1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * balloc.c
4 *
5 * PURPOSE
6 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1999-2001 Ben Fennema
10 * (C) 1999 Stelias Computing Inc
11 *
12 * HISTORY
13 *
14 * 02/24/99 blf Created.
15 *
16 */
17
18 #include "udfdecl.h"
19
20 #include <linux/bitops.h>
21 #include <linux/overflow.h>
22
23 #include "udf_i.h"
24 #include "udf_sb.h"
25
26 #define udf_clear_bit __test_and_clear_bit_le
27 #define udf_set_bit __test_and_set_bit_le
28 #define udf_test_bit test_bit_le
29 #define udf_find_next_one_bit find_next_bit_le
30
read_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block,unsigned long bitmap_nr)31 static int read_block_bitmap(struct super_block *sb,
32 struct udf_bitmap *bitmap, unsigned int block,
33 unsigned long bitmap_nr)
34 {
35 struct buffer_head *bh = NULL;
36 int i;
37 int max_bits, off, count;
38 struct kernel_lb_addr loc;
39
40 loc.logicalBlockNum = bitmap->s_extPosition;
41 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
42
43 bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
44 bitmap->s_block_bitmap[bitmap_nr] = bh;
45 if (!bh)
46 return -EIO;
47
48 /* Check consistency of Space Bitmap buffer. */
49 max_bits = sb->s_blocksize * 8;
50 if (!bitmap_nr) {
51 off = sizeof(struct spaceBitmapDesc) << 3;
52 count = min(max_bits - off, bitmap->s_nr_groups);
53 } else {
54 /*
55 * Rough check if bitmap number is too big to have any bitmap
56 * blocks reserved.
57 */
58 if (bitmap_nr >
59 (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
60 return 0;
61 off = 0;
62 count = bitmap->s_nr_groups - bitmap_nr * max_bits +
63 (sizeof(struct spaceBitmapDesc) << 3);
64 count = min(count, max_bits);
65 }
66
67 for (i = 0; i < count; i++)
68 if (udf_test_bit(i + off, bh->b_data)) {
69 bitmap->s_block_bitmap[bitmap_nr] =
70 ERR_PTR(-EFSCORRUPTED);
71 brelse(bh);
72 return -EFSCORRUPTED;
73 }
74 return 0;
75 }
76
load_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block_group)77 static int load_block_bitmap(struct super_block *sb,
78 struct udf_bitmap *bitmap,
79 unsigned int block_group)
80 {
81 int retval = 0;
82 int nr_groups = bitmap->s_nr_groups;
83
84 if (block_group >= nr_groups) {
85 udf_debug("block_group (%u) > nr_groups (%d)\n",
86 block_group, nr_groups);
87 }
88
89 if (bitmap->s_block_bitmap[block_group]) {
90 /*
91 * The bitmap failed verification in the past. No point in
92 * trying again.
93 */
94 if (IS_ERR(bitmap->s_block_bitmap[block_group]))
95 return PTR_ERR(bitmap->s_block_bitmap[block_group]);
96 return block_group;
97 }
98
99 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
100 if (retval < 0)
101 return retval;
102
103 return block_group;
104 }
105
udf_add_free_space(struct super_block * sb,u16 partition,u32 cnt)106 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
107 {
108 struct udf_sb_info *sbi = UDF_SB(sb);
109 struct logicalVolIntegrityDesc *lvid;
110
111 if (!sbi->s_lvid_bh)
112 return;
113
114 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
115 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
116 udf_updated_lvid(sb);
117 }
118
udf_bitmap_free_blocks(struct super_block * sb,struct udf_bitmap * bitmap,struct kernel_lb_addr * bloc,uint32_t offset,uint32_t count)119 static void udf_bitmap_free_blocks(struct super_block *sb,
120 struct udf_bitmap *bitmap,
121 struct kernel_lb_addr *bloc,
122 uint32_t offset,
123 uint32_t count)
124 {
125 struct udf_sb_info *sbi = UDF_SB(sb);
126 struct buffer_head *bh = NULL;
127 unsigned long block;
128 unsigned long block_group;
129 unsigned long bit;
130 unsigned long i;
131 int bitmap_nr;
132 unsigned long overflow;
133
134 mutex_lock(&sbi->s_alloc_mutex);
135 /* We make sure this cannot overflow when mounting the filesystem */
136 block = bloc->logicalBlockNum + offset +
137 (sizeof(struct spaceBitmapDesc) << 3);
138 do {
139 overflow = 0;
140 block_group = block >> (sb->s_blocksize_bits + 3);
141 bit = block % (sb->s_blocksize << 3);
142
143 /*
144 * Check to see if we are freeing blocks across a group boundary.
145 */
146 if (bit + count > (sb->s_blocksize << 3)) {
147 overflow = bit + count - (sb->s_blocksize << 3);
148 count -= overflow;
149 }
150 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
151 if (bitmap_nr < 0)
152 goto error_return;
153
154 bh = bitmap->s_block_bitmap[bitmap_nr];
155 for (i = 0; i < count; i++) {
156 if (udf_set_bit(bit + i, bh->b_data)) {
157 udf_debug("bit %lu already set\n", bit + i);
158 udf_debug("byte=%2x\n",
159 ((__u8 *)bh->b_data)[(bit + i) >> 3]);
160 }
161 }
162 udf_add_free_space(sb, sbi->s_partition, count);
163 mark_buffer_dirty(bh);
164 if (overflow) {
165 block += count;
166 count = overflow;
167 }
168 } while (overflow);
169
170 error_return:
171 mutex_unlock(&sbi->s_alloc_mutex);
172 }
173
udf_bitmap_prealloc_blocks(struct super_block * sb,struct udf_bitmap * bitmap,uint16_t partition,uint32_t first_block,uint32_t block_count)174 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
175 struct udf_bitmap *bitmap,
176 uint16_t partition, uint32_t first_block,
177 uint32_t block_count)
178 {
179 struct udf_sb_info *sbi = UDF_SB(sb);
180 int alloc_count = 0;
181 int bit, block, block_group;
182 int bitmap_nr;
183 struct buffer_head *bh;
184 __u32 part_len;
185
186 mutex_lock(&sbi->s_alloc_mutex);
187 part_len = sbi->s_partmaps[partition].s_partition_len;
188 if (first_block >= part_len)
189 goto out;
190
191 if (first_block + block_count > part_len)
192 block_count = part_len - first_block;
193
194 do {
195 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196 block_group = block >> (sb->s_blocksize_bits + 3);
197
198 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
199 if (bitmap_nr < 0)
200 goto out;
201 bh = bitmap->s_block_bitmap[bitmap_nr];
202
203 bit = block % (sb->s_blocksize << 3);
204
205 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
206 if (!udf_clear_bit(bit, bh->b_data))
207 goto out;
208 block_count--;
209 alloc_count++;
210 bit++;
211 block++;
212 }
213 mark_buffer_dirty(bh);
214 } while (block_count > 0);
215
216 out:
217 udf_add_free_space(sb, partition, -alloc_count);
218 mutex_unlock(&sbi->s_alloc_mutex);
219 return alloc_count;
220 }
221
udf_bitmap_new_block(struct super_block * sb,struct udf_bitmap * bitmap,uint16_t partition,uint32_t goal,int * err)222 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
223 struct udf_bitmap *bitmap, uint16_t partition,
224 uint32_t goal, int *err)
225 {
226 struct udf_sb_info *sbi = UDF_SB(sb);
227 int newbit, bit = 0;
228 udf_pblk_t block;
229 int block_group, group_start;
230 int end_goal, nr_groups, bitmap_nr, i;
231 struct buffer_head *bh = NULL;
232 char *ptr;
233 udf_pblk_t newblock = 0;
234
235 *err = -ENOSPC;
236 mutex_lock(&sbi->s_alloc_mutex);
237
238 repeat:
239 if (goal >= sbi->s_partmaps[partition].s_partition_len)
240 goal = 0;
241
242 nr_groups = bitmap->s_nr_groups;
243 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
244 block_group = block >> (sb->s_blocksize_bits + 3);
245 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
246
247 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
248 if (bitmap_nr < 0)
249 goto error_return;
250 bh = bitmap->s_block_bitmap[bitmap_nr];
251 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
252 sb->s_blocksize - group_start);
253
254 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
255 bit = block % (sb->s_blocksize << 3);
256 if (udf_test_bit(bit, bh->b_data))
257 goto got_block;
258
259 end_goal = (bit + 63) & ~63;
260 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
261 if (bit < end_goal)
262 goto got_block;
263
264 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
265 sb->s_blocksize - ((bit + 7) >> 3));
266 newbit = (ptr - ((char *)bh->b_data)) << 3;
267 if (newbit < sb->s_blocksize << 3) {
268 bit = newbit;
269 goto search_back;
270 }
271
272 newbit = udf_find_next_one_bit(bh->b_data,
273 sb->s_blocksize << 3, bit);
274 if (newbit < sb->s_blocksize << 3) {
275 bit = newbit;
276 goto got_block;
277 }
278 }
279
280 for (i = 0; i < (nr_groups * 2); i++) {
281 block_group++;
282 if (block_group >= nr_groups)
283 block_group = 0;
284 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
285
286 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
287 if (bitmap_nr < 0)
288 goto error_return;
289 bh = bitmap->s_block_bitmap[bitmap_nr];
290 if (i < nr_groups) {
291 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
292 sb->s_blocksize - group_start);
293 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
294 bit = (ptr - ((char *)bh->b_data)) << 3;
295 break;
296 }
297 } else {
298 bit = udf_find_next_one_bit(bh->b_data,
299 sb->s_blocksize << 3,
300 group_start << 3);
301 if (bit < sb->s_blocksize << 3)
302 break;
303 }
304 }
305 if (i >= (nr_groups * 2)) {
306 mutex_unlock(&sbi->s_alloc_mutex);
307 return newblock;
308 }
309 if (bit < sb->s_blocksize << 3)
310 goto search_back;
311 else
312 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
313 group_start << 3);
314 if (bit >= sb->s_blocksize << 3) {
315 mutex_unlock(&sbi->s_alloc_mutex);
316 return 0;
317 }
318
319 search_back:
320 i = 0;
321 while (i < 7 && bit > (group_start << 3) &&
322 udf_test_bit(bit - 1, bh->b_data)) {
323 ++i;
324 --bit;
325 }
326
327 got_block:
328 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
329 (sizeof(struct spaceBitmapDesc) << 3);
330
331 if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
332 /*
333 * Ran off the end of the bitmap, and bits following are
334 * non-compliant (not all zero)
335 */
336 udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
337 " as free, partition length is %u)\n", partition,
338 newblock, sbi->s_partmaps[partition].s_partition_len);
339 goto error_return;
340 }
341
342 if (!udf_clear_bit(bit, bh->b_data)) {
343 udf_debug("bit already cleared for block %d\n", bit);
344 goto repeat;
345 }
346
347 mark_buffer_dirty(bh);
348
349 udf_add_free_space(sb, partition, -1);
350 mutex_unlock(&sbi->s_alloc_mutex);
351 *err = 0;
352 return newblock;
353
354 error_return:
355 *err = -EIO;
356 mutex_unlock(&sbi->s_alloc_mutex);
357 return 0;
358 }
359
udf_table_free_blocks(struct super_block * sb,struct inode * table,struct kernel_lb_addr * bloc,uint32_t offset,uint32_t count)360 static void udf_table_free_blocks(struct super_block *sb,
361 struct inode *table,
362 struct kernel_lb_addr *bloc,
363 uint32_t offset,
364 uint32_t count)
365 {
366 struct udf_sb_info *sbi = UDF_SB(sb);
367 uint32_t start, end;
368 uint32_t elen;
369 struct kernel_lb_addr eloc;
370 struct extent_position oepos, epos;
371 int8_t etype;
372 struct udf_inode_info *iinfo;
373 int ret = 0;
374
375 mutex_lock(&sbi->s_alloc_mutex);
376 iinfo = UDF_I(table);
377 udf_add_free_space(sb, sbi->s_partition, count);
378
379 start = bloc->logicalBlockNum + offset;
380 end = bloc->logicalBlockNum + offset + count - 1;
381
382 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
383 elen = 0;
384 epos.block = oepos.block = iinfo->i_location;
385 epos.bh = oepos.bh = NULL;
386
387 while (count) {
388 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
389 if (ret < 0)
390 goto error_return;
391 if (ret == 0)
392 break;
393 if (((eloc.logicalBlockNum +
394 (elen >> sb->s_blocksize_bits)) == start)) {
395 if ((0x3FFFFFFF - elen) <
396 (count << sb->s_blocksize_bits)) {
397 uint32_t tmp = ((0x3FFFFFFF - elen) >>
398 sb->s_blocksize_bits);
399 count -= tmp;
400 start += tmp;
401 elen = (etype << 30) |
402 (0x40000000 - sb->s_blocksize);
403 } else {
404 elen = (etype << 30) |
405 (elen +
406 (count << sb->s_blocksize_bits));
407 start += count;
408 count = 0;
409 }
410 udf_write_aext(table, &oepos, &eloc, elen, 1);
411 } else if (eloc.logicalBlockNum == (end + 1)) {
412 if ((0x3FFFFFFF - elen) <
413 (count << sb->s_blocksize_bits)) {
414 uint32_t tmp = ((0x3FFFFFFF - elen) >>
415 sb->s_blocksize_bits);
416 count -= tmp;
417 end -= tmp;
418 eloc.logicalBlockNum -= tmp;
419 elen = (etype << 30) |
420 (0x40000000 - sb->s_blocksize);
421 } else {
422 eloc.logicalBlockNum = start;
423 elen = (etype << 30) |
424 (elen +
425 (count << sb->s_blocksize_bits));
426 end -= count;
427 count = 0;
428 }
429 udf_write_aext(table, &oepos, &eloc, elen, 1);
430 }
431
432 if (epos.bh != oepos.bh) {
433 oepos.block = epos.block;
434 brelse(oepos.bh);
435 get_bh(epos.bh);
436 oepos.bh = epos.bh;
437 oepos.offset = 0;
438 } else {
439 oepos.offset = epos.offset;
440 }
441 }
442
443 if (count) {
444 /*
445 * NOTE: we CANNOT use udf_add_aext here, as it can try to
446 * allocate a new block, and since we hold the super block
447 * lock already very bad things would happen :)
448 *
449 * We copy the behavior of udf_add_aext, but instead of
450 * trying to allocate a new block close to the existing one,
451 * we just steal a block from the extent we are trying to add.
452 *
453 * It would be nice if the blocks were close together, but it
454 * isn't required.
455 */
456
457 int adsize;
458
459 eloc.logicalBlockNum = start;
460 elen = EXT_RECORDED_ALLOCATED |
461 (count << sb->s_blocksize_bits);
462
463 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
464 adsize = sizeof(struct short_ad);
465 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
466 adsize = sizeof(struct long_ad);
467 else
468 goto error_return;
469
470 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
471 /* Steal a block from the extent being free'd */
472 udf_setup_indirect_aext(table, eloc.logicalBlockNum,
473 &epos);
474
475 eloc.logicalBlockNum++;
476 elen -= sb->s_blocksize;
477 }
478
479 /* It's possible that stealing the block emptied the extent */
480 if (elen)
481 __udf_add_aext(table, &epos, &eloc, elen, 1);
482 }
483
484 error_return:
485 brelse(epos.bh);
486 brelse(oepos.bh);
487
488 mutex_unlock(&sbi->s_alloc_mutex);
489 return;
490 }
491
udf_table_prealloc_blocks(struct super_block * sb,struct inode * table,uint16_t partition,uint32_t first_block,uint32_t block_count)492 static int udf_table_prealloc_blocks(struct super_block *sb,
493 struct inode *table, uint16_t partition,
494 uint32_t first_block, uint32_t block_count)
495 {
496 struct udf_sb_info *sbi = UDF_SB(sb);
497 int alloc_count = 0;
498 uint32_t elen, adsize;
499 struct kernel_lb_addr eloc;
500 struct extent_position epos;
501 int8_t etype = -1;
502 struct udf_inode_info *iinfo;
503 int ret = 0;
504
505 if (first_block >= sbi->s_partmaps[partition].s_partition_len)
506 return 0;
507
508 iinfo = UDF_I(table);
509 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
510 adsize = sizeof(struct short_ad);
511 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
512 adsize = sizeof(struct long_ad);
513 else
514 return 0;
515
516 mutex_lock(&sbi->s_alloc_mutex);
517 epos.offset = sizeof(struct unallocSpaceEntry);
518 epos.block = iinfo->i_location;
519 epos.bh = NULL;
520 eloc.logicalBlockNum = 0xFFFFFFFF;
521
522 while (first_block != eloc.logicalBlockNum) {
523 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
524 if (ret < 0)
525 goto err_out;
526 if (ret == 0)
527 break;
528 udf_debug("eloc=%u, elen=%u, first_block=%u\n",
529 eloc.logicalBlockNum, elen, first_block);
530 }
531
532 if (first_block == eloc.logicalBlockNum) {
533 epos.offset -= adsize;
534
535 alloc_count = (elen >> sb->s_blocksize_bits);
536 if (alloc_count > block_count) {
537 alloc_count = block_count;
538 eloc.logicalBlockNum += alloc_count;
539 elen -= (alloc_count << sb->s_blocksize_bits);
540 udf_write_aext(table, &epos, &eloc,
541 (etype << 30) | elen, 1);
542 } else
543 udf_delete_aext(table, epos);
544 } else {
545 alloc_count = 0;
546 }
547
548 err_out:
549 brelse(epos.bh);
550
551 if (alloc_count)
552 udf_add_free_space(sb, partition, -alloc_count);
553 mutex_unlock(&sbi->s_alloc_mutex);
554 return alloc_count;
555 }
556
udf_table_new_block(struct super_block * sb,struct inode * table,uint16_t partition,uint32_t goal,int * err)557 static udf_pblk_t udf_table_new_block(struct super_block *sb,
558 struct inode *table, uint16_t partition,
559 uint32_t goal, int *err)
560 {
561 struct udf_sb_info *sbi = UDF_SB(sb);
562 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
563 udf_pblk_t newblock = 0;
564 uint32_t adsize;
565 uint32_t elen, goal_elen = 0;
566 struct kernel_lb_addr eloc, goal_eloc;
567 struct extent_position epos, goal_epos;
568 int8_t etype;
569 struct udf_inode_info *iinfo = UDF_I(table);
570 int ret = 0;
571
572 *err = -ENOSPC;
573
574 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575 adsize = sizeof(struct short_ad);
576 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577 adsize = sizeof(struct long_ad);
578 else
579 return newblock;
580
581 mutex_lock(&sbi->s_alloc_mutex);
582 if (goal >= sbi->s_partmaps[partition].s_partition_len)
583 goal = 0;
584
585 /* We search for the closest matching block to goal. If we find
586 a exact hit, we stop. Otherwise we keep going till we run out
587 of extents. We store the buffer_head, bloc, and extoffset
588 of the current closest match and use that when we are done.
589 */
590 epos.offset = sizeof(struct unallocSpaceEntry);
591 epos.block = iinfo->i_location;
592 epos.bh = goal_epos.bh = NULL;
593
594 while (spread) {
595 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
596 if (ret <= 0)
597 break;
598 if (goal >= eloc.logicalBlockNum) {
599 if (goal < eloc.logicalBlockNum +
600 (elen >> sb->s_blocksize_bits))
601 nspread = 0;
602 else
603 nspread = goal - eloc.logicalBlockNum -
604 (elen >> sb->s_blocksize_bits);
605 } else {
606 nspread = eloc.logicalBlockNum - goal;
607 }
608
609 if (nspread < spread) {
610 spread = nspread;
611 if (goal_epos.bh != epos.bh) {
612 brelse(goal_epos.bh);
613 goal_epos.bh = epos.bh;
614 get_bh(goal_epos.bh);
615 }
616 goal_epos.block = epos.block;
617 goal_epos.offset = epos.offset - adsize;
618 goal_eloc = eloc;
619 goal_elen = (etype << 30) | elen;
620 }
621 }
622
623 brelse(epos.bh);
624
625 if (ret < 0 || spread == 0xFFFFFFFF) {
626 brelse(goal_epos.bh);
627 mutex_unlock(&sbi->s_alloc_mutex);
628 if (ret < 0)
629 *err = ret;
630 return 0;
631 }
632
633 /* Only allocate blocks from the beginning of the extent.
634 That way, we only delete (empty) extents, never have to insert an
635 extent because of splitting */
636 /* This works, but very poorly.... */
637
638 newblock = goal_eloc.logicalBlockNum;
639 goal_eloc.logicalBlockNum++;
640 goal_elen -= sb->s_blocksize;
641
642 if (goal_elen)
643 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
644 else
645 udf_delete_aext(table, goal_epos);
646 brelse(goal_epos.bh);
647
648 udf_add_free_space(sb, partition, -1);
649
650 mutex_unlock(&sbi->s_alloc_mutex);
651 *err = 0;
652 return newblock;
653 }
654
udf_free_blocks(struct super_block * sb,struct inode * inode,struct kernel_lb_addr * bloc,uint32_t offset,uint32_t count)655 void udf_free_blocks(struct super_block *sb, struct inode *inode,
656 struct kernel_lb_addr *bloc, uint32_t offset,
657 uint32_t count)
658 {
659 uint16_t partition = bloc->partitionReferenceNum;
660 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
661 uint32_t blk;
662
663 if (check_add_overflow(bloc->logicalBlockNum, offset, &blk) ||
664 check_add_overflow(blk, count, &blk) ||
665 bloc->logicalBlockNum + count > map->s_partition_len) {
666 udf_debug("Invalid request to free blocks: (%d, %u), off %u, "
667 "len %u, partition len %u\n",
668 partition, bloc->logicalBlockNum, offset, count,
669 map->s_partition_len);
670 return;
671 }
672
673 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
674 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
675 bloc, offset, count);
676 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
677 udf_table_free_blocks(sb, map->s_uspace.s_table,
678 bloc, offset, count);
679 }
680
681 if (inode) {
682 inode_sub_bytes(inode,
683 ((sector_t)count) << sb->s_blocksize_bits);
684 }
685 }
686
udf_prealloc_blocks(struct super_block * sb,struct inode * inode,uint16_t partition,uint32_t first_block,uint32_t block_count)687 inline int udf_prealloc_blocks(struct super_block *sb,
688 struct inode *inode,
689 uint16_t partition, uint32_t first_block,
690 uint32_t block_count)
691 {
692 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
693 int allocated;
694
695 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
696 allocated = udf_bitmap_prealloc_blocks(sb,
697 map->s_uspace.s_bitmap,
698 partition, first_block,
699 block_count);
700 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
701 allocated = udf_table_prealloc_blocks(sb,
702 map->s_uspace.s_table,
703 partition, first_block,
704 block_count);
705 else
706 return 0;
707
708 if (inode && allocated > 0)
709 inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
710 return allocated;
711 }
712
udf_new_block(struct super_block * sb,struct inode * inode,uint16_t partition,uint32_t goal,int * err)713 inline udf_pblk_t udf_new_block(struct super_block *sb,
714 struct inode *inode,
715 uint16_t partition, uint32_t goal, int *err)
716 {
717 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
718 udf_pblk_t block;
719
720 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
721 block = udf_bitmap_new_block(sb,
722 map->s_uspace.s_bitmap,
723 partition, goal, err);
724 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
725 block = udf_table_new_block(sb,
726 map->s_uspace.s_table,
727 partition, goal, err);
728 else {
729 *err = -EIO;
730 return 0;
731 }
732 if (inode && block)
733 inode_add_bytes(inode, sb->s_blocksize);
734 return block;
735 }
736