struct pci_dev * pdev,void __iomem * op_reg_base,u32 cap,u8 offset)865 static void ehci_bios_handoff(struct pci_dev *pdev,
866 					void __iomem *op_reg_base,
867 					u32 cap, u8 offset)
868 {
869 	int try_handoff = 1, tried_handoff = 0;
870 
871 	/*
872 	 * The Pegatron Lucid tablet sporadically waits for 98 seconds trying
873 	 * the handoff on its unused controller.  Skip it.
874 	 *
875 	 * The HASEE E200 hangs when the semaphore is set (bugzilla #77021).
876 	 */
877 	if (pdev->vendor == 0x8086 && (pdev->device == 0x283a ||
878 			pdev->device == 0x27cc)) {
879 		if (dmi_check_system(ehci_dmi_nohandoff_table))
880 			try_handoff = 0;
881 	}
882 
883 	if (try_handoff && (cap & EHCI_USBLEGSUP_BIOS)) {
884 		dev_dbg(&pdev->dev, "EHCI: BIOS handoff\n");
885 
886 #if 0
887 /* aleksey_gorelov@phoenix.com reports that some systems need SMI forced on,
888  * but that seems dubious in general (the BIOS left it off intentionally)
889  * and is known to prevent some systems from booting.  so we won't do this
890  * unless maybe we can determine when we're on a system that needs SMI forced.
891  */
892 		/* BIOS workaround (?): be sure the pre-Linux code
893 		 * receives the SMI
894 		 */
895 		pci_read_config_dword(pdev, offset + EHCI_USBLEGCTLSTS, &val);
896 		pci_write_config_dword(pdev, offset + EHCI_USBLEGCTLSTS,
897 				       val | EHCI_USBLEGCTLSTS_SOOE);
898 #endif
899 
900 		/* some systems get upset if this semaphore is
901 		 * set for any other reason than forcing a BIOS
902 		 * handoff..
903 		 */
904 		pci_write_config_byte(pdev, offset + 3, 1);
905 	}
906 
907 	/* if boot firmware now owns EHCI, spin till it hands it over. */
908 	if (try_handoff) {
909 		int msec = 1000;
910 		while ((cap & EHCI_USBLEGSUP_BIOS) && (msec > 0)) {
911 			tried_handoff = 1;
912 			msleep(10);
913 			msec -= 10;
914 			pci_read_config_dword(pdev, offset, &cap);
915 		}
916 	}
917 
918 	if (cap & EHCI_USBLEGSUP_BIOS) {
919 		/* well, possibly buggy BIOS... try to shut it down,
920 		 * and hope nothing goes too wrong
921 		 */
922 		if (try_handoff)
923 			dev_warn(&pdev->dev,
924 				 "EHCI: BIOS handoff failed (BIOS bug?) %08x\n",
925 				 cap);
926 		pci_write_config_byte(pdev, offset + 2, 0);
927 	}
928 
929 	/* just in case, always disable EHCI SMIs */
930 	pci_write_config_dword(pdev, offset + EHCI_USBLEGCTLSTS, 0);
931 
932 	/* If the BIOS ever owned the controller then we can't expect
933 	 * any power sessions to remain intact.
934 	 */
935 	if (tried_handoff)
936 		writel(0, op_reg_base + EHCI_CONFIGFLAG);
937 }
938 
quirk_usb_disable_ehci(struct pci_dev * pdev)939 static void quirk_usb_disable_ehci(struct pci_dev *pdev)
940 {
941 	void __iomem *base, *op_reg_base;
942 	u32	hcc_params, cap, val;
943 	u8	offset, cap_length;
944 	int	wait_time, count = 256/4;
945 
946 	if (!mmio_resource_enabled(pdev, 0))
947 		return;
948 
949 	base = pci_ioremap_bar(pdev, 0);
950 	if (base == NULL)
951 		return;
952 
953 	cap_length = readb(base);
954 	op_reg_base = base + cap_length;
955 
956 	/* EHCI 0.96 and later may have "extended capabilities"
957 	 * spec section 5.1 explains the bios handoff, e.g. for
958 	 * booting from USB disk or using a usb keyboard
959 	 */
960 	hcc_params = readl(base + EHCI_HCC_PARAMS);
961 	offset = (hcc_params >> 8) & 0xff;
962 	while (offset && --count) {
963 		pci_read_config_dword(pdev, offset, &cap);
964 
965 		switch (cap & 0xff) {
966 		case 1:
967 			ehci_bios_handoff(pdev, op_reg_base, cap, offset);
968 			break;
969 		case 0: /* Illegal reserved cap, set cap=0 so we exit */
970 			cap = 0;
971 			fallthrough;
972 		default:
973 			dev_warn(&pdev->dev,
974 				 "EHCI: unrecognized capability %02x\n",
975 				 cap & 0xff);
976 		}
977 		offset = (cap >> 8) & 0xff;
978 	}
979 	if (!count)
980 		dev_printk(KERN_DEBUG, &pdev->dev, "EHCI: capability loop?\n");
981 
982 	/*
983 	 * halt EHCI & disable its interrupts in any case
984 	 */
985 	val = readl(op_reg_base + EHCI_USBSTS);
986 	if ((val & EHCI_USBSTS_HALTED) == 0) {
987 		val = readl(op_reg_base + EHCI_USBCMD);
988 		val &= ~EHCI_USBCMD_RUN;
989 		writel(val, op_reg_base + EHCI_USBCMD);
990 
991 		wait_time = 2000;
992 		do {
993 			writel(0x3f, op_reg_base + EHCI_USBSTS);
994 			udelay(100);
995 			wait_time -= 100;
996 			val = readl(op_reg_base + EHCI_USBSTS);
997 			if ((val == ~(u32)0) || (val & EHCI_USBSTS_HALTED)) {
998 				break;
999 			}
1000 		} while (wait_time > 0);
1001 	}
1002 	writel(0, op_reg_base + EHCI_USBINTR);
1003 	writel(0x3f, op_reg_base + EHCI_USBSTS);
1004 
1005 	iounmap(base);
1006 }
1007 
1008 /*
1009  * handshake - spin reading a register until handshake completes
1010  * @ptr: address of hc register to be read
1011  * @mask: bits to look at in result of read
1012  * @done: value of those bits when handshake succeeds
1013  * @wait_usec: timeout in microseconds
1014  * @delay_usec: delay in microseconds to wait between polling
1015  *
1016  * Polls a register every delay_usec microseconds.
1017  * Returns 0 when the mask bits have the value done.
1018  * Returns -ETIMEDOUT if this condition is not true after
1019  * wait_usec microseconds have passed.
1020  */
handshake(void __iomem * ptr,u32 mask,u32 done,int wait_usec,int delay_usec)1021 static int handshake(void __iomem *ptr, u32 mask, u32 done,
1022 		int wait_usec, int delay_usec)
1023 {
1024 	u32	result;
1025 
1026 	return readl_poll_timeout_atomic(ptr, result,
1027 					 ((result & mask) == done),
1028 					 delay_usec, wait_usec);
1029 }
1030 
1031 /*
1032  * Intel's Panther Point chipset has two host controllers (EHCI and xHCI) that
1033  * share some number of ports.  These ports can be switched between either
1034  * controller.  Not all of the ports under the EHCI host controller may be
1035  * switchable.
1036  *
1037  * The ports should be switched over to xHCI before PCI probes for any device
1038  * start.  This avoids active devices under EHCI being disconnected during the
1039  * port switchover, which could cause loss of data on USB storage devices, or
1040  * failed boot when the root file system is on a USB mass storage device and is
1041  * enumerated under EHCI first.
1042  *
1043  * We write into the xHC's PCI configuration space in some Intel-specific
1044  * registers to switch the ports over.  The USB 3.0 terminations and the USB
1045  * 2.0 data wires are switched separately.  We want to enable the SuperSpeed
1046  * terminations before switching the USB 2.0 wires over, so that USB 3.0
1047  * devices connect at SuperSpeed, rather than at USB 2.0 speeds.
1048  */
usb_enable_intel_xhci_ports(struct pci_dev * xhci_pdev)1049 void usb_enable_intel_xhci_ports(struct pci_dev *xhci_pdev)
1050 {
1051 	u32		ports_available;
1052 	bool		ehci_found = false;
1053 	struct pci_dev	*companion = NULL;
1054 
1055 	/* Sony VAIO t-series with subsystem device ID 90a8 is not capable of
1056 	 * switching ports from EHCI to xHCI
1057 	 */
1058 	if (xhci_pdev->subsystem_vendor == PCI_VENDOR_ID_SONY &&
1059 	    xhci_pdev->subsystem_device == 0x90a8)
1060 		return;
1061 
1062 	/* make sure an intel EHCI controller exists */
1063 	for_each_pci_dev(companion) {
1064 		if (companion->class == PCI_CLASS_SERIAL_USB_EHCI &&
1065 		    companion->vendor == PCI_VENDOR_ID_INTEL) {
1066 			ehci_found = true;
1067 			break;
1068 		}
1069 	}
1070 
1071 	if (!ehci_found)
1072 		return;
1073 
1074 	/* Don't switchover the ports if the user hasn't compiled the xHCI
1075 	 * driver.  Otherwise they will see "dead" USB ports that don't power
1076 	 * the devices.
1077 	 */
1078 	if (!IS_ENABLED(CONFIG_USB_XHCI_HCD)) {
1079 		dev_warn(&xhci_pdev->dev,
1080 			 "CONFIG_USB_XHCI_HCD is turned off, defaulting to EHCI.\n");
1081 		dev_warn(&xhci_pdev->dev,
1082 				"USB 3.0 devices will work at USB 2.0 speeds.\n");
1083 		usb_disable_xhci_ports(xhci_pdev);
1084 		return;
1085 	}
1086 
1087 	/* Read USB3PRM, the USB 3.0 Port Routing Mask Register
1088 	 * Indicate the ports that can be changed from OS.
1089 	 */
1090 	pci_read_config_dword(xhci_pdev, USB_INTEL_USB3PRM,
1091 			&ports_available);
1092 
1093 	dev_dbg(&xhci_pdev->dev, "Configurable ports to enable SuperSpeed: 0x%x\n",
1094 			ports_available);
1095 
1096 	/* Write USB3_PSSEN, the USB 3.0 Port SuperSpeed Enable
1097 	 * Register, to turn on SuperSpeed terminations for the
1098 	 * switchable ports.
1099 	 */
1100 	pci_write_config_dword(xhci_pdev, USB_INTEL_USB3_PSSEN,
1101 			ports_available);
1102 
1103 	pci_read_config_dword(xhci_pdev, USB_INTEL_USB3_PSSEN,
1104 			&ports_available);
1105 	dev_dbg(&xhci_pdev->dev,
1106 		"USB 3.0 ports that are now enabled under xHCI: 0x%x\n",
1107 		ports_available);
1108 
1109 	/* Read XUSB2PRM, xHCI USB 2.0 Port Routing Mask Register
1110 	 * Indicate the USB 2.0 ports to be controlled by the xHCI host.
1111 	 */
1112 
1113 	pci_read_config_dword(xhci_pdev, USB_INTEL_USB2PRM,
1114 			&ports_available);
1115 
1116 	dev_dbg(&xhci_pdev->dev, "Configurable USB 2.0 ports to hand over to xCHI: 0x%x\n",
1117 			ports_available);
1118 
1119 	/* Write XUSB2PR, the xHC USB 2.0 Port Routing Register, to
1120 	 * switch the USB 2.0 power and data lines over to the xHCI
1121 	 * host.
1122 	 */
1123 	pci_write_config_dword(xhci_pdev, USB_INTEL_XUSB2PR,
1124 			ports_available);
1125 
1126 	pci_read_config_dword(xhci_pdev, USB_INTEL_XUSB2PR,
1127 			&ports_available);
1128 	dev_dbg(&xhci_pdev->dev,
1129 		"USB 2.0 ports that are now switched over to xHCI: 0x%x\n",
1130 		ports_available);
1131 }
1132 EXPORT_SYMBOL_GPL(usb_enable_intel_xhci_ports);
1133 
usb_disable_xhci_ports(struct pci_dev * xhci_pdev)1134 void usb_disable_xhci_ports(struct pci_dev *xhci_pdev)
1135 {
1136 	pci_write_config_dword(xhci_pdev, USB_INTEL_USB3_PSSEN, 0x0);
1137 	pci_write_config_dword(xhci_pdev, USB_INTEL_XUSB2PR, 0x0);
1138 }
1139 EXPORT_SYMBOL_GPL(usb_disable_xhci_ports);
1140 
1141 /*
1142  * PCI Quirks for xHCI.
1143  *
1144  * Takes care of the handoff between the Pre-OS (i.e. BIOS) and the OS.
1145  * It signals to the BIOS that the OS wants control of the host controller,
1146  * and then waits 1 second for the BIOS to hand over control.
1147  * If we timeout, assume the BIOS is broken and take control anyway.
1148  */
quirk_usb_handoff_xhci(struct pci_dev * pdev)1149 static void quirk_usb_handoff_xhci(struct pci_dev *pdev)
1150 {
1151 	void __iomem *base;
1152 	int ext_cap_offset;
1153 	void __iomem *op_reg_base;
1154 	u32 val;
1155 	int timeout;
1156 	int len = pci_resource_len(pdev, 0);
1157 
1158 	if (!mmio_resource_enabled(pdev, 0))
1159 		return;
1160 
1161 	base = ioremap(pci_resource_start(pdev, 0), len);
1162 	if (base == NULL)
1163 		return;
1164 
1165 	/*
1166 	 * Find the Legacy Support Capability register -
1167 	 * this is optional for xHCI host controllers.
1168 	 */
1169 	ext_cap_offset = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_LEGACY);
1170 
1171 	if (!ext_cap_offset)
1172 		goto hc_init;
1173 
1174 	if ((ext_cap_offset + sizeof(val)) > len) {
1175 		/* We're reading garbage from the controller */
1176 		dev_warn(&pdev->dev, "xHCI controller failing to respond");
1177 		goto iounmap;
1178 	}
1179 	val = readl(base + ext_cap_offset);
1180 
1181 	/* Auto handoff never worked for these devices. Force it and continue */
1182 	if ((pdev->vendor == PCI_VENDOR_ID_TI && pdev->device == 0x8241) ||
1183 			(pdev->vendor == PCI_VENDOR_ID_RENESAS
1184 			 && pdev->device == 0x0014)) {
1185 		val = (val | XHCI_HC_OS_OWNED) & ~XHCI_HC_BIOS_OWNED;
1186 		writel(val, base + ext_cap_offset);
1187 	}
1188 
1189 	/* If the BIOS owns the HC, signal that the OS wants it, and wait */
1190 	if (val & XHCI_HC_BIOS_OWNED) {
1191 		writel(val | XHCI_HC_OS_OWNED, base + ext_cap_offset);
1192 
1193 		/* Wait for 1 second with 10 microsecond polling interval */
1194 		timeout = handshake(base + ext_cap_offset, XHCI_HC_BIOS_OWNED,
1195 				0, 1000000, 10);
1196 
1197 		/* Assume a buggy BIOS and take HC ownership anyway */
1198 		if (timeout) {
1199 			dev_warn(&pdev->dev,
1200 				 "xHCI BIOS handoff failed (BIOS bug ?) %08x\n",
1201 				 val);
1202 			writel(val & ~XHCI_HC_BIOS_OWNED, base + ext_cap_offset);
1203 		}
1204 	}
1205 
1206 	val = readl(base + ext_cap_offset + XHCI_LEGACY_CONTROL_OFFSET);
1207 	/* Mask off (turn off) any enabled SMIs */
1208 	val &= XHCI_LEGACY_DISABLE_SMI;
1209 	/* Mask all SMI events bits, RW1C */
1210 	val |= XHCI_LEGACY_SMI_EVENTS;
1211 	/* Disable any BIOS SMIs and clear all SMI events*/
1212 	writel(val, base + ext_cap_offset + XHCI_LEGACY_CONTROL_OFFSET);
1213 
1214 hc_init:
1215 	if (pdev->vendor == PCI_VENDOR_ID_INTEL)
1216 		usb_enable_intel_xhci_ports(pdev);
1217 
1218 	op_reg_base = base + XHCI_HC_LENGTH(readl(base));
1219 
1220 	/* Wait for the host controller to be ready before writing any
1221 	 * operational or runtime registers.  Wait 5 seconds and no more.
1222 	 */
1223 	timeout = handshake(op_reg_base + XHCI_STS_OFFSET, XHCI_STS_CNR, 0,
1224 			5000000, 10);
1225 	/* Assume a buggy HC and start HC initialization anyway */
1226 	if (timeout) {
1227 		val = readl(op_reg_base + XHCI_STS_OFFSET);
1228 		dev_warn(&pdev->dev,
1229 			 "xHCI HW not ready after 5 sec (HC bug?) status = 0x%x\n",
1230 			 val);
1231 	}
1232 
1233 	/* Send the halt and disable interrupts command */
1234 	val = readl(op_reg_base + XHCI_CMD_OFFSET);
1235 	val &= ~(XHCI_CMD_RUN | XHCI_IRQS);
1236 	writel(val, op_reg_base + XHCI_CMD_OFFSET);
1237 
1238 	/* Wait for the HC to halt - poll every 125 usec (one microframe). */
1239 	timeout = handshake(op_reg_base + XHCI_STS_OFFSET, XHCI_STS_HALT, 1,
1240 			XHCI_MAX_HALT_USEC, 125);
1241 	if (timeout) {
1242 		val = readl(op_reg_base + XHCI_STS_OFFSET);
1243 		dev_warn(&pdev->dev,
1244 			 "xHCI HW did not halt within %d usec status = 0x%x\n",
1245 			 XHCI_MAX_HALT_USEC, val);
1246 	}
1247 
1248 iounmap:
1249 	iounmap(base);
1250 }
1251 
quirk_usb_early_handoff(struct pci_dev * pdev)1252 static void quirk_usb_early_handoff(struct pci_dev *pdev)
1253 {
1254 	struct device_node *parent;
1255 	bool is_rpi;
1256 
1257 	/* Skip Netlogic mips SoC's internal PCI USB controller.
1258 	 * This device does not need/support EHCI/OHCI handoff
1259 	 */
1260 	if (pdev->vendor == 0x184e)	/* vendor Netlogic */
1261 		return;
1262 
1263 	/*
1264 	 * Bypass the Raspberry Pi 4 controller xHCI controller, things are
1265 	 * taken care of by the board's co-processor.
1266 	 */
1267 	if (pdev->vendor == PCI_VENDOR_ID_VIA && pdev->device == 0x3483) {
1268 		parent = of_get_parent(pdev->bus->dev.of_node);
1269 		is_rpi = of_device_is_compatible(parent, "brcm,bcm2711-pcie");
1270 		of_node_put(parent);
1271 		if (is_rpi)
1272 			return;
1273 	}
1274 
1275 	if (pdev->class != PCI_CLASS_SERIAL_USB_UHCI &&
1276 			pdev->class != PCI_CLASS_SERIAL_USB_OHCI &&
1277 			pdev->class != PCI_CLASS_SERIAL_USB_EHCI &&
1278 			pdev->class != PCI_CLASS_SERIAL_USB_XHCI)
1279 		return;
1280 
1281 	if (pci_enable_device(pdev) < 0) {
1282 		dev_warn(&pdev->dev,
1283 			 "Can't enable PCI device, BIOS handoff failed.\n");
1284 		return;
1285 	}
1286 	if (pdev->class == PCI_CLASS_SERIAL_USB_UHCI)
1287 		quirk_usb_handoff_uhci(pdev);
1288 	else if (pdev->class == PCI_CLASS_SERIAL_USB_OHCI)
1289 		quirk_usb_handoff_ohci(pdev);
1290 	else if (pdev->class == PCI_CLASS_SERIAL_USB_EHCI)
1291 		quirk_usb_disable_ehci(pdev);
1292 	else if (pdev->class == PCI_CLASS_SERIAL_USB_XHCI)
1293 		quirk_usb_handoff_xhci(pdev);
1294 	pci_disable_device(pdev);
1295 }
1296 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID,
1297 			PCI_CLASS_SERIAL_USB, 8, quirk_usb_early_handoff);
1298