1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * INET		An implementation of the TCP/IP protocol suite for the LINUX
4   *		operating system.  INET is implemented using the  BSD Socket
5   *		interface as the means of communication with the user level.
6   *
7   *		The User Datagram Protocol (UDP).
8   *
9   * Authors:	Ross Biro
10   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11   *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12   *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13   *		Hirokazu Takahashi, <taka@valinux.co.jp>
14   *
15   * Fixes:
16   *		Alan Cox	:	verify_area() calls
17   *		Alan Cox	: 	stopped close while in use off icmp
18   *					messages. Not a fix but a botch that
19   *					for udp at least is 'valid'.
20   *		Alan Cox	:	Fixed icmp handling properly
21   *		Alan Cox	: 	Correct error for oversized datagrams
22   *		Alan Cox	:	Tidied select() semantics.
23   *		Alan Cox	:	udp_err() fixed properly, also now
24   *					select and read wake correctly on errors
25   *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26   *		Alan Cox	:	UDP can count its memory
27   *		Alan Cox	:	send to an unknown connection causes
28   *					an ECONNREFUSED off the icmp, but
29   *					does NOT close.
30   *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31   *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32   *					bug no longer crashes it.
33   *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34   *		Alan Cox	:	Uses skb_free_datagram
35   *		Alan Cox	:	Added get/set sockopt support.
36   *		Alan Cox	:	Broadcasting without option set returns EACCES.
37   *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38   *		Alan Cox	:	Use ip_tos and ip_ttl
39   *		Alan Cox	:	SNMP Mibs
40   *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41   *		Matt Dillon	:	UDP length checks.
42   *		Alan Cox	:	Smarter af_inet used properly.
43   *		Alan Cox	:	Use new kernel side addressing.
44   *		Alan Cox	:	Incorrect return on truncated datagram receive.
45   *	Arnt Gulbrandsen 	:	New udp_send and stuff
46   *		Alan Cox	:	Cache last socket
47   *		Alan Cox	:	Route cache
48   *		Jon Peatfield	:	Minor efficiency fix to sendto().
49   *		Mike Shaver	:	RFC1122 checks.
50   *		Alan Cox	:	Nonblocking error fix.
51   *	Willy Konynenberg	:	Transparent proxying support.
52   *		Mike McLagan	:	Routing by source
53   *		David S. Miller	:	New socket lookup architecture.
54   *					Last socket cache retained as it
55   *					does have a high hit rate.
56   *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57   *		Andi Kleen	:	Some cleanups, cache destination entry
58   *					for connect.
59   *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60   *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61   *					return ENOTCONN for unconnected sockets (POSIX)
62   *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63   *					bound-to-device socket
64   *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65   *					datagrams.
66   *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67   *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68   *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69   *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70   *					a single port at the same time.
71   *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72   *	James Chapman		:	Add L2TP encapsulation type.
73   */
74  
75  #define pr_fmt(fmt) "UDP: " fmt
76  
77  #include <linux/bpf-cgroup.h>
78  #include <linux/uaccess.h>
79  #include <asm/ioctls.h>
80  #include <linux/memblock.h>
81  #include <linux/highmem.h>
82  #include <linux/types.h>
83  #include <linux/fcntl.h>
84  #include <linux/module.h>
85  #include <linux/socket.h>
86  #include <linux/sockios.h>
87  #include <linux/igmp.h>
88  #include <linux/inetdevice.h>
89  #include <linux/in.h>
90  #include <linux/errno.h>
91  #include <linux/timer.h>
92  #include <linux/mm.h>
93  #include <linux/inet.h>
94  #include <linux/netdevice.h>
95  #include <linux/slab.h>
96  #include <net/tcp_states.h>
97  #include <linux/skbuff.h>
98  #include <linux/proc_fs.h>
99  #include <linux/seq_file.h>
100  #include <net/net_namespace.h>
101  #include <net/icmp.h>
102  #include <net/inet_hashtables.h>
103  #include <net/ip_tunnels.h>
104  #include <net/route.h>
105  #include <net/checksum.h>
106  #include <net/gso.h>
107  #include <net/xfrm.h>
108  #include <trace/events/udp.h>
109  #include <linux/static_key.h>
110  #include <linux/btf_ids.h>
111  #include <trace/events/skb.h>
112  #include <net/busy_poll.h>
113  #include "udp_impl.h"
114  #include <net/sock_reuseport.h>
115  #include <net/addrconf.h>
116  #include <net/udp_tunnel.h>
117  #include <net/gro.h>
118  #include <net/inet_dscp.h>
119  #if IS_ENABLED(CONFIG_IPV6)
120  #include <net/ipv6_stubs.h>
121  #endif
122  
123  struct udp_table udp_table __read_mostly;
124  EXPORT_SYMBOL(udp_table);
125  
126  long sysctl_udp_mem[3] __read_mostly;
127  EXPORT_SYMBOL(sysctl_udp_mem);
128  
129  atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130  EXPORT_SYMBOL(udp_memory_allocated);
131  DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132  EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133  
134  #define MAX_UDP_PORTS 65536
135  #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136  
udp_get_table_prot(struct sock * sk)137  static struct udp_table *udp_get_table_prot(struct sock *sk)
138  {
139  	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140  }
141  
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)142  static int udp_lib_lport_inuse(struct net *net, __u16 num,
143  			       const struct udp_hslot *hslot,
144  			       unsigned long *bitmap,
145  			       struct sock *sk, unsigned int log)
146  {
147  	struct sock *sk2;
148  	kuid_t uid = sock_i_uid(sk);
149  
150  	sk_for_each(sk2, &hslot->head) {
151  		if (net_eq(sock_net(sk2), net) &&
152  		    sk2 != sk &&
153  		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154  		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155  		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156  		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157  		    inet_rcv_saddr_equal(sk, sk2, true)) {
158  			if (sk2->sk_reuseport && sk->sk_reuseport &&
159  			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160  			    uid_eq(uid, sock_i_uid(sk2))) {
161  				if (!bitmap)
162  					return 0;
163  			} else {
164  				if (!bitmap)
165  					return 1;
166  				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167  					  bitmap);
168  			}
169  		}
170  	}
171  	return 0;
172  }
173  
174  /*
175   * Note: we still hold spinlock of primary hash chain, so no other writer
176   * can insert/delete a socket with local_port == num
177   */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)178  static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179  				struct udp_hslot *hslot2,
180  				struct sock *sk)
181  {
182  	struct sock *sk2;
183  	kuid_t uid = sock_i_uid(sk);
184  	int res = 0;
185  
186  	spin_lock(&hslot2->lock);
187  	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188  		if (net_eq(sock_net(sk2), net) &&
189  		    sk2 != sk &&
190  		    (udp_sk(sk2)->udp_port_hash == num) &&
191  		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192  		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193  		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194  		    inet_rcv_saddr_equal(sk, sk2, true)) {
195  			if (sk2->sk_reuseport && sk->sk_reuseport &&
196  			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197  			    uid_eq(uid, sock_i_uid(sk2))) {
198  				res = 0;
199  			} else {
200  				res = 1;
201  			}
202  			break;
203  		}
204  	}
205  	spin_unlock(&hslot2->lock);
206  	return res;
207  }
208  
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)209  static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210  {
211  	struct net *net = sock_net(sk);
212  	kuid_t uid = sock_i_uid(sk);
213  	struct sock *sk2;
214  
215  	sk_for_each(sk2, &hslot->head) {
216  		if (net_eq(sock_net(sk2), net) &&
217  		    sk2 != sk &&
218  		    sk2->sk_family == sk->sk_family &&
219  		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220  		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221  		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222  		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223  		    inet_rcv_saddr_equal(sk, sk2, false)) {
224  			return reuseport_add_sock(sk, sk2,
225  						  inet_rcv_saddr_any(sk));
226  		}
227  	}
228  
229  	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230  }
231  
232  /**
233   *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234   *
235   *  @sk:          socket struct in question
236   *  @snum:        port number to look up
237   *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238   *                   with NULL address
239   */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)240  int udp_lib_get_port(struct sock *sk, unsigned short snum,
241  		     unsigned int hash2_nulladdr)
242  {
243  	struct udp_table *udptable = udp_get_table_prot(sk);
244  	struct udp_hslot *hslot, *hslot2;
245  	struct net *net = sock_net(sk);
246  	int error = -EADDRINUSE;
247  
248  	if (!snum) {
249  		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250  		unsigned short first, last;
251  		int low, high, remaining;
252  		unsigned int rand;
253  
254  		inet_sk_get_local_port_range(sk, &low, &high);
255  		remaining = (high - low) + 1;
256  
257  		rand = get_random_u32();
258  		first = reciprocal_scale(rand, remaining) + low;
259  		/*
260  		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261  		 */
262  		rand = (rand | 1) * (udptable->mask + 1);
263  		last = first + udptable->mask + 1;
264  		do {
265  			hslot = udp_hashslot(udptable, net, first);
266  			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267  			spin_lock_bh(&hslot->lock);
268  			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269  					    udptable->log);
270  
271  			snum = first;
272  			/*
273  			 * Iterate on all possible values of snum for this hash.
274  			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275  			 * give us randomization and full range coverage.
276  			 */
277  			do {
278  				if (low <= snum && snum <= high &&
279  				    !test_bit(snum >> udptable->log, bitmap) &&
280  				    !inet_is_local_reserved_port(net, snum))
281  					goto found;
282  				snum += rand;
283  			} while (snum != first);
284  			spin_unlock_bh(&hslot->lock);
285  			cond_resched();
286  		} while (++first != last);
287  		goto fail;
288  	} else {
289  		hslot = udp_hashslot(udptable, net, snum);
290  		spin_lock_bh(&hslot->lock);
291  		if (hslot->count > 10) {
292  			int exist;
293  			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294  
295  			slot2          &= udptable->mask;
296  			hash2_nulladdr &= udptable->mask;
297  
298  			hslot2 = udp_hashslot2(udptable, slot2);
299  			if (hslot->count < hslot2->count)
300  				goto scan_primary_hash;
301  
302  			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303  			if (!exist && (hash2_nulladdr != slot2)) {
304  				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305  				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306  							     sk);
307  			}
308  			if (exist)
309  				goto fail_unlock;
310  			else
311  				goto found;
312  		}
313  scan_primary_hash:
314  		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315  			goto fail_unlock;
316  	}
317  found:
318  	inet_sk(sk)->inet_num = snum;
319  	udp_sk(sk)->udp_port_hash = snum;
320  	udp_sk(sk)->udp_portaddr_hash ^= snum;
321  	if (sk_unhashed(sk)) {
322  		if (sk->sk_reuseport &&
323  		    udp_reuseport_add_sock(sk, hslot)) {
324  			inet_sk(sk)->inet_num = 0;
325  			udp_sk(sk)->udp_port_hash = 0;
326  			udp_sk(sk)->udp_portaddr_hash ^= snum;
327  			goto fail_unlock;
328  		}
329  
330  		sock_set_flag(sk, SOCK_RCU_FREE);
331  
332  		sk_add_node_rcu(sk, &hslot->head);
333  		hslot->count++;
334  		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335  
336  		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337  		spin_lock(&hslot2->lock);
338  		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339  		    sk->sk_family == AF_INET6)
340  			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341  					   &hslot2->head);
342  		else
343  			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344  					   &hslot2->head);
345  		hslot2->count++;
346  		spin_unlock(&hslot2->lock);
347  	}
348  
349  	error = 0;
350  fail_unlock:
351  	spin_unlock_bh(&hslot->lock);
352  fail:
353  	return error;
354  }
355  EXPORT_SYMBOL(udp_lib_get_port);
356  
udp_v4_get_port(struct sock * sk,unsigned short snum)357  int udp_v4_get_port(struct sock *sk, unsigned short snum)
358  {
359  	unsigned int hash2_nulladdr =
360  		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361  	unsigned int hash2_partial =
362  		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363  
364  	/* precompute partial secondary hash */
365  	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366  	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367  }
368  
compute_score(struct sock * sk,const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)369  static int compute_score(struct sock *sk, const struct net *net,
370  			 __be32 saddr, __be16 sport,
371  			 __be32 daddr, unsigned short hnum,
372  			 int dif, int sdif)
373  {
374  	int score;
375  	struct inet_sock *inet;
376  	bool dev_match;
377  
378  	if (!net_eq(sock_net(sk), net) ||
379  	    udp_sk(sk)->udp_port_hash != hnum ||
380  	    ipv6_only_sock(sk))
381  		return -1;
382  
383  	if (sk->sk_rcv_saddr != daddr)
384  		return -1;
385  
386  	score = (sk->sk_family == PF_INET) ? 2 : 1;
387  
388  	inet = inet_sk(sk);
389  	if (inet->inet_daddr) {
390  		if (inet->inet_daddr != saddr)
391  			return -1;
392  		score += 4;
393  	}
394  
395  	if (inet->inet_dport) {
396  		if (inet->inet_dport != sport)
397  			return -1;
398  		score += 4;
399  	}
400  
401  	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402  					dif, sdif);
403  	if (!dev_match)
404  		return -1;
405  	if (sk->sk_bound_dev_if)
406  		score += 4;
407  
408  	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409  		score++;
410  	return score;
411  }
412  
413  INDIRECT_CALLABLE_SCOPE
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)414  u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
415  		const __be32 faddr, const __be16 fport)
416  {
417  	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
418  
419  	return __inet_ehashfn(laddr, lport, faddr, fport,
420  			      udp_ehash_secret + net_hash_mix(net));
421  }
422  
423  /* called with rcu_read_lock() */
udp4_lib_lookup2(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)424  static struct sock *udp4_lib_lookup2(const struct net *net,
425  				     __be32 saddr, __be16 sport,
426  				     __be32 daddr, unsigned int hnum,
427  				     int dif, int sdif,
428  				     struct udp_hslot *hslot2,
429  				     struct sk_buff *skb)
430  {
431  	struct sock *sk, *result;
432  	int score, badness;
433  	bool need_rescore;
434  
435  	result = NULL;
436  	badness = 0;
437  	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
438  		need_rescore = false;
439  rescore:
440  		score = compute_score(need_rescore ? result : sk, net, saddr,
441  				      sport, daddr, hnum, dif, sdif);
442  		if (score > badness) {
443  			badness = score;
444  
445  			if (need_rescore)
446  				continue;
447  
448  			if (sk->sk_state == TCP_ESTABLISHED) {
449  				result = sk;
450  				continue;
451  			}
452  
453  			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
454  						       saddr, sport, daddr, hnum, udp_ehashfn);
455  			if (!result) {
456  				result = sk;
457  				continue;
458  			}
459  
460  			/* Fall back to scoring if group has connections */
461  			if (!reuseport_has_conns(sk))
462  				return result;
463  
464  			/* Reuseport logic returned an error, keep original score. */
465  			if (IS_ERR(result))
466  				continue;
467  
468  			/* compute_score is too long of a function to be
469  			 * inlined, and calling it again here yields
470  			 * measureable overhead for some
471  			 * workloads. Work around it by jumping
472  			 * backwards to rescore 'result'.
473  			 */
474  			need_rescore = true;
475  			goto rescore;
476  		}
477  	}
478  	return result;
479  }
480  
481  /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
482   * harder than this. -DaveM
483   */
__udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)484  struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
485  		__be16 sport, __be32 daddr, __be16 dport, int dif,
486  		int sdif, struct udp_table *udptable, struct sk_buff *skb)
487  {
488  	unsigned short hnum = ntohs(dport);
489  	unsigned int hash2, slot2;
490  	struct udp_hslot *hslot2;
491  	struct sock *result, *sk;
492  
493  	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
494  	slot2 = hash2 & udptable->mask;
495  	hslot2 = &udptable->hash2[slot2];
496  
497  	/* Lookup connected or non-wildcard socket */
498  	result = udp4_lib_lookup2(net, saddr, sport,
499  				  daddr, hnum, dif, sdif,
500  				  hslot2, skb);
501  	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
502  		goto done;
503  
504  	/* Lookup redirect from BPF */
505  	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
506  	    udptable == net->ipv4.udp_table) {
507  		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
508  					       saddr, sport, daddr, hnum, dif,
509  					       udp_ehashfn);
510  		if (sk) {
511  			result = sk;
512  			goto done;
513  		}
514  	}
515  
516  	/* Got non-wildcard socket or error on first lookup */
517  	if (result)
518  		goto done;
519  
520  	/* Lookup wildcard sockets */
521  	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
522  	slot2 = hash2 & udptable->mask;
523  	hslot2 = &udptable->hash2[slot2];
524  
525  	result = udp4_lib_lookup2(net, saddr, sport,
526  				  htonl(INADDR_ANY), hnum, dif, sdif,
527  				  hslot2, skb);
528  done:
529  	if (IS_ERR(result))
530  		return NULL;
531  	return result;
532  }
533  EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
534  
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)535  static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
536  						 __be16 sport, __be16 dport,
537  						 struct udp_table *udptable)
538  {
539  	const struct iphdr *iph = ip_hdr(skb);
540  
541  	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
542  				 iph->daddr, dport, inet_iif(skb),
543  				 inet_sdif(skb), udptable, skb);
544  }
545  
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)546  struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
547  				 __be16 sport, __be16 dport)
548  {
549  	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
550  	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
551  	struct net *net = dev_net(skb->dev);
552  	int iif, sdif;
553  
554  	inet_get_iif_sdif(skb, &iif, &sdif);
555  
556  	return __udp4_lib_lookup(net, iph->saddr, sport,
557  				 iph->daddr, dport, iif,
558  				 sdif, net->ipv4.udp_table, NULL);
559  }
560  
561  /* Must be called under rcu_read_lock().
562   * Does increment socket refcount.
563   */
564  #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)565  struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
566  			     __be32 daddr, __be16 dport, int dif)
567  {
568  	struct sock *sk;
569  
570  	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
571  			       dif, 0, net->ipv4.udp_table, NULL);
572  	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
573  		sk = NULL;
574  	return sk;
575  }
576  EXPORT_SYMBOL_GPL(udp4_lib_lookup);
577  #endif
578  
__udp_is_mcast_sock(struct net * net,const struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)579  static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
580  				       __be16 loc_port, __be32 loc_addr,
581  				       __be16 rmt_port, __be32 rmt_addr,
582  				       int dif, int sdif, unsigned short hnum)
583  {
584  	const struct inet_sock *inet = inet_sk(sk);
585  
586  	if (!net_eq(sock_net(sk), net) ||
587  	    udp_sk(sk)->udp_port_hash != hnum ||
588  	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
589  	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
590  	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
591  	    ipv6_only_sock(sk) ||
592  	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
593  		return false;
594  	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
595  		return false;
596  	return true;
597  }
598  
599  DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
600  EXPORT_SYMBOL(udp_encap_needed_key);
601  
602  #if IS_ENABLED(CONFIG_IPV6)
603  DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
604  EXPORT_SYMBOL(udpv6_encap_needed_key);
605  #endif
606  
udp_encap_enable(void)607  void udp_encap_enable(void)
608  {
609  	static_branch_inc(&udp_encap_needed_key);
610  }
611  EXPORT_SYMBOL(udp_encap_enable);
612  
udp_encap_disable(void)613  void udp_encap_disable(void)
614  {
615  	static_branch_dec(&udp_encap_needed_key);
616  }
617  EXPORT_SYMBOL(udp_encap_disable);
618  
619  /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
620   * through error handlers in encapsulations looking for a match.
621   */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)622  static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
623  {
624  	int i;
625  
626  	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
627  		int (*handler)(struct sk_buff *skb, u32 info);
628  		const struct ip_tunnel_encap_ops *encap;
629  
630  		encap = rcu_dereference(iptun_encaps[i]);
631  		if (!encap)
632  			continue;
633  		handler = encap->err_handler;
634  		if (handler && !handler(skb, info))
635  			return 0;
636  	}
637  
638  	return -ENOENT;
639  }
640  
641  /* Try to match ICMP errors to UDP tunnels by looking up a socket without
642   * reversing source and destination port: this will match tunnels that force the
643   * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
644   * lwtunnels might actually break this assumption by being configured with
645   * different destination ports on endpoints, in this case we won't be able to
646   * trace ICMP messages back to them.
647   *
648   * If this doesn't match any socket, probe tunnels with arbitrary destination
649   * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
650   * we've sent packets to won't necessarily match the local destination port.
651   *
652   * Then ask the tunnel implementation to match the error against a valid
653   * association.
654   *
655   * Return an error if we can't find a match, the socket if we need further
656   * processing, zero otherwise.
657   */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)658  static struct sock *__udp4_lib_err_encap(struct net *net,
659  					 const struct iphdr *iph,
660  					 struct udphdr *uh,
661  					 struct udp_table *udptable,
662  					 struct sock *sk,
663  					 struct sk_buff *skb, u32 info)
664  {
665  	int (*lookup)(struct sock *sk, struct sk_buff *skb);
666  	int network_offset, transport_offset;
667  	struct udp_sock *up;
668  
669  	network_offset = skb_network_offset(skb);
670  	transport_offset = skb_transport_offset(skb);
671  
672  	/* Network header needs to point to the outer IPv4 header inside ICMP */
673  	skb_reset_network_header(skb);
674  
675  	/* Transport header needs to point to the UDP header */
676  	skb_set_transport_header(skb, iph->ihl << 2);
677  
678  	if (sk) {
679  		up = udp_sk(sk);
680  
681  		lookup = READ_ONCE(up->encap_err_lookup);
682  		if (lookup && lookup(sk, skb))
683  			sk = NULL;
684  
685  		goto out;
686  	}
687  
688  	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
689  			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
690  			       udptable, NULL);
691  	if (sk) {
692  		up = udp_sk(sk);
693  
694  		lookup = READ_ONCE(up->encap_err_lookup);
695  		if (!lookup || lookup(sk, skb))
696  			sk = NULL;
697  	}
698  
699  out:
700  	if (!sk)
701  		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
702  
703  	skb_set_transport_header(skb, transport_offset);
704  	skb_set_network_header(skb, network_offset);
705  
706  	return sk;
707  }
708  
709  /*
710   * This routine is called by the ICMP module when it gets some
711   * sort of error condition.  If err < 0 then the socket should
712   * be closed and the error returned to the user.  If err > 0
713   * it's just the icmp type << 8 | icmp code.
714   * Header points to the ip header of the error packet. We move
715   * on past this. Then (as it used to claim before adjustment)
716   * header points to the first 8 bytes of the udp header.  We need
717   * to find the appropriate port.
718   */
719  
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)720  int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
721  {
722  	struct inet_sock *inet;
723  	const struct iphdr *iph = (const struct iphdr *)skb->data;
724  	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
725  	const int type = icmp_hdr(skb)->type;
726  	const int code = icmp_hdr(skb)->code;
727  	bool tunnel = false;
728  	struct sock *sk;
729  	int harderr;
730  	int err;
731  	struct net *net = dev_net(skb->dev);
732  
733  	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
734  			       iph->saddr, uh->source, skb->dev->ifindex,
735  			       inet_sdif(skb), udptable, NULL);
736  
737  	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
738  		/* No socket for error: try tunnels before discarding */
739  		if (static_branch_unlikely(&udp_encap_needed_key)) {
740  			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
741  						  info);
742  			if (!sk)
743  				return 0;
744  		} else
745  			sk = ERR_PTR(-ENOENT);
746  
747  		if (IS_ERR(sk)) {
748  			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
749  			return PTR_ERR(sk);
750  		}
751  
752  		tunnel = true;
753  	}
754  
755  	err = 0;
756  	harderr = 0;
757  	inet = inet_sk(sk);
758  
759  	switch (type) {
760  	default:
761  	case ICMP_TIME_EXCEEDED:
762  		err = EHOSTUNREACH;
763  		break;
764  	case ICMP_SOURCE_QUENCH:
765  		goto out;
766  	case ICMP_PARAMETERPROB:
767  		err = EPROTO;
768  		harderr = 1;
769  		break;
770  	case ICMP_DEST_UNREACH:
771  		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
772  			ipv4_sk_update_pmtu(skb, sk, info);
773  			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
774  				err = EMSGSIZE;
775  				harderr = 1;
776  				break;
777  			}
778  			goto out;
779  		}
780  		err = EHOSTUNREACH;
781  		if (code <= NR_ICMP_UNREACH) {
782  			harderr = icmp_err_convert[code].fatal;
783  			err = icmp_err_convert[code].errno;
784  		}
785  		break;
786  	case ICMP_REDIRECT:
787  		ipv4_sk_redirect(skb, sk);
788  		goto out;
789  	}
790  
791  	/*
792  	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
793  	 *	4.1.3.3.
794  	 */
795  	if (tunnel) {
796  		/* ...not for tunnels though: we don't have a sending socket */
797  		if (udp_sk(sk)->encap_err_rcv)
798  			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
799  						  (u8 *)(uh+1));
800  		goto out;
801  	}
802  	if (!inet_test_bit(RECVERR, sk)) {
803  		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
804  			goto out;
805  	} else
806  		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
807  
808  	sk->sk_err = err;
809  	sk_error_report(sk);
810  out:
811  	return 0;
812  }
813  
udp_err(struct sk_buff * skb,u32 info)814  int udp_err(struct sk_buff *skb, u32 info)
815  {
816  	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
817  }
818  
819  /*
820   * Throw away all pending data and cancel the corking. Socket is locked.
821   */
udp_flush_pending_frames(struct sock * sk)822  void udp_flush_pending_frames(struct sock *sk)
823  {
824  	struct udp_sock *up = udp_sk(sk);
825  
826  	if (up->pending) {
827  		up->len = 0;
828  		WRITE_ONCE(up->pending, 0);
829  		ip_flush_pending_frames(sk);
830  	}
831  }
832  EXPORT_SYMBOL(udp_flush_pending_frames);
833  
834  /**
835   * 	udp4_hwcsum  -  handle outgoing HW checksumming
836   * 	@skb: 	sk_buff containing the filled-in UDP header
837   * 	        (checksum field must be zeroed out)
838   *	@src:	source IP address
839   *	@dst:	destination IP address
840   */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)841  void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
842  {
843  	struct udphdr *uh = udp_hdr(skb);
844  	int offset = skb_transport_offset(skb);
845  	int len = skb->len - offset;
846  	int hlen = len;
847  	__wsum csum = 0;
848  
849  	if (!skb_has_frag_list(skb)) {
850  		/*
851  		 * Only one fragment on the socket.
852  		 */
853  		skb->csum_start = skb_transport_header(skb) - skb->head;
854  		skb->csum_offset = offsetof(struct udphdr, check);
855  		uh->check = ~csum_tcpudp_magic(src, dst, len,
856  					       IPPROTO_UDP, 0);
857  	} else {
858  		struct sk_buff *frags;
859  
860  		/*
861  		 * HW-checksum won't work as there are two or more
862  		 * fragments on the socket so that all csums of sk_buffs
863  		 * should be together
864  		 */
865  		skb_walk_frags(skb, frags) {
866  			csum = csum_add(csum, frags->csum);
867  			hlen -= frags->len;
868  		}
869  
870  		csum = skb_checksum(skb, offset, hlen, csum);
871  		skb->ip_summed = CHECKSUM_NONE;
872  
873  		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
874  		if (uh->check == 0)
875  			uh->check = CSUM_MANGLED_0;
876  	}
877  }
878  EXPORT_SYMBOL_GPL(udp4_hwcsum);
879  
880  /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
881   * for the simple case like when setting the checksum for a UDP tunnel.
882   */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)883  void udp_set_csum(bool nocheck, struct sk_buff *skb,
884  		  __be32 saddr, __be32 daddr, int len)
885  {
886  	struct udphdr *uh = udp_hdr(skb);
887  
888  	if (nocheck) {
889  		uh->check = 0;
890  	} else if (skb_is_gso(skb)) {
891  		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
892  	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
893  		uh->check = 0;
894  		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
895  		if (uh->check == 0)
896  			uh->check = CSUM_MANGLED_0;
897  	} else {
898  		skb->ip_summed = CHECKSUM_PARTIAL;
899  		skb->csum_start = skb_transport_header(skb) - skb->head;
900  		skb->csum_offset = offsetof(struct udphdr, check);
901  		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
902  	}
903  }
904  EXPORT_SYMBOL(udp_set_csum);
905  
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)906  static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
907  			struct inet_cork *cork)
908  {
909  	struct sock *sk = skb->sk;
910  	struct inet_sock *inet = inet_sk(sk);
911  	struct udphdr *uh;
912  	int err;
913  	int is_udplite = IS_UDPLITE(sk);
914  	int offset = skb_transport_offset(skb);
915  	int len = skb->len - offset;
916  	int datalen = len - sizeof(*uh);
917  	__wsum csum = 0;
918  
919  	/*
920  	 * Create a UDP header
921  	 */
922  	uh = udp_hdr(skb);
923  	uh->source = inet->inet_sport;
924  	uh->dest = fl4->fl4_dport;
925  	uh->len = htons(len);
926  	uh->check = 0;
927  
928  	if (cork->gso_size) {
929  		const int hlen = skb_network_header_len(skb) +
930  				 sizeof(struct udphdr);
931  
932  		if (hlen + cork->gso_size > cork->fragsize) {
933  			kfree_skb(skb);
934  			return -EINVAL;
935  		}
936  		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
937  			kfree_skb(skb);
938  			return -EINVAL;
939  		}
940  		if (sk->sk_no_check_tx) {
941  			kfree_skb(skb);
942  			return -EINVAL;
943  		}
944  		if (is_udplite || dst_xfrm(skb_dst(skb))) {
945  			kfree_skb(skb);
946  			return -EIO;
947  		}
948  
949  		if (datalen > cork->gso_size) {
950  			skb_shinfo(skb)->gso_size = cork->gso_size;
951  			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
952  			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
953  								 cork->gso_size);
954  
955  			/* Don't checksum the payload, skb will get segmented */
956  			goto csum_partial;
957  		}
958  	}
959  
960  	if (is_udplite)  				 /*     UDP-Lite      */
961  		csum = udplite_csum(skb);
962  
963  	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
964  
965  		skb->ip_summed = CHECKSUM_NONE;
966  		goto send;
967  
968  	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
969  csum_partial:
970  
971  		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
972  		goto send;
973  
974  	} else
975  		csum = udp_csum(skb);
976  
977  	/* add protocol-dependent pseudo-header */
978  	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
979  				      sk->sk_protocol, csum);
980  	if (uh->check == 0)
981  		uh->check = CSUM_MANGLED_0;
982  
983  send:
984  	err = ip_send_skb(sock_net(sk), skb);
985  	if (err) {
986  		if (err == -ENOBUFS &&
987  		    !inet_test_bit(RECVERR, sk)) {
988  			UDP_INC_STATS(sock_net(sk),
989  				      UDP_MIB_SNDBUFERRORS, is_udplite);
990  			err = 0;
991  		}
992  	} else
993  		UDP_INC_STATS(sock_net(sk),
994  			      UDP_MIB_OUTDATAGRAMS, is_udplite);
995  	return err;
996  }
997  
998  /*
999   * Push out all pending data as one UDP datagram. Socket is locked.
1000   */
udp_push_pending_frames(struct sock * sk)1001  int udp_push_pending_frames(struct sock *sk)
1002  {
1003  	struct udp_sock  *up = udp_sk(sk);
1004  	struct inet_sock *inet = inet_sk(sk);
1005  	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1006  	struct sk_buff *skb;
1007  	int err = 0;
1008  
1009  	skb = ip_finish_skb(sk, fl4);
1010  	if (!skb)
1011  		goto out;
1012  
1013  	err = udp_send_skb(skb, fl4, &inet->cork.base);
1014  
1015  out:
1016  	up->len = 0;
1017  	WRITE_ONCE(up->pending, 0);
1018  	return err;
1019  }
1020  EXPORT_SYMBOL(udp_push_pending_frames);
1021  
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1022  static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1023  {
1024  	switch (cmsg->cmsg_type) {
1025  	case UDP_SEGMENT:
1026  		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1027  			return -EINVAL;
1028  		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1029  		return 0;
1030  	default:
1031  		return -EINVAL;
1032  	}
1033  }
1034  
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1035  int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1036  {
1037  	struct cmsghdr *cmsg;
1038  	bool need_ip = false;
1039  	int err;
1040  
1041  	for_each_cmsghdr(cmsg, msg) {
1042  		if (!CMSG_OK(msg, cmsg))
1043  			return -EINVAL;
1044  
1045  		if (cmsg->cmsg_level != SOL_UDP) {
1046  			need_ip = true;
1047  			continue;
1048  		}
1049  
1050  		err = __udp_cmsg_send(cmsg, gso_size);
1051  		if (err)
1052  			return err;
1053  	}
1054  
1055  	return need_ip;
1056  }
1057  EXPORT_SYMBOL_GPL(udp_cmsg_send);
1058  
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1059  int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1060  {
1061  	struct inet_sock *inet = inet_sk(sk);
1062  	struct udp_sock *up = udp_sk(sk);
1063  	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1064  	struct flowi4 fl4_stack;
1065  	struct flowi4 *fl4;
1066  	int ulen = len;
1067  	struct ipcm_cookie ipc;
1068  	struct rtable *rt = NULL;
1069  	int free = 0;
1070  	int connected = 0;
1071  	__be32 daddr, faddr, saddr;
1072  	u8 tos, scope;
1073  	__be16 dport;
1074  	int err, is_udplite = IS_UDPLITE(sk);
1075  	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1076  	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1077  	struct sk_buff *skb;
1078  	struct ip_options_data opt_copy;
1079  	int uc_index;
1080  
1081  	if (len > 0xFFFF)
1082  		return -EMSGSIZE;
1083  
1084  	/*
1085  	 *	Check the flags.
1086  	 */
1087  
1088  	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1089  		return -EOPNOTSUPP;
1090  
1091  	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1092  
1093  	fl4 = &inet->cork.fl.u.ip4;
1094  	if (READ_ONCE(up->pending)) {
1095  		/*
1096  		 * There are pending frames.
1097  		 * The socket lock must be held while it's corked.
1098  		 */
1099  		lock_sock(sk);
1100  		if (likely(up->pending)) {
1101  			if (unlikely(up->pending != AF_INET)) {
1102  				release_sock(sk);
1103  				return -EINVAL;
1104  			}
1105  			goto do_append_data;
1106  		}
1107  		release_sock(sk);
1108  	}
1109  	ulen += sizeof(struct udphdr);
1110  
1111  	/*
1112  	 *	Get and verify the address.
1113  	 */
1114  	if (usin) {
1115  		if (msg->msg_namelen < sizeof(*usin))
1116  			return -EINVAL;
1117  		if (usin->sin_family != AF_INET) {
1118  			if (usin->sin_family != AF_UNSPEC)
1119  				return -EAFNOSUPPORT;
1120  		}
1121  
1122  		daddr = usin->sin_addr.s_addr;
1123  		dport = usin->sin_port;
1124  		if (dport == 0)
1125  			return -EINVAL;
1126  	} else {
1127  		if (sk->sk_state != TCP_ESTABLISHED)
1128  			return -EDESTADDRREQ;
1129  		daddr = inet->inet_daddr;
1130  		dport = inet->inet_dport;
1131  		/* Open fast path for connected socket.
1132  		   Route will not be used, if at least one option is set.
1133  		 */
1134  		connected = 1;
1135  	}
1136  
1137  	ipcm_init_sk(&ipc, inet);
1138  	ipc.gso_size = READ_ONCE(up->gso_size);
1139  
1140  	if (msg->msg_controllen) {
1141  		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1142  		if (err > 0) {
1143  			err = ip_cmsg_send(sk, msg, &ipc,
1144  					   sk->sk_family == AF_INET6);
1145  			connected = 0;
1146  		}
1147  		if (unlikely(err < 0)) {
1148  			kfree(ipc.opt);
1149  			return err;
1150  		}
1151  		if (ipc.opt)
1152  			free = 1;
1153  	}
1154  	if (!ipc.opt) {
1155  		struct ip_options_rcu *inet_opt;
1156  
1157  		rcu_read_lock();
1158  		inet_opt = rcu_dereference(inet->inet_opt);
1159  		if (inet_opt) {
1160  			memcpy(&opt_copy, inet_opt,
1161  			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1162  			ipc.opt = &opt_copy.opt;
1163  		}
1164  		rcu_read_unlock();
1165  	}
1166  
1167  	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1168  		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1169  					    (struct sockaddr *)usin,
1170  					    &msg->msg_namelen,
1171  					    &ipc.addr);
1172  		if (err)
1173  			goto out_free;
1174  		if (usin) {
1175  			if (usin->sin_port == 0) {
1176  				/* BPF program set invalid port. Reject it. */
1177  				err = -EINVAL;
1178  				goto out_free;
1179  			}
1180  			daddr = usin->sin_addr.s_addr;
1181  			dport = usin->sin_port;
1182  		}
1183  	}
1184  
1185  	saddr = ipc.addr;
1186  	ipc.addr = faddr = daddr;
1187  
1188  	if (ipc.opt && ipc.opt->opt.srr) {
1189  		if (!daddr) {
1190  			err = -EINVAL;
1191  			goto out_free;
1192  		}
1193  		faddr = ipc.opt->opt.faddr;
1194  		connected = 0;
1195  	}
1196  	tos = get_rttos(&ipc, inet);
1197  	scope = ip_sendmsg_scope(inet, &ipc, msg);
1198  	if (scope == RT_SCOPE_LINK)
1199  		connected = 0;
1200  
1201  	uc_index = READ_ONCE(inet->uc_index);
1202  	if (ipv4_is_multicast(daddr)) {
1203  		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1204  			ipc.oif = READ_ONCE(inet->mc_index);
1205  		if (!saddr)
1206  			saddr = READ_ONCE(inet->mc_addr);
1207  		connected = 0;
1208  	} else if (!ipc.oif) {
1209  		ipc.oif = uc_index;
1210  	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1211  		/* oif is set, packet is to local broadcast and
1212  		 * uc_index is set. oif is most likely set
1213  		 * by sk_bound_dev_if. If uc_index != oif check if the
1214  		 * oif is an L3 master and uc_index is an L3 slave.
1215  		 * If so, we want to allow the send using the uc_index.
1216  		 */
1217  		if (ipc.oif != uc_index &&
1218  		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1219  							      uc_index)) {
1220  			ipc.oif = uc_index;
1221  		}
1222  	}
1223  
1224  	if (connected)
1225  		rt = dst_rtable(sk_dst_check(sk, 0));
1226  
1227  	if (!rt) {
1228  		struct net *net = sock_net(sk);
1229  		__u8 flow_flags = inet_sk_flowi_flags(sk);
1230  
1231  		fl4 = &fl4_stack;
1232  
1233  		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1234  				   sk->sk_protocol, flow_flags, faddr, saddr,
1235  				   dport, inet->inet_sport, sk->sk_uid);
1236  
1237  		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1238  		rt = ip_route_output_flow(net, fl4, sk);
1239  		if (IS_ERR(rt)) {
1240  			err = PTR_ERR(rt);
1241  			rt = NULL;
1242  			if (err == -ENETUNREACH)
1243  				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1244  			goto out;
1245  		}
1246  
1247  		err = -EACCES;
1248  		if ((rt->rt_flags & RTCF_BROADCAST) &&
1249  		    !sock_flag(sk, SOCK_BROADCAST))
1250  			goto out;
1251  		if (connected)
1252  			sk_dst_set(sk, dst_clone(&rt->dst));
1253  	}
1254  
1255  	if (msg->msg_flags&MSG_CONFIRM)
1256  		goto do_confirm;
1257  back_from_confirm:
1258  
1259  	saddr = fl4->saddr;
1260  	if (!ipc.addr)
1261  		daddr = ipc.addr = fl4->daddr;
1262  
1263  	/* Lockless fast path for the non-corking case. */
1264  	if (!corkreq) {
1265  		struct inet_cork cork;
1266  
1267  		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1268  				  sizeof(struct udphdr), &ipc, &rt,
1269  				  &cork, msg->msg_flags);
1270  		err = PTR_ERR(skb);
1271  		if (!IS_ERR_OR_NULL(skb))
1272  			err = udp_send_skb(skb, fl4, &cork);
1273  		goto out;
1274  	}
1275  
1276  	lock_sock(sk);
1277  	if (unlikely(up->pending)) {
1278  		/* The socket is already corked while preparing it. */
1279  		/* ... which is an evident application bug. --ANK */
1280  		release_sock(sk);
1281  
1282  		net_dbg_ratelimited("socket already corked\n");
1283  		err = -EINVAL;
1284  		goto out;
1285  	}
1286  	/*
1287  	 *	Now cork the socket to pend data.
1288  	 */
1289  	fl4 = &inet->cork.fl.u.ip4;
1290  	fl4->daddr = daddr;
1291  	fl4->saddr = saddr;
1292  	fl4->fl4_dport = dport;
1293  	fl4->fl4_sport = inet->inet_sport;
1294  	WRITE_ONCE(up->pending, AF_INET);
1295  
1296  do_append_data:
1297  	up->len += ulen;
1298  	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1299  			     sizeof(struct udphdr), &ipc, &rt,
1300  			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1301  	if (err)
1302  		udp_flush_pending_frames(sk);
1303  	else if (!corkreq)
1304  		err = udp_push_pending_frames(sk);
1305  	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1306  		WRITE_ONCE(up->pending, 0);
1307  	release_sock(sk);
1308  
1309  out:
1310  	ip_rt_put(rt);
1311  out_free:
1312  	if (free)
1313  		kfree(ipc.opt);
1314  	if (!err)
1315  		return len;
1316  	/*
1317  	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1318  	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1319  	 * we don't have a good statistic (IpOutDiscards but it can be too many
1320  	 * things).  We could add another new stat but at least for now that
1321  	 * seems like overkill.
1322  	 */
1323  	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1324  		UDP_INC_STATS(sock_net(sk),
1325  			      UDP_MIB_SNDBUFERRORS, is_udplite);
1326  	}
1327  	return err;
1328  
1329  do_confirm:
1330  	if (msg->msg_flags & MSG_PROBE)
1331  		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1332  	if (!(msg->msg_flags&MSG_PROBE) || len)
1333  		goto back_from_confirm;
1334  	err = 0;
1335  	goto out;
1336  }
1337  EXPORT_SYMBOL(udp_sendmsg);
1338  
udp_splice_eof(struct socket * sock)1339  void udp_splice_eof(struct socket *sock)
1340  {
1341  	struct sock *sk = sock->sk;
1342  	struct udp_sock *up = udp_sk(sk);
1343  
1344  	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1345  		return;
1346  
1347  	lock_sock(sk);
1348  	if (up->pending && !udp_test_bit(CORK, sk))
1349  		udp_push_pending_frames(sk);
1350  	release_sock(sk);
1351  }
1352  EXPORT_SYMBOL_GPL(udp_splice_eof);
1353  
1354  #define UDP_SKB_IS_STATELESS 0x80000000
1355  
1356  /* all head states (dst, sk, nf conntrack) except skb extensions are
1357   * cleared by udp_rcv().
1358   *
1359   * We need to preserve secpath, if present, to eventually process
1360   * IP_CMSG_PASSSEC at recvmsg() time.
1361   *
1362   * Other extensions can be cleared.
1363   */
udp_try_make_stateless(struct sk_buff * skb)1364  static bool udp_try_make_stateless(struct sk_buff *skb)
1365  {
1366  	if (!skb_has_extensions(skb))
1367  		return true;
1368  
1369  	if (!secpath_exists(skb)) {
1370  		skb_ext_reset(skb);
1371  		return true;
1372  	}
1373  
1374  	return false;
1375  }
1376  
udp_set_dev_scratch(struct sk_buff * skb)1377  static void udp_set_dev_scratch(struct sk_buff *skb)
1378  {
1379  	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1380  
1381  	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1382  	scratch->_tsize_state = skb->truesize;
1383  #if BITS_PER_LONG == 64
1384  	scratch->len = skb->len;
1385  	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1386  	scratch->is_linear = !skb_is_nonlinear(skb);
1387  #endif
1388  	if (udp_try_make_stateless(skb))
1389  		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1390  }
1391  
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1392  static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1393  {
1394  	/* We come here after udp_lib_checksum_complete() returned 0.
1395  	 * This means that __skb_checksum_complete() might have
1396  	 * set skb->csum_valid to 1.
1397  	 * On 64bit platforms, we can set csum_unnecessary
1398  	 * to true, but only if the skb is not shared.
1399  	 */
1400  #if BITS_PER_LONG == 64
1401  	if (!skb_shared(skb))
1402  		udp_skb_scratch(skb)->csum_unnecessary = true;
1403  #endif
1404  }
1405  
udp_skb_truesize(struct sk_buff * skb)1406  static int udp_skb_truesize(struct sk_buff *skb)
1407  {
1408  	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1409  }
1410  
udp_skb_has_head_state(struct sk_buff * skb)1411  static bool udp_skb_has_head_state(struct sk_buff *skb)
1412  {
1413  	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1414  }
1415  
1416  /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1417  static void udp_rmem_release(struct sock *sk, int size, int partial,
1418  			     bool rx_queue_lock_held)
1419  {
1420  	struct udp_sock *up = udp_sk(sk);
1421  	struct sk_buff_head *sk_queue;
1422  	int amt;
1423  
1424  	if (likely(partial)) {
1425  		up->forward_deficit += size;
1426  		size = up->forward_deficit;
1427  		if (size < READ_ONCE(up->forward_threshold) &&
1428  		    !skb_queue_empty(&up->reader_queue))
1429  			return;
1430  	} else {
1431  		size += up->forward_deficit;
1432  	}
1433  	up->forward_deficit = 0;
1434  
1435  	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1436  	 * if the called don't held it already
1437  	 */
1438  	sk_queue = &sk->sk_receive_queue;
1439  	if (!rx_queue_lock_held)
1440  		spin_lock(&sk_queue->lock);
1441  
1442  
1443  	sk_forward_alloc_add(sk, size);
1444  	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1445  	sk_forward_alloc_add(sk, -amt);
1446  
1447  	if (amt)
1448  		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1449  
1450  	atomic_sub(size, &sk->sk_rmem_alloc);
1451  
1452  	/* this can save us from acquiring the rx queue lock on next receive */
1453  	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1454  
1455  	if (!rx_queue_lock_held)
1456  		spin_unlock(&sk_queue->lock);
1457  }
1458  
1459  /* Note: called with reader_queue.lock held.
1460   * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1461   * This avoids a cache line miss while receive_queue lock is held.
1462   * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1463   */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1464  void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1465  {
1466  	prefetch(&skb->data);
1467  	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1468  }
1469  EXPORT_SYMBOL(udp_skb_destructor);
1470  
1471  /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1472  static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1473  {
1474  	prefetch(&skb->data);
1475  	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1476  }
1477  
1478  /* Idea of busylocks is to let producers grab an extra spinlock
1479   * to relieve pressure on the receive_queue spinlock shared by consumer.
1480   * Under flood, this means that only one producer can be in line
1481   * trying to acquire the receive_queue spinlock.
1482   * These busylock can be allocated on a per cpu manner, instead of a
1483   * per socket one (that would consume a cache line per socket)
1484   */
1485  static int udp_busylocks_log __read_mostly;
1486  static spinlock_t *udp_busylocks __read_mostly;
1487  
busylock_acquire(void * ptr)1488  static spinlock_t *busylock_acquire(void *ptr)
1489  {
1490  	spinlock_t *busy;
1491  
1492  	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1493  	spin_lock(busy);
1494  	return busy;
1495  }
1496  
busylock_release(spinlock_t * busy)1497  static void busylock_release(spinlock_t *busy)
1498  {
1499  	if (busy)
1500  		spin_unlock(busy);
1501  }
1502  
udp_rmem_schedule(struct sock * sk,int size)1503  static int udp_rmem_schedule(struct sock *sk, int size)
1504  {
1505  	int delta;
1506  
1507  	delta = size - sk->sk_forward_alloc;
1508  	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1509  		return -ENOBUFS;
1510  
1511  	return 0;
1512  }
1513  
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1514  int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1515  {
1516  	struct sk_buff_head *list = &sk->sk_receive_queue;
1517  	int rmem, err = -ENOMEM;
1518  	spinlock_t *busy = NULL;
1519  	bool becomes_readable;
1520  	int size, rcvbuf;
1521  
1522  	/* Immediately drop when the receive queue is full.
1523  	 * Always allow at least one packet.
1524  	 */
1525  	rmem = atomic_read(&sk->sk_rmem_alloc);
1526  	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1527  	if (rmem > rcvbuf)
1528  		goto drop;
1529  
1530  	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1531  	 * having linear skbs :
1532  	 * - Reduce memory overhead and thus increase receive queue capacity
1533  	 * - Less cache line misses at copyout() time
1534  	 * - Less work at consume_skb() (less alien page frag freeing)
1535  	 */
1536  	if (rmem > (rcvbuf >> 1)) {
1537  		skb_condense(skb);
1538  
1539  		busy = busylock_acquire(sk);
1540  	}
1541  	size = skb->truesize;
1542  	udp_set_dev_scratch(skb);
1543  
1544  	atomic_add(size, &sk->sk_rmem_alloc);
1545  
1546  	spin_lock(&list->lock);
1547  	err = udp_rmem_schedule(sk, size);
1548  	if (err) {
1549  		spin_unlock(&list->lock);
1550  		goto uncharge_drop;
1551  	}
1552  
1553  	sk_forward_alloc_add(sk, -size);
1554  
1555  	/* no need to setup a destructor, we will explicitly release the
1556  	 * forward allocated memory on dequeue
1557  	 */
1558  	sock_skb_set_dropcount(sk, skb);
1559  
1560  	becomes_readable = skb_queue_empty(list);
1561  	__skb_queue_tail(list, skb);
1562  	spin_unlock(&list->lock);
1563  
1564  	if (!sock_flag(sk, SOCK_DEAD)) {
1565  		if (becomes_readable ||
1566  		    sk->sk_data_ready != sock_def_readable ||
1567  		    READ_ONCE(sk->sk_peek_off) >= 0)
1568  			INDIRECT_CALL_1(sk->sk_data_ready,
1569  					sock_def_readable, sk);
1570  		else
1571  			sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1572  	}
1573  	busylock_release(busy);
1574  	return 0;
1575  
1576  uncharge_drop:
1577  	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1578  
1579  drop:
1580  	atomic_inc(&sk->sk_drops);
1581  	busylock_release(busy);
1582  	return err;
1583  }
1584  EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1585  
udp_destruct_common(struct sock * sk)1586  void udp_destruct_common(struct sock *sk)
1587  {
1588  	/* reclaim completely the forward allocated memory */
1589  	struct udp_sock *up = udp_sk(sk);
1590  	unsigned int total = 0;
1591  	struct sk_buff *skb;
1592  
1593  	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1594  	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1595  		total += skb->truesize;
1596  		kfree_skb(skb);
1597  	}
1598  	udp_rmem_release(sk, total, 0, true);
1599  }
1600  EXPORT_SYMBOL_GPL(udp_destruct_common);
1601  
udp_destruct_sock(struct sock * sk)1602  static void udp_destruct_sock(struct sock *sk)
1603  {
1604  	udp_destruct_common(sk);
1605  	inet_sock_destruct(sk);
1606  }
1607  
udp_init_sock(struct sock * sk)1608  int udp_init_sock(struct sock *sk)
1609  {
1610  	udp_lib_init_sock(sk);
1611  	sk->sk_destruct = udp_destruct_sock;
1612  	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1613  	return 0;
1614  }
1615  
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1616  void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1617  {
1618  	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1619  		sk_peek_offset_bwd(sk, len);
1620  
1621  	if (!skb_unref(skb))
1622  		return;
1623  
1624  	/* In the more common cases we cleared the head states previously,
1625  	 * see __udp_queue_rcv_skb().
1626  	 */
1627  	if (unlikely(udp_skb_has_head_state(skb)))
1628  		skb_release_head_state(skb);
1629  	__consume_stateless_skb(skb);
1630  }
1631  EXPORT_SYMBOL_GPL(skb_consume_udp);
1632  
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1633  static struct sk_buff *__first_packet_length(struct sock *sk,
1634  					     struct sk_buff_head *rcvq,
1635  					     int *total)
1636  {
1637  	struct sk_buff *skb;
1638  
1639  	while ((skb = skb_peek(rcvq)) != NULL) {
1640  		if (udp_lib_checksum_complete(skb)) {
1641  			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1642  					IS_UDPLITE(sk));
1643  			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1644  					IS_UDPLITE(sk));
1645  			atomic_inc(&sk->sk_drops);
1646  			__skb_unlink(skb, rcvq);
1647  			*total += skb->truesize;
1648  			kfree_skb(skb);
1649  		} else {
1650  			udp_skb_csum_unnecessary_set(skb);
1651  			break;
1652  		}
1653  	}
1654  	return skb;
1655  }
1656  
1657  /**
1658   *	first_packet_length	- return length of first packet in receive queue
1659   *	@sk: socket
1660   *
1661   *	Drops all bad checksum frames, until a valid one is found.
1662   *	Returns the length of found skb, or -1 if none is found.
1663   */
first_packet_length(struct sock * sk)1664  static int first_packet_length(struct sock *sk)
1665  {
1666  	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1667  	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1668  	struct sk_buff *skb;
1669  	int total = 0;
1670  	int res;
1671  
1672  	spin_lock_bh(&rcvq->lock);
1673  	skb = __first_packet_length(sk, rcvq, &total);
1674  	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1675  		spin_lock(&sk_queue->lock);
1676  		skb_queue_splice_tail_init(sk_queue, rcvq);
1677  		spin_unlock(&sk_queue->lock);
1678  
1679  		skb = __first_packet_length(sk, rcvq, &total);
1680  	}
1681  	res = skb ? skb->len : -1;
1682  	if (total)
1683  		udp_rmem_release(sk, total, 1, false);
1684  	spin_unlock_bh(&rcvq->lock);
1685  	return res;
1686  }
1687  
1688  /*
1689   *	IOCTL requests applicable to the UDP protocol
1690   */
1691  
udp_ioctl(struct sock * sk,int cmd,int * karg)1692  int udp_ioctl(struct sock *sk, int cmd, int *karg)
1693  {
1694  	switch (cmd) {
1695  	case SIOCOUTQ:
1696  	{
1697  		*karg = sk_wmem_alloc_get(sk);
1698  		return 0;
1699  	}
1700  
1701  	case SIOCINQ:
1702  	{
1703  		*karg = max_t(int, 0, first_packet_length(sk));
1704  		return 0;
1705  	}
1706  
1707  	default:
1708  		return -ENOIOCTLCMD;
1709  	}
1710  
1711  	return 0;
1712  }
1713  EXPORT_SYMBOL(udp_ioctl);
1714  
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1715  struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1716  			       int *off, int *err)
1717  {
1718  	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1719  	struct sk_buff_head *queue;
1720  	struct sk_buff *last;
1721  	long timeo;
1722  	int error;
1723  
1724  	queue = &udp_sk(sk)->reader_queue;
1725  	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1726  	do {
1727  		struct sk_buff *skb;
1728  
1729  		error = sock_error(sk);
1730  		if (error)
1731  			break;
1732  
1733  		error = -EAGAIN;
1734  		do {
1735  			spin_lock_bh(&queue->lock);
1736  			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1737  							err, &last);
1738  			if (skb) {
1739  				if (!(flags & MSG_PEEK))
1740  					udp_skb_destructor(sk, skb);
1741  				spin_unlock_bh(&queue->lock);
1742  				return skb;
1743  			}
1744  
1745  			if (skb_queue_empty_lockless(sk_queue)) {
1746  				spin_unlock_bh(&queue->lock);
1747  				goto busy_check;
1748  			}
1749  
1750  			/* refill the reader queue and walk it again
1751  			 * keep both queues locked to avoid re-acquiring
1752  			 * the sk_receive_queue lock if fwd memory scheduling
1753  			 * is needed.
1754  			 */
1755  			spin_lock(&sk_queue->lock);
1756  			skb_queue_splice_tail_init(sk_queue, queue);
1757  
1758  			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1759  							err, &last);
1760  			if (skb && !(flags & MSG_PEEK))
1761  				udp_skb_dtor_locked(sk, skb);
1762  			spin_unlock(&sk_queue->lock);
1763  			spin_unlock_bh(&queue->lock);
1764  			if (skb)
1765  				return skb;
1766  
1767  busy_check:
1768  			if (!sk_can_busy_loop(sk))
1769  				break;
1770  
1771  			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1772  		} while (!skb_queue_empty_lockless(sk_queue));
1773  
1774  		/* sk_queue is empty, reader_queue may contain peeked packets */
1775  	} while (timeo &&
1776  		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1777  					      &error, &timeo,
1778  					      (struct sk_buff *)sk_queue));
1779  
1780  	*err = error;
1781  	return NULL;
1782  }
1783  EXPORT_SYMBOL(__skb_recv_udp);
1784  
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1785  int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1786  {
1787  	struct sk_buff *skb;
1788  	int err;
1789  
1790  try_again:
1791  	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1792  	if (!skb)
1793  		return err;
1794  
1795  	if (udp_lib_checksum_complete(skb)) {
1796  		int is_udplite = IS_UDPLITE(sk);
1797  		struct net *net = sock_net(sk);
1798  
1799  		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1800  		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1801  		atomic_inc(&sk->sk_drops);
1802  		kfree_skb(skb);
1803  		goto try_again;
1804  	}
1805  
1806  	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1807  	return recv_actor(sk, skb);
1808  }
1809  EXPORT_SYMBOL(udp_read_skb);
1810  
1811  /*
1812   * 	This should be easy, if there is something there we
1813   * 	return it, otherwise we block.
1814   */
1815  
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1816  int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1817  		int *addr_len)
1818  {
1819  	struct inet_sock *inet = inet_sk(sk);
1820  	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1821  	struct sk_buff *skb;
1822  	unsigned int ulen, copied;
1823  	int off, err, peeking = flags & MSG_PEEK;
1824  	int is_udplite = IS_UDPLITE(sk);
1825  	bool checksum_valid = false;
1826  
1827  	if (flags & MSG_ERRQUEUE)
1828  		return ip_recv_error(sk, msg, len, addr_len);
1829  
1830  try_again:
1831  	off = sk_peek_offset(sk, flags);
1832  	skb = __skb_recv_udp(sk, flags, &off, &err);
1833  	if (!skb)
1834  		return err;
1835  
1836  	ulen = udp_skb_len(skb);
1837  	copied = len;
1838  	if (copied > ulen - off)
1839  		copied = ulen - off;
1840  	else if (copied < ulen)
1841  		msg->msg_flags |= MSG_TRUNC;
1842  
1843  	/*
1844  	 * If checksum is needed at all, try to do it while copying the
1845  	 * data.  If the data is truncated, or if we only want a partial
1846  	 * coverage checksum (UDP-Lite), do it before the copy.
1847  	 */
1848  
1849  	if (copied < ulen || peeking ||
1850  	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1851  		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1852  				!__udp_lib_checksum_complete(skb);
1853  		if (!checksum_valid)
1854  			goto csum_copy_err;
1855  	}
1856  
1857  	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1858  		if (udp_skb_is_linear(skb))
1859  			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1860  		else
1861  			err = skb_copy_datagram_msg(skb, off, msg, copied);
1862  	} else {
1863  		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1864  
1865  		if (err == -EINVAL)
1866  			goto csum_copy_err;
1867  	}
1868  
1869  	if (unlikely(err)) {
1870  		if (!peeking) {
1871  			atomic_inc(&sk->sk_drops);
1872  			UDP_INC_STATS(sock_net(sk),
1873  				      UDP_MIB_INERRORS, is_udplite);
1874  		}
1875  		kfree_skb(skb);
1876  		return err;
1877  	}
1878  
1879  	if (!peeking)
1880  		UDP_INC_STATS(sock_net(sk),
1881  			      UDP_MIB_INDATAGRAMS, is_udplite);
1882  
1883  	sock_recv_cmsgs(msg, sk, skb);
1884  
1885  	/* Copy the address. */
1886  	if (sin) {
1887  		sin->sin_family = AF_INET;
1888  		sin->sin_port = udp_hdr(skb)->source;
1889  		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1890  		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1891  		*addr_len = sizeof(*sin);
1892  
1893  		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1894  						      (struct sockaddr *)sin,
1895  						      addr_len);
1896  	}
1897  
1898  	if (udp_test_bit(GRO_ENABLED, sk))
1899  		udp_cmsg_recv(msg, sk, skb);
1900  
1901  	if (inet_cmsg_flags(inet))
1902  		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1903  
1904  	err = copied;
1905  	if (flags & MSG_TRUNC)
1906  		err = ulen;
1907  
1908  	skb_consume_udp(sk, skb, peeking ? -err : err);
1909  	return err;
1910  
1911  csum_copy_err:
1912  	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1913  				 udp_skb_destructor)) {
1914  		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1915  		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1916  	}
1917  	kfree_skb(skb);
1918  
1919  	/* starting over for a new packet, but check if we need to yield */
1920  	cond_resched();
1921  	msg->msg_flags &= ~MSG_TRUNC;
1922  	goto try_again;
1923  }
1924  
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1925  int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1926  {
1927  	/* This check is replicated from __ip4_datagram_connect() and
1928  	 * intended to prevent BPF program called below from accessing bytes
1929  	 * that are out of the bound specified by user in addr_len.
1930  	 */
1931  	if (addr_len < sizeof(struct sockaddr_in))
1932  		return -EINVAL;
1933  
1934  	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1935  }
1936  EXPORT_SYMBOL(udp_pre_connect);
1937  
__udp_disconnect(struct sock * sk,int flags)1938  int __udp_disconnect(struct sock *sk, int flags)
1939  {
1940  	struct inet_sock *inet = inet_sk(sk);
1941  	/*
1942  	 *	1003.1g - break association.
1943  	 */
1944  
1945  	sk->sk_state = TCP_CLOSE;
1946  	inet->inet_daddr = 0;
1947  	inet->inet_dport = 0;
1948  	sock_rps_reset_rxhash(sk);
1949  	sk->sk_bound_dev_if = 0;
1950  	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1951  		inet_reset_saddr(sk);
1952  		if (sk->sk_prot->rehash &&
1953  		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1954  			sk->sk_prot->rehash(sk);
1955  	}
1956  
1957  	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1958  		sk->sk_prot->unhash(sk);
1959  		inet->inet_sport = 0;
1960  	}
1961  	sk_dst_reset(sk);
1962  	return 0;
1963  }
1964  EXPORT_SYMBOL(__udp_disconnect);
1965  
udp_disconnect(struct sock * sk,int flags)1966  int udp_disconnect(struct sock *sk, int flags)
1967  {
1968  	lock_sock(sk);
1969  	__udp_disconnect(sk, flags);
1970  	release_sock(sk);
1971  	return 0;
1972  }
1973  EXPORT_SYMBOL(udp_disconnect);
1974  
udp_lib_unhash(struct sock * sk)1975  void udp_lib_unhash(struct sock *sk)
1976  {
1977  	if (sk_hashed(sk)) {
1978  		struct udp_table *udptable = udp_get_table_prot(sk);
1979  		struct udp_hslot *hslot, *hslot2;
1980  
1981  		hslot  = udp_hashslot(udptable, sock_net(sk),
1982  				      udp_sk(sk)->udp_port_hash);
1983  		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1984  
1985  		spin_lock_bh(&hslot->lock);
1986  		if (rcu_access_pointer(sk->sk_reuseport_cb))
1987  			reuseport_detach_sock(sk);
1988  		if (sk_del_node_init_rcu(sk)) {
1989  			hslot->count--;
1990  			inet_sk(sk)->inet_num = 0;
1991  			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1992  
1993  			spin_lock(&hslot2->lock);
1994  			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1995  			hslot2->count--;
1996  			spin_unlock(&hslot2->lock);
1997  		}
1998  		spin_unlock_bh(&hslot->lock);
1999  	}
2000  }
2001  EXPORT_SYMBOL(udp_lib_unhash);
2002  
2003  /*
2004   * inet_rcv_saddr was changed, we must rehash secondary hash
2005   */
udp_lib_rehash(struct sock * sk,u16 newhash)2006  void udp_lib_rehash(struct sock *sk, u16 newhash)
2007  {
2008  	if (sk_hashed(sk)) {
2009  		struct udp_table *udptable = udp_get_table_prot(sk);
2010  		struct udp_hslot *hslot, *hslot2, *nhslot2;
2011  
2012  		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2013  		nhslot2 = udp_hashslot2(udptable, newhash);
2014  		udp_sk(sk)->udp_portaddr_hash = newhash;
2015  
2016  		if (hslot2 != nhslot2 ||
2017  		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2018  			hslot = udp_hashslot(udptable, sock_net(sk),
2019  					     udp_sk(sk)->udp_port_hash);
2020  			/* we must lock primary chain too */
2021  			spin_lock_bh(&hslot->lock);
2022  			if (rcu_access_pointer(sk->sk_reuseport_cb))
2023  				reuseport_detach_sock(sk);
2024  
2025  			if (hslot2 != nhslot2) {
2026  				spin_lock(&hslot2->lock);
2027  				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2028  				hslot2->count--;
2029  				spin_unlock(&hslot2->lock);
2030  
2031  				spin_lock(&nhslot2->lock);
2032  				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2033  							 &nhslot2->head);
2034  				nhslot2->count++;
2035  				spin_unlock(&nhslot2->lock);
2036  			}
2037  
2038  			spin_unlock_bh(&hslot->lock);
2039  		}
2040  	}
2041  }
2042  EXPORT_SYMBOL(udp_lib_rehash);
2043  
udp_v4_rehash(struct sock * sk)2044  void udp_v4_rehash(struct sock *sk)
2045  {
2046  	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2047  					  inet_sk(sk)->inet_rcv_saddr,
2048  					  inet_sk(sk)->inet_num);
2049  	udp_lib_rehash(sk, new_hash);
2050  }
2051  
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2052  static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2053  {
2054  	int rc;
2055  
2056  	if (inet_sk(sk)->inet_daddr) {
2057  		sock_rps_save_rxhash(sk, skb);
2058  		sk_mark_napi_id(sk, skb);
2059  		sk_incoming_cpu_update(sk);
2060  	} else {
2061  		sk_mark_napi_id_once(sk, skb);
2062  	}
2063  
2064  	rc = __udp_enqueue_schedule_skb(sk, skb);
2065  	if (rc < 0) {
2066  		int is_udplite = IS_UDPLITE(sk);
2067  		int drop_reason;
2068  
2069  		/* Note that an ENOMEM error is charged twice */
2070  		if (rc == -ENOMEM) {
2071  			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2072  					is_udplite);
2073  			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2074  		} else {
2075  			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2076  				      is_udplite);
2077  			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2078  		}
2079  		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2080  		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2081  		sk_skb_reason_drop(sk, skb, drop_reason);
2082  		return -1;
2083  	}
2084  
2085  	return 0;
2086  }
2087  
2088  /* returns:
2089   *  -1: error
2090   *   0: success
2091   *  >0: "udp encap" protocol resubmission
2092   *
2093   * Note that in the success and error cases, the skb is assumed to
2094   * have either been requeued or freed.
2095   */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2096  static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2097  {
2098  	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2099  	struct udp_sock *up = udp_sk(sk);
2100  	int is_udplite = IS_UDPLITE(sk);
2101  
2102  	/*
2103  	 *	Charge it to the socket, dropping if the queue is full.
2104  	 */
2105  	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2106  		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2107  		goto drop;
2108  	}
2109  	nf_reset_ct(skb);
2110  
2111  	if (static_branch_unlikely(&udp_encap_needed_key) &&
2112  	    READ_ONCE(up->encap_type)) {
2113  		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2114  
2115  		/*
2116  		 * This is an encapsulation socket so pass the skb to
2117  		 * the socket's udp_encap_rcv() hook. Otherwise, just
2118  		 * fall through and pass this up the UDP socket.
2119  		 * up->encap_rcv() returns the following value:
2120  		 * =0 if skb was successfully passed to the encap
2121  		 *    handler or was discarded by it.
2122  		 * >0 if skb should be passed on to UDP.
2123  		 * <0 if skb should be resubmitted as proto -N
2124  		 */
2125  
2126  		/* if we're overly short, let UDP handle it */
2127  		encap_rcv = READ_ONCE(up->encap_rcv);
2128  		if (encap_rcv) {
2129  			int ret;
2130  
2131  			/* Verify checksum before giving to encap */
2132  			if (udp_lib_checksum_complete(skb))
2133  				goto csum_error;
2134  
2135  			ret = encap_rcv(sk, skb);
2136  			if (ret <= 0) {
2137  				__UDP_INC_STATS(sock_net(sk),
2138  						UDP_MIB_INDATAGRAMS,
2139  						is_udplite);
2140  				return -ret;
2141  			}
2142  		}
2143  
2144  		/* FALLTHROUGH -- it's a UDP Packet */
2145  	}
2146  
2147  	/*
2148  	 * 	UDP-Lite specific tests, ignored on UDP sockets
2149  	 */
2150  	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2151  		u16 pcrlen = READ_ONCE(up->pcrlen);
2152  
2153  		/*
2154  		 * MIB statistics other than incrementing the error count are
2155  		 * disabled for the following two types of errors: these depend
2156  		 * on the application settings, not on the functioning of the
2157  		 * protocol stack as such.
2158  		 *
2159  		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2160  		 * way ... to ... at least let the receiving application block
2161  		 * delivery of packets with coverage values less than a value
2162  		 * provided by the application."
2163  		 */
2164  		if (pcrlen == 0) {          /* full coverage was set  */
2165  			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2166  					    UDP_SKB_CB(skb)->cscov, skb->len);
2167  			goto drop;
2168  		}
2169  		/* The next case involves violating the min. coverage requested
2170  		 * by the receiver. This is subtle: if receiver wants x and x is
2171  		 * greater than the buffersize/MTU then receiver will complain
2172  		 * that it wants x while sender emits packets of smaller size y.
2173  		 * Therefore the above ...()->partial_cov statement is essential.
2174  		 */
2175  		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2176  			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2177  					    UDP_SKB_CB(skb)->cscov, pcrlen);
2178  			goto drop;
2179  		}
2180  	}
2181  
2182  	prefetch(&sk->sk_rmem_alloc);
2183  	if (rcu_access_pointer(sk->sk_filter) &&
2184  	    udp_lib_checksum_complete(skb))
2185  			goto csum_error;
2186  
2187  	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2188  		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2189  		goto drop;
2190  	}
2191  
2192  	udp_csum_pull_header(skb);
2193  
2194  	ipv4_pktinfo_prepare(sk, skb, true);
2195  	return __udp_queue_rcv_skb(sk, skb);
2196  
2197  csum_error:
2198  	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2199  	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2200  drop:
2201  	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2202  	atomic_inc(&sk->sk_drops);
2203  	sk_skb_reason_drop(sk, skb, drop_reason);
2204  	return -1;
2205  }
2206  
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2207  static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2208  {
2209  	struct sk_buff *next, *segs;
2210  	int ret;
2211  
2212  	if (likely(!udp_unexpected_gso(sk, skb)))
2213  		return udp_queue_rcv_one_skb(sk, skb);
2214  
2215  	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2216  	__skb_push(skb, -skb_mac_offset(skb));
2217  	segs = udp_rcv_segment(sk, skb, true);
2218  	skb_list_walk_safe(segs, skb, next) {
2219  		__skb_pull(skb, skb_transport_offset(skb));
2220  
2221  		udp_post_segment_fix_csum(skb);
2222  		ret = udp_queue_rcv_one_skb(sk, skb);
2223  		if (ret > 0)
2224  			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2225  	}
2226  	return 0;
2227  }
2228  
2229  /* For TCP sockets, sk_rx_dst is protected by socket lock
2230   * For UDP, we use xchg() to guard against concurrent changes.
2231   */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2232  bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2233  {
2234  	struct dst_entry *old;
2235  
2236  	if (dst_hold_safe(dst)) {
2237  		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2238  		dst_release(old);
2239  		return old != dst;
2240  	}
2241  	return false;
2242  }
2243  EXPORT_SYMBOL(udp_sk_rx_dst_set);
2244  
2245  /*
2246   *	Multicasts and broadcasts go to each listener.
2247   *
2248   *	Note: called only from the BH handler context.
2249   */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2250  static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2251  				    struct udphdr  *uh,
2252  				    __be32 saddr, __be32 daddr,
2253  				    struct udp_table *udptable,
2254  				    int proto)
2255  {
2256  	struct sock *sk, *first = NULL;
2257  	unsigned short hnum = ntohs(uh->dest);
2258  	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2259  	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2260  	unsigned int offset = offsetof(typeof(*sk), sk_node);
2261  	int dif = skb->dev->ifindex;
2262  	int sdif = inet_sdif(skb);
2263  	struct hlist_node *node;
2264  	struct sk_buff *nskb;
2265  
2266  	if (use_hash2) {
2267  		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2268  			    udptable->mask;
2269  		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2270  start_lookup:
2271  		hslot = &udptable->hash2[hash2];
2272  		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2273  	}
2274  
2275  	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2276  		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2277  					 uh->source, saddr, dif, sdif, hnum))
2278  			continue;
2279  
2280  		if (!first) {
2281  			first = sk;
2282  			continue;
2283  		}
2284  		nskb = skb_clone(skb, GFP_ATOMIC);
2285  
2286  		if (unlikely(!nskb)) {
2287  			atomic_inc(&sk->sk_drops);
2288  			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2289  					IS_UDPLITE(sk));
2290  			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2291  					IS_UDPLITE(sk));
2292  			continue;
2293  		}
2294  		if (udp_queue_rcv_skb(sk, nskb) > 0)
2295  			consume_skb(nskb);
2296  	}
2297  
2298  	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2299  	if (use_hash2 && hash2 != hash2_any) {
2300  		hash2 = hash2_any;
2301  		goto start_lookup;
2302  	}
2303  
2304  	if (first) {
2305  		if (udp_queue_rcv_skb(first, skb) > 0)
2306  			consume_skb(skb);
2307  	} else {
2308  		kfree_skb(skb);
2309  		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2310  				proto == IPPROTO_UDPLITE);
2311  	}
2312  	return 0;
2313  }
2314  
2315  /* Initialize UDP checksum. If exited with zero value (success),
2316   * CHECKSUM_UNNECESSARY means, that no more checks are required.
2317   * Otherwise, csum completion requires checksumming packet body,
2318   * including udp header and folding it to skb->csum.
2319   */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2320  static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2321  				 int proto)
2322  {
2323  	int err;
2324  
2325  	UDP_SKB_CB(skb)->partial_cov = 0;
2326  	UDP_SKB_CB(skb)->cscov = skb->len;
2327  
2328  	if (proto == IPPROTO_UDPLITE) {
2329  		err = udplite_checksum_init(skb, uh);
2330  		if (err)
2331  			return err;
2332  
2333  		if (UDP_SKB_CB(skb)->partial_cov) {
2334  			skb->csum = inet_compute_pseudo(skb, proto);
2335  			return 0;
2336  		}
2337  	}
2338  
2339  	/* Note, we are only interested in != 0 or == 0, thus the
2340  	 * force to int.
2341  	 */
2342  	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2343  							inet_compute_pseudo);
2344  	if (err)
2345  		return err;
2346  
2347  	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2348  		/* If SW calculated the value, we know it's bad */
2349  		if (skb->csum_complete_sw)
2350  			return 1;
2351  
2352  		/* HW says the value is bad. Let's validate that.
2353  		 * skb->csum is no longer the full packet checksum,
2354  		 * so don't treat it as such.
2355  		 */
2356  		skb_checksum_complete_unset(skb);
2357  	}
2358  
2359  	return 0;
2360  }
2361  
2362  /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2363   * return code conversion for ip layer consumption
2364   */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2365  static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2366  			       struct udphdr *uh)
2367  {
2368  	int ret;
2369  
2370  	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2371  		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2372  
2373  	ret = udp_queue_rcv_skb(sk, skb);
2374  
2375  	/* a return value > 0 means to resubmit the input, but
2376  	 * it wants the return to be -protocol, or 0
2377  	 */
2378  	if (ret > 0)
2379  		return -ret;
2380  	return 0;
2381  }
2382  
2383  /*
2384   *	All we need to do is get the socket, and then do a checksum.
2385   */
2386  
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2387  int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2388  		   int proto)
2389  {
2390  	struct sock *sk = NULL;
2391  	struct udphdr *uh;
2392  	unsigned short ulen;
2393  	struct rtable *rt = skb_rtable(skb);
2394  	__be32 saddr, daddr;
2395  	struct net *net = dev_net(skb->dev);
2396  	bool refcounted;
2397  	int drop_reason;
2398  
2399  	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2400  
2401  	/*
2402  	 *  Validate the packet.
2403  	 */
2404  	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2405  		goto drop;		/* No space for header. */
2406  
2407  	uh   = udp_hdr(skb);
2408  	ulen = ntohs(uh->len);
2409  	saddr = ip_hdr(skb)->saddr;
2410  	daddr = ip_hdr(skb)->daddr;
2411  
2412  	if (ulen > skb->len)
2413  		goto short_packet;
2414  
2415  	if (proto == IPPROTO_UDP) {
2416  		/* UDP validates ulen. */
2417  		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2418  			goto short_packet;
2419  		uh = udp_hdr(skb);
2420  	}
2421  
2422  	if (udp4_csum_init(skb, uh, proto))
2423  		goto csum_error;
2424  
2425  	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2426  			     &refcounted, udp_ehashfn);
2427  	if (IS_ERR(sk))
2428  		goto no_sk;
2429  
2430  	if (sk) {
2431  		struct dst_entry *dst = skb_dst(skb);
2432  		int ret;
2433  
2434  		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2435  			udp_sk_rx_dst_set(sk, dst);
2436  
2437  		ret = udp_unicast_rcv_skb(sk, skb, uh);
2438  		if (refcounted)
2439  			sock_put(sk);
2440  		return ret;
2441  	}
2442  
2443  	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2444  		return __udp4_lib_mcast_deliver(net, skb, uh,
2445  						saddr, daddr, udptable, proto);
2446  
2447  	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2448  	if (sk)
2449  		return udp_unicast_rcv_skb(sk, skb, uh);
2450  no_sk:
2451  	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2452  		goto drop;
2453  	nf_reset_ct(skb);
2454  
2455  	/* No socket. Drop packet silently, if checksum is wrong */
2456  	if (udp_lib_checksum_complete(skb))
2457  		goto csum_error;
2458  
2459  	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2460  	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2461  	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2462  
2463  	/*
2464  	 * Hmm.  We got an UDP packet to a port to which we
2465  	 * don't wanna listen.  Ignore it.
2466  	 */
2467  	sk_skb_reason_drop(sk, skb, drop_reason);
2468  	return 0;
2469  
2470  short_packet:
2471  	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2472  	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2473  			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2474  			    &saddr, ntohs(uh->source),
2475  			    ulen, skb->len,
2476  			    &daddr, ntohs(uh->dest));
2477  	goto drop;
2478  
2479  csum_error:
2480  	/*
2481  	 * RFC1122: OK.  Discards the bad packet silently (as far as
2482  	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2483  	 */
2484  	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2485  	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2486  			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2487  			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2488  			    ulen);
2489  	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2490  drop:
2491  	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2492  	sk_skb_reason_drop(sk, skb, drop_reason);
2493  	return 0;
2494  }
2495  
2496  /* We can only early demux multicast if there is a single matching socket.
2497   * If more than one socket found returns NULL
2498   */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2499  static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2500  						  __be16 loc_port, __be32 loc_addr,
2501  						  __be16 rmt_port, __be32 rmt_addr,
2502  						  int dif, int sdif)
2503  {
2504  	struct udp_table *udptable = net->ipv4.udp_table;
2505  	unsigned short hnum = ntohs(loc_port);
2506  	struct sock *sk, *result;
2507  	struct udp_hslot *hslot;
2508  	unsigned int slot;
2509  
2510  	slot = udp_hashfn(net, hnum, udptable->mask);
2511  	hslot = &udptable->hash[slot];
2512  
2513  	/* Do not bother scanning a too big list */
2514  	if (hslot->count > 10)
2515  		return NULL;
2516  
2517  	result = NULL;
2518  	sk_for_each_rcu(sk, &hslot->head) {
2519  		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2520  					rmt_port, rmt_addr, dif, sdif, hnum)) {
2521  			if (result)
2522  				return NULL;
2523  			result = sk;
2524  		}
2525  	}
2526  
2527  	return result;
2528  }
2529  
2530  /* For unicast we should only early demux connected sockets or we can
2531   * break forwarding setups.  The chains here can be long so only check
2532   * if the first socket is an exact match and if not move on.
2533   */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2534  static struct sock *__udp4_lib_demux_lookup(struct net *net,
2535  					    __be16 loc_port, __be32 loc_addr,
2536  					    __be16 rmt_port, __be32 rmt_addr,
2537  					    int dif, int sdif)
2538  {
2539  	struct udp_table *udptable = net->ipv4.udp_table;
2540  	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2541  	unsigned short hnum = ntohs(loc_port);
2542  	unsigned int hash2, slot2;
2543  	struct udp_hslot *hslot2;
2544  	__portpair ports;
2545  	struct sock *sk;
2546  
2547  	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2548  	slot2 = hash2 & udptable->mask;
2549  	hslot2 = &udptable->hash2[slot2];
2550  	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2551  
2552  	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2553  		if (inet_match(net, sk, acookie, ports, dif, sdif))
2554  			return sk;
2555  		/* Only check first socket in chain */
2556  		break;
2557  	}
2558  	return NULL;
2559  }
2560  
udp_v4_early_demux(struct sk_buff * skb)2561  int udp_v4_early_demux(struct sk_buff *skb)
2562  {
2563  	struct net *net = dev_net(skb->dev);
2564  	struct in_device *in_dev = NULL;
2565  	const struct iphdr *iph;
2566  	const struct udphdr *uh;
2567  	struct sock *sk = NULL;
2568  	struct dst_entry *dst;
2569  	int dif = skb->dev->ifindex;
2570  	int sdif = inet_sdif(skb);
2571  	int ours;
2572  
2573  	/* validate the packet */
2574  	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2575  		return 0;
2576  
2577  	iph = ip_hdr(skb);
2578  	uh = udp_hdr(skb);
2579  
2580  	if (skb->pkt_type == PACKET_MULTICAST) {
2581  		in_dev = __in_dev_get_rcu(skb->dev);
2582  
2583  		if (!in_dev)
2584  			return 0;
2585  
2586  		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2587  				       iph->protocol);
2588  		if (!ours)
2589  			return 0;
2590  
2591  		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2592  						   uh->source, iph->saddr,
2593  						   dif, sdif);
2594  	} else if (skb->pkt_type == PACKET_HOST) {
2595  		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2596  					     uh->source, iph->saddr, dif, sdif);
2597  	}
2598  
2599  	if (!sk)
2600  		return 0;
2601  
2602  	skb->sk = sk;
2603  	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2604  	skb->destructor = sock_pfree;
2605  	dst = rcu_dereference(sk->sk_rx_dst);
2606  
2607  	if (dst)
2608  		dst = dst_check(dst, 0);
2609  	if (dst) {
2610  		u32 itag = 0;
2611  
2612  		/* set noref for now.
2613  		 * any place which wants to hold dst has to call
2614  		 * dst_hold_safe()
2615  		 */
2616  		skb_dst_set_noref(skb, dst);
2617  
2618  		/* for unconnected multicast sockets we need to validate
2619  		 * the source on each packet
2620  		 */
2621  		if (!inet_sk(sk)->inet_daddr && in_dev)
2622  			return ip_mc_validate_source(skb, iph->daddr,
2623  						     iph->saddr,
2624  						     iph->tos & INET_DSCP_MASK,
2625  						     skb->dev, in_dev, &itag);
2626  	}
2627  	return 0;
2628  }
2629  
udp_rcv(struct sk_buff * skb)2630  int udp_rcv(struct sk_buff *skb)
2631  {
2632  	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2633  }
2634  
udp_destroy_sock(struct sock * sk)2635  void udp_destroy_sock(struct sock *sk)
2636  {
2637  	struct udp_sock *up = udp_sk(sk);
2638  	bool slow = lock_sock_fast(sk);
2639  
2640  	/* protects from races with udp_abort() */
2641  	sock_set_flag(sk, SOCK_DEAD);
2642  	udp_flush_pending_frames(sk);
2643  	unlock_sock_fast(sk, slow);
2644  	if (static_branch_unlikely(&udp_encap_needed_key)) {
2645  		if (up->encap_type) {
2646  			void (*encap_destroy)(struct sock *sk);
2647  			encap_destroy = READ_ONCE(up->encap_destroy);
2648  			if (encap_destroy)
2649  				encap_destroy(sk);
2650  		}
2651  		if (udp_test_bit(ENCAP_ENABLED, sk))
2652  			static_branch_dec(&udp_encap_needed_key);
2653  	}
2654  }
2655  
set_xfrm_gro_udp_encap_rcv(__u16 encap_type,unsigned short family,struct sock * sk)2656  static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2657  				       struct sock *sk)
2658  {
2659  #ifdef CONFIG_XFRM
2660  	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2661  		if (family == AF_INET)
2662  			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2663  		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2664  			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2665  	}
2666  #endif
2667  }
2668  
2669  /*
2670   *	Socket option code for UDP
2671   */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2672  int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2673  		       sockptr_t optval, unsigned int optlen,
2674  		       int (*push_pending_frames)(struct sock *))
2675  {
2676  	struct udp_sock *up = udp_sk(sk);
2677  	int val, valbool;
2678  	int err = 0;
2679  	int is_udplite = IS_UDPLITE(sk);
2680  
2681  	if (level == SOL_SOCKET) {
2682  		err = sk_setsockopt(sk, level, optname, optval, optlen);
2683  
2684  		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2685  			sockopt_lock_sock(sk);
2686  			/* paired with READ_ONCE in udp_rmem_release() */
2687  			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2688  			sockopt_release_sock(sk);
2689  		}
2690  		return err;
2691  	}
2692  
2693  	if (optlen < sizeof(int))
2694  		return -EINVAL;
2695  
2696  	if (copy_from_sockptr(&val, optval, sizeof(val)))
2697  		return -EFAULT;
2698  
2699  	valbool = val ? 1 : 0;
2700  
2701  	switch (optname) {
2702  	case UDP_CORK:
2703  		if (val != 0) {
2704  			udp_set_bit(CORK, sk);
2705  		} else {
2706  			udp_clear_bit(CORK, sk);
2707  			lock_sock(sk);
2708  			push_pending_frames(sk);
2709  			release_sock(sk);
2710  		}
2711  		break;
2712  
2713  	case UDP_ENCAP:
2714  		switch (val) {
2715  		case 0:
2716  #ifdef CONFIG_XFRM
2717  		case UDP_ENCAP_ESPINUDP:
2718  			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2719  #if IS_ENABLED(CONFIG_IPV6)
2720  			if (sk->sk_family == AF_INET6)
2721  				WRITE_ONCE(up->encap_rcv,
2722  					   ipv6_stub->xfrm6_udp_encap_rcv);
2723  			else
2724  #endif
2725  				WRITE_ONCE(up->encap_rcv,
2726  					   xfrm4_udp_encap_rcv);
2727  #endif
2728  			fallthrough;
2729  		case UDP_ENCAP_L2TPINUDP:
2730  			WRITE_ONCE(up->encap_type, val);
2731  			udp_tunnel_encap_enable(sk);
2732  			break;
2733  		default:
2734  			err = -ENOPROTOOPT;
2735  			break;
2736  		}
2737  		break;
2738  
2739  	case UDP_NO_CHECK6_TX:
2740  		udp_set_no_check6_tx(sk, valbool);
2741  		break;
2742  
2743  	case UDP_NO_CHECK6_RX:
2744  		udp_set_no_check6_rx(sk, valbool);
2745  		break;
2746  
2747  	case UDP_SEGMENT:
2748  		if (val < 0 || val > USHRT_MAX)
2749  			return -EINVAL;
2750  		WRITE_ONCE(up->gso_size, val);
2751  		break;
2752  
2753  	case UDP_GRO:
2754  
2755  		/* when enabling GRO, accept the related GSO packet type */
2756  		if (valbool)
2757  			udp_tunnel_encap_enable(sk);
2758  		udp_assign_bit(GRO_ENABLED, sk, valbool);
2759  		udp_assign_bit(ACCEPT_L4, sk, valbool);
2760  		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2761  		break;
2762  
2763  	/*
2764  	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2765  	 */
2766  	/* The sender sets actual checksum coverage length via this option.
2767  	 * The case coverage > packet length is handled by send module. */
2768  	case UDPLITE_SEND_CSCOV:
2769  		if (!is_udplite)         /* Disable the option on UDP sockets */
2770  			return -ENOPROTOOPT;
2771  		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2772  			val = 8;
2773  		else if (val > USHRT_MAX)
2774  			val = USHRT_MAX;
2775  		WRITE_ONCE(up->pcslen, val);
2776  		udp_set_bit(UDPLITE_SEND_CC, sk);
2777  		break;
2778  
2779  	/* The receiver specifies a minimum checksum coverage value. To make
2780  	 * sense, this should be set to at least 8 (as done below). If zero is
2781  	 * used, this again means full checksum coverage.                     */
2782  	case UDPLITE_RECV_CSCOV:
2783  		if (!is_udplite)         /* Disable the option on UDP sockets */
2784  			return -ENOPROTOOPT;
2785  		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2786  			val = 8;
2787  		else if (val > USHRT_MAX)
2788  			val = USHRT_MAX;
2789  		WRITE_ONCE(up->pcrlen, val);
2790  		udp_set_bit(UDPLITE_RECV_CC, sk);
2791  		break;
2792  
2793  	default:
2794  		err = -ENOPROTOOPT;
2795  		break;
2796  	}
2797  
2798  	return err;
2799  }
2800  EXPORT_SYMBOL(udp_lib_setsockopt);
2801  
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2802  int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2803  		   unsigned int optlen)
2804  {
2805  	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2806  		return udp_lib_setsockopt(sk, level, optname,
2807  					  optval, optlen,
2808  					  udp_push_pending_frames);
2809  	return ip_setsockopt(sk, level, optname, optval, optlen);
2810  }
2811  
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2812  int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2813  		       char __user *optval, int __user *optlen)
2814  {
2815  	struct udp_sock *up = udp_sk(sk);
2816  	int val, len;
2817  
2818  	if (get_user(len, optlen))
2819  		return -EFAULT;
2820  
2821  	if (len < 0)
2822  		return -EINVAL;
2823  
2824  	len = min_t(unsigned int, len, sizeof(int));
2825  
2826  	switch (optname) {
2827  	case UDP_CORK:
2828  		val = udp_test_bit(CORK, sk);
2829  		break;
2830  
2831  	case UDP_ENCAP:
2832  		val = READ_ONCE(up->encap_type);
2833  		break;
2834  
2835  	case UDP_NO_CHECK6_TX:
2836  		val = udp_get_no_check6_tx(sk);
2837  		break;
2838  
2839  	case UDP_NO_CHECK6_RX:
2840  		val = udp_get_no_check6_rx(sk);
2841  		break;
2842  
2843  	case UDP_SEGMENT:
2844  		val = READ_ONCE(up->gso_size);
2845  		break;
2846  
2847  	case UDP_GRO:
2848  		val = udp_test_bit(GRO_ENABLED, sk);
2849  		break;
2850  
2851  	/* The following two cannot be changed on UDP sockets, the return is
2852  	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2853  	case UDPLITE_SEND_CSCOV:
2854  		val = READ_ONCE(up->pcslen);
2855  		break;
2856  
2857  	case UDPLITE_RECV_CSCOV:
2858  		val = READ_ONCE(up->pcrlen);
2859  		break;
2860  
2861  	default:
2862  		return -ENOPROTOOPT;
2863  	}
2864  
2865  	if (put_user(len, optlen))
2866  		return -EFAULT;
2867  	if (copy_to_user(optval, &val, len))
2868  		return -EFAULT;
2869  	return 0;
2870  }
2871  EXPORT_SYMBOL(udp_lib_getsockopt);
2872  
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2873  int udp_getsockopt(struct sock *sk, int level, int optname,
2874  		   char __user *optval, int __user *optlen)
2875  {
2876  	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2877  		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2878  	return ip_getsockopt(sk, level, optname, optval, optlen);
2879  }
2880  
2881  /**
2882   * 	udp_poll - wait for a UDP event.
2883   *	@file: - file struct
2884   *	@sock: - socket
2885   *	@wait: - poll table
2886   *
2887   *	This is same as datagram poll, except for the special case of
2888   *	blocking sockets. If application is using a blocking fd
2889   *	and a packet with checksum error is in the queue;
2890   *	then it could get return from select indicating data available
2891   *	but then block when reading it. Add special case code
2892   *	to work around these arguably broken applications.
2893   */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2894  __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2895  {
2896  	__poll_t mask = datagram_poll(file, sock, wait);
2897  	struct sock *sk = sock->sk;
2898  
2899  	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2900  		mask |= EPOLLIN | EPOLLRDNORM;
2901  
2902  	/* Check for false positives due to checksum errors */
2903  	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2904  	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2905  		mask &= ~(EPOLLIN | EPOLLRDNORM);
2906  
2907  	/* psock ingress_msg queue should not contain any bad checksum frames */
2908  	if (sk_is_readable(sk))
2909  		mask |= EPOLLIN | EPOLLRDNORM;
2910  	return mask;
2911  
2912  }
2913  EXPORT_SYMBOL(udp_poll);
2914  
udp_abort(struct sock * sk,int err)2915  int udp_abort(struct sock *sk, int err)
2916  {
2917  	if (!has_current_bpf_ctx())
2918  		lock_sock(sk);
2919  
2920  	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2921  	 * with close()
2922  	 */
2923  	if (sock_flag(sk, SOCK_DEAD))
2924  		goto out;
2925  
2926  	sk->sk_err = err;
2927  	sk_error_report(sk);
2928  	__udp_disconnect(sk, 0);
2929  
2930  out:
2931  	if (!has_current_bpf_ctx())
2932  		release_sock(sk);
2933  
2934  	return 0;
2935  }
2936  EXPORT_SYMBOL_GPL(udp_abort);
2937  
2938  struct proto udp_prot = {
2939  	.name			= "UDP",
2940  	.owner			= THIS_MODULE,
2941  	.close			= udp_lib_close,
2942  	.pre_connect		= udp_pre_connect,
2943  	.connect		= ip4_datagram_connect,
2944  	.disconnect		= udp_disconnect,
2945  	.ioctl			= udp_ioctl,
2946  	.init			= udp_init_sock,
2947  	.destroy		= udp_destroy_sock,
2948  	.setsockopt		= udp_setsockopt,
2949  	.getsockopt		= udp_getsockopt,
2950  	.sendmsg		= udp_sendmsg,
2951  	.recvmsg		= udp_recvmsg,
2952  	.splice_eof		= udp_splice_eof,
2953  	.release_cb		= ip4_datagram_release_cb,
2954  	.hash			= udp_lib_hash,
2955  	.unhash			= udp_lib_unhash,
2956  	.rehash			= udp_v4_rehash,
2957  	.get_port		= udp_v4_get_port,
2958  	.put_port		= udp_lib_unhash,
2959  #ifdef CONFIG_BPF_SYSCALL
2960  	.psock_update_sk_prot	= udp_bpf_update_proto,
2961  #endif
2962  	.memory_allocated	= &udp_memory_allocated,
2963  	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2964  
2965  	.sysctl_mem		= sysctl_udp_mem,
2966  	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2967  	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2968  	.obj_size		= sizeof(struct udp_sock),
2969  	.h.udp_table		= NULL,
2970  	.diag_destroy		= udp_abort,
2971  };
2972  EXPORT_SYMBOL(udp_prot);
2973  
2974  /* ------------------------------------------------------------------------ */
2975  #ifdef CONFIG_PROC_FS
2976  
2977  static unsigned short seq_file_family(const struct seq_file *seq);
seq_sk_match(struct seq_file * seq,const struct sock * sk)2978  static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2979  {
2980  	unsigned short family = seq_file_family(seq);
2981  
2982  	/* AF_UNSPEC is used as a match all */
2983  	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2984  		net_eq(sock_net(sk), seq_file_net(seq)));
2985  }
2986  
2987  #ifdef CONFIG_BPF_SYSCALL
2988  static const struct seq_operations bpf_iter_udp_seq_ops;
2989  #endif
udp_get_table_seq(struct seq_file * seq,struct net * net)2990  static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2991  					   struct net *net)
2992  {
2993  	const struct udp_seq_afinfo *afinfo;
2994  
2995  #ifdef CONFIG_BPF_SYSCALL
2996  	if (seq->op == &bpf_iter_udp_seq_ops)
2997  		return net->ipv4.udp_table;
2998  #endif
2999  
3000  	afinfo = pde_data(file_inode(seq->file));
3001  	return afinfo->udp_table ? : net->ipv4.udp_table;
3002  }
3003  
udp_get_first(struct seq_file * seq,int start)3004  static struct sock *udp_get_first(struct seq_file *seq, int start)
3005  {
3006  	struct udp_iter_state *state = seq->private;
3007  	struct net *net = seq_file_net(seq);
3008  	struct udp_table *udptable;
3009  	struct sock *sk;
3010  
3011  	udptable = udp_get_table_seq(seq, net);
3012  
3013  	for (state->bucket = start; state->bucket <= udptable->mask;
3014  	     ++state->bucket) {
3015  		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3016  
3017  		if (hlist_empty(&hslot->head))
3018  			continue;
3019  
3020  		spin_lock_bh(&hslot->lock);
3021  		sk_for_each(sk, &hslot->head) {
3022  			if (seq_sk_match(seq, sk))
3023  				goto found;
3024  		}
3025  		spin_unlock_bh(&hslot->lock);
3026  	}
3027  	sk = NULL;
3028  found:
3029  	return sk;
3030  }
3031  
udp_get_next(struct seq_file * seq,struct sock * sk)3032  static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3033  {
3034  	struct udp_iter_state *state = seq->private;
3035  	struct net *net = seq_file_net(seq);
3036  	struct udp_table *udptable;
3037  
3038  	do {
3039  		sk = sk_next(sk);
3040  	} while (sk && !seq_sk_match(seq, sk));
3041  
3042  	if (!sk) {
3043  		udptable = udp_get_table_seq(seq, net);
3044  
3045  		if (state->bucket <= udptable->mask)
3046  			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3047  
3048  		return udp_get_first(seq, state->bucket + 1);
3049  	}
3050  	return sk;
3051  }
3052  
udp_get_idx(struct seq_file * seq,loff_t pos)3053  static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3054  {
3055  	struct sock *sk = udp_get_first(seq, 0);
3056  
3057  	if (sk)
3058  		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3059  			--pos;
3060  	return pos ? NULL : sk;
3061  }
3062  
udp_seq_start(struct seq_file * seq,loff_t * pos)3063  void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3064  {
3065  	struct udp_iter_state *state = seq->private;
3066  	state->bucket = MAX_UDP_PORTS;
3067  
3068  	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3069  }
3070  EXPORT_SYMBOL(udp_seq_start);
3071  
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3072  void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3073  {
3074  	struct sock *sk;
3075  
3076  	if (v == SEQ_START_TOKEN)
3077  		sk = udp_get_idx(seq, 0);
3078  	else
3079  		sk = udp_get_next(seq, v);
3080  
3081  	++*pos;
3082  	return sk;
3083  }
3084  EXPORT_SYMBOL(udp_seq_next);
3085  
udp_seq_stop(struct seq_file * seq,void * v)3086  void udp_seq_stop(struct seq_file *seq, void *v)
3087  {
3088  	struct udp_iter_state *state = seq->private;
3089  	struct udp_table *udptable;
3090  
3091  	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3092  
3093  	if (state->bucket <= udptable->mask)
3094  		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3095  }
3096  EXPORT_SYMBOL(udp_seq_stop);
3097  
3098  /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3099  static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3100  		int bucket)
3101  {
3102  	struct inet_sock *inet = inet_sk(sp);
3103  	__be32 dest = inet->inet_daddr;
3104  	__be32 src  = inet->inet_rcv_saddr;
3105  	__u16 destp	  = ntohs(inet->inet_dport);
3106  	__u16 srcp	  = ntohs(inet->inet_sport);
3107  
3108  	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3109  		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3110  		bucket, src, srcp, dest, destp, sp->sk_state,
3111  		sk_wmem_alloc_get(sp),
3112  		udp_rqueue_get(sp),
3113  		0, 0L, 0,
3114  		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3115  		0, sock_i_ino(sp),
3116  		refcount_read(&sp->sk_refcnt), sp,
3117  		atomic_read(&sp->sk_drops));
3118  }
3119  
udp4_seq_show(struct seq_file * seq,void * v)3120  int udp4_seq_show(struct seq_file *seq, void *v)
3121  {
3122  	seq_setwidth(seq, 127);
3123  	if (v == SEQ_START_TOKEN)
3124  		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3125  			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3126  			   "inode ref pointer drops");
3127  	else {
3128  		struct udp_iter_state *state = seq->private;
3129  
3130  		udp4_format_sock(v, seq, state->bucket);
3131  	}
3132  	seq_pad(seq, '\n');
3133  	return 0;
3134  }
3135  
3136  #ifdef CONFIG_BPF_SYSCALL
3137  struct bpf_iter__udp {
3138  	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3139  	__bpf_md_ptr(struct udp_sock *, udp_sk);
3140  	uid_t uid __aligned(8);
3141  	int bucket __aligned(8);
3142  };
3143  
3144  struct bpf_udp_iter_state {
3145  	struct udp_iter_state state;
3146  	unsigned int cur_sk;
3147  	unsigned int end_sk;
3148  	unsigned int max_sk;
3149  	int offset;
3150  	struct sock **batch;
3151  	bool st_bucket_done;
3152  };
3153  
3154  static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3155  				      unsigned int new_batch_sz);
bpf_iter_udp_batch(struct seq_file * seq)3156  static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3157  {
3158  	struct bpf_udp_iter_state *iter = seq->private;
3159  	struct udp_iter_state *state = &iter->state;
3160  	struct net *net = seq_file_net(seq);
3161  	int resume_bucket, resume_offset;
3162  	struct udp_table *udptable;
3163  	unsigned int batch_sks = 0;
3164  	bool resized = false;
3165  	struct sock *sk;
3166  
3167  	resume_bucket = state->bucket;
3168  	resume_offset = iter->offset;
3169  
3170  	/* The current batch is done, so advance the bucket. */
3171  	if (iter->st_bucket_done)
3172  		state->bucket++;
3173  
3174  	udptable = udp_get_table_seq(seq, net);
3175  
3176  again:
3177  	/* New batch for the next bucket.
3178  	 * Iterate over the hash table to find a bucket with sockets matching
3179  	 * the iterator attributes, and return the first matching socket from
3180  	 * the bucket. The remaining matched sockets from the bucket are batched
3181  	 * before releasing the bucket lock. This allows BPF programs that are
3182  	 * called in seq_show to acquire the bucket lock if needed.
3183  	 */
3184  	iter->cur_sk = 0;
3185  	iter->end_sk = 0;
3186  	iter->st_bucket_done = false;
3187  	batch_sks = 0;
3188  
3189  	for (; state->bucket <= udptable->mask; state->bucket++) {
3190  		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3191  
3192  		if (hlist_empty(&hslot2->head))
3193  			continue;
3194  
3195  		iter->offset = 0;
3196  		spin_lock_bh(&hslot2->lock);
3197  		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3198  			if (seq_sk_match(seq, sk)) {
3199  				/* Resume from the last iterated socket at the
3200  				 * offset in the bucket before iterator was stopped.
3201  				 */
3202  				if (state->bucket == resume_bucket &&
3203  				    iter->offset < resume_offset) {
3204  					++iter->offset;
3205  					continue;
3206  				}
3207  				if (iter->end_sk < iter->max_sk) {
3208  					sock_hold(sk);
3209  					iter->batch[iter->end_sk++] = sk;
3210  				}
3211  				batch_sks++;
3212  			}
3213  		}
3214  		spin_unlock_bh(&hslot2->lock);
3215  
3216  		if (iter->end_sk)
3217  			break;
3218  	}
3219  
3220  	/* All done: no batch made. */
3221  	if (!iter->end_sk)
3222  		return NULL;
3223  
3224  	if (iter->end_sk == batch_sks) {
3225  		/* Batching is done for the current bucket; return the first
3226  		 * socket to be iterated from the batch.
3227  		 */
3228  		iter->st_bucket_done = true;
3229  		goto done;
3230  	}
3231  	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3232  		resized = true;
3233  		/* After allocating a larger batch, retry one more time to grab
3234  		 * the whole bucket.
3235  		 */
3236  		goto again;
3237  	}
3238  done:
3239  	return iter->batch[0];
3240  }
3241  
bpf_iter_udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3242  static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3243  {
3244  	struct bpf_udp_iter_state *iter = seq->private;
3245  	struct sock *sk;
3246  
3247  	/* Whenever seq_next() is called, the iter->cur_sk is
3248  	 * done with seq_show(), so unref the iter->cur_sk.
3249  	 */
3250  	if (iter->cur_sk < iter->end_sk) {
3251  		sock_put(iter->batch[iter->cur_sk++]);
3252  		++iter->offset;
3253  	}
3254  
3255  	/* After updating iter->cur_sk, check if there are more sockets
3256  	 * available in the current bucket batch.
3257  	 */
3258  	if (iter->cur_sk < iter->end_sk)
3259  		sk = iter->batch[iter->cur_sk];
3260  	else
3261  		/* Prepare a new batch. */
3262  		sk = bpf_iter_udp_batch(seq);
3263  
3264  	++*pos;
3265  	return sk;
3266  }
3267  
bpf_iter_udp_seq_start(struct seq_file * seq,loff_t * pos)3268  static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3269  {
3270  	/* bpf iter does not support lseek, so it always
3271  	 * continue from where it was stop()-ped.
3272  	 */
3273  	if (*pos)
3274  		return bpf_iter_udp_batch(seq);
3275  
3276  	return SEQ_START_TOKEN;
3277  }
3278  
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3279  static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3280  			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3281  {
3282  	struct bpf_iter__udp ctx;
3283  
3284  	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3285  	ctx.meta = meta;
3286  	ctx.udp_sk = udp_sk;
3287  	ctx.uid = uid;
3288  	ctx.bucket = bucket;
3289  	return bpf_iter_run_prog(prog, &ctx);
3290  }
3291  
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3292  static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3293  {
3294  	struct udp_iter_state *state = seq->private;
3295  	struct bpf_iter_meta meta;
3296  	struct bpf_prog *prog;
3297  	struct sock *sk = v;
3298  	uid_t uid;
3299  	int ret;
3300  
3301  	if (v == SEQ_START_TOKEN)
3302  		return 0;
3303  
3304  	lock_sock(sk);
3305  
3306  	if (unlikely(sk_unhashed(sk))) {
3307  		ret = SEQ_SKIP;
3308  		goto unlock;
3309  	}
3310  
3311  	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3312  	meta.seq = seq;
3313  	prog = bpf_iter_get_info(&meta, false);
3314  	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3315  
3316  unlock:
3317  	release_sock(sk);
3318  	return ret;
3319  }
3320  
bpf_iter_udp_put_batch(struct bpf_udp_iter_state * iter)3321  static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3322  {
3323  	while (iter->cur_sk < iter->end_sk)
3324  		sock_put(iter->batch[iter->cur_sk++]);
3325  }
3326  
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3327  static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3328  {
3329  	struct bpf_udp_iter_state *iter = seq->private;
3330  	struct bpf_iter_meta meta;
3331  	struct bpf_prog *prog;
3332  
3333  	if (!v) {
3334  		meta.seq = seq;
3335  		prog = bpf_iter_get_info(&meta, true);
3336  		if (prog)
3337  			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3338  	}
3339  
3340  	if (iter->cur_sk < iter->end_sk) {
3341  		bpf_iter_udp_put_batch(iter);
3342  		iter->st_bucket_done = false;
3343  	}
3344  }
3345  
3346  static const struct seq_operations bpf_iter_udp_seq_ops = {
3347  	.start		= bpf_iter_udp_seq_start,
3348  	.next		= bpf_iter_udp_seq_next,
3349  	.stop		= bpf_iter_udp_seq_stop,
3350  	.show		= bpf_iter_udp_seq_show,
3351  };
3352  #endif
3353  
seq_file_family(const struct seq_file * seq)3354  static unsigned short seq_file_family(const struct seq_file *seq)
3355  {
3356  	const struct udp_seq_afinfo *afinfo;
3357  
3358  #ifdef CONFIG_BPF_SYSCALL
3359  	/* BPF iterator: bpf programs to filter sockets. */
3360  	if (seq->op == &bpf_iter_udp_seq_ops)
3361  		return AF_UNSPEC;
3362  #endif
3363  
3364  	/* Proc fs iterator */
3365  	afinfo = pde_data(file_inode(seq->file));
3366  	return afinfo->family;
3367  }
3368  
3369  const struct seq_operations udp_seq_ops = {
3370  	.start		= udp_seq_start,
3371  	.next		= udp_seq_next,
3372  	.stop		= udp_seq_stop,
3373  	.show		= udp4_seq_show,
3374  };
3375  EXPORT_SYMBOL(udp_seq_ops);
3376  
3377  static struct udp_seq_afinfo udp4_seq_afinfo = {
3378  	.family		= AF_INET,
3379  	.udp_table	= NULL,
3380  };
3381  
udp4_proc_init_net(struct net * net)3382  static int __net_init udp4_proc_init_net(struct net *net)
3383  {
3384  	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3385  			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3386  		return -ENOMEM;
3387  	return 0;
3388  }
3389  
udp4_proc_exit_net(struct net * net)3390  static void __net_exit udp4_proc_exit_net(struct net *net)
3391  {
3392  	remove_proc_entry("udp", net->proc_net);
3393  }
3394  
3395  static struct pernet_operations udp4_net_ops = {
3396  	.init = udp4_proc_init_net,
3397  	.exit = udp4_proc_exit_net,
3398  };
3399  
udp4_proc_init(void)3400  int __init udp4_proc_init(void)
3401  {
3402  	return register_pernet_subsys(&udp4_net_ops);
3403  }
3404  
udp4_proc_exit(void)3405  void udp4_proc_exit(void)
3406  {
3407  	unregister_pernet_subsys(&udp4_net_ops);
3408  }
3409  #endif /* CONFIG_PROC_FS */
3410  
3411  static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3412  static int __init set_uhash_entries(char *str)
3413  {
3414  	ssize_t ret;
3415  
3416  	if (!str)
3417  		return 0;
3418  
3419  	ret = kstrtoul(str, 0, &uhash_entries);
3420  	if (ret)
3421  		return 0;
3422  
3423  	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3424  		uhash_entries = UDP_HTABLE_SIZE_MIN;
3425  	return 1;
3426  }
3427  __setup("uhash_entries=", set_uhash_entries);
3428  
udp_table_init(struct udp_table * table,const char * name)3429  void __init udp_table_init(struct udp_table *table, const char *name)
3430  {
3431  	unsigned int i;
3432  
3433  	table->hash = alloc_large_system_hash(name,
3434  					      2 * sizeof(struct udp_hslot),
3435  					      uhash_entries,
3436  					      21, /* one slot per 2 MB */
3437  					      0,
3438  					      &table->log,
3439  					      &table->mask,
3440  					      UDP_HTABLE_SIZE_MIN,
3441  					      UDP_HTABLE_SIZE_MAX);
3442  
3443  	table->hash2 = table->hash + (table->mask + 1);
3444  	for (i = 0; i <= table->mask; i++) {
3445  		INIT_HLIST_HEAD(&table->hash[i].head);
3446  		table->hash[i].count = 0;
3447  		spin_lock_init(&table->hash[i].lock);
3448  	}
3449  	for (i = 0; i <= table->mask; i++) {
3450  		INIT_HLIST_HEAD(&table->hash2[i].head);
3451  		table->hash2[i].count = 0;
3452  		spin_lock_init(&table->hash2[i].lock);
3453  	}
3454  }
3455  
udp_flow_hashrnd(void)3456  u32 udp_flow_hashrnd(void)
3457  {
3458  	static u32 hashrnd __read_mostly;
3459  
3460  	net_get_random_once(&hashrnd, sizeof(hashrnd));
3461  
3462  	return hashrnd;
3463  }
3464  EXPORT_SYMBOL(udp_flow_hashrnd);
3465  
udp_sysctl_init(struct net * net)3466  static void __net_init udp_sysctl_init(struct net *net)
3467  {
3468  	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3469  	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3470  
3471  #ifdef CONFIG_NET_L3_MASTER_DEV
3472  	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3473  #endif
3474  }
3475  
udp_pernet_table_alloc(unsigned int hash_entries)3476  static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3477  {
3478  	struct udp_table *udptable;
3479  	int i;
3480  
3481  	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3482  	if (!udptable)
3483  		goto out;
3484  
3485  	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3486  				      GFP_KERNEL_ACCOUNT);
3487  	if (!udptable->hash)
3488  		goto free_table;
3489  
3490  	udptable->hash2 = udptable->hash + hash_entries;
3491  	udptable->mask = hash_entries - 1;
3492  	udptable->log = ilog2(hash_entries);
3493  
3494  	for (i = 0; i < hash_entries; i++) {
3495  		INIT_HLIST_HEAD(&udptable->hash[i].head);
3496  		udptable->hash[i].count = 0;
3497  		spin_lock_init(&udptable->hash[i].lock);
3498  
3499  		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3500  		udptable->hash2[i].count = 0;
3501  		spin_lock_init(&udptable->hash2[i].lock);
3502  	}
3503  
3504  	return udptable;
3505  
3506  free_table:
3507  	kfree(udptable);
3508  out:
3509  	return NULL;
3510  }
3511  
udp_pernet_table_free(struct net * net)3512  static void __net_exit udp_pernet_table_free(struct net *net)
3513  {
3514  	struct udp_table *udptable = net->ipv4.udp_table;
3515  
3516  	if (udptable == &udp_table)
3517  		return;
3518  
3519  	kvfree(udptable->hash);
3520  	kfree(udptable);
3521  }
3522  
udp_set_table(struct net * net)3523  static void __net_init udp_set_table(struct net *net)
3524  {
3525  	struct udp_table *udptable;
3526  	unsigned int hash_entries;
3527  	struct net *old_net;
3528  
3529  	if (net_eq(net, &init_net))
3530  		goto fallback;
3531  
3532  	old_net = current->nsproxy->net_ns;
3533  	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3534  	if (!hash_entries)
3535  		goto fallback;
3536  
3537  	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3538  	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3539  		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3540  	else
3541  		hash_entries = roundup_pow_of_two(hash_entries);
3542  
3543  	udptable = udp_pernet_table_alloc(hash_entries);
3544  	if (udptable) {
3545  		net->ipv4.udp_table = udptable;
3546  	} else {
3547  		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3548  			"for a netns, fallback to the global one\n",
3549  			hash_entries);
3550  fallback:
3551  		net->ipv4.udp_table = &udp_table;
3552  	}
3553  }
3554  
udp_pernet_init(struct net * net)3555  static int __net_init udp_pernet_init(struct net *net)
3556  {
3557  	udp_sysctl_init(net);
3558  	udp_set_table(net);
3559  
3560  	return 0;
3561  }
3562  
udp_pernet_exit(struct net * net)3563  static void __net_exit udp_pernet_exit(struct net *net)
3564  {
3565  	udp_pernet_table_free(net);
3566  }
3567  
3568  static struct pernet_operations __net_initdata udp_sysctl_ops = {
3569  	.init	= udp_pernet_init,
3570  	.exit	= udp_pernet_exit,
3571  };
3572  
3573  #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3574  DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3575  		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3576  
3577  static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3578  				      unsigned int new_batch_sz)
3579  {
3580  	struct sock **new_batch;
3581  
3582  	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3583  				   GFP_USER | __GFP_NOWARN);
3584  	if (!new_batch)
3585  		return -ENOMEM;
3586  
3587  	bpf_iter_udp_put_batch(iter);
3588  	kvfree(iter->batch);
3589  	iter->batch = new_batch;
3590  	iter->max_sk = new_batch_sz;
3591  
3592  	return 0;
3593  }
3594  
3595  #define INIT_BATCH_SZ 16
3596  
bpf_iter_init_udp(void * priv_data,struct bpf_iter_aux_info * aux)3597  static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3598  {
3599  	struct bpf_udp_iter_state *iter = priv_data;
3600  	int ret;
3601  
3602  	ret = bpf_iter_init_seq_net(priv_data, aux);
3603  	if (ret)
3604  		return ret;
3605  
3606  	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3607  	if (ret)
3608  		bpf_iter_fini_seq_net(priv_data);
3609  
3610  	return ret;
3611  }
3612  
bpf_iter_fini_udp(void * priv_data)3613  static void bpf_iter_fini_udp(void *priv_data)
3614  {
3615  	struct bpf_udp_iter_state *iter = priv_data;
3616  
3617  	bpf_iter_fini_seq_net(priv_data);
3618  	kvfree(iter->batch);
3619  }
3620  
3621  static const struct bpf_iter_seq_info udp_seq_info = {
3622  	.seq_ops		= &bpf_iter_udp_seq_ops,
3623  	.init_seq_private	= bpf_iter_init_udp,
3624  	.fini_seq_private	= bpf_iter_fini_udp,
3625  	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3626  };
3627  
3628  static struct bpf_iter_reg udp_reg_info = {
3629  	.target			= "udp",
3630  	.ctx_arg_info_size	= 1,
3631  	.ctx_arg_info		= {
3632  		{ offsetof(struct bpf_iter__udp, udp_sk),
3633  		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3634  	},
3635  	.seq_info		= &udp_seq_info,
3636  };
3637  
bpf_iter_register(void)3638  static void __init bpf_iter_register(void)
3639  {
3640  	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3641  	if (bpf_iter_reg_target(&udp_reg_info))
3642  		pr_warn("Warning: could not register bpf iterator udp\n");
3643  }
3644  #endif
3645  
udp_init(void)3646  void __init udp_init(void)
3647  {
3648  	unsigned long limit;
3649  	unsigned int i;
3650  
3651  	udp_table_init(&udp_table, "UDP");
3652  	limit = nr_free_buffer_pages() / 8;
3653  	limit = max(limit, 128UL);
3654  	sysctl_udp_mem[0] = limit / 4 * 3;
3655  	sysctl_udp_mem[1] = limit;
3656  	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3657  
3658  	/* 16 spinlocks per cpu */
3659  	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3660  	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3661  				GFP_KERNEL);
3662  	if (!udp_busylocks)
3663  		panic("UDP: failed to alloc udp_busylocks\n");
3664  	for (i = 0; i < (1U << udp_busylocks_log); i++)
3665  		spin_lock_init(udp_busylocks + i);
3666  
3667  	if (register_pernet_subsys(&udp_sysctl_ops))
3668  		panic("UDP: failed to init sysctl parameters.\n");
3669  
3670  #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3671  	bpf_iter_register();
3672  #endif
3673  }
3674