1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Author: Adrian Hunter
8  */
9 
10 #include "ubifs.h"
11 
12 /*
13  * An orphan is an inode number whose inode node has been committed to the index
14  * with a link count of zero. That happens when an open file is deleted
15  * (unlinked) and then a commit is run. In the normal course of events the inode
16  * would be deleted when the file is closed. However in the case of an unclean
17  * unmount, orphans need to be accounted for. After an unclean unmount, the
18  * orphans' inodes must be deleted which means either scanning the entire index
19  * looking for them, or keeping a list on flash somewhere. This unit implements
20  * the latter approach.
21  *
22  * The orphan area is a fixed number of LEBs situated between the LPT area and
23  * the main area. The number of orphan area LEBs is specified when the file
24  * system is created. The minimum number is 1. The size of the orphan area
25  * should be so that it can hold the maximum number of orphans that are expected
26  * to ever exist at one time.
27  *
28  * The number of orphans that can fit in a LEB is:
29  *
30  *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
31  *
32  * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
33  *
34  * Orphans are accumulated in a rb-tree. When an inode's link count drops to
35  * zero, the inode number is added to the rb-tree. It is removed from the tree
36  * when the inode is deleted.  Any new orphans that are in the orphan tree when
37  * the commit is run, are written to the orphan area in 1 or more orphan nodes.
38  * If the orphan area is full, it is consolidated to make space.  There is
39  * always enough space because validation prevents the user from creating more
40  * than the maximum number of orphans allowed.
41  */
42 
43 static int dbg_check_orphans(struct ubifs_info *c);
44 
45 /**
46  * ubifs_add_orphan - add an orphan.
47  * @c: UBIFS file-system description object
48  * @inum: orphan inode number
49  *
50  * Add an orphan. This function is called when an inodes link count drops to
51  * zero.
52  */
ubifs_add_orphan(struct ubifs_info * c,ino_t inum)53 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
54 {
55 	struct ubifs_orphan *orphan, *o;
56 	struct rb_node **p, *parent = NULL;
57 
58 	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
59 	if (!orphan)
60 		return -ENOMEM;
61 	orphan->inum = inum;
62 	orphan->new = 1;
63 
64 	spin_lock(&c->orphan_lock);
65 	if (c->tot_orphans >= c->max_orphans) {
66 		spin_unlock(&c->orphan_lock);
67 		kfree(orphan);
68 		return -ENFILE;
69 	}
70 	p = &c->orph_tree.rb_node;
71 	while (*p) {
72 		parent = *p;
73 		o = rb_entry(parent, struct ubifs_orphan, rb);
74 		if (inum < o->inum)
75 			p = &(*p)->rb_left;
76 		else if (inum > o->inum)
77 			p = &(*p)->rb_right;
78 		else {
79 			ubifs_err(c, "orphaned twice");
80 			spin_unlock(&c->orphan_lock);
81 			kfree(orphan);
82 			return -EINVAL;
83 		}
84 	}
85 	c->tot_orphans += 1;
86 	c->new_orphans += 1;
87 	rb_link_node(&orphan->rb, parent, p);
88 	rb_insert_color(&orphan->rb, &c->orph_tree);
89 	list_add_tail(&orphan->list, &c->orph_list);
90 	list_add_tail(&orphan->new_list, &c->orph_new);
91 
92 	spin_unlock(&c->orphan_lock);
93 	dbg_gen("ino %lu", (unsigned long)inum);
94 	return 0;
95 }
96 
lookup_orphan(struct ubifs_info * c,ino_t inum)97 static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum)
98 {
99 	struct ubifs_orphan *o;
100 	struct rb_node *p;
101 
102 	p = c->orph_tree.rb_node;
103 	while (p) {
104 		o = rb_entry(p, struct ubifs_orphan, rb);
105 		if (inum < o->inum)
106 			p = p->rb_left;
107 		else if (inum > o->inum)
108 			p = p->rb_right;
109 		else {
110 			return o;
111 		}
112 	}
113 	return NULL;
114 }
115 
__orphan_drop(struct ubifs_info * c,struct ubifs_orphan * o)116 static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o)
117 {
118 	rb_erase(&o->rb, &c->orph_tree);
119 	list_del(&o->list);
120 	c->tot_orphans -= 1;
121 
122 	if (o->new) {
123 		list_del(&o->new_list);
124 		c->new_orphans -= 1;
125 	}
126 
127 	kfree(o);
128 }
129 
orphan_delete(struct ubifs_info * c,struct ubifs_orphan * orph)130 static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph)
131 {
132 	if (orph->del) {
133 		dbg_gen("deleted twice ino %lu", (unsigned long)orph->inum);
134 		return;
135 	}
136 
137 	if (orph->cmt) {
138 		orph->del = 1;
139 		rb_erase(&orph->rb, &c->orph_tree);
140 		orph->dnext = c->orph_dnext;
141 		c->orph_dnext = orph;
142 		dbg_gen("delete later ino %lu", (unsigned long)orph->inum);
143 		return;
144 	}
145 
146 	__orphan_drop(c, orph);
147 }
148 
149 /**
150  * ubifs_delete_orphan - delete an orphan.
151  * @c: UBIFS file-system description object
152  * @inum: orphan inode number
153  *
154  * Delete an orphan. This function is called when an inode is deleted.
155  */
ubifs_delete_orphan(struct ubifs_info * c,ino_t inum)156 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
157 {
158 	struct ubifs_orphan *orph;
159 
160 	spin_lock(&c->orphan_lock);
161 
162 	orph = lookup_orphan(c, inum);
163 	if (!orph) {
164 		spin_unlock(&c->orphan_lock);
165 		ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
166 		dump_stack();
167 
168 		return;
169 	}
170 
171 	orphan_delete(c, orph);
172 
173 	spin_unlock(&c->orphan_lock);
174 }
175 
176 /**
177  * ubifs_orphan_start_commit - start commit of orphans.
178  * @c: UBIFS file-system description object
179  *
180  * Start commit of orphans.
181  */
ubifs_orphan_start_commit(struct ubifs_info * c)182 int ubifs_orphan_start_commit(struct ubifs_info *c)
183 {
184 	struct ubifs_orphan *orphan, **last;
185 
186 	spin_lock(&c->orphan_lock);
187 	last = &c->orph_cnext;
188 	list_for_each_entry(orphan, &c->orph_new, new_list) {
189 		ubifs_assert(c, orphan->new);
190 		ubifs_assert(c, !orphan->cmt);
191 		orphan->new = 0;
192 		orphan->cmt = 1;
193 		*last = orphan;
194 		last = &orphan->cnext;
195 	}
196 	*last = NULL;
197 	c->cmt_orphans = c->new_orphans;
198 	c->new_orphans = 0;
199 	dbg_cmt("%d orphans to commit", c->cmt_orphans);
200 	INIT_LIST_HEAD(&c->orph_new);
201 	if (c->tot_orphans == 0)
202 		c->no_orphs = 1;
203 	else
204 		c->no_orphs = 0;
205 	spin_unlock(&c->orphan_lock);
206 	return 0;
207 }
208 
209 /**
210  * avail_orphs - calculate available space.
211  * @c: UBIFS file-system description object
212  *
213  * This function returns the number of orphans that can be written in the
214  * available space.
215  */
avail_orphs(struct ubifs_info * c)216 static int avail_orphs(struct ubifs_info *c)
217 {
218 	int avail_lebs, avail, gap;
219 
220 	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
221 	avail = avail_lebs *
222 	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
223 	gap = c->leb_size - c->ohead_offs;
224 	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
225 		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
226 	return avail;
227 }
228 
229 /**
230  * tot_avail_orphs - calculate total space.
231  * @c: UBIFS file-system description object
232  *
233  * This function returns the number of orphans that can be written in half
234  * the total space. That leaves half the space for adding new orphans.
235  */
tot_avail_orphs(struct ubifs_info * c)236 static int tot_avail_orphs(struct ubifs_info *c)
237 {
238 	int avail_lebs, avail;
239 
240 	avail_lebs = c->orph_lebs;
241 	avail = avail_lebs *
242 	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
243 	return avail / 2;
244 }
245 
246 /**
247  * do_write_orph_node - write a node to the orphan head.
248  * @c: UBIFS file-system description object
249  * @len: length of node
250  * @atomic: write atomically
251  *
252  * This function writes a node to the orphan head from the orphan buffer. If
253  * %atomic is not zero, then the write is done atomically. On success, %0 is
254  * returned, otherwise a negative error code is returned.
255  */
do_write_orph_node(struct ubifs_info * c,int len,int atomic)256 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
257 {
258 	int err = 0;
259 
260 	if (atomic) {
261 		ubifs_assert(c, c->ohead_offs == 0);
262 		ubifs_prepare_node(c, c->orph_buf, len, 1);
263 		len = ALIGN(len, c->min_io_size);
264 		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
265 	} else {
266 		if (c->ohead_offs == 0) {
267 			/* Ensure LEB has been unmapped */
268 			err = ubifs_leb_unmap(c, c->ohead_lnum);
269 			if (err)
270 				return err;
271 		}
272 		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
273 				       c->ohead_offs);
274 	}
275 	return err;
276 }
277 
278 /**
279  * write_orph_node - write an orphan node.
280  * @c: UBIFS file-system description object
281  * @atomic: write atomically
282  *
283  * This function builds an orphan node from the cnext list and writes it to the
284  * orphan head. On success, %0 is returned, otherwise a negative error code
285  * is returned.
286  */
write_orph_node(struct ubifs_info * c,int atomic)287 static int write_orph_node(struct ubifs_info *c, int atomic)
288 {
289 	struct ubifs_orphan *orphan, *cnext;
290 	struct ubifs_orph_node *orph;
291 	int gap, err, len, cnt, i;
292 
293 	ubifs_assert(c, c->cmt_orphans > 0);
294 	gap = c->leb_size - c->ohead_offs;
295 	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
296 		c->ohead_lnum += 1;
297 		c->ohead_offs = 0;
298 		gap = c->leb_size;
299 		if (c->ohead_lnum > c->orph_last) {
300 			/*
301 			 * We limit the number of orphans so that this should
302 			 * never happen.
303 			 */
304 			ubifs_err(c, "out of space in orphan area");
305 			return -EINVAL;
306 		}
307 	}
308 	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
309 	if (cnt > c->cmt_orphans)
310 		cnt = c->cmt_orphans;
311 	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
312 	ubifs_assert(c, c->orph_buf);
313 	orph = c->orph_buf;
314 	orph->ch.node_type = UBIFS_ORPH_NODE;
315 	spin_lock(&c->orphan_lock);
316 	cnext = c->orph_cnext;
317 	for (i = 0; i < cnt; i++) {
318 		orphan = cnext;
319 		ubifs_assert(c, orphan->cmt);
320 		orph->inos[i] = cpu_to_le64(orphan->inum);
321 		orphan->cmt = 0;
322 		cnext = orphan->cnext;
323 		orphan->cnext = NULL;
324 	}
325 	c->orph_cnext = cnext;
326 	c->cmt_orphans -= cnt;
327 	spin_unlock(&c->orphan_lock);
328 	if (c->cmt_orphans)
329 		orph->cmt_no = cpu_to_le64(c->cmt_no);
330 	else
331 		/* Mark the last node of the commit */
332 		orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
333 	ubifs_assert(c, c->ohead_offs + len <= c->leb_size);
334 	ubifs_assert(c, c->ohead_lnum >= c->orph_first);
335 	ubifs_assert(c, c->ohead_lnum <= c->orph_last);
336 	err = do_write_orph_node(c, len, atomic);
337 	c->ohead_offs += ALIGN(len, c->min_io_size);
338 	c->ohead_offs = ALIGN(c->ohead_offs, 8);
339 	return err;
340 }
341 
342 /**
343  * write_orph_nodes - write orphan nodes until there are no more to commit.
344  * @c: UBIFS file-system description object
345  * @atomic: write atomically
346  *
347  * This function writes orphan nodes for all the orphans to commit. On success,
348  * %0 is returned, otherwise a negative error code is returned.
349  */
write_orph_nodes(struct ubifs_info * c,int atomic)350 static int write_orph_nodes(struct ubifs_info *c, int atomic)
351 {
352 	int err;
353 
354 	while (c->cmt_orphans > 0) {
355 		err = write_orph_node(c, atomic);
356 		if (err)
357 			return err;
358 	}
359 	if (atomic) {
360 		int lnum;
361 
362 		/* Unmap any unused LEBs after consolidation */
363 		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
364 			err = ubifs_leb_unmap(c, lnum);
365 			if (err)
366 				return err;
367 		}
368 	}
369 	return 0;
370 }
371 
372 /**
373  * consolidate - consolidate the orphan area.
374  * @c: UBIFS file-system description object
375  *
376  * This function enables consolidation by putting all the orphans into the list
377  * to commit. The list is in the order that the orphans were added, and the
378  * LEBs are written atomically in order, so at no time can orphans be lost by
379  * an unclean unmount.
380  *
381  * This function returns %0 on success and a negative error code on failure.
382  */
consolidate(struct ubifs_info * c)383 static int consolidate(struct ubifs_info *c)
384 {
385 	int tot_avail = tot_avail_orphs(c), err = 0;
386 
387 	spin_lock(&c->orphan_lock);
388 	dbg_cmt("there is space for %d orphans and there are %d",
389 		tot_avail, c->tot_orphans);
390 	if (c->tot_orphans - c->new_orphans <= tot_avail) {
391 		struct ubifs_orphan *orphan, **last;
392 		int cnt = 0;
393 
394 		/* Change the cnext list to include all non-new orphans */
395 		last = &c->orph_cnext;
396 		list_for_each_entry(orphan, &c->orph_list, list) {
397 			if (orphan->new)
398 				continue;
399 			orphan->cmt = 1;
400 			*last = orphan;
401 			last = &orphan->cnext;
402 			cnt += 1;
403 		}
404 		*last = NULL;
405 		ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans);
406 		c->cmt_orphans = cnt;
407 		c->ohead_lnum = c->orph_first;
408 		c->ohead_offs = 0;
409 	} else {
410 		/*
411 		 * We limit the number of orphans so that this should
412 		 * never happen.
413 		 */
414 		ubifs_err(c, "out of space in orphan area");
415 		err = -EINVAL;
416 	}
417 	spin_unlock(&c->orphan_lock);
418 	return err;
419 }
420 
421 /**
422  * commit_orphans - commit orphans.
423  * @c: UBIFS file-system description object
424  *
425  * This function commits orphans to flash. On success, %0 is returned,
426  * otherwise a negative error code is returned.
427  */
commit_orphans(struct ubifs_info * c)428 static int commit_orphans(struct ubifs_info *c)
429 {
430 	int avail, atomic = 0, err;
431 
432 	ubifs_assert(c, c->cmt_orphans > 0);
433 	avail = avail_orphs(c);
434 	if (avail < c->cmt_orphans) {
435 		/* Not enough space to write new orphans, so consolidate */
436 		err = consolidate(c);
437 		if (err)
438 			return err;
439 		atomic = 1;
440 	}
441 	err = write_orph_nodes(c, atomic);
442 	return err;
443 }
444 
445 /**
446  * erase_deleted - erase the orphans marked for deletion.
447  * @c: UBIFS file-system description object
448  *
449  * During commit, the orphans being committed cannot be deleted, so they are
450  * marked for deletion and deleted by this function. Also, the recovery
451  * adds killed orphans to the deletion list, and therefore they are deleted
452  * here too.
453  */
erase_deleted(struct ubifs_info * c)454 static void erase_deleted(struct ubifs_info *c)
455 {
456 	struct ubifs_orphan *orphan, *dnext;
457 
458 	spin_lock(&c->orphan_lock);
459 	dnext = c->orph_dnext;
460 	while (dnext) {
461 		orphan = dnext;
462 		dnext = orphan->dnext;
463 		ubifs_assert(c, !orphan->new);
464 		ubifs_assert(c, orphan->del);
465 		list_del(&orphan->list);
466 		c->tot_orphans -= 1;
467 		dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
468 		kfree(orphan);
469 	}
470 	c->orph_dnext = NULL;
471 	spin_unlock(&c->orphan_lock);
472 }
473 
474 /**
475  * ubifs_orphan_end_commit - end commit of orphans.
476  * @c: UBIFS file-system description object
477  *
478  * End commit of orphans.
479  */
ubifs_orphan_end_commit(struct ubifs_info * c)480 int ubifs_orphan_end_commit(struct ubifs_info *c)
481 {
482 	int err;
483 
484 	if (c->cmt_orphans != 0) {
485 		err = commit_orphans(c);
486 		if (err)
487 			return err;
488 	}
489 	erase_deleted(c);
490 	err = dbg_check_orphans(c);
491 	return err;
492 }
493 
494 /**
495  * ubifs_clear_orphans - erase all LEBs used for orphans.
496  * @c: UBIFS file-system description object
497  *
498  * If recovery is not required, then the orphans from the previous session
499  * are not needed. This function locates the LEBs used to record
500  * orphans, and un-maps them.
501  */
ubifs_clear_orphans(struct ubifs_info * c)502 int ubifs_clear_orphans(struct ubifs_info *c)
503 {
504 	int lnum, err;
505 
506 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
507 		err = ubifs_leb_unmap(c, lnum);
508 		if (err)
509 			return err;
510 	}
511 	c->ohead_lnum = c->orph_first;
512 	c->ohead_offs = 0;
513 	return 0;
514 }
515 
516 /**
517  * do_kill_orphans - remove orphan inodes from the index.
518  * @c: UBIFS file-system description object
519  * @sleb: scanned LEB
520  * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
521  * @outofdate: whether the LEB is out of date is returned here
522  * @last_flagged: whether the end orphan node is encountered
523  *
524  * This function is a helper to the 'kill_orphans()' function. It goes through
525  * every orphan node in a LEB and for every inode number recorded, removes
526  * all keys for that inode from the TNC.
527  */
do_kill_orphans(struct ubifs_info * c,struct ubifs_scan_leb * sleb,unsigned long long * last_cmt_no,int * outofdate,int * last_flagged)528 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
529 			   unsigned long long *last_cmt_no, int *outofdate,
530 			   int *last_flagged)
531 {
532 	struct ubifs_scan_node *snod;
533 	struct ubifs_orph_node *orph;
534 	struct ubifs_ino_node *ino = NULL;
535 	unsigned long long cmt_no;
536 	ino_t inum;
537 	int i, n, err, first = 1;
538 
539 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
540 	if (!ino)
541 		return -ENOMEM;
542 
543 	list_for_each_entry(snod, &sleb->nodes, list) {
544 		if (snod->type != UBIFS_ORPH_NODE) {
545 			ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
546 				  snod->type, sleb->lnum, snod->offs);
547 			ubifs_dump_node(c, snod->node,
548 					c->leb_size - snod->offs);
549 			err = -EINVAL;
550 			goto out_free;
551 		}
552 
553 		orph = snod->node;
554 
555 		/* Check commit number */
556 		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
557 		/*
558 		 * The commit number on the master node may be less, because
559 		 * of a failed commit. If there are several failed commits in a
560 		 * row, the commit number written on orphan nodes will continue
561 		 * to increase (because the commit number is adjusted here) even
562 		 * though the commit number on the master node stays the same
563 		 * because the master node has not been re-written.
564 		 */
565 		if (cmt_no > c->cmt_no)
566 			c->cmt_no = cmt_no;
567 		if (cmt_no < *last_cmt_no && *last_flagged) {
568 			/*
569 			 * The last orphan node had a higher commit number and
570 			 * was flagged as the last written for that commit
571 			 * number. That makes this orphan node, out of date.
572 			 */
573 			if (!first) {
574 				ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
575 					  cmt_no, sleb->lnum, snod->offs);
576 				ubifs_dump_node(c, snod->node,
577 						c->leb_size - snod->offs);
578 				err = -EINVAL;
579 				goto out_free;
580 			}
581 			dbg_rcvry("out of date LEB %d", sleb->lnum);
582 			*outofdate = 1;
583 			err = 0;
584 			goto out_free;
585 		}
586 
587 		if (first)
588 			first = 0;
589 
590 		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
591 		for (i = 0; i < n; i++) {
592 			union ubifs_key key;
593 
594 			inum = le64_to_cpu(orph->inos[i]);
595 
596 			ino_key_init(c, &key, inum);
597 			err = ubifs_tnc_lookup(c, &key, ino);
598 			if (err && err != -ENOENT)
599 				goto out_free;
600 
601 			/*
602 			 * Check whether an inode can really get deleted.
603 			 * linkat() with O_TMPFILE allows rebirth of an inode.
604 			 */
605 			if (err == 0 && ino->nlink == 0) {
606 				dbg_rcvry("deleting orphaned inode %lu",
607 					  (unsigned long)inum);
608 
609 				err = ubifs_tnc_remove_ino(c, inum);
610 				if (err)
611 					goto out_ro;
612 			}
613 		}
614 
615 		*last_cmt_no = cmt_no;
616 		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
617 			dbg_rcvry("last orph node for commit %llu at %d:%d",
618 				  cmt_no, sleb->lnum, snod->offs);
619 			*last_flagged = 1;
620 		} else
621 			*last_flagged = 0;
622 	}
623 
624 	err = 0;
625 out_free:
626 	kfree(ino);
627 	return err;
628 
629 out_ro:
630 	ubifs_ro_mode(c, err);
631 	kfree(ino);
632 	return err;
633 }
634 
635 /**
636  * kill_orphans - remove all orphan inodes from the index.
637  * @c: UBIFS file-system description object
638  *
639  * If recovery is required, then orphan inodes recorded during the previous
640  * session (which ended with an unclean unmount) must be deleted from the index.
641  * This is done by updating the TNC, but since the index is not updated until
642  * the next commit, the LEBs where the orphan information is recorded are not
643  * erased until the next commit.
644  */
kill_orphans(struct ubifs_info * c)645 static int kill_orphans(struct ubifs_info *c)
646 {
647 	unsigned long long last_cmt_no = 0;
648 	int lnum, err = 0, outofdate = 0, last_flagged = 0;
649 
650 	c->ohead_lnum = c->orph_first;
651 	c->ohead_offs = 0;
652 	/* Check no-orphans flag and skip this if no orphans */
653 	if (c->no_orphs) {
654 		dbg_rcvry("no orphans");
655 		return 0;
656 	}
657 	/*
658 	 * Orph nodes always start at c->orph_first and are written to each
659 	 * successive LEB in turn. Generally unused LEBs will have been unmapped
660 	 * but may contain out of date orphan nodes if the unmap didn't go
661 	 * through. In addition, the last orphan node written for each commit is
662 	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
663 	 * there are orphan nodes from the next commit (i.e. the commit did not
664 	 * complete successfully). In that case, no orphans will have been lost
665 	 * due to the way that orphans are written, and any orphans added will
666 	 * be valid orphans anyway and so can be deleted.
667 	 */
668 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
669 		struct ubifs_scan_leb *sleb;
670 
671 		dbg_rcvry("LEB %d", lnum);
672 		sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
673 		if (IS_ERR(sleb)) {
674 			if (PTR_ERR(sleb) == -EUCLEAN)
675 				sleb = ubifs_recover_leb(c, lnum, 0,
676 							 c->sbuf, -1);
677 			if (IS_ERR(sleb)) {
678 				err = PTR_ERR(sleb);
679 				break;
680 			}
681 		}
682 		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
683 				      &last_flagged);
684 		if (err || outofdate) {
685 			ubifs_scan_destroy(sleb);
686 			break;
687 		}
688 		if (sleb->endpt) {
689 			c->ohead_lnum = lnum;
690 			c->ohead_offs = sleb->endpt;
691 		}
692 		ubifs_scan_destroy(sleb);
693 	}
694 	return err;
695 }
696 
697 /**
698  * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
699  * @c: UBIFS file-system description object
700  * @unclean: indicates recovery from unclean unmount
701  * @read_only: indicates read only mount
702  *
703  * This function is called when mounting to erase orphans from the previous
704  * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
705  * orphans are deleted.
706  */
ubifs_mount_orphans(struct ubifs_info * c,int unclean,int read_only)707 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
708 {
709 	int err = 0;
710 
711 	c->max_orphans = tot_avail_orphs(c);
712 
713 	if (!read_only) {
714 		c->orph_buf = vmalloc(c->leb_size);
715 		if (!c->orph_buf)
716 			return -ENOMEM;
717 	}
718 
719 	if (unclean)
720 		err = kill_orphans(c);
721 	else if (!read_only)
722 		err = ubifs_clear_orphans(c);
723 
724 	return err;
725 }
726 
727 /*
728  * Everything below is related to debugging.
729  */
730 
731 struct check_orphan {
732 	struct rb_node rb;
733 	ino_t inum;
734 };
735 
736 struct check_info {
737 	unsigned long last_ino;
738 	unsigned long tot_inos;
739 	unsigned long missing;
740 	unsigned long long leaf_cnt;
741 	struct ubifs_ino_node *node;
742 	struct rb_root root;
743 };
744 
dbg_find_orphan(struct ubifs_info * c,ino_t inum)745 static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum)
746 {
747 	bool found = false;
748 
749 	spin_lock(&c->orphan_lock);
750 	found = !!lookup_orphan(c, inum);
751 	spin_unlock(&c->orphan_lock);
752 
753 	return found;
754 }
755 
dbg_ins_check_orphan(struct rb_root * root,ino_t inum)756 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
757 {
758 	struct check_orphan *orphan, *o;
759 	struct rb_node **p, *parent = NULL;
760 
761 	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
762 	if (!orphan)
763 		return -ENOMEM;
764 	orphan->inum = inum;
765 
766 	p = &root->rb_node;
767 	while (*p) {
768 		parent = *p;
769 		o = rb_entry(parent, struct check_orphan, rb);
770 		if (inum < o->inum)
771 			p = &(*p)->rb_left;
772 		else if (inum > o->inum)
773 			p = &(*p)->rb_right;
774 		else {
775 			kfree(orphan);
776 			return 0;
777 		}
778 	}
779 	rb_link_node(&orphan->rb, parent, p);
780 	rb_insert_color(&orphan->rb, root);
781 	return 0;
782 }
783 
dbg_find_check_orphan(struct rb_root * root,ino_t inum)784 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
785 {
786 	struct check_orphan *o;
787 	struct rb_node *p;
788 
789 	p = root->rb_node;
790 	while (p) {
791 		o = rb_entry(p, struct check_orphan, rb);
792 		if (inum < o->inum)
793 			p = p->rb_left;
794 		else if (inum > o->inum)
795 			p = p->rb_right;
796 		else
797 			return 1;
798 	}
799 	return 0;
800 }
801 
dbg_free_check_tree(struct rb_root * root)802 static void dbg_free_check_tree(struct rb_root *root)
803 {
804 	struct check_orphan *o, *n;
805 
806 	rbtree_postorder_for_each_entry_safe(o, n, root, rb)
807 		kfree(o);
808 }
809 
dbg_orphan_check(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)810 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
811 			    void *priv)
812 {
813 	struct check_info *ci = priv;
814 	ino_t inum;
815 	int err;
816 
817 	inum = key_inum(c, &zbr->key);
818 	if (inum != ci->last_ino) {
819 		/*
820 		 * Lowest node type is the inode node or xattr entry(when
821 		 * selinux/encryption is enabled), so it comes first
822 		 */
823 		if (key_type(c, &zbr->key) != UBIFS_INO_KEY &&
824 		    key_type(c, &zbr->key) != UBIFS_XENT_KEY)
825 			ubifs_err(c, "found orphan node ino %lu, type %d",
826 				  (unsigned long)inum, key_type(c, &zbr->key));
827 		ci->last_ino = inum;
828 		ci->tot_inos += 1;
829 		err = ubifs_tnc_read_node(c, zbr, ci->node);
830 		if (err) {
831 			ubifs_err(c, "node read failed, error %d", err);
832 			return err;
833 		}
834 		if (ci->node->nlink == 0)
835 			/* Must be recorded as an orphan */
836 			if (!dbg_find_check_orphan(&ci->root, inum) &&
837 			    !dbg_find_orphan(c, inum)) {
838 				ubifs_err(c, "missing orphan, ino %lu",
839 					  (unsigned long)inum);
840 				ci->missing += 1;
841 			}
842 	}
843 	ci->leaf_cnt += 1;
844 	return 0;
845 }
846 
dbg_read_orphans(struct check_info * ci,struct ubifs_scan_leb * sleb)847 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
848 {
849 	struct ubifs_scan_node *snod;
850 	struct ubifs_orph_node *orph;
851 	ino_t inum;
852 	int i, n, err;
853 
854 	list_for_each_entry(snod, &sleb->nodes, list) {
855 		cond_resched();
856 		if (snod->type != UBIFS_ORPH_NODE)
857 			continue;
858 		orph = snod->node;
859 		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
860 		for (i = 0; i < n; i++) {
861 			inum = le64_to_cpu(orph->inos[i]);
862 			err = dbg_ins_check_orphan(&ci->root, inum);
863 			if (err)
864 				return err;
865 		}
866 	}
867 	return 0;
868 }
869 
dbg_scan_orphans(struct ubifs_info * c,struct check_info * ci)870 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
871 {
872 	int lnum, err = 0;
873 	void *buf;
874 
875 	/* Check no-orphans flag and skip this if no orphans */
876 	if (c->no_orphs)
877 		return 0;
878 
879 	buf = __vmalloc(c->leb_size, GFP_NOFS);
880 	if (!buf) {
881 		ubifs_err(c, "cannot allocate memory to check orphans");
882 		return 0;
883 	}
884 
885 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
886 		struct ubifs_scan_leb *sleb;
887 
888 		sleb = ubifs_scan(c, lnum, 0, buf, 0);
889 		if (IS_ERR(sleb)) {
890 			err = PTR_ERR(sleb);
891 			break;
892 		}
893 
894 		err = dbg_read_orphans(ci, sleb);
895 		ubifs_scan_destroy(sleb);
896 		if (err)
897 			break;
898 	}
899 
900 	vfree(buf);
901 	return err;
902 }
903 
dbg_check_orphans(struct ubifs_info * c)904 static int dbg_check_orphans(struct ubifs_info *c)
905 {
906 	struct check_info ci;
907 	int err;
908 
909 	if (!dbg_is_chk_orph(c))
910 		return 0;
911 
912 	ci.last_ino = 0;
913 	ci.tot_inos = 0;
914 	ci.missing  = 0;
915 	ci.leaf_cnt = 0;
916 	ci.root = RB_ROOT;
917 	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
918 	if (!ci.node) {
919 		ubifs_err(c, "out of memory");
920 		return -ENOMEM;
921 	}
922 
923 	err = dbg_scan_orphans(c, &ci);
924 	if (err)
925 		goto out;
926 
927 	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
928 	if (err) {
929 		ubifs_err(c, "cannot scan TNC, error %d", err);
930 		goto out;
931 	}
932 
933 	if (ci.missing) {
934 		ubifs_err(c, "%lu missing orphan(s)", ci.missing);
935 		err = -EINVAL;
936 		goto out;
937 	}
938 
939 	dbg_cmt("last inode number is %lu", ci.last_ino);
940 	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
941 	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
942 
943 out:
944 	dbg_free_check_tree(&ci.root);
945 	kfree(ci.node);
946 	return err;
947 }
948