xref: /wlan-dirver/qca-wifi-host-cmn/qdf/linux/src/qdf_mem.c (revision 4cadebf03f210f4640f1121e252d3b4a2be9568b)
1 /*
2  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
3  * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for
6  * any purpose with or without fee is hereby granted, provided that the
7  * above copyright notice and this permission notice appear in all
8  * copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
11  * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
12  * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
13  * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
14  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
15  * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
16  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
17  * PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /**
21  * DOC: qdf_mem
22  * This file provides OS dependent memory management APIs
23  */
24 
25 #include "qdf_debugfs.h"
26 #include "qdf_mem.h"
27 #include "qdf_nbuf.h"
28 #include "qdf_lock.h"
29 #include "qdf_mc_timer.h"
30 #include "qdf_module.h"
31 #include <qdf_trace.h>
32 #include "qdf_str.h"
33 #include "qdf_talloc.h"
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <qdf_list.h>
38 
39 #ifdef CNSS_MEM_PRE_ALLOC
40 #ifdef CONFIG_CNSS_OUT_OF_TREE
41 #include "cnss_prealloc.h"
42 #else
43 #include <net/cnss_prealloc.h>
44 #endif
45 #endif
46 
47 #if defined(MEMORY_DEBUG) || defined(NBUF_MEMORY_DEBUG)
48 static bool mem_debug_disabled;
49 qdf_declare_param(mem_debug_disabled, bool);
50 #endif
51 
52 #ifdef MEMORY_DEBUG
53 static bool is_initial_mem_debug_disabled;
54 #endif
55 
56 /* Preprocessor Definitions and Constants */
57 #define QDF_MEM_MAX_MALLOC (4096 * 1024) /* 4 Mega Bytes */
58 #define QDF_MEM_WARN_THRESHOLD 300 /* ms */
59 #define QDF_DEBUG_STRING_SIZE 512
60 
61 /**
62  * struct __qdf_mem_stat - qdf memory statistics
63  * @kmalloc: total kmalloc allocations
64  * @dma: total dma allocations
65  * @skb: total skb allocations
66  * @skb_total: total skb allocations in host driver
67  * @dp_tx_skb: total Tx skb allocations in datapath
68  * @dp_rx_skb: total Rx skb allocations in datapath
69  * @skb_mem_max: high watermark for skb allocations
70  * @dp_tx_skb_mem_max: high watermark for Tx DP skb allocations
71  * @dp_rx_skb_mem_max: high watermark for Rx DP skb allocations
72  * @dp_tx_skb_count: DP Tx buffer count
73  * @dp_tx_skb_count_max: High watermark for DP Tx buffer count
74  * @dp_rx_skb_count: DP Rx buffer count
75  * @dp_rx_skb_count_max: High watermark for DP Rx buffer count
76  * @tx_descs_outstanding: Current pending Tx descs count
77  * @tx_descs_max: High watermark for pending Tx descs count
78  */
79 static struct __qdf_mem_stat {
80 	qdf_atomic_t kmalloc;
81 	qdf_atomic_t dma;
82 	qdf_atomic_t skb;
83 	qdf_atomic_t skb_total;
84 	qdf_atomic_t dp_tx_skb;
85 	qdf_atomic_t dp_rx_skb;
86 	int32_t skb_mem_max;
87 	int32_t dp_tx_skb_mem_max;
88 	int32_t dp_rx_skb_mem_max;
89 	qdf_atomic_t dp_tx_skb_count;
90 	int32_t dp_tx_skb_count_max;
91 	qdf_atomic_t dp_rx_skb_count;
92 	int32_t dp_rx_skb_count_max;
93 	qdf_atomic_t tx_descs_outstanding;
94 	int32_t tx_descs_max;
95 } qdf_mem_stat;
96 
97 #ifdef MEMORY_DEBUG
98 #include "qdf_debug_domain.h"
99 
100 enum list_type {
101 	LIST_TYPE_MEM = 0,
102 	LIST_TYPE_DMA = 1,
103 	LIST_TYPE_NBUF = 2,
104 	LIST_TYPE_MAX,
105 };
106 
107 /**
108  * struct major_alloc_priv - private data registered to debugfs entry
109  *                           created to list the list major allocations
110  * @type:            type of the list to be parsed
111  * @threshold:       configured by user by overwriting the respective debugfs
112  *                   sys entry. This is to list the functions which requested
113  *                   memory/dma allocations more than threshold number of times.
114  */
115 struct major_alloc_priv {
116 	enum list_type type;
117 	uint32_t threshold;
118 };
119 
120 static qdf_list_t qdf_mem_domains[QDF_DEBUG_DOMAIN_COUNT];
121 static qdf_spinlock_t qdf_mem_list_lock;
122 
123 static qdf_list_t qdf_mem_dma_domains[QDF_DEBUG_DOMAIN_COUNT];
124 static qdf_spinlock_t qdf_mem_dma_list_lock;
125 
126 static inline qdf_list_t *qdf_mem_list_get(enum qdf_debug_domain domain)
127 {
128 	return &qdf_mem_domains[domain];
129 }
130 
131 static inline qdf_list_t *qdf_mem_dma_list(enum qdf_debug_domain domain)
132 {
133 	return &qdf_mem_dma_domains[domain];
134 }
135 
136 /**
137  * struct qdf_mem_header - memory object to dubug
138  * @node: node to the list
139  * @domain: the active memory domain at time of allocation
140  * @freed: flag set during free, used to detect double frees
141  *	Use uint8_t so we can detect corruption
142  * @func: name of the function the allocation was made from
143  * @line: line number of the file the allocation was made from
144  * @size: size of the allocation in bytes
145  * @caller: Caller of the function for which memory is allocated
146  * @header: a known value, used to detect out-of-bounds access
147  * @time: timestamp at which allocation was made
148  */
149 struct qdf_mem_header {
150 	qdf_list_node_t node;
151 	enum qdf_debug_domain domain;
152 	uint8_t freed;
153 	char func[QDF_MEM_FUNC_NAME_SIZE];
154 	uint32_t line;
155 	uint32_t size;
156 	void *caller;
157 	uint64_t header;
158 	uint64_t time;
159 };
160 
161 /* align the qdf_mem_header to 8 bytes */
162 #define QDF_DMA_MEM_HEADER_ALIGN 8
163 
164 static uint64_t WLAN_MEM_HEADER = 0x6162636465666768;
165 static uint64_t WLAN_MEM_TRAILER = 0x8081828384858687;
166 
167 static inline struct qdf_mem_header *qdf_mem_get_header(void *ptr)
168 {
169 	return (struct qdf_mem_header *)ptr - 1;
170 }
171 
172 /* make sure the header pointer is 8bytes aligned */
173 static inline struct qdf_mem_header *qdf_mem_dma_get_header(void *ptr,
174 							    qdf_size_t size)
175 {
176 	return (struct qdf_mem_header *)
177 				qdf_roundup((size_t)((uint8_t *)ptr + size),
178 					    QDF_DMA_MEM_HEADER_ALIGN);
179 }
180 
181 static inline uint64_t *qdf_mem_get_trailer(struct qdf_mem_header *header)
182 {
183 	return (uint64_t *)((void *)(header + 1) + header->size);
184 }
185 
186 static inline void *qdf_mem_get_ptr(struct qdf_mem_header *header)
187 {
188 	return (void *)(header + 1);
189 }
190 
191 /* number of bytes needed for the qdf memory debug information */
192 #define QDF_MEM_DEBUG_SIZE \
193 	(sizeof(struct qdf_mem_header) + sizeof(WLAN_MEM_TRAILER))
194 
195 /* number of bytes needed for the qdf dma memory debug information */
196 #define QDF_DMA_MEM_DEBUG_SIZE \
197 	(sizeof(struct qdf_mem_header) + QDF_DMA_MEM_HEADER_ALIGN)
198 
199 static void qdf_mem_trailer_init(struct qdf_mem_header *header)
200 {
201 	QDF_BUG(header);
202 	if (!header)
203 		return;
204 	*qdf_mem_get_trailer(header) = WLAN_MEM_TRAILER;
205 }
206 
207 static void qdf_mem_header_init(struct qdf_mem_header *header, qdf_size_t size,
208 				const char *func, uint32_t line, void *caller)
209 {
210 	QDF_BUG(header);
211 	if (!header)
212 		return;
213 
214 	header->domain = qdf_debug_domain_get();
215 	header->freed = false;
216 
217 	qdf_str_lcopy(header->func, func, QDF_MEM_FUNC_NAME_SIZE);
218 
219 	header->line = line;
220 	header->size = size;
221 	header->caller = caller;
222 	header->header = WLAN_MEM_HEADER;
223 	header->time = qdf_get_log_timestamp();
224 }
225 
226 enum qdf_mem_validation_bitmap {
227 	QDF_MEM_BAD_HEADER = 1 << 0,
228 	QDF_MEM_BAD_TRAILER = 1 << 1,
229 	QDF_MEM_BAD_SIZE = 1 << 2,
230 	QDF_MEM_DOUBLE_FREE = 1 << 3,
231 	QDF_MEM_BAD_FREED = 1 << 4,
232 	QDF_MEM_BAD_NODE = 1 << 5,
233 	QDF_MEM_BAD_DOMAIN = 1 << 6,
234 	QDF_MEM_WRONG_DOMAIN = 1 << 7,
235 };
236 
237 static enum qdf_mem_validation_bitmap
238 qdf_mem_trailer_validate(struct qdf_mem_header *header)
239 {
240 	enum qdf_mem_validation_bitmap error_bitmap = 0;
241 
242 	if (*qdf_mem_get_trailer(header) != WLAN_MEM_TRAILER)
243 		error_bitmap |= QDF_MEM_BAD_TRAILER;
244 	return error_bitmap;
245 }
246 
247 static enum qdf_mem_validation_bitmap
248 qdf_mem_header_validate(struct qdf_mem_header *header,
249 			enum qdf_debug_domain domain)
250 {
251 	enum qdf_mem_validation_bitmap error_bitmap = 0;
252 
253 	if (header->header != WLAN_MEM_HEADER)
254 		error_bitmap |= QDF_MEM_BAD_HEADER;
255 
256 	if (header->size > QDF_MEM_MAX_MALLOC)
257 		error_bitmap |= QDF_MEM_BAD_SIZE;
258 
259 	if (header->freed == true)
260 		error_bitmap |= QDF_MEM_DOUBLE_FREE;
261 	else if (header->freed)
262 		error_bitmap |= QDF_MEM_BAD_FREED;
263 
264 	if (!qdf_list_node_in_any_list(&header->node))
265 		error_bitmap |= QDF_MEM_BAD_NODE;
266 
267 	if (header->domain < QDF_DEBUG_DOMAIN_INIT ||
268 	    header->domain >= QDF_DEBUG_DOMAIN_COUNT)
269 		error_bitmap |= QDF_MEM_BAD_DOMAIN;
270 	else if (header->domain != domain)
271 		error_bitmap |= QDF_MEM_WRONG_DOMAIN;
272 
273 	return error_bitmap;
274 }
275 
276 static void
277 qdf_mem_header_assert_valid(struct qdf_mem_header *header,
278 			    enum qdf_debug_domain current_domain,
279 			    enum qdf_mem_validation_bitmap error_bitmap,
280 			    const char *func,
281 			    uint32_t line)
282 {
283 	if (!error_bitmap)
284 		return;
285 
286 	if (error_bitmap & QDF_MEM_BAD_HEADER)
287 		qdf_err("Corrupted memory header 0x%llx (expected 0x%llx)",
288 			header->header, WLAN_MEM_HEADER);
289 
290 	if (error_bitmap & QDF_MEM_BAD_SIZE)
291 		qdf_err("Corrupted memory size %u (expected < %d)",
292 			header->size, QDF_MEM_MAX_MALLOC);
293 
294 	if (error_bitmap & QDF_MEM_BAD_TRAILER)
295 		qdf_err("Corrupted memory trailer 0x%llx (expected 0x%llx)",
296 			*qdf_mem_get_trailer(header), WLAN_MEM_TRAILER);
297 
298 	if (error_bitmap & QDF_MEM_DOUBLE_FREE)
299 		qdf_err("Memory has previously been freed");
300 
301 	if (error_bitmap & QDF_MEM_BAD_FREED)
302 		qdf_err("Corrupted memory freed flag 0x%x", header->freed);
303 
304 	if (error_bitmap & QDF_MEM_BAD_NODE)
305 		qdf_err("Corrupted memory header node or double free");
306 
307 	if (error_bitmap & QDF_MEM_BAD_DOMAIN)
308 		qdf_err("Corrupted memory domain 0x%x", header->domain);
309 
310 	if (error_bitmap & QDF_MEM_WRONG_DOMAIN)
311 		qdf_err("Memory domain mismatch; allocated:%s(%d), current:%s(%d)",
312 			qdf_debug_domain_name(header->domain), header->domain,
313 			qdf_debug_domain_name(current_domain), current_domain);
314 
315 	QDF_MEMDEBUG_PANIC("Fatal memory error detected @ %s:%d", func, line);
316 }
317 
318 /**
319  * struct __qdf_mem_info - memory statistics
320  * @func: the function which allocated memory
321  * @line: the line at which allocation happened
322  * @size: the size of allocation
323  * @caller: Address of the caller function
324  * @count: how many allocations of same type
325  * @time: timestamp at which allocation happened
326  */
327 struct __qdf_mem_info {
328 	char func[QDF_MEM_FUNC_NAME_SIZE];
329 	uint32_t line;
330 	uint32_t size;
331 	void *caller;
332 	uint32_t count;
333 	uint64_t time;
334 };
335 
336 /*
337  * The table depth defines the de-duplication proximity scope.
338  * A deeper table takes more time, so choose any optimum value.
339  */
340 #define QDF_MEM_STAT_TABLE_SIZE 8
341 
342 /**
343  * qdf_mem_debug_print_header() - memory debug header print logic
344  * @print: the print adapter function
345  * @print_priv: the private data to be consumed by @print
346  * @threshold: the threshold value set by user to list top allocations
347  *
348  * Return: None
349  */
350 static void qdf_mem_debug_print_header(qdf_abstract_print print,
351 				       void *print_priv,
352 				       uint32_t threshold)
353 {
354 	if (threshold)
355 		print(print_priv, "APIs requested allocations >= %u no of time",
356 		      threshold);
357 	print(print_priv,
358 	      "--------------------------------------------------------------");
359 	print(print_priv,
360 	      " count    size     total    filename     caller    timestamp");
361 	print(print_priv,
362 	      "--------------------------------------------------------------");
363 }
364 
365 /**
366  * qdf_mem_meta_table_insert() - insert memory metadata into the given table
367  * @table: the memory metadata table to insert into
368  * @meta: the memory metadata to insert
369  *
370  * Return: true if the table is full after inserting, false otherwise
371  */
372 static bool qdf_mem_meta_table_insert(struct __qdf_mem_info *table,
373 				      struct qdf_mem_header *meta)
374 {
375 	int i;
376 
377 	for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
378 		if (!table[i].count) {
379 			qdf_str_lcopy(table[i].func, meta->func,
380 				      QDF_MEM_FUNC_NAME_SIZE);
381 			table[i].line = meta->line;
382 			table[i].size = meta->size;
383 			table[i].count = 1;
384 			table[i].caller = meta->caller;
385 			table[i].time = meta->time;
386 			break;
387 		}
388 
389 		if (qdf_str_eq(table[i].func, meta->func) &&
390 		    table[i].line == meta->line &&
391 		    table[i].size == meta->size &&
392 		    table[i].caller == meta->caller) {
393 			table[i].count++;
394 			break;
395 		}
396 	}
397 
398 	/* return true if the table is now full */
399 	return i >= QDF_MEM_STAT_TABLE_SIZE - 1;
400 }
401 
402 /**
403  * qdf_mem_domain_print() - output agnostic memory domain print logic
404  * @domain: the memory domain to print
405  * @print: the print adapter function
406  * @print_priv: the private data to be consumed by @print
407  * @threshold: the threshold value set by uset to list top allocations
408  * @mem_print: pointer to function which prints the memory allocation data
409  *
410  * Return: None
411  */
412 static void qdf_mem_domain_print(qdf_list_t *domain,
413 				 qdf_abstract_print print,
414 				 void *print_priv,
415 				 uint32_t threshold,
416 				 void (*mem_print)(struct __qdf_mem_info *,
417 						   qdf_abstract_print,
418 						   void *, uint32_t))
419 {
420 	QDF_STATUS status;
421 	struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
422 	qdf_list_node_t *node;
423 
424 	qdf_mem_zero(table, sizeof(table));
425 	qdf_mem_debug_print_header(print, print_priv, threshold);
426 
427 	/* hold lock while inserting to avoid use-after free of the metadata */
428 	qdf_spin_lock(&qdf_mem_list_lock);
429 	status = qdf_list_peek_front(domain, &node);
430 	while (QDF_IS_STATUS_SUCCESS(status)) {
431 		struct qdf_mem_header *meta = (struct qdf_mem_header *)node;
432 		bool is_full = qdf_mem_meta_table_insert(table, meta);
433 
434 		qdf_spin_unlock(&qdf_mem_list_lock);
435 
436 		if (is_full) {
437 			(*mem_print)(table, print, print_priv, threshold);
438 			qdf_mem_zero(table, sizeof(table));
439 		}
440 
441 		qdf_spin_lock(&qdf_mem_list_lock);
442 		status = qdf_list_peek_next(domain, node, &node);
443 	}
444 	qdf_spin_unlock(&qdf_mem_list_lock);
445 
446 	(*mem_print)(table, print, print_priv, threshold);
447 }
448 
449 /**
450  * qdf_mem_meta_table_print() - memory metadata table print logic
451  * @table: the memory metadata table to print
452  * @print: the print adapter function
453  * @print_priv: the private data to be consumed by @print
454  * @threshold: the threshold value set by user to list top allocations
455  *
456  * Return: None
457  */
458 static void qdf_mem_meta_table_print(struct __qdf_mem_info *table,
459 				     qdf_abstract_print print,
460 				     void *print_priv,
461 				     uint32_t threshold)
462 {
463 	int i;
464 	char debug_str[QDF_DEBUG_STRING_SIZE];
465 	size_t len = 0;
466 	char *debug_prefix = "WLAN_BUG_RCA: memory leak detected";
467 
468 	len += qdf_scnprintf(debug_str, sizeof(debug_str) - len,
469 			     "%s", debug_prefix);
470 
471 	for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
472 		if (!table[i].count)
473 			break;
474 
475 		print(print_priv,
476 		      "%6u x %5u = %7uB @ %s:%u   %pS %llu",
477 		      table[i].count,
478 		      table[i].size,
479 		      table[i].count * table[i].size,
480 		      table[i].func,
481 		      table[i].line, table[i].caller,
482 		      table[i].time);
483 		len += qdf_scnprintf(debug_str + len,
484 				     sizeof(debug_str) - len,
485 				     " @ %s:%u %pS",
486 				     table[i].func,
487 				     table[i].line,
488 				     table[i].caller);
489 	}
490 	print(print_priv, "%s", debug_str);
491 }
492 
493 static int qdf_err_printer(void *priv, const char *fmt, ...)
494 {
495 	va_list args;
496 
497 	va_start(args, fmt);
498 	QDF_VTRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, (char *)fmt, args);
499 	va_end(args);
500 
501 	return 0;
502 }
503 
504 #endif /* MEMORY_DEBUG */
505 
506 bool prealloc_disabled = 1;
507 qdf_declare_param(prealloc_disabled, bool);
508 qdf_export_symbol(prealloc_disabled);
509 
510 int qdf_mem_malloc_flags(void)
511 {
512 	if (in_interrupt() || !preemptible() || rcu_preempt_depth())
513 		return GFP_ATOMIC;
514 
515 	return GFP_KERNEL;
516 }
517 
518 qdf_export_symbol(qdf_mem_malloc_flags);
519 
520 bool qdf_prealloc_disabled_config_get(void)
521 {
522 	return prealloc_disabled;
523 }
524 
525 qdf_export_symbol(qdf_prealloc_disabled_config_get);
526 
527 #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
528 QDF_STATUS qdf_prealloc_disabled_config_set(const char *str_value)
529 {
530 	QDF_STATUS status;
531 
532 	status = qdf_bool_parse(str_value, &prealloc_disabled);
533 	return status;
534 }
535 #endif
536 
537 #if defined WLAN_DEBUGFS
538 
539 /* Debugfs root directory for qdf_mem */
540 static struct dentry *qdf_mem_debugfs_root;
541 
542 #ifdef MEMORY_DEBUG
543 static int seq_printf_printer(void *priv, const char *fmt, ...)
544 {
545 	struct seq_file *file = priv;
546 	va_list args;
547 
548 	va_start(args, fmt);
549 	seq_vprintf(file, fmt, args);
550 	seq_puts(file, "\n");
551 	va_end(args);
552 
553 	return 0;
554 }
555 
556 /**
557  * qdf_print_major_alloc() - memory metadata table print logic
558  * @table: the memory metadata table to print
559  * @print: the print adapter function
560  * @print_priv: the private data to be consumed by @print
561  * @threshold: the threshold value set by uset to list top allocations
562  *
563  * Return: None
564  */
565 static void qdf_print_major_alloc(struct __qdf_mem_info *table,
566 				  qdf_abstract_print print,
567 				  void *print_priv,
568 				  uint32_t threshold)
569 {
570 	int i;
571 
572 	for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
573 		if (!table[i].count)
574 			break;
575 		if (table[i].count >= threshold)
576 			print(print_priv,
577 			      "%6u x %5u = %7uB @ %s:%u   %pS %llu",
578 			      table[i].count,
579 			      table[i].size,
580 			      table[i].count * table[i].size,
581 			      table[i].func,
582 			      table[i].line, table[i].caller,
583 			      table[i].time);
584 	}
585 }
586 
587 /**
588  * qdf_mem_seq_start() - sequential callback to start
589  * @seq: seq_file handle
590  * @pos: The start position of the sequence
591  *
592  * Return: iterator pointer, or NULL if iteration is complete
593  */
594 static void *qdf_mem_seq_start(struct seq_file *seq, loff_t *pos)
595 {
596 	enum qdf_debug_domain domain = *pos;
597 
598 	if (!qdf_debug_domain_valid(domain))
599 		return NULL;
600 
601 	/* just use the current position as our iterator */
602 	return pos;
603 }
604 
605 /**
606  * qdf_mem_seq_next() - next sequential callback
607  * @seq: seq_file handle
608  * @v: the current iterator
609  * @pos: the current position
610  *
611  * Get the next node and release previous node.
612  *
613  * Return: iterator pointer, or NULL if iteration is complete
614  */
615 static void *qdf_mem_seq_next(struct seq_file *seq, void *v, loff_t *pos)
616 {
617 	++*pos;
618 
619 	return qdf_mem_seq_start(seq, pos);
620 }
621 
622 /**
623  * qdf_mem_seq_stop() - stop sequential callback
624  * @seq: seq_file handle
625  * @v: current iterator
626  *
627  * Return: None
628  */
629 static void qdf_mem_seq_stop(struct seq_file *seq, void *v) { }
630 
631 /**
632  * qdf_mem_seq_show() - print sequential callback
633  * @seq: seq_file handle
634  * @v: current iterator
635  *
636  * Return: 0 - success
637  */
638 static int qdf_mem_seq_show(struct seq_file *seq, void *v)
639 {
640 	enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
641 
642 	seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
643 		   qdf_debug_domain_name(domain_id), domain_id);
644 	qdf_mem_domain_print(qdf_mem_list_get(domain_id),
645 			     seq_printf_printer,
646 			     seq,
647 			     0,
648 			     qdf_mem_meta_table_print);
649 
650 	return 0;
651 }
652 
653 /* sequential file operation table */
654 static const struct seq_operations qdf_mem_seq_ops = {
655 	.start = qdf_mem_seq_start,
656 	.next  = qdf_mem_seq_next,
657 	.stop  = qdf_mem_seq_stop,
658 	.show  = qdf_mem_seq_show,
659 };
660 
661 
662 static int qdf_mem_debugfs_open(struct inode *inode, struct file *file)
663 {
664 	return seq_open(file, &qdf_mem_seq_ops);
665 }
666 
667 /**
668  * qdf_major_alloc_show() - print sequential callback
669  * @seq: seq_file handle
670  * @v: current iterator
671  *
672  * Return: 0 - success
673  */
674 static int qdf_major_alloc_show(struct seq_file *seq, void *v)
675 {
676 	enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
677 	struct major_alloc_priv *priv;
678 	qdf_list_t *list;
679 
680 	priv = (struct major_alloc_priv *)seq->private;
681 	seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
682 		   qdf_debug_domain_name(domain_id), domain_id);
683 
684 	switch (priv->type) {
685 	case LIST_TYPE_MEM:
686 		list = qdf_mem_list_get(domain_id);
687 		break;
688 	case LIST_TYPE_DMA:
689 		list = qdf_mem_dma_list(domain_id);
690 		break;
691 	default:
692 		list = NULL;
693 		break;
694 	}
695 
696 	if (list)
697 		qdf_mem_domain_print(list,
698 				     seq_printf_printer,
699 				     seq,
700 				     priv->threshold,
701 				     qdf_print_major_alloc);
702 
703 	return 0;
704 }
705 
706 /* sequential file operation table created to track major allocs */
707 static const struct seq_operations qdf_major_allocs_seq_ops = {
708 	.start = qdf_mem_seq_start,
709 	.next = qdf_mem_seq_next,
710 	.stop = qdf_mem_seq_stop,
711 	.show = qdf_major_alloc_show,
712 };
713 
714 static int qdf_major_allocs_open(struct inode *inode, struct file *file)
715 {
716 	void *private = inode->i_private;
717 	struct seq_file *seq;
718 	int rc;
719 
720 	rc = seq_open(file, &qdf_major_allocs_seq_ops);
721 	if (rc == 0) {
722 		seq = file->private_data;
723 		seq->private = private;
724 	}
725 	return rc;
726 }
727 
728 static ssize_t qdf_major_alloc_set_threshold(struct file *file,
729 					     const char __user *user_buf,
730 					     size_t count,
731 					     loff_t *pos)
732 {
733 	char buf[32];
734 	ssize_t buf_size;
735 	uint32_t threshold;
736 	struct seq_file *seq = file->private_data;
737 	struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
738 
739 	buf_size = min(count, (sizeof(buf) - 1));
740 	if (buf_size <= 0)
741 		return 0;
742 	if (copy_from_user(buf, user_buf, buf_size))
743 		return -EFAULT;
744 	buf[buf_size] = '\0';
745 	if (!kstrtou32(buf, 10, &threshold))
746 		priv->threshold = threshold;
747 	return buf_size;
748 }
749 
750 /**
751  * qdf_print_major_nbuf_allocs() - output agnostic nbuf print logic
752  * @threshold: the threshold value set by uset to list top allocations
753  * @print: the print adapter function
754  * @print_priv: the private data to be consumed by @print
755  * @mem_print: pointer to function which prints the memory allocation data
756  *
757  * Return: None
758  */
759 static void
760 qdf_print_major_nbuf_allocs(uint32_t threshold,
761 			    qdf_abstract_print print,
762 			    void *print_priv,
763 			    void (*mem_print)(struct __qdf_mem_info *,
764 					      qdf_abstract_print,
765 					      void *, uint32_t))
766 {
767 	uint32_t nbuf_iter;
768 	unsigned long irq_flag = 0;
769 	QDF_NBUF_TRACK *p_node;
770 	struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
771 	struct qdf_mem_header meta;
772 	bool is_full;
773 
774 	qdf_mem_zero(table, sizeof(table));
775 	qdf_mem_debug_print_header(print, print_priv, threshold);
776 
777 	if (is_initial_mem_debug_disabled)
778 		return;
779 
780 	qdf_rl_info("major nbuf print with threshold %u", threshold);
781 
782 	for (nbuf_iter = 0; nbuf_iter < QDF_NET_BUF_TRACK_MAX_SIZE;
783 	     nbuf_iter++) {
784 		qdf_nbuf_acquire_track_lock(nbuf_iter, irq_flag);
785 		p_node = qdf_nbuf_get_track_tbl(nbuf_iter);
786 		while (p_node) {
787 			meta.line = p_node->line_num;
788 			meta.size = p_node->size;
789 			meta.caller = NULL;
790 			meta.time = p_node->time;
791 			qdf_str_lcopy(meta.func, p_node->func_name,
792 				      QDF_MEM_FUNC_NAME_SIZE);
793 
794 			is_full = qdf_mem_meta_table_insert(table, &meta);
795 
796 			if (is_full) {
797 				(*mem_print)(table, print,
798 					     print_priv, threshold);
799 				qdf_mem_zero(table, sizeof(table));
800 			}
801 
802 			p_node = p_node->p_next;
803 		}
804 		qdf_nbuf_release_track_lock(nbuf_iter, irq_flag);
805 	}
806 
807 	(*mem_print)(table, print, print_priv, threshold);
808 
809 	qdf_rl_info("major nbuf print end");
810 }
811 
812 /**
813  * qdf_major_nbuf_alloc_show() - print sequential callback
814  * @seq: seq_file handle
815  * @v: current iterator
816  *
817  * Return: 0 - success
818  */
819 static int qdf_major_nbuf_alloc_show(struct seq_file *seq, void *v)
820 {
821 	struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
822 
823 	if (!priv) {
824 		qdf_err("priv is null");
825 		return -EINVAL;
826 	}
827 
828 	qdf_print_major_nbuf_allocs(priv->threshold,
829 				    seq_printf_printer,
830 				    seq,
831 				    qdf_print_major_alloc);
832 
833 	return 0;
834 }
835 
836 /**
837  * qdf_nbuf_seq_start() - sequential callback to start
838  * @seq: seq_file handle
839  * @pos: The start position of the sequence
840  *
841  * Return: iterator pointer, or NULL if iteration is complete
842  */
843 static void *qdf_nbuf_seq_start(struct seq_file *seq, loff_t *pos)
844 {
845 	enum qdf_debug_domain domain = *pos;
846 
847 	if (domain > QDF_DEBUG_NBUF_DOMAIN)
848 		return NULL;
849 
850 	return pos;
851 }
852 
853 /**
854  * qdf_nbuf_seq_next() - next sequential callback
855  * @seq: seq_file handle
856  * @v: the current iterator
857  * @pos: the current position
858  *
859  * Get the next node and release previous node.
860  *
861  * Return: iterator pointer, or NULL if iteration is complete
862  */
863 static void *qdf_nbuf_seq_next(struct seq_file *seq, void *v, loff_t *pos)
864 {
865 	++*pos;
866 
867 	return qdf_nbuf_seq_start(seq, pos);
868 }
869 
870 /**
871  * qdf_nbuf_seq_stop() - stop sequential callback
872  * @seq: seq_file handle
873  * @v: current iterator
874  *
875  * Return: None
876  */
877 static void qdf_nbuf_seq_stop(struct seq_file *seq, void *v) { }
878 
879 /* sequential file operation table created to track major skb allocs */
880 static const struct seq_operations qdf_major_nbuf_allocs_seq_ops = {
881 	.start = qdf_nbuf_seq_start,
882 	.next = qdf_nbuf_seq_next,
883 	.stop = qdf_nbuf_seq_stop,
884 	.show = qdf_major_nbuf_alloc_show,
885 };
886 
887 static int qdf_major_nbuf_allocs_open(struct inode *inode, struct file *file)
888 {
889 	void *private = inode->i_private;
890 	struct seq_file *seq;
891 	int rc;
892 
893 	rc = seq_open(file, &qdf_major_nbuf_allocs_seq_ops);
894 	if (rc == 0) {
895 		seq = file->private_data;
896 		seq->private = private;
897 	}
898 	return rc;
899 }
900 
901 static ssize_t qdf_major_nbuf_alloc_set_threshold(struct file *file,
902 						  const char __user *user_buf,
903 						  size_t count,
904 						  loff_t *pos)
905 {
906 	char buf[32];
907 	ssize_t buf_size;
908 	uint32_t threshold;
909 	struct seq_file *seq = file->private_data;
910 	struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
911 
912 	buf_size = min(count, (sizeof(buf) - 1));
913 	if (buf_size <= 0)
914 		return 0;
915 	if (copy_from_user(buf, user_buf, buf_size))
916 		return -EFAULT;
917 	buf[buf_size] = '\0';
918 	if (!kstrtou32(buf, 10, &threshold))
919 		priv->threshold = threshold;
920 	return buf_size;
921 }
922 
923 /* file operation table for listing major allocs */
924 static const struct file_operations fops_qdf_major_allocs = {
925 	.owner = THIS_MODULE,
926 	.open = qdf_major_allocs_open,
927 	.read = seq_read,
928 	.llseek = seq_lseek,
929 	.release = seq_release,
930 	.write = qdf_major_alloc_set_threshold,
931 };
932 
933 /* debugfs file operation table */
934 static const struct file_operations fops_qdf_mem_debugfs = {
935 	.owner = THIS_MODULE,
936 	.open = qdf_mem_debugfs_open,
937 	.read = seq_read,
938 	.llseek = seq_lseek,
939 	.release = seq_release,
940 };
941 
942 /* file operation table for listing major allocs */
943 static const struct file_operations fops_qdf_nbuf_major_allocs = {
944 	.owner = THIS_MODULE,
945 	.open = qdf_major_nbuf_allocs_open,
946 	.read = seq_read,
947 	.llseek = seq_lseek,
948 	.release = seq_release,
949 	.write = qdf_major_nbuf_alloc_set_threshold,
950 };
951 
952 static struct major_alloc_priv mem_priv = {
953 	/* List type set to mem */
954 	LIST_TYPE_MEM,
955 	/* initial threshold to list APIs which allocates mem >= 50 times */
956 	50
957 };
958 
959 static struct major_alloc_priv dma_priv = {
960 	/* List type set to DMA */
961 	LIST_TYPE_DMA,
962 	/* initial threshold to list APIs which allocates dma >= 50 times */
963 	50
964 };
965 
966 static struct major_alloc_priv nbuf_priv = {
967 	/* List type set to NBUF */
968 	LIST_TYPE_NBUF,
969 	/* initial threshold to list APIs which allocates nbuf >= 50 times */
970 	50
971 };
972 
973 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
974 {
975 	if (is_initial_mem_debug_disabled)
976 		return QDF_STATUS_SUCCESS;
977 
978 	if (!qdf_mem_debugfs_root)
979 		return QDF_STATUS_E_FAILURE;
980 
981 	debugfs_create_file("list",
982 			    S_IRUSR,
983 			    qdf_mem_debugfs_root,
984 			    NULL,
985 			    &fops_qdf_mem_debugfs);
986 
987 	debugfs_create_file("major_mem_allocs",
988 			    0600,
989 			    qdf_mem_debugfs_root,
990 			    &mem_priv,
991 			    &fops_qdf_major_allocs);
992 
993 	debugfs_create_file("major_dma_allocs",
994 			    0600,
995 			    qdf_mem_debugfs_root,
996 			    &dma_priv,
997 			    &fops_qdf_major_allocs);
998 
999 	debugfs_create_file("major_nbuf_allocs",
1000 			    0600,
1001 			    qdf_mem_debugfs_root,
1002 			    &nbuf_priv,
1003 			    &fops_qdf_nbuf_major_allocs);
1004 
1005 	return QDF_STATUS_SUCCESS;
1006 }
1007 
1008 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
1009 {
1010 	return QDF_STATUS_SUCCESS;
1011 }
1012 
1013 #else /* MEMORY_DEBUG */
1014 
1015 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
1016 {
1017 	return QDF_STATUS_E_NOSUPPORT;
1018 }
1019 
1020 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
1021 {
1022 	return QDF_STATUS_E_NOSUPPORT;
1023 }
1024 
1025 #endif /* MEMORY_DEBUG */
1026 
1027 
1028 static void qdf_mem_debugfs_exit(void)
1029 {
1030 	debugfs_remove_recursive(qdf_mem_debugfs_root);
1031 	qdf_mem_debugfs_root = NULL;
1032 }
1033 
1034 static QDF_STATUS qdf_mem_debugfs_init(void)
1035 {
1036 	struct dentry *qdf_debugfs_root = qdf_debugfs_get_root();
1037 
1038 	if (!qdf_debugfs_root)
1039 		return QDF_STATUS_E_FAILURE;
1040 
1041 	qdf_mem_debugfs_root = debugfs_create_dir("mem", qdf_debugfs_root);
1042 
1043 	if (!qdf_mem_debugfs_root)
1044 		return QDF_STATUS_E_FAILURE;
1045 
1046 
1047 	debugfs_create_atomic_t("kmalloc",
1048 				S_IRUSR,
1049 				qdf_mem_debugfs_root,
1050 				&qdf_mem_stat.kmalloc);
1051 
1052 	debugfs_create_atomic_t("dma",
1053 				S_IRUSR,
1054 				qdf_mem_debugfs_root,
1055 				&qdf_mem_stat.dma);
1056 
1057 	debugfs_create_atomic_t("skb",
1058 				S_IRUSR,
1059 				qdf_mem_debugfs_root,
1060 				&qdf_mem_stat.skb);
1061 
1062 	return QDF_STATUS_SUCCESS;
1063 }
1064 
1065 #else /* WLAN_DEBUGFS */
1066 
1067 static QDF_STATUS qdf_mem_debugfs_init(void)
1068 {
1069 	return QDF_STATUS_E_NOSUPPORT;
1070 }
1071 static void qdf_mem_debugfs_exit(void) {}
1072 
1073 
1074 static QDF_STATUS qdf_mem_debug_debugfs_init(void)
1075 {
1076 	return QDF_STATUS_E_NOSUPPORT;
1077 }
1078 
1079 static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
1080 {
1081 	return QDF_STATUS_E_NOSUPPORT;
1082 }
1083 
1084 #endif /* WLAN_DEBUGFS */
1085 
1086 void qdf_mem_kmalloc_inc(qdf_size_t size)
1087 {
1088 	qdf_atomic_add(size, &qdf_mem_stat.kmalloc);
1089 }
1090 
1091 static void qdf_mem_dma_inc(qdf_size_t size)
1092 {
1093 	qdf_atomic_add(size, &qdf_mem_stat.dma);
1094 }
1095 
1096 #ifdef CONFIG_WLAN_SYSFS_MEM_STATS
1097 void qdf_mem_skb_inc(qdf_size_t size)
1098 {
1099 	qdf_atomic_add(size, &qdf_mem_stat.skb);
1100 }
1101 
1102 void qdf_mem_skb_dec(qdf_size_t size)
1103 {
1104 	qdf_atomic_sub(size, &qdf_mem_stat.skb);
1105 }
1106 
1107 void qdf_mem_skb_total_inc(qdf_size_t size)
1108 {
1109 	int32_t skb_mem_max = 0;
1110 
1111 	qdf_atomic_add(size, &qdf_mem_stat.skb_total);
1112 	skb_mem_max = qdf_atomic_read(&qdf_mem_stat.skb_total);
1113 	if (qdf_mem_stat.skb_mem_max < skb_mem_max)
1114 		qdf_mem_stat.skb_mem_max = skb_mem_max;
1115 }
1116 
1117 void qdf_mem_skb_total_dec(qdf_size_t size)
1118 {
1119 	qdf_atomic_sub(size, &qdf_mem_stat.skb_total);
1120 }
1121 
1122 void qdf_mem_dp_tx_skb_inc(qdf_size_t size)
1123 {
1124 	int32_t curr_dp_tx_skb_mem_max = 0;
1125 
1126 	qdf_atomic_add(size, &qdf_mem_stat.dp_tx_skb);
1127 	curr_dp_tx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
1128 	if (qdf_mem_stat.dp_tx_skb_mem_max < curr_dp_tx_skb_mem_max)
1129 		qdf_mem_stat.dp_tx_skb_mem_max = curr_dp_tx_skb_mem_max;
1130 }
1131 
1132 void qdf_mem_dp_tx_skb_dec(qdf_size_t size)
1133 {
1134 	qdf_atomic_sub(size, &qdf_mem_stat.dp_tx_skb);
1135 }
1136 
1137 void qdf_mem_dp_rx_skb_inc(qdf_size_t size)
1138 {
1139 	int32_t curr_dp_rx_skb_mem_max = 0;
1140 
1141 	qdf_atomic_add(size, &qdf_mem_stat.dp_rx_skb);
1142 	curr_dp_rx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
1143 	if (qdf_mem_stat.dp_rx_skb_mem_max < curr_dp_rx_skb_mem_max)
1144 		qdf_mem_stat.dp_rx_skb_mem_max = curr_dp_rx_skb_mem_max;
1145 }
1146 
1147 void qdf_mem_dp_rx_skb_dec(qdf_size_t size)
1148 {
1149 	qdf_atomic_sub(size, &qdf_mem_stat.dp_rx_skb);
1150 }
1151 
1152 void qdf_mem_dp_tx_skb_cnt_inc(void)
1153 {
1154 	int32_t curr_dp_tx_skb_count_max = 0;
1155 
1156 	qdf_atomic_add(1, &qdf_mem_stat.dp_tx_skb_count);
1157 	curr_dp_tx_skb_count_max =
1158 		qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
1159 	if (qdf_mem_stat.dp_tx_skb_count_max < curr_dp_tx_skb_count_max)
1160 		qdf_mem_stat.dp_tx_skb_count_max = curr_dp_tx_skb_count_max;
1161 }
1162 
1163 void qdf_mem_dp_tx_skb_cnt_dec(void)
1164 {
1165 	qdf_atomic_sub(1, &qdf_mem_stat.dp_tx_skb_count);
1166 }
1167 
1168 void qdf_mem_dp_rx_skb_cnt_inc(void)
1169 {
1170 	int32_t curr_dp_rx_skb_count_max = 0;
1171 
1172 	qdf_atomic_add(1, &qdf_mem_stat.dp_rx_skb_count);
1173 	curr_dp_rx_skb_count_max =
1174 		qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
1175 	if (qdf_mem_stat.dp_rx_skb_count_max < curr_dp_rx_skb_count_max)
1176 		qdf_mem_stat.dp_rx_skb_count_max = curr_dp_rx_skb_count_max;
1177 }
1178 
1179 void qdf_mem_dp_rx_skb_cnt_dec(void)
1180 {
1181 	qdf_atomic_sub(1, &qdf_mem_stat.dp_rx_skb_count);
1182 }
1183 #endif
1184 
1185 void qdf_mem_kmalloc_dec(qdf_size_t size)
1186 {
1187 	qdf_atomic_sub(size, &qdf_mem_stat.kmalloc);
1188 }
1189 
1190 static inline void qdf_mem_dma_dec(qdf_size_t size)
1191 {
1192 	qdf_atomic_sub(size, &qdf_mem_stat.dma);
1193 }
1194 
1195 int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
1196 		       int elem_cnt, size_t elem_size, u_int32_t flags)
1197 {
1198 	__qdf_mempool_ctxt_t *new_pool = NULL;
1199 	u_int32_t align = L1_CACHE_BYTES;
1200 	unsigned long aligned_pool_mem;
1201 	int pool_id;
1202 	int i;
1203 
1204 	if (prealloc_disabled) {
1205 		/* TBD: We can maintain a list of pools in qdf_device_t
1206 		 * to help debugging
1207 		 * when pre-allocation is not enabled
1208 		 */
1209 		new_pool = (__qdf_mempool_ctxt_t *)
1210 			kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
1211 		if (!new_pool)
1212 			return QDF_STATUS_E_NOMEM;
1213 
1214 		memset(new_pool, 0, sizeof(*new_pool));
1215 		/* TBD: define flags for zeroing buffers etc */
1216 		new_pool->flags = flags;
1217 		new_pool->elem_size = elem_size;
1218 		new_pool->max_elem = elem_cnt;
1219 		*pool_addr = new_pool;
1220 		return 0;
1221 	}
1222 
1223 	for (pool_id = 0; pool_id < MAX_MEM_POOLS; pool_id++) {
1224 		if (!osdev->mem_pool[pool_id])
1225 			break;
1226 	}
1227 
1228 	if (pool_id == MAX_MEM_POOLS)
1229 		return -ENOMEM;
1230 
1231 	new_pool = osdev->mem_pool[pool_id] = (__qdf_mempool_ctxt_t *)
1232 		kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
1233 	if (!new_pool)
1234 		return -ENOMEM;
1235 
1236 	memset(new_pool, 0, sizeof(*new_pool));
1237 	/* TBD: define flags for zeroing buffers etc */
1238 	new_pool->flags = flags;
1239 	new_pool->pool_id = pool_id;
1240 
1241 	/* Round up the element size to cacheline */
1242 	new_pool->elem_size = roundup(elem_size, L1_CACHE_BYTES);
1243 	new_pool->mem_size = elem_cnt * new_pool->elem_size +
1244 				((align)?(align - 1):0);
1245 
1246 	new_pool->pool_mem = kzalloc(new_pool->mem_size, GFP_KERNEL);
1247 	if (!new_pool->pool_mem) {
1248 			/* TBD: Check if we need get_free_pages above */
1249 		kfree(new_pool);
1250 		osdev->mem_pool[pool_id] = NULL;
1251 		return -ENOMEM;
1252 	}
1253 
1254 	spin_lock_init(&new_pool->lock);
1255 
1256 	/* Initialize free list */
1257 	aligned_pool_mem = (unsigned long)(new_pool->pool_mem) +
1258 			((align) ? (unsigned long)(new_pool->pool_mem)%align:0);
1259 	STAILQ_INIT(&new_pool->free_list);
1260 
1261 	for (i = 0; i < elem_cnt; i++)
1262 		STAILQ_INSERT_TAIL(&(new_pool->free_list),
1263 			(mempool_elem_t *)(aligned_pool_mem +
1264 			(new_pool->elem_size * i)), mempool_entry);
1265 
1266 
1267 	new_pool->free_cnt = elem_cnt;
1268 	*pool_addr = new_pool;
1269 	return 0;
1270 }
1271 qdf_export_symbol(__qdf_mempool_init);
1272 
1273 void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool)
1274 {
1275 	int pool_id = 0;
1276 
1277 	if (!pool)
1278 		return;
1279 
1280 	if (prealloc_disabled) {
1281 		kfree(pool);
1282 		return;
1283 	}
1284 
1285 	pool_id = pool->pool_id;
1286 
1287 	/* TBD: Check if free count matches elem_cnt if debug is enabled */
1288 	kfree(pool->pool_mem);
1289 	kfree(pool);
1290 	osdev->mem_pool[pool_id] = NULL;
1291 }
1292 qdf_export_symbol(__qdf_mempool_destroy);
1293 
1294 void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool)
1295 {
1296 	void *buf = NULL;
1297 
1298 	if (!pool)
1299 		return NULL;
1300 
1301 	if (prealloc_disabled)
1302 		return  qdf_mem_malloc(pool->elem_size);
1303 
1304 	spin_lock_bh(&pool->lock);
1305 
1306 	buf = STAILQ_FIRST(&pool->free_list);
1307 	if (buf) {
1308 		STAILQ_REMOVE_HEAD(&pool->free_list, mempool_entry);
1309 		pool->free_cnt--;
1310 	}
1311 
1312 	/* TBD: Update free count if debug is enabled */
1313 	spin_unlock_bh(&pool->lock);
1314 
1315 	return buf;
1316 }
1317 qdf_export_symbol(__qdf_mempool_alloc);
1318 
1319 void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf)
1320 {
1321 	if (!pool)
1322 		return;
1323 
1324 
1325 	if (prealloc_disabled)
1326 		return qdf_mem_free(buf);
1327 
1328 	spin_lock_bh(&pool->lock);
1329 	pool->free_cnt++;
1330 
1331 	STAILQ_INSERT_TAIL
1332 		(&pool->free_list, (mempool_elem_t *)buf, mempool_entry);
1333 	spin_unlock_bh(&pool->lock);
1334 }
1335 qdf_export_symbol(__qdf_mempool_free);
1336 
1337 #ifdef CNSS_MEM_PRE_ALLOC
1338 static bool qdf_might_be_prealloc(void *ptr)
1339 {
1340 	if (ksize(ptr) > WCNSS_PRE_ALLOC_GET_THRESHOLD)
1341 		return true;
1342 	else
1343 		return false;
1344 }
1345 
1346 /**
1347  * qdf_mem_prealloc_get() - conditionally pre-allocate memory
1348  * @size: the number of bytes to allocate
1349  *
1350  * If size if greater than WCNSS_PRE_ALLOC_GET_THRESHOLD, this function returns
1351  * a chunk of pre-allocated memory. If size if less than or equal to
1352  * WCNSS_PRE_ALLOC_GET_THRESHOLD, or an error occurs, NULL is returned instead.
1353  *
1354  * Return: NULL on failure, non-NULL on success
1355  */
1356 static void *qdf_mem_prealloc_get(size_t size)
1357 {
1358 	void *ptr;
1359 
1360 	if (size <= WCNSS_PRE_ALLOC_GET_THRESHOLD)
1361 		return NULL;
1362 
1363 	ptr = wcnss_prealloc_get(size);
1364 	if (!ptr)
1365 		return NULL;
1366 
1367 	memset(ptr, 0, size);
1368 
1369 	return ptr;
1370 }
1371 
1372 static inline bool qdf_mem_prealloc_put(void *ptr)
1373 {
1374 	return wcnss_prealloc_put(ptr);
1375 }
1376 #else
1377 static bool qdf_might_be_prealloc(void *ptr)
1378 {
1379 	return false;
1380 }
1381 
1382 static inline void *qdf_mem_prealloc_get(size_t size)
1383 {
1384 	return NULL;
1385 }
1386 
1387 static inline bool qdf_mem_prealloc_put(void *ptr)
1388 {
1389 	return false;
1390 }
1391 #endif /* CNSS_MEM_PRE_ALLOC */
1392 
1393 /* External Function implementation */
1394 #ifdef MEMORY_DEBUG
1395 #ifdef DISABLE_MEM_DBG_LOAD_CONFIG
1396 bool qdf_mem_debug_config_get(void)
1397 {
1398 	/* Return false if DISABLE_LOAD_MEM_DBG_CONFIG flag is enabled */
1399 	return false;
1400 }
1401 #else
1402 bool qdf_mem_debug_config_get(void)
1403 {
1404 	return mem_debug_disabled;
1405 }
1406 #endif /* DISABLE_MEM_DBG_LOAD_CONFIG */
1407 
1408 #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
1409 QDF_STATUS qdf_mem_debug_disabled_config_set(const char *str_value)
1410 {
1411 	QDF_STATUS status;
1412 
1413 	status = qdf_bool_parse(str_value, &mem_debug_disabled);
1414 	return status;
1415 }
1416 #endif
1417 
1418 /**
1419  * qdf_mem_debug_init() - initialize qdf memory debug functionality
1420  *
1421  * Return: none
1422  */
1423 static void qdf_mem_debug_init(void)
1424 {
1425 	int i;
1426 
1427 	is_initial_mem_debug_disabled = qdf_mem_debug_config_get();
1428 
1429 	if (is_initial_mem_debug_disabled)
1430 		return;
1431 
1432 	/* Initializing the list with maximum size of 60000 */
1433 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1434 		qdf_list_create(&qdf_mem_domains[i], 60000);
1435 	qdf_spinlock_create(&qdf_mem_list_lock);
1436 
1437 	/* dma */
1438 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1439 		qdf_list_create(&qdf_mem_dma_domains[i], 0);
1440 	qdf_spinlock_create(&qdf_mem_dma_list_lock);
1441 }
1442 
1443 static uint32_t
1444 qdf_mem_domain_check_for_leaks(enum qdf_debug_domain domain,
1445 			       qdf_list_t *mem_list)
1446 {
1447 	if (is_initial_mem_debug_disabled)
1448 		return 0;
1449 
1450 	if (qdf_list_empty(mem_list))
1451 		return 0;
1452 
1453 	qdf_err("Memory leaks detected in %s domain!",
1454 		qdf_debug_domain_name(domain));
1455 	qdf_mem_domain_print(mem_list,
1456 			     qdf_err_printer,
1457 			     NULL,
1458 			     0,
1459 			     qdf_mem_meta_table_print);
1460 
1461 	return mem_list->count;
1462 }
1463 
1464 static void qdf_mem_domain_set_check_for_leaks(qdf_list_t *domains)
1465 {
1466 	uint32_t leak_count = 0;
1467 	int i;
1468 
1469 	if (is_initial_mem_debug_disabled)
1470 		return;
1471 
1472 	/* detect and print leaks */
1473 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1474 		leak_count += qdf_mem_domain_check_for_leaks(i, domains + i);
1475 
1476 	if (leak_count)
1477 		QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
1478 				   leak_count);
1479 }
1480 
1481 /**
1482  * qdf_mem_debug_exit() - exit qdf memory debug functionality
1483  *
1484  * Return: none
1485  */
1486 static void qdf_mem_debug_exit(void)
1487 {
1488 	int i;
1489 
1490 	if (is_initial_mem_debug_disabled)
1491 		return;
1492 
1493 	/* mem */
1494 	qdf_mem_domain_set_check_for_leaks(qdf_mem_domains);
1495 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1496 		qdf_list_destroy(qdf_mem_list_get(i));
1497 
1498 	qdf_spinlock_destroy(&qdf_mem_list_lock);
1499 
1500 	/* dma */
1501 	qdf_mem_domain_set_check_for_leaks(qdf_mem_dma_domains);
1502 	for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
1503 		qdf_list_destroy(&qdf_mem_dma_domains[i]);
1504 	qdf_spinlock_destroy(&qdf_mem_dma_list_lock);
1505 }
1506 
1507 void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line,
1508 			   void *caller, uint32_t flag)
1509 {
1510 	QDF_STATUS status;
1511 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1512 	qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
1513 	struct qdf_mem_header *header;
1514 	void *ptr;
1515 	unsigned long start, duration;
1516 
1517 	if (is_initial_mem_debug_disabled)
1518 		return __qdf_mem_malloc(size, func, line);
1519 
1520 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1521 		qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
1522 		return NULL;
1523 	}
1524 
1525 	ptr = qdf_mem_prealloc_get(size);
1526 	if (ptr)
1527 		return ptr;
1528 
1529 	if (!flag)
1530 		flag = qdf_mem_malloc_flags();
1531 
1532 	start = qdf_mc_timer_get_system_time();
1533 	header = kzalloc(size + QDF_MEM_DEBUG_SIZE, flag);
1534 	duration = qdf_mc_timer_get_system_time() - start;
1535 
1536 	if (duration > QDF_MEM_WARN_THRESHOLD)
1537 		qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
1538 			 duration, size, func, line);
1539 
1540 	if (!header) {
1541 		qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
1542 		return NULL;
1543 	}
1544 
1545 	qdf_mem_header_init(header, size, func, line, caller);
1546 	qdf_mem_trailer_init(header);
1547 	ptr = qdf_mem_get_ptr(header);
1548 
1549 	qdf_spin_lock_irqsave(&qdf_mem_list_lock);
1550 	status = qdf_list_insert_front(mem_list, &header->node);
1551 	qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
1552 	if (QDF_IS_STATUS_ERROR(status))
1553 		qdf_err("Failed to insert memory header; status %d", status);
1554 
1555 	qdf_mem_kmalloc_inc(ksize(header));
1556 
1557 	return ptr;
1558 }
1559 qdf_export_symbol(qdf_mem_malloc_debug);
1560 
1561 void *qdf_mem_malloc_atomic_debug(size_t size, const char *func,
1562 				  uint32_t line, void *caller)
1563 {
1564 	QDF_STATUS status;
1565 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1566 	qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
1567 	struct qdf_mem_header *header;
1568 	void *ptr;
1569 	unsigned long start, duration;
1570 
1571 	if (is_initial_mem_debug_disabled)
1572 		return qdf_mem_malloc_atomic_debug_fl(size, func, line);
1573 
1574 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1575 		qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
1576 		return NULL;
1577 	}
1578 
1579 	ptr = qdf_mem_prealloc_get(size);
1580 	if (ptr)
1581 		return ptr;
1582 
1583 	start = qdf_mc_timer_get_system_time();
1584 	header = kzalloc(size + QDF_MEM_DEBUG_SIZE, GFP_ATOMIC);
1585 	duration = qdf_mc_timer_get_system_time() - start;
1586 
1587 	if (duration > QDF_MEM_WARN_THRESHOLD)
1588 		qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
1589 			 duration, size, func, line);
1590 
1591 	if (!header) {
1592 		qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
1593 		return NULL;
1594 	}
1595 
1596 	qdf_mem_header_init(header, size, func, line, caller);
1597 	qdf_mem_trailer_init(header);
1598 	ptr = qdf_mem_get_ptr(header);
1599 
1600 	qdf_spin_lock_irqsave(&qdf_mem_list_lock);
1601 	status = qdf_list_insert_front(mem_list, &header->node);
1602 	qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
1603 	if (QDF_IS_STATUS_ERROR(status))
1604 		qdf_err("Failed to insert memory header; status %d", status);
1605 
1606 	qdf_mem_kmalloc_inc(ksize(header));
1607 
1608 	return ptr;
1609 }
1610 
1611 qdf_export_symbol(qdf_mem_malloc_atomic_debug);
1612 
1613 void *qdf_mem_malloc_atomic_debug_fl(size_t size, const char *func,
1614 				     uint32_t line)
1615 {
1616 	void *ptr;
1617 
1618 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1619 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
1620 			     line);
1621 		return NULL;
1622 	}
1623 
1624 	ptr = qdf_mem_prealloc_get(size);
1625 	if (ptr)
1626 		return ptr;
1627 
1628 	ptr = kzalloc(size, GFP_ATOMIC);
1629 	if (!ptr) {
1630 		qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
1631 			      size, func, line);
1632 		return NULL;
1633 	}
1634 
1635 	qdf_mem_kmalloc_inc(ksize(ptr));
1636 
1637 	return ptr;
1638 }
1639 
1640 qdf_export_symbol(qdf_mem_malloc_atomic_debug_fl);
1641 
1642 void qdf_mem_free_debug(void *ptr, const char *func, uint32_t line)
1643 {
1644 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1645 	struct qdf_mem_header *header;
1646 	enum qdf_mem_validation_bitmap error_bitmap;
1647 
1648 	if (is_initial_mem_debug_disabled) {
1649 		__qdf_mem_free(ptr);
1650 		return;
1651 	}
1652 
1653 	/* freeing a null pointer is valid */
1654 	if (qdf_unlikely(!ptr))
1655 		return;
1656 
1657 	if (qdf_mem_prealloc_put(ptr))
1658 		return;
1659 
1660 	if (qdf_unlikely((qdf_size_t)ptr <= sizeof(*header)))
1661 		QDF_MEMDEBUG_PANIC("Failed to free invalid memory location %pK",
1662 				   ptr);
1663 
1664 	qdf_talloc_assert_no_children_fl(ptr, func, line);
1665 
1666 	qdf_spin_lock_irqsave(&qdf_mem_list_lock);
1667 	header = qdf_mem_get_header(ptr);
1668 	error_bitmap = qdf_mem_header_validate(header, current_domain);
1669 	error_bitmap |= qdf_mem_trailer_validate(header);
1670 
1671 	if (!error_bitmap) {
1672 		header->freed = true;
1673 		qdf_list_remove_node(qdf_mem_list_get(header->domain),
1674 				     &header->node);
1675 	}
1676 	qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
1677 
1678 	qdf_mem_header_assert_valid(header, current_domain, error_bitmap,
1679 				    func, line);
1680 
1681 	qdf_mem_kmalloc_dec(ksize(header));
1682 	kfree(header);
1683 }
1684 qdf_export_symbol(qdf_mem_free_debug);
1685 
1686 void qdf_mem_check_for_leaks(void)
1687 {
1688 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
1689 	qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
1690 	qdf_list_t *dma_list = qdf_mem_dma_list(current_domain);
1691 	uint32_t leaks_count = 0;
1692 
1693 	if (is_initial_mem_debug_disabled)
1694 		return;
1695 
1696 	leaks_count += qdf_mem_domain_check_for_leaks(current_domain, mem_list);
1697 	leaks_count += qdf_mem_domain_check_for_leaks(current_domain, dma_list);
1698 
1699 	if (leaks_count)
1700 		QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
1701 				   leaks_count);
1702 }
1703 
1704 void qdf_mem_multi_pages_alloc_debug(qdf_device_t osdev,
1705 				     struct qdf_mem_multi_page_t *pages,
1706 				     size_t element_size, uint32_t element_num,
1707 				     qdf_dma_context_t memctxt, bool cacheable,
1708 				     const char *func, uint32_t line,
1709 				     void *caller)
1710 {
1711 	uint16_t page_idx;
1712 	struct qdf_mem_dma_page_t *dma_pages;
1713 	void **cacheable_pages = NULL;
1714 	uint16_t i;
1715 
1716 	if (!pages->page_size)
1717 		pages->page_size = qdf_page_size;
1718 
1719 	pages->num_element_per_page = pages->page_size / element_size;
1720 	if (!pages->num_element_per_page) {
1721 		qdf_print("Invalid page %d or element size %d",
1722 			  (int)pages->page_size, (int)element_size);
1723 		goto out_fail;
1724 	}
1725 
1726 	pages->num_pages = element_num / pages->num_element_per_page;
1727 	if (element_num % pages->num_element_per_page)
1728 		pages->num_pages++;
1729 
1730 	if (cacheable) {
1731 		/* Pages information storage */
1732 		pages->cacheable_pages = qdf_mem_malloc_debug(
1733 			pages->num_pages * sizeof(pages->cacheable_pages),
1734 			func, line, caller, 0);
1735 		if (!pages->cacheable_pages)
1736 			goto out_fail;
1737 
1738 		cacheable_pages = pages->cacheable_pages;
1739 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1740 			cacheable_pages[page_idx] = qdf_mem_malloc_debug(
1741 				pages->page_size, func, line, caller, 0);
1742 			if (!cacheable_pages[page_idx])
1743 				goto page_alloc_fail;
1744 		}
1745 		pages->dma_pages = NULL;
1746 	} else {
1747 		pages->dma_pages = qdf_mem_malloc_debug(
1748 			pages->num_pages * sizeof(struct qdf_mem_dma_page_t),
1749 			func, line, caller, 0);
1750 		if (!pages->dma_pages)
1751 			goto out_fail;
1752 
1753 		dma_pages = pages->dma_pages;
1754 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1755 			dma_pages->page_v_addr_start =
1756 				qdf_mem_alloc_consistent_debug(
1757 					osdev, osdev->dev, pages->page_size,
1758 					&dma_pages->page_p_addr,
1759 					func, line, caller);
1760 			if (!dma_pages->page_v_addr_start) {
1761 				qdf_print("dmaable page alloc fail pi %d",
1762 					  page_idx);
1763 				goto page_alloc_fail;
1764 			}
1765 			dma_pages->page_v_addr_end =
1766 				dma_pages->page_v_addr_start + pages->page_size;
1767 			dma_pages++;
1768 		}
1769 		pages->cacheable_pages = NULL;
1770 	}
1771 	return;
1772 
1773 page_alloc_fail:
1774 	if (cacheable) {
1775 		for (i = 0; i < page_idx; i++)
1776 			qdf_mem_free_debug(pages->cacheable_pages[i],
1777 					   func, line);
1778 		qdf_mem_free_debug(pages->cacheable_pages, func, line);
1779 	} else {
1780 		dma_pages = pages->dma_pages;
1781 		for (i = 0; i < page_idx; i++) {
1782 			qdf_mem_free_consistent_debug(
1783 				osdev, osdev->dev,
1784 				pages->page_size, dma_pages->page_v_addr_start,
1785 				dma_pages->page_p_addr, memctxt, func, line);
1786 			dma_pages++;
1787 		}
1788 		qdf_mem_free_debug(pages->dma_pages, func, line);
1789 	}
1790 
1791 out_fail:
1792 	pages->cacheable_pages = NULL;
1793 	pages->dma_pages = NULL;
1794 	pages->num_pages = 0;
1795 }
1796 
1797 qdf_export_symbol(qdf_mem_multi_pages_alloc_debug);
1798 
1799 void qdf_mem_multi_pages_free_debug(qdf_device_t osdev,
1800 				    struct qdf_mem_multi_page_t *pages,
1801 				    qdf_dma_context_t memctxt, bool cacheable,
1802 				    const char *func, uint32_t line)
1803 {
1804 	unsigned int page_idx;
1805 	struct qdf_mem_dma_page_t *dma_pages;
1806 
1807 	if (!pages->page_size)
1808 		pages->page_size = qdf_page_size;
1809 
1810 	if (cacheable) {
1811 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
1812 			qdf_mem_free_debug(pages->cacheable_pages[page_idx],
1813 					   func, line);
1814 		qdf_mem_free_debug(pages->cacheable_pages, func, line);
1815 	} else {
1816 		dma_pages = pages->dma_pages;
1817 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1818 			qdf_mem_free_consistent_debug(
1819 				osdev, osdev->dev, pages->page_size,
1820 				dma_pages->page_v_addr_start,
1821 				dma_pages->page_p_addr, memctxt, func, line);
1822 			dma_pages++;
1823 		}
1824 		qdf_mem_free_debug(pages->dma_pages, func, line);
1825 	}
1826 
1827 	pages->cacheable_pages = NULL;
1828 	pages->dma_pages = NULL;
1829 	pages->num_pages = 0;
1830 }
1831 
1832 qdf_export_symbol(qdf_mem_multi_pages_free_debug);
1833 
1834 #else
1835 static void qdf_mem_debug_init(void) {}
1836 
1837 static void qdf_mem_debug_exit(void) {}
1838 
1839 void *qdf_mem_malloc_atomic_fl(size_t size, const char *func, uint32_t line)
1840 {
1841 	void *ptr;
1842 
1843 	if (!size || size > QDF_MEM_MAX_MALLOC) {
1844 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
1845 			     line);
1846 		return NULL;
1847 	}
1848 
1849 	ptr = qdf_mem_prealloc_get(size);
1850 	if (ptr)
1851 		return ptr;
1852 
1853 	ptr = kzalloc(size, GFP_ATOMIC);
1854 	if (!ptr) {
1855 		qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
1856 			      size, func, line);
1857 		return NULL;
1858 	}
1859 
1860 	qdf_mem_kmalloc_inc(ksize(ptr));
1861 
1862 	return ptr;
1863 }
1864 qdf_export_symbol(qdf_mem_malloc_atomic_fl);
1865 
1866 #ifndef ALLOC_CONTIGUOUS_MULTI_PAGE
1867 void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
1868 			       struct qdf_mem_multi_page_t *pages,
1869 			       size_t element_size, uint32_t element_num,
1870 			       qdf_dma_context_t memctxt, bool cacheable)
1871 {
1872 	uint16_t page_idx;
1873 	struct qdf_mem_dma_page_t *dma_pages;
1874 	void **cacheable_pages = NULL;
1875 	uint16_t i;
1876 
1877 	if (!pages->page_size)
1878 		pages->page_size = qdf_page_size;
1879 
1880 	pages->num_element_per_page = pages->page_size / element_size;
1881 	if (!pages->num_element_per_page) {
1882 		qdf_print("Invalid page %d or element size %d",
1883 			  (int)pages->page_size, (int)element_size);
1884 		goto out_fail;
1885 	}
1886 
1887 	pages->num_pages = element_num / pages->num_element_per_page;
1888 	if (element_num % pages->num_element_per_page)
1889 		pages->num_pages++;
1890 
1891 	if (cacheable) {
1892 		/* Pages information storage */
1893 		pages->cacheable_pages = qdf_mem_malloc(
1894 			pages->num_pages * sizeof(pages->cacheable_pages));
1895 		if (!pages->cacheable_pages)
1896 			goto out_fail;
1897 
1898 		cacheable_pages = pages->cacheable_pages;
1899 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1900 			cacheable_pages[page_idx] =
1901 				qdf_mem_malloc(pages->page_size);
1902 			if (!cacheable_pages[page_idx])
1903 				goto page_alloc_fail;
1904 		}
1905 		pages->dma_pages = NULL;
1906 	} else {
1907 		pages->dma_pages = qdf_mem_malloc(
1908 			pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
1909 		if (!pages->dma_pages)
1910 			goto out_fail;
1911 
1912 		dma_pages = pages->dma_pages;
1913 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1914 			dma_pages->page_v_addr_start =
1915 				qdf_mem_alloc_consistent(osdev, osdev->dev,
1916 					 pages->page_size,
1917 					&dma_pages->page_p_addr);
1918 			if (!dma_pages->page_v_addr_start) {
1919 				qdf_print("dmaable page alloc fail pi %d",
1920 					page_idx);
1921 				goto page_alloc_fail;
1922 			}
1923 			dma_pages->page_v_addr_end =
1924 				dma_pages->page_v_addr_start + pages->page_size;
1925 			dma_pages++;
1926 		}
1927 		pages->cacheable_pages = NULL;
1928 	}
1929 	return;
1930 
1931 page_alloc_fail:
1932 	if (cacheable) {
1933 		for (i = 0; i < page_idx; i++)
1934 			qdf_mem_free(pages->cacheable_pages[i]);
1935 		qdf_mem_free(pages->cacheable_pages);
1936 	} else {
1937 		dma_pages = pages->dma_pages;
1938 		for (i = 0; i < page_idx; i++) {
1939 			qdf_mem_free_consistent(
1940 				osdev, osdev->dev, pages->page_size,
1941 				dma_pages->page_v_addr_start,
1942 				dma_pages->page_p_addr, memctxt);
1943 			dma_pages++;
1944 		}
1945 		qdf_mem_free(pages->dma_pages);
1946 	}
1947 
1948 out_fail:
1949 	pages->cacheable_pages = NULL;
1950 	pages->dma_pages = NULL;
1951 	pages->num_pages = 0;
1952 	return;
1953 }
1954 #else
1955 void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
1956 			       struct qdf_mem_multi_page_t *pages,
1957 			       size_t element_size, uint32_t element_num,
1958 			       qdf_dma_context_t memctxt, bool cacheable)
1959 {
1960 	uint16_t page_idx;
1961 	struct qdf_mem_dma_page_t *dma_pages;
1962 	void **cacheable_pages = NULL;
1963 	uint16_t i;
1964 	struct qdf_mem_dma_page_t temp_dma_pages;
1965 	struct qdf_mem_dma_page_t *total_dma_pages = &temp_dma_pages;
1966 	qdf_size_t total_size = 0;
1967 
1968 	pages->contiguous_dma_pages = false;
1969 
1970 	if (!pages->page_size)
1971 		pages->page_size = qdf_page_size;
1972 
1973 	pages->num_element_per_page = pages->page_size / element_size;
1974 	if (!pages->num_element_per_page) {
1975 		qdf_print("Invalid page %d or element size %d",
1976 			  (int)pages->page_size, (int)element_size);
1977 		goto out_fail;
1978 	}
1979 
1980 	pages->num_pages = element_num / pages->num_element_per_page;
1981 	if (element_num % pages->num_element_per_page)
1982 		pages->num_pages++;
1983 
1984 	if (cacheable) {
1985 		/* Pages information storage */
1986 		pages->cacheable_pages = qdf_mem_malloc(
1987 			pages->num_pages * sizeof(pages->cacheable_pages));
1988 		if (!pages->cacheable_pages)
1989 			goto out_fail;
1990 
1991 		cacheable_pages = pages->cacheable_pages;
1992 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
1993 			cacheable_pages[page_idx] =
1994 				qdf_mem_malloc(pages->page_size);
1995 			if (!cacheable_pages[page_idx])
1996 				goto page_alloc_fail;
1997 		}
1998 		pages->dma_pages = NULL;
1999 	} else {
2000 		pages->dma_pages = qdf_mem_malloc(
2001 			pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
2002 		if (!pages->dma_pages)
2003 			goto out_fail;
2004 
2005 		dma_pages = pages->dma_pages;
2006 		total_size = pages->page_size * pages->num_pages;
2007 		total_dma_pages->page_v_addr_start =
2008 			qdf_mem_alloc_consistent(osdev, osdev->dev,
2009 						 total_size,
2010 						 &total_dma_pages->page_p_addr);
2011 		total_dma_pages->page_v_addr_end =
2012 			total_dma_pages->page_v_addr_start + total_size;
2013 		if (!total_dma_pages->page_v_addr_start) {
2014 			qdf_print("mem allocate fail, total_size: %zu",
2015 				  total_size);
2016 			goto page_alloc_default;
2017 		}
2018 
2019 		pages->contiguous_dma_pages = true;
2020 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2021 			dma_pages->page_v_addr_start =
2022 				total_dma_pages->page_v_addr_start +
2023 				(pages->page_size * page_idx);
2024 			dma_pages->page_p_addr =
2025 				total_dma_pages->page_p_addr +
2026 				(pages->page_size * page_idx);
2027 			dma_pages->page_v_addr_end =
2028 				dma_pages->page_v_addr_start + pages->page_size;
2029 			dma_pages++;
2030 		}
2031 		pages->cacheable_pages = NULL;
2032 		return;
2033 
2034 page_alloc_default:
2035 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2036 			dma_pages->page_v_addr_start =
2037 				qdf_mem_alloc_consistent(osdev, osdev->dev,
2038 							 pages->page_size,
2039 						&dma_pages->page_p_addr);
2040 			if (!dma_pages->page_v_addr_start) {
2041 				qdf_print("dmaable page alloc fail pi %d",
2042 					  page_idx);
2043 				goto page_alloc_fail;
2044 			}
2045 			dma_pages->page_v_addr_end =
2046 				dma_pages->page_v_addr_start + pages->page_size;
2047 			dma_pages++;
2048 		}
2049 		pages->cacheable_pages = NULL;
2050 	}
2051 	return;
2052 
2053 page_alloc_fail:
2054 	if (cacheable) {
2055 		for (i = 0; i < page_idx; i++)
2056 			qdf_mem_free(pages->cacheable_pages[i]);
2057 		qdf_mem_free(pages->cacheable_pages);
2058 	} else {
2059 		dma_pages = pages->dma_pages;
2060 		for (i = 0; i < page_idx; i++) {
2061 			qdf_mem_free_consistent(
2062 				osdev, osdev->dev, pages->page_size,
2063 				dma_pages->page_v_addr_start,
2064 				dma_pages->page_p_addr, memctxt);
2065 			dma_pages++;
2066 		}
2067 		qdf_mem_free(pages->dma_pages);
2068 	}
2069 
2070 out_fail:
2071 	pages->cacheable_pages = NULL;
2072 	pages->dma_pages = NULL;
2073 	pages->num_pages = 0;
2074 }
2075 #endif
2076 qdf_export_symbol(qdf_mem_multi_pages_alloc);
2077 
2078 #ifndef ALLOC_CONTIGUOUS_MULTI_PAGE
2079 void qdf_mem_multi_pages_free(qdf_device_t osdev,
2080 			      struct qdf_mem_multi_page_t *pages,
2081 			      qdf_dma_context_t memctxt, bool cacheable)
2082 {
2083 	unsigned int page_idx;
2084 	struct qdf_mem_dma_page_t *dma_pages;
2085 
2086 	if (!pages->page_size)
2087 		pages->page_size = qdf_page_size;
2088 
2089 	if (cacheable) {
2090 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
2091 			qdf_mem_free(pages->cacheable_pages[page_idx]);
2092 		qdf_mem_free(pages->cacheable_pages);
2093 	} else {
2094 		dma_pages = pages->dma_pages;
2095 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2096 			qdf_mem_free_consistent(
2097 				osdev, osdev->dev, pages->page_size,
2098 				dma_pages->page_v_addr_start,
2099 				dma_pages->page_p_addr, memctxt);
2100 			dma_pages++;
2101 		}
2102 		qdf_mem_free(pages->dma_pages);
2103 	}
2104 
2105 	pages->cacheable_pages = NULL;
2106 	pages->dma_pages = NULL;
2107 	pages->num_pages = 0;
2108 	return;
2109 }
2110 #else
2111 void qdf_mem_multi_pages_free(qdf_device_t osdev,
2112 			      struct qdf_mem_multi_page_t *pages,
2113 			      qdf_dma_context_t memctxt, bool cacheable)
2114 {
2115 	unsigned int page_idx;
2116 	struct qdf_mem_dma_page_t *dma_pages;
2117 	qdf_size_t total_size = 0;
2118 
2119 	if (!pages->page_size)
2120 		pages->page_size = qdf_page_size;
2121 
2122 	if (cacheable) {
2123 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
2124 			qdf_mem_free(pages->cacheable_pages[page_idx]);
2125 		qdf_mem_free(pages->cacheable_pages);
2126 	} else {
2127 		dma_pages = pages->dma_pages;
2128 		total_size = pages->page_size * pages->num_pages;
2129 		if (pages->contiguous_dma_pages) {
2130 			qdf_mem_free_consistent(
2131 				osdev, osdev->dev, total_size,
2132 				dma_pages->page_v_addr_start,
2133 				dma_pages->page_p_addr, memctxt);
2134 			goto pages_free_default;
2135 		}
2136 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2137 			qdf_mem_free_consistent(
2138 				osdev, osdev->dev, pages->page_size,
2139 				dma_pages->page_v_addr_start,
2140 				dma_pages->page_p_addr, memctxt);
2141 			dma_pages++;
2142 		}
2143 pages_free_default:
2144 		qdf_mem_free(pages->dma_pages);
2145 	}
2146 
2147 	pages->cacheable_pages = NULL;
2148 	pages->dma_pages = NULL;
2149 	pages->num_pages = 0;
2150 }
2151 #endif
2152 qdf_export_symbol(qdf_mem_multi_pages_free);
2153 #endif
2154 
2155 void qdf_mem_multi_pages_zero(struct qdf_mem_multi_page_t *pages,
2156 			      bool cacheable)
2157 {
2158 	unsigned int page_idx;
2159 	struct qdf_mem_dma_page_t *dma_pages;
2160 
2161 	if (!pages->page_size)
2162 		pages->page_size = qdf_page_size;
2163 
2164 	if (cacheable) {
2165 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
2166 			qdf_mem_zero(pages->cacheable_pages[page_idx],
2167 				     pages->page_size);
2168 	} else {
2169 		dma_pages = pages->dma_pages;
2170 		for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
2171 			qdf_mem_zero(dma_pages->page_v_addr_start,
2172 				     pages->page_size);
2173 			dma_pages++;
2174 		}
2175 	}
2176 }
2177 
2178 qdf_export_symbol(qdf_mem_multi_pages_zero);
2179 
2180 void __qdf_mem_free(void *ptr)
2181 {
2182 	if (!ptr)
2183 		return;
2184 
2185 	if (qdf_might_be_prealloc(ptr)) {
2186 		if (qdf_mem_prealloc_put(ptr))
2187 			return;
2188 	}
2189 
2190 	qdf_mem_kmalloc_dec(ksize(ptr));
2191 
2192 	kfree(ptr);
2193 }
2194 
2195 qdf_export_symbol(__qdf_mem_free);
2196 
2197 void *__qdf_mem_malloc(size_t size, const char *func, uint32_t line)
2198 {
2199 	void *ptr;
2200 
2201 	if (!size || size > QDF_MEM_MAX_MALLOC) {
2202 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
2203 			     line);
2204 		return NULL;
2205 	}
2206 
2207 	ptr = qdf_mem_prealloc_get(size);
2208 	if (ptr)
2209 		return ptr;
2210 
2211 	ptr = kzalloc(size, qdf_mem_malloc_flags());
2212 	if (!ptr)
2213 		return NULL;
2214 
2215 	qdf_mem_kmalloc_inc(ksize(ptr));
2216 
2217 	return ptr;
2218 }
2219 
2220 qdf_export_symbol(__qdf_mem_malloc);
2221 
2222 #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
2223 void __qdf_untracked_mem_free(void *ptr)
2224 {
2225 	if (!ptr)
2226 		return;
2227 
2228 	kfree(ptr);
2229 }
2230 
2231 void *__qdf_untracked_mem_malloc(size_t size, const char *func, uint32_t line)
2232 {
2233 	void *ptr;
2234 
2235 	if (!size || size > QDF_MEM_MAX_MALLOC) {
2236 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
2237 			     line);
2238 		return NULL;
2239 	}
2240 
2241 	ptr = kzalloc(size, qdf_mem_malloc_flags());
2242 	if (!ptr)
2243 		return NULL;
2244 
2245 	return ptr;
2246 }
2247 #endif
2248 
2249 void *qdf_aligned_malloc_fl(uint32_t *size,
2250 			    void **vaddr_unaligned,
2251 				qdf_dma_addr_t *paddr_unaligned,
2252 				qdf_dma_addr_t *paddr_aligned,
2253 				uint32_t align,
2254 			    const char *func, uint32_t line)
2255 {
2256 	void *vaddr_aligned;
2257 	uint32_t align_alloc_size;
2258 
2259 	*vaddr_unaligned = qdf_mem_malloc_fl((qdf_size_t)*size, func,
2260 			line);
2261 	if (!*vaddr_unaligned) {
2262 		qdf_warn("Failed to alloc %uB @ %s:%d", *size, func, line);
2263 		return NULL;
2264 	}
2265 
2266 	*paddr_unaligned = qdf_mem_virt_to_phys(*vaddr_unaligned);
2267 
2268 	/* Re-allocate additional bytes to align base address only if
2269 	 * above allocation returns unaligned address. Reason for
2270 	 * trying exact size allocation above is, OS tries to allocate
2271 	 * blocks of size power-of-2 pages and then free extra pages.
2272 	 * e.g., of a ring size of 1MB, the allocation below will
2273 	 * request 1MB plus 7 bytes for alignment, which will cause a
2274 	 * 2MB block allocation,and that is failing sometimes due to
2275 	 * memory fragmentation.
2276 	 */
2277 	if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
2278 		align_alloc_size = *size + align - 1;
2279 
2280 		qdf_mem_free(*vaddr_unaligned);
2281 		*vaddr_unaligned = qdf_mem_malloc_fl(
2282 				(qdf_size_t)align_alloc_size, func, line);
2283 		if (!*vaddr_unaligned) {
2284 			qdf_warn("Failed to alloc %uB @ %s:%d",
2285 				 align_alloc_size, func, line);
2286 			return NULL;
2287 		}
2288 
2289 		*paddr_unaligned = qdf_mem_virt_to_phys(
2290 				*vaddr_unaligned);
2291 		*size = align_alloc_size;
2292 	}
2293 
2294 	*paddr_aligned = (qdf_dma_addr_t)qdf_align
2295 		((unsigned long)(*paddr_unaligned), align);
2296 
2297 	vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
2298 			((unsigned long)(*paddr_aligned) -
2299 			 (unsigned long)(*paddr_unaligned)));
2300 
2301 	return vaddr_aligned;
2302 }
2303 
2304 qdf_export_symbol(qdf_aligned_malloc_fl);
2305 
2306 #if defined(DP_UMAC_HW_RESET_SUPPORT) || defined(WLAN_SUPPORT_PPEDS)
2307 int qdf_tx_desc_pool_free_bufs(void *ctxt, struct qdf_mem_multi_page_t *pages,
2308 			       uint32_t elem_size, uint32_t elem_count,
2309 			       uint8_t cacheable, qdf_mem_release_cb cb,
2310 			       void *elem_list)
2311 {
2312 	uint16_t i, i_int;
2313 	void *page_info;
2314 	void *elem;
2315 	uint32_t num_elem = 0;
2316 
2317 	for (i = 0; i < pages->num_pages; i++) {
2318 		if (cacheable)
2319 			page_info = pages->cacheable_pages[i];
2320 		else
2321 			page_info = pages->dma_pages[i].page_v_addr_start;
2322 
2323 		if (!page_info)
2324 			return -ENOMEM;
2325 
2326 		elem = page_info;
2327 		for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
2328 			cb(ctxt, elem, elem_list);
2329 			elem = ((char *)elem + elem_size);
2330 			num_elem++;
2331 
2332 			/* Number of desc pool elements reached */
2333 			if (num_elem == (elem_count - 1))
2334 				break;
2335 		}
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 qdf_export_symbol(qdf_tx_desc_pool_free_bufs);
2342 #endif
2343 
2344 int qdf_mem_multi_page_link(qdf_device_t osdev,
2345 			    struct qdf_mem_multi_page_t *pages,
2346 			    uint32_t elem_size, uint32_t elem_count,
2347 			    uint8_t cacheable)
2348 {
2349 	uint16_t i, i_int;
2350 	void *page_info;
2351 	void **c_elem = NULL;
2352 	uint32_t num_link = 0;
2353 
2354 	for (i = 0; i < pages->num_pages; i++) {
2355 		if (cacheable)
2356 			page_info = pages->cacheable_pages[i];
2357 		else
2358 			page_info = pages->dma_pages[i].page_v_addr_start;
2359 
2360 		if (!page_info)
2361 			return -ENOMEM;
2362 
2363 		c_elem = (void **)page_info;
2364 		for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
2365 			if (i_int == (pages->num_element_per_page - 1)) {
2366 				if ((i + 1) == pages->num_pages)
2367 					break;
2368 				if (cacheable)
2369 					*c_elem = pages->
2370 						cacheable_pages[i + 1];
2371 				else
2372 					*c_elem = pages->
2373 						dma_pages[i + 1].
2374 							page_v_addr_start;
2375 				num_link++;
2376 				break;
2377 			} else {
2378 				*c_elem =
2379 					(void *)(((char *)c_elem) + elem_size);
2380 			}
2381 			num_link++;
2382 			c_elem = (void **)*c_elem;
2383 
2384 			/* Last link established exit */
2385 			if (num_link == (elem_count - 1))
2386 				break;
2387 		}
2388 	}
2389 
2390 	if (c_elem)
2391 		*c_elem = NULL;
2392 
2393 	return 0;
2394 }
2395 qdf_export_symbol(qdf_mem_multi_page_link);
2396 
2397 void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes)
2398 {
2399 	/* special case where dst_addr or src_addr can be NULL */
2400 	if (!num_bytes)
2401 		return;
2402 
2403 	QDF_BUG(dst_addr);
2404 	QDF_BUG(src_addr);
2405 	if (!dst_addr || !src_addr)
2406 		return;
2407 
2408 	memcpy(dst_addr, src_addr, num_bytes);
2409 }
2410 qdf_export_symbol(qdf_mem_copy);
2411 
2412 qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size)
2413 {
2414 	qdf_shared_mem_t *shared_mem;
2415 	qdf_dma_addr_t dma_addr, paddr;
2416 	int ret;
2417 
2418 	shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
2419 	if (!shared_mem)
2420 		return NULL;
2421 
2422 	shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
2423 				size, qdf_mem_get_dma_addr_ptr(osdev,
2424 						&shared_mem->mem_info));
2425 	if (!shared_mem->vaddr) {
2426 		qdf_err("Unable to allocate DMA memory for shared resource");
2427 		qdf_mem_free(shared_mem);
2428 		return NULL;
2429 	}
2430 
2431 	qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
2432 	size = qdf_mem_get_dma_size(osdev, &shared_mem->mem_info);
2433 
2434 	qdf_mem_zero(shared_mem->vaddr, size);
2435 	dma_addr = qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info);
2436 	paddr = qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
2437 
2438 	qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info, paddr);
2439 	ret = qdf_mem_dma_get_sgtable(osdev->dev, &shared_mem->sgtable,
2440 				      shared_mem->vaddr, dma_addr, size);
2441 	if (ret) {
2442 		qdf_err("Unable to get DMA sgtable");
2443 		qdf_mem_free_consistent(osdev, osdev->dev,
2444 					shared_mem->mem_info.size,
2445 					shared_mem->vaddr,
2446 					dma_addr,
2447 					qdf_get_dma_mem_context(shared_mem,
2448 								memctx));
2449 		qdf_mem_free(shared_mem);
2450 		return NULL;
2451 	}
2452 
2453 	qdf_dma_get_sgtable_dma_addr(&shared_mem->sgtable);
2454 
2455 	return shared_mem;
2456 }
2457 
2458 qdf_export_symbol(qdf_mem_shared_mem_alloc);
2459 
2460 void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes)
2461 {
2462 	if (0 == num_bytes) {
2463 		/* special case where dst_addr or src_addr can be NULL */
2464 		return;
2465 	}
2466 
2467 	if ((!dst_addr) || (!src_addr)) {
2468 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
2469 			  "%s called with NULL parameter, source:%pK destination:%pK",
2470 			  __func__, src_addr, dst_addr);
2471 		QDF_ASSERT(0);
2472 		return;
2473 	}
2474 	memcpy_toio(dst_addr, src_addr, num_bytes);
2475 }
2476 
2477 qdf_export_symbol(qdf_mem_copy_toio);
2478 
2479 void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value)
2480 {
2481 	if (!ptr) {
2482 		qdf_print("%s called with NULL parameter ptr", __func__);
2483 		return;
2484 	}
2485 	memset_io(ptr, value, num_bytes);
2486 }
2487 
2488 qdf_export_symbol(qdf_mem_set_io);
2489 
2490 void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value)
2491 {
2492 	QDF_BUG(ptr);
2493 	if (!ptr)
2494 		return;
2495 
2496 	memset(ptr, value, num_bytes);
2497 }
2498 qdf_export_symbol(qdf_mem_set);
2499 
2500 void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes)
2501 {
2502 	/* special case where dst_addr or src_addr can be NULL */
2503 	if (!num_bytes)
2504 		return;
2505 
2506 	QDF_BUG(dst_addr);
2507 	QDF_BUG(src_addr);
2508 	if (!dst_addr || !src_addr)
2509 		return;
2510 
2511 	memmove(dst_addr, src_addr, num_bytes);
2512 }
2513 qdf_export_symbol(qdf_mem_move);
2514 
2515 int qdf_mem_cmp(const void *left, const void *right, size_t size)
2516 {
2517 	QDF_BUG(left);
2518 	QDF_BUG(right);
2519 
2520 	return memcmp(left, right, size);
2521 }
2522 qdf_export_symbol(qdf_mem_cmp);
2523 
2524 #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
2525 /**
2526  * qdf_mem_dma_alloc() - allocates memory for dma
2527  * @osdev: OS device handle
2528  * @dev: Pointer to device handle
2529  * @size: Size to be allocated
2530  * @phy_addr: Physical address
2531  *
2532  * Return: pointer of allocated memory or null if memory alloc fails
2533  */
2534 static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
2535 				      qdf_size_t size,
2536 				      qdf_dma_addr_t *phy_addr)
2537 {
2538 	void *vaddr;
2539 
2540 	vaddr = qdf_mem_malloc(size);
2541 	*phy_addr = ((uintptr_t) vaddr);
2542 	/* using this type conversion to suppress "cast from pointer to integer
2543 	 * of different size" warning on some platforms
2544 	 */
2545 	BUILD_BUG_ON(sizeof(*phy_addr) < sizeof(vaddr));
2546 	return vaddr;
2547 }
2548 
2549 #elif defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) && \
2550 	!defined(QCA_WIFI_QCN9000)
2551 
2552 #define QCA8074_RAM_BASE 0x50000000
2553 #define QDF_MEM_ALLOC_X86_MAX_RETRIES 10
2554 void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev, qdf_size_t size,
2555 			qdf_dma_addr_t *phy_addr)
2556 {
2557 	void *vaddr = NULL;
2558 	int i;
2559 
2560 	*phy_addr = 0;
2561 
2562 	for (i = 0; i < QDF_MEM_ALLOC_X86_MAX_RETRIES; i++) {
2563 		vaddr = dma_alloc_coherent(dev, size, phy_addr,
2564 					   qdf_mem_malloc_flags());
2565 
2566 		if (!vaddr) {
2567 			qdf_err("%s failed , size: %zu!", __func__, size);
2568 			return NULL;
2569 		}
2570 
2571 		if (*phy_addr >= QCA8074_RAM_BASE)
2572 			return vaddr;
2573 
2574 		dma_free_coherent(dev, size, vaddr, *phy_addr);
2575 	}
2576 
2577 	return NULL;
2578 }
2579 #elif defined(QCA_DMA_PADDR_CHECK)
2580 #ifdef CONFIG_LEAK_DETECTION
2581 #define MAX_DEBUG_DOMAIN_COUNT QDF_DEBUG_DOMAIN_COUNT
2582 #define debug_domain_get() qdf_debug_domain_get()
2583 #else
2584 #define MAX_DEBUG_DOMAIN_COUNT 1
2585 #define debug_domain_get() DEFAULT_DEBUG_DOMAIN_INIT
2586 #endif
2587 /**
2588  * struct qdf_dma_buf_entry - DMA invalid buffer list entry
2589  * @node: QDF list node member
2590  * @size: DMA buffer size
2591  * @phy_addr: DMA buffer physical address
2592  * @vaddr: DMA buffer virtual address. if DMA buffer size is larger than entry
2593  *         size, we use the DMA buffer to save entry info and the starting
2594  *         address of the entry is the DMA buffer vaddr, in this way, we can
2595  *         reduce unnecessary memory consumption. if DMA buffer size is smaller
2596  *         than entry size, we need alloc another buffer, and vaddr will be set
2597  *         to the invalid dma buffer virtual address.
2598  */
2599 struct qdf_dma_buf_entry {
2600 	qdf_list_node_t node;
2601 	qdf_size_t size;
2602 	qdf_dma_addr_t phy_addr;
2603 	void *vaddr;
2604 };
2605 
2606 #define DMA_PHY_ADDR_RESERVED 0x2000
2607 #define QDF_DMA_MEM_ALLOC_MAX_RETRIES 10
2608 #define QDF_DMA_INVALID_BUF_LIST_SIZE 128
2609 static qdf_list_t qdf_invalid_buf_list[MAX_DEBUG_DOMAIN_COUNT];
2610 static bool qdf_invalid_buf_list_init[MAX_DEBUG_DOMAIN_COUNT];
2611 static qdf_spinlock_t qdf_invalid_buf_list_lock;
2612 
2613 static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
2614 				      qdf_size_t size, qdf_dma_addr_t *paddr)
2615 {
2616 	void *vaddr;
2617 	uint32_t retry;
2618 	QDF_STATUS status;
2619 	bool is_separate;
2620 	qdf_list_t *cur_buf_list;
2621 	struct qdf_dma_buf_entry *entry;
2622 	uint8_t current_domain;
2623 
2624 	for (retry = 0; retry < QDF_DMA_MEM_ALLOC_MAX_RETRIES; retry++) {
2625 		vaddr = dma_alloc_coherent(dev, size, paddr,
2626 					   qdf_mem_malloc_flags());
2627 		if (!vaddr)
2628 			return NULL;
2629 
2630 		if (qdf_likely(*paddr > DMA_PHY_ADDR_RESERVED))
2631 			return vaddr;
2632 
2633 		current_domain = debug_domain_get();
2634 
2635 		/* if qdf_invalid_buf_list not init, so we can't store memory
2636 		 * info and can't hold it. let's free the invalid memory and
2637 		 * try to get memory with phy address greater than
2638 		 * DMA_PHY_ADDR_RESERVED
2639 		 */
2640 		if (current_domain >= MAX_DEBUG_DOMAIN_COUNT ||
2641 		    !qdf_invalid_buf_list_init[current_domain]) {
2642 			qdf_debug("physical address below 0x%x, re-alloc",
2643 				  DMA_PHY_ADDR_RESERVED);
2644 			dma_free_coherent(dev, size, vaddr, *paddr);
2645 			continue;
2646 		}
2647 
2648 		cur_buf_list = &qdf_invalid_buf_list[current_domain];
2649 		if (size >= sizeof(*entry)) {
2650 			entry = vaddr;
2651 			entry->vaddr = NULL;
2652 		} else {
2653 			entry = qdf_mem_malloc(sizeof(*entry));
2654 			if (!entry) {
2655 				dma_free_coherent(dev, size, vaddr, *paddr);
2656 				qdf_err("qdf_mem_malloc entry failed!");
2657 				continue;
2658 			}
2659 			entry->vaddr = vaddr;
2660 		}
2661 
2662 		entry->phy_addr = *paddr;
2663 		entry->size = size;
2664 		qdf_spin_lock_irqsave(&qdf_invalid_buf_list_lock);
2665 		status = qdf_list_insert_back(cur_buf_list,
2666 					      &entry->node);
2667 		qdf_spin_unlock_irqrestore(&qdf_invalid_buf_list_lock);
2668 		if (QDF_IS_STATUS_ERROR(status)) {
2669 			qdf_err("insert buf entry fail, status %d", status);
2670 			is_separate = !entry->vaddr ? false : true;
2671 			dma_free_coherent(dev, size, vaddr, *paddr);
2672 			if (is_separate)
2673 				qdf_mem_free(entry);
2674 		}
2675 	}
2676 
2677 	return NULL;
2678 }
2679 #else
2680 static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
2681 				      qdf_size_t size, qdf_dma_addr_t *paddr)
2682 {
2683 	return dma_alloc_coherent(dev, size, paddr, qdf_mem_malloc_flags());
2684 }
2685 #endif
2686 
2687 #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
2688 static inline void
2689 qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
2690 {
2691 	qdf_mem_free(vaddr);
2692 }
2693 #else
2694 
2695 static inline void
2696 qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
2697 {
2698 	dma_free_coherent(dev, size, vaddr, paddr);
2699 }
2700 #endif
2701 
2702 #ifdef MEMORY_DEBUG
2703 void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
2704 				     qdf_size_t size, qdf_dma_addr_t *paddr,
2705 				     const char *func, uint32_t line,
2706 				     void *caller)
2707 {
2708 	QDF_STATUS status;
2709 	enum qdf_debug_domain current_domain = qdf_debug_domain_get();
2710 	qdf_list_t *mem_list = qdf_mem_dma_list(current_domain);
2711 	struct qdf_mem_header *header;
2712 	void *vaddr;
2713 
2714 	if (is_initial_mem_debug_disabled)
2715 		return __qdf_mem_alloc_consistent(osdev, dev,
2716 						  size, paddr,
2717 						  func, line);
2718 
2719 	if (!size || size > QDF_MEM_MAX_MALLOC) {
2720 		qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
2721 		return NULL;
2722 	}
2723 
2724 	vaddr = qdf_mem_dma_alloc(osdev, dev, size + QDF_DMA_MEM_DEBUG_SIZE,
2725 				   paddr);
2726 
2727 	if (!vaddr) {
2728 		qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
2729 		return NULL;
2730 	}
2731 
2732 	header = qdf_mem_dma_get_header(vaddr, size);
2733 	/* For DMA buffers we only add trailers, this function will init
2734 	 * the header structure at the tail
2735 	 * Prefix the header into DMA buffer causes SMMU faults, so
2736 	 * do not prefix header into the DMA buffers
2737 	 */
2738 	qdf_mem_header_init(header, size, func, line, caller);
2739 
2740 	qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
2741 	status = qdf_list_insert_front(mem_list, &header->node);
2742 	qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
2743 	if (QDF_IS_STATUS_ERROR(status))
2744 		qdf_err("Failed to insert memory header; status %d", status);
2745 
2746 	qdf_mem_dma_inc(size);
2747 
2748 	return vaddr;
2749 }
2750 qdf_export_symbol(qdf_mem_alloc_consistent_debug);
2751 
2752 void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
2753 				   qdf_size_t size, void *vaddr,
2754 				   qdf_dma_addr_t paddr,
2755 				   qdf_dma_context_t memctx,
2756 				   const char *func, uint32_t line)
2757 {
2758 	enum qdf_debug_domain domain = qdf_debug_domain_get();
2759 	struct qdf_mem_header *header;
2760 	enum qdf_mem_validation_bitmap error_bitmap;
2761 
2762 	if (is_initial_mem_debug_disabled) {
2763 		__qdf_mem_free_consistent(
2764 					  osdev, dev,
2765 					  size, vaddr,
2766 					  paddr, memctx);
2767 		return;
2768 	}
2769 
2770 	/* freeing a null pointer is valid */
2771 	if (qdf_unlikely(!vaddr))
2772 		return;
2773 
2774 	qdf_talloc_assert_no_children_fl(vaddr, func, line);
2775 
2776 	qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
2777 	/* For DMA buffers we only add trailers, this function will retrieve
2778 	 * the header structure at the tail
2779 	 * Prefix the header into DMA buffer causes SMMU faults, so
2780 	 * do not prefix header into the DMA buffers
2781 	 */
2782 	header = qdf_mem_dma_get_header(vaddr, size);
2783 	error_bitmap = qdf_mem_header_validate(header, domain);
2784 	if (!error_bitmap) {
2785 		header->freed = true;
2786 		qdf_list_remove_node(qdf_mem_dma_list(header->domain),
2787 				     &header->node);
2788 	}
2789 	qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
2790 
2791 	qdf_mem_header_assert_valid(header, domain, error_bitmap, func, line);
2792 
2793 	qdf_mem_dma_dec(header->size);
2794 	qdf_mem_dma_free(dev, size + QDF_DMA_MEM_DEBUG_SIZE, vaddr, paddr);
2795 }
2796 qdf_export_symbol(qdf_mem_free_consistent_debug);
2797 #endif /* MEMORY_DEBUG */
2798 
2799 void __qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
2800 			       qdf_size_t size, void *vaddr,
2801 			       qdf_dma_addr_t paddr, qdf_dma_context_t memctx)
2802 {
2803 	qdf_mem_dma_dec(size);
2804 	qdf_mem_dma_free(dev, size, vaddr, paddr);
2805 }
2806 
2807 qdf_export_symbol(__qdf_mem_free_consistent);
2808 
2809 void *__qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
2810 				 qdf_size_t size, qdf_dma_addr_t *paddr,
2811 				 const char *func, uint32_t line)
2812 {
2813 	void *vaddr;
2814 
2815 	if (!size || size > QDF_MEM_MAX_MALLOC) {
2816 		qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d",
2817 			     size, func, line);
2818 		return NULL;
2819 	}
2820 
2821 	vaddr = qdf_mem_dma_alloc(osdev, dev, size, paddr);
2822 
2823 	if (vaddr)
2824 		qdf_mem_dma_inc(size);
2825 
2826 	return vaddr;
2827 }
2828 
2829 qdf_export_symbol(__qdf_mem_alloc_consistent);
2830 
2831 void *qdf_aligned_mem_alloc_consistent_fl(
2832 	qdf_device_t osdev, uint32_t *size,
2833 	void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned,
2834 	qdf_dma_addr_t *paddr_aligned, uint32_t align,
2835 	const char *func, uint32_t line)
2836 {
2837 	void *vaddr_aligned;
2838 	uint32_t align_alloc_size;
2839 
2840 	*vaddr_unaligned = qdf_mem_alloc_consistent(
2841 			osdev, osdev->dev, (qdf_size_t)*size, paddr_unaligned);
2842 	if (!*vaddr_unaligned) {
2843 		qdf_warn("Failed to alloc %uB @ %s:%d",
2844 			 *size, func, line);
2845 		return NULL;
2846 	}
2847 
2848 	/* Re-allocate additional bytes to align base address only if
2849 	 * above allocation returns unaligned address. Reason for
2850 	 * trying exact size allocation above is, OS tries to allocate
2851 	 * blocks of size power-of-2 pages and then free extra pages.
2852 	 * e.g., of a ring size of 1MB, the allocation below will
2853 	 * request 1MB plus 7 bytes for alignment, which will cause a
2854 	 * 2MB block allocation,and that is failing sometimes due to
2855 	 * memory fragmentation.
2856 	 */
2857 	if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
2858 		align_alloc_size = *size + align - 1;
2859 
2860 		qdf_mem_free_consistent(osdev, osdev->dev, *size,
2861 					*vaddr_unaligned,
2862 					*paddr_unaligned, 0);
2863 
2864 		*vaddr_unaligned = qdf_mem_alloc_consistent(
2865 				osdev, osdev->dev, align_alloc_size,
2866 				paddr_unaligned);
2867 		if (!*vaddr_unaligned) {
2868 			qdf_warn("Failed to alloc %uB @ %s:%d",
2869 				 align_alloc_size, func, line);
2870 			return NULL;
2871 		}
2872 
2873 		*size = align_alloc_size;
2874 	}
2875 
2876 	*paddr_aligned = (qdf_dma_addr_t)qdf_align(
2877 			(unsigned long)(*paddr_unaligned), align);
2878 
2879 	vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
2880 				 ((unsigned long)(*paddr_aligned) -
2881 				  (unsigned long)(*paddr_unaligned)));
2882 
2883 	return vaddr_aligned;
2884 }
2885 qdf_export_symbol(qdf_aligned_mem_alloc_consistent_fl);
2886 
2887 void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
2888 					qdf_dma_addr_t bus_addr,
2889 					qdf_size_t size,
2890 					enum dma_data_direction direction)
2891 {
2892 	dma_sync_single_for_device(osdev->dev, bus_addr,  size, direction);
2893 }
2894 qdf_export_symbol(qdf_mem_dma_sync_single_for_device);
2895 
2896 void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
2897 				     qdf_dma_addr_t bus_addr,
2898 				     qdf_size_t size,
2899 				     enum dma_data_direction direction)
2900 {
2901 	dma_sync_single_for_cpu(osdev->dev, bus_addr,  size, direction);
2902 }
2903 qdf_export_symbol(qdf_mem_dma_sync_single_for_cpu);
2904 
2905 void qdf_mem_init(void)
2906 {
2907 	qdf_mem_debug_init();
2908 	qdf_net_buf_debug_init();
2909 	qdf_frag_debug_init();
2910 	qdf_mem_debugfs_init();
2911 	qdf_mem_debug_debugfs_init();
2912 }
2913 qdf_export_symbol(qdf_mem_init);
2914 
2915 void qdf_mem_exit(void)
2916 {
2917 	qdf_mem_debug_debugfs_exit();
2918 	qdf_mem_debugfs_exit();
2919 	qdf_frag_debug_exit();
2920 	qdf_net_buf_debug_exit();
2921 	qdf_mem_debug_exit();
2922 }
2923 qdf_export_symbol(qdf_mem_exit);
2924 
2925 void qdf_ether_addr_copy(void *dst_addr, const void *src_addr)
2926 {
2927 	if ((!dst_addr) || (!src_addr)) {
2928 		QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
2929 			  "%s called with NULL parameter, source:%pK destination:%pK",
2930 			  __func__, src_addr, dst_addr);
2931 		QDF_ASSERT(0);
2932 		return;
2933 	}
2934 	ether_addr_copy(dst_addr, src_addr);
2935 }
2936 qdf_export_symbol(qdf_ether_addr_copy);
2937 
2938 int32_t qdf_dma_mem_stats_read(void)
2939 {
2940 	return qdf_atomic_read(&qdf_mem_stat.dma);
2941 }
2942 
2943 qdf_export_symbol(qdf_dma_mem_stats_read);
2944 
2945 int32_t qdf_heap_mem_stats_read(void)
2946 {
2947 	return qdf_atomic_read(&qdf_mem_stat.kmalloc);
2948 }
2949 
2950 qdf_export_symbol(qdf_heap_mem_stats_read);
2951 
2952 int32_t qdf_skb_mem_stats_read(void)
2953 {
2954 	return qdf_atomic_read(&qdf_mem_stat.skb);
2955 }
2956 
2957 qdf_export_symbol(qdf_skb_mem_stats_read);
2958 
2959 int32_t qdf_skb_total_mem_stats_read(void)
2960 {
2961 	return qdf_atomic_read(&qdf_mem_stat.skb_total);
2962 }
2963 
2964 qdf_export_symbol(qdf_skb_total_mem_stats_read);
2965 
2966 int32_t qdf_skb_max_mem_stats_read(void)
2967 {
2968 	return qdf_mem_stat.skb_mem_max;
2969 }
2970 
2971 qdf_export_symbol(qdf_skb_max_mem_stats_read);
2972 
2973 int32_t qdf_dp_tx_skb_mem_stats_read(void)
2974 {
2975 	return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
2976 }
2977 
2978 qdf_export_symbol(qdf_dp_tx_skb_mem_stats_read);
2979 
2980 int32_t qdf_dp_rx_skb_mem_stats_read(void)
2981 {
2982 	return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
2983 }
2984 
2985 qdf_export_symbol(qdf_dp_rx_skb_mem_stats_read);
2986 
2987 int32_t qdf_mem_dp_tx_skb_cnt_read(void)
2988 {
2989 	return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
2990 }
2991 
2992 qdf_export_symbol(qdf_mem_dp_tx_skb_cnt_read);
2993 
2994 int32_t qdf_mem_dp_tx_skb_max_cnt_read(void)
2995 {
2996 	return qdf_mem_stat.dp_tx_skb_count_max;
2997 }
2998 
2999 qdf_export_symbol(qdf_mem_dp_tx_skb_max_cnt_read);
3000 
3001 int32_t qdf_mem_dp_rx_skb_cnt_read(void)
3002 {
3003 	return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
3004 }
3005 
3006 qdf_export_symbol(qdf_mem_dp_rx_skb_cnt_read);
3007 
3008 int32_t qdf_mem_dp_rx_skb_max_cnt_read(void)
3009 {
3010 	return qdf_mem_stat.dp_rx_skb_count_max;
3011 }
3012 
3013 qdf_export_symbol(qdf_mem_dp_rx_skb_max_cnt_read);
3014 
3015 int32_t qdf_dp_tx_skb_max_mem_stats_read(void)
3016 {
3017 	return qdf_mem_stat.dp_tx_skb_mem_max;
3018 }
3019 
3020 qdf_export_symbol(qdf_dp_tx_skb_max_mem_stats_read);
3021 
3022 int32_t qdf_dp_rx_skb_max_mem_stats_read(void)
3023 {
3024 	return qdf_mem_stat.dp_rx_skb_mem_max;
3025 }
3026 
3027 qdf_export_symbol(qdf_dp_rx_skb_max_mem_stats_read);
3028 
3029 int32_t qdf_mem_tx_desc_cnt_read(void)
3030 {
3031 	return qdf_atomic_read(&qdf_mem_stat.tx_descs_outstanding);
3032 }
3033 
3034 qdf_export_symbol(qdf_mem_tx_desc_cnt_read);
3035 
3036 int32_t qdf_mem_tx_desc_max_read(void)
3037 {
3038 	return qdf_mem_stat.tx_descs_max;
3039 }
3040 
3041 qdf_export_symbol(qdf_mem_tx_desc_max_read);
3042 
3043 void qdf_mem_tx_desc_cnt_update(qdf_atomic_t pending_tx_descs,
3044 				int32_t tx_descs_max)
3045 {
3046 	qdf_mem_stat.tx_descs_outstanding = pending_tx_descs;
3047 	qdf_mem_stat.tx_descs_max = tx_descs_max;
3048 }
3049 
3050 qdf_export_symbol(qdf_mem_tx_desc_cnt_update);
3051 
3052 void qdf_mem_stats_init(void)
3053 {
3054 	qdf_mem_stat.skb_mem_max = 0;
3055 	qdf_mem_stat.dp_tx_skb_mem_max = 0;
3056 	qdf_mem_stat.dp_rx_skb_mem_max = 0;
3057 	qdf_mem_stat.dp_tx_skb_count_max = 0;
3058 	qdf_mem_stat.dp_rx_skb_count_max = 0;
3059 	qdf_mem_stat.tx_descs_max = 0;
3060 }
3061 
3062 qdf_export_symbol(qdf_mem_stats_init);
3063 
3064 void *__qdf_mem_valloc(size_t size, const char *func, uint32_t line)
3065 {
3066 	void *ptr;
3067 
3068 	if (!size) {
3069 		qdf_err("Valloc called with 0 bytes @ %s:%d", func, line);
3070 		return NULL;
3071 	}
3072 
3073 	ptr = vzalloc(size);
3074 
3075 	return ptr;
3076 }
3077 
3078 qdf_export_symbol(__qdf_mem_valloc);
3079 
3080 void __qdf_mem_vfree(void *ptr)
3081 {
3082 	if (qdf_unlikely(!ptr))
3083 		return;
3084 
3085 	vfree(ptr);
3086 }
3087 
3088 qdf_export_symbol(__qdf_mem_vfree);
3089 
3090 #if IS_ENABLED(CONFIG_ARM_SMMU) && defined(ENABLE_SMMU_S1_TRANSLATION)
3091 int
3092 qdf_iommu_domain_get_attr(qdf_iommu_domain_t *domain,
3093 			  enum qdf_iommu_attr attr, void *data)
3094 {
3095 	return __qdf_iommu_domain_get_attr(domain, attr, data);
3096 }
3097 
3098 qdf_export_symbol(qdf_iommu_domain_get_attr);
3099 #endif
3100 
3101 #ifdef ENHANCED_OS_ABSTRACTION
3102 void qdf_update_mem_map_table(qdf_device_t osdev,
3103 			      qdf_mem_info_t *mem_info,
3104 			      qdf_dma_addr_t dma_addr,
3105 			      uint32_t mem_size)
3106 {
3107 	if (!mem_info) {
3108 		qdf_nofl_err("%s: NULL mem_info", __func__);
3109 		return;
3110 	}
3111 
3112 	__qdf_update_mem_map_table(osdev, mem_info, dma_addr, mem_size);
3113 }
3114 
3115 qdf_export_symbol(qdf_update_mem_map_table);
3116 
3117 qdf_dma_addr_t qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev,
3118 					  qdf_dma_addr_t dma_addr)
3119 {
3120 	return __qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
3121 }
3122 
3123 qdf_export_symbol(qdf_mem_paddr_from_dmaaddr);
3124 #endif
3125 
3126 #ifdef QCA_KMEM_CACHE_SUPPORT
3127 qdf_kmem_cache_t
3128 __qdf_kmem_cache_create(const char *cache_name,
3129 			qdf_size_t size)
3130 {
3131 	struct kmem_cache *cache;
3132 
3133 	cache = kmem_cache_create(cache_name, size,
3134 				  0, 0, NULL);
3135 
3136 	if (!cache)
3137 		return NULL;
3138 
3139 	return cache;
3140 }
3141 qdf_export_symbol(__qdf_kmem_cache_create);
3142 
3143 void
3144 __qdf_kmem_cache_destroy(qdf_kmem_cache_t cache)
3145 {
3146 	kmem_cache_destroy(cache);
3147 }
3148 
3149 qdf_export_symbol(__qdf_kmem_cache_destroy);
3150 
3151 void*
3152 __qdf_kmem_cache_alloc(qdf_kmem_cache_t cache)
3153 {
3154 	int flags = GFP_KERNEL;
3155 
3156 	if (in_interrupt() || irqs_disabled() || in_atomic())
3157 		flags = GFP_ATOMIC;
3158 
3159 	return kmem_cache_alloc(cache, flags);
3160 }
3161 
3162 qdf_export_symbol(__qdf_kmem_cache_alloc);
3163 
3164 void
3165 __qdf_kmem_cache_free(qdf_kmem_cache_t cache, void *node)
3166 
3167 {
3168 	kmem_cache_free(cache, node);
3169 }
3170 
3171 qdf_export_symbol(__qdf_kmem_cache_free);
3172 #else
3173 qdf_kmem_cache_t
3174 __qdf_kmem_cache_create(const char *cache_name,
3175 			qdf_size_t size)
3176 {
3177 	return NULL;
3178 }
3179 
3180 void
3181 __qdf_kmem_cache_destroy(qdf_kmem_cache_t cache)
3182 {
3183 }
3184 
3185 void *
3186 __qdf_kmem_cache_alloc(qdf_kmem_cache_t cache)
3187 {
3188 	return NULL;
3189 }
3190 
3191 void
3192 __qdf_kmem_cache_free(qdf_kmem_cache_t cache, void *node)
3193 {
3194 }
3195 #endif
3196 
3197 #ifdef QCA_DMA_PADDR_CHECK
3198 void qdf_dma_invalid_buf_list_init(void)
3199 {
3200 	int i;
3201 
3202 	for (i = 0; i < MAX_DEBUG_DOMAIN_COUNT; i++) {
3203 		qdf_list_create(&qdf_invalid_buf_list[i],
3204 				QDF_DMA_INVALID_BUF_LIST_SIZE);
3205 		qdf_invalid_buf_list_init[i] = true;
3206 	}
3207 	qdf_spinlock_create(&qdf_invalid_buf_list_lock);
3208 }
3209 
3210 void qdf_dma_invalid_buf_free(void *dev, uint8_t domain)
3211 {
3212 	bool is_separate;
3213 	qdf_list_t *cur_buf_list;
3214 	struct qdf_dma_buf_entry *entry;
3215 	QDF_STATUS status = QDF_STATUS_E_EMPTY;
3216 
3217 	if (!dev)
3218 		return;
3219 
3220 	if (domain >= MAX_DEBUG_DOMAIN_COUNT)
3221 		return;
3222 
3223 	if (!qdf_invalid_buf_list_init[domain])
3224 		return;
3225 
3226 	cur_buf_list = &qdf_invalid_buf_list[domain];
3227 	do {
3228 		qdf_spin_lock_irqsave(&qdf_invalid_buf_list_lock);
3229 		status = qdf_list_remove_front(cur_buf_list,
3230 					       (qdf_list_node_t **)&entry);
3231 		qdf_spin_unlock_irqrestore(&qdf_invalid_buf_list_lock);
3232 
3233 		if (status != QDF_STATUS_SUCCESS)
3234 			break;
3235 
3236 		is_separate = !entry->vaddr ? false : true;
3237 		if (is_separate) {
3238 			dma_free_coherent(dev, entry->size, entry->vaddr,
3239 					  entry->phy_addr);
3240 			qdf_mem_free(entry);
3241 		} else
3242 			dma_free_coherent(dev, entry->size, entry,
3243 					  entry->phy_addr);
3244 	} while (!qdf_list_empty(cur_buf_list));
3245 	qdf_invalid_buf_list_init[domain] = false;
3246 }
3247 
3248 void qdf_dma_invalid_buf_list_deinit(void)
3249 {
3250 	int i;
3251 
3252 	for (i = 0; i < MAX_DEBUG_DOMAIN_COUNT; i++)
3253 		qdf_list_destroy(&qdf_invalid_buf_list[i]);
3254 
3255 	qdf_spinlock_destroy(&qdf_invalid_buf_list_lock);
3256 }
3257 #endif /* QCA_DMA_PADDR_CHECK */
3258