1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  kernel/sched/core.c
4   *
5   *  Core kernel CPU scheduler code
6   *
7   *  Copyright (C) 1991-2002  Linus Torvalds
8   *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9   */
10  #include <linux/highmem.h>
11  #include <linux/hrtimer_api.h>
12  #include <linux/ktime_api.h>
13  #include <linux/sched/signal.h>
14  #include <linux/syscalls_api.h>
15  #include <linux/debug_locks.h>
16  #include <linux/prefetch.h>
17  #include <linux/capability.h>
18  #include <linux/pgtable_api.h>
19  #include <linux/wait_bit.h>
20  #include <linux/jiffies.h>
21  #include <linux/spinlock_api.h>
22  #include <linux/cpumask_api.h>
23  #include <linux/lockdep_api.h>
24  #include <linux/hardirq.h>
25  #include <linux/softirq.h>
26  #include <linux/refcount_api.h>
27  #include <linux/topology.h>
28  #include <linux/sched/clock.h>
29  #include <linux/sched/cond_resched.h>
30  #include <linux/sched/cputime.h>
31  #include <linux/sched/debug.h>
32  #include <linux/sched/hotplug.h>
33  #include <linux/sched/init.h>
34  #include <linux/sched/isolation.h>
35  #include <linux/sched/loadavg.h>
36  #include <linux/sched/mm.h>
37  #include <linux/sched/nohz.h>
38  #include <linux/sched/rseq_api.h>
39  #include <linux/sched/rt.h>
40  
41  #include <linux/blkdev.h>
42  #include <linux/context_tracking.h>
43  #include <linux/cpuset.h>
44  #include <linux/delayacct.h>
45  #include <linux/init_task.h>
46  #include <linux/interrupt.h>
47  #include <linux/ioprio.h>
48  #include <linux/kallsyms.h>
49  #include <linux/kcov.h>
50  #include <linux/kprobes.h>
51  #include <linux/llist_api.h>
52  #include <linux/mmu_context.h>
53  #include <linux/mmzone.h>
54  #include <linux/mutex_api.h>
55  #include <linux/nmi.h>
56  #include <linux/nospec.h>
57  #include <linux/perf_event_api.h>
58  #include <linux/profile.h>
59  #include <linux/psi.h>
60  #include <linux/rcuwait_api.h>
61  #include <linux/rseq.h>
62  #include <linux/sched/wake_q.h>
63  #include <linux/scs.h>
64  #include <linux/slab.h>
65  #include <linux/syscalls.h>
66  #include <linux/vtime.h>
67  #include <linux/wait_api.h>
68  #include <linux/workqueue_api.h>
69  
70  #ifdef CONFIG_PREEMPT_DYNAMIC
71  # ifdef CONFIG_GENERIC_ENTRY
72  #  include <linux/entry-common.h>
73  # endif
74  #endif
75  
76  #include <uapi/linux/sched/types.h>
77  
78  #include <asm/irq_regs.h>
79  #include <asm/switch_to.h>
80  #include <asm/tlb.h>
81  
82  #define CREATE_TRACE_POINTS
83  #include <linux/sched/rseq_api.h>
84  #include <trace/events/sched.h>
85  #include <trace/events/ipi.h>
86  #undef CREATE_TRACE_POINTS
87  
88  #include "sched.h"
89  #include "stats.h"
90  
91  #include "autogroup.h"
92  #include "pelt.h"
93  #include "smp.h"
94  #include "stats.h"
95  
96  #include "../workqueue_internal.h"
97  #include "../../io_uring/io-wq.h"
98  #include "../smpboot.h"
99  
100  EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101  EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102  
103  /*
104   * Export tracepoints that act as a bare tracehook (ie: have no trace event
105   * associated with them) to allow external modules to probe them.
106   */
107  EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108  EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109  EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110  EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111  EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112  EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113  EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114  EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115  EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116  EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117  EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118  EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119  
120  DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121  
122  #ifdef CONFIG_SCHED_DEBUG
123  /*
124   * Debugging: various feature bits
125   *
126   * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127   * sysctl_sched_features, defined in sched.h, to allow constants propagation
128   * at compile time and compiler optimization based on features default.
129   */
130  #define SCHED_FEAT(name, enabled)	\
131  	(1UL << __SCHED_FEAT_##name) * enabled |
132  const_debug unsigned int sysctl_sched_features =
133  #include "features.h"
134  	0;
135  #undef SCHED_FEAT
136  
137  /*
138   * Print a warning if need_resched is set for the given duration (if
139   * LATENCY_WARN is enabled).
140   *
141   * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142   * per boot.
143   */
144  __read_mostly int sysctl_resched_latency_warn_ms = 100;
145  __read_mostly int sysctl_resched_latency_warn_once = 1;
146  #endif /* CONFIG_SCHED_DEBUG */
147  
148  /*
149   * Number of tasks to iterate in a single balance run.
150   * Limited because this is done with IRQs disabled.
151   */
152  const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153  
154  __read_mostly int scheduler_running;
155  
156  #ifdef CONFIG_SCHED_CORE
157  
158  DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159  
160  /* kernel prio, less is more */
__task_prio(const struct task_struct * p)161  static inline int __task_prio(const struct task_struct *p)
162  {
163  	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164  		return -2;
165  
166  	if (p->dl_server)
167  		return -1; /* deadline */
168  
169  	if (rt_or_dl_prio(p->prio))
170  		return p->prio; /* [-1, 99] */
171  
172  	if (p->sched_class == &idle_sched_class)
173  		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174  
175  	if (task_on_scx(p))
176  		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
177  
178  	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
179  }
180  
181  /*
182   * l(a,b)
183   * le(a,b) := !l(b,a)
184   * g(a,b)  := l(b,a)
185   * ge(a,b) := !l(a,b)
186   */
187  
188  /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)189  static inline bool prio_less(const struct task_struct *a,
190  			     const struct task_struct *b, bool in_fi)
191  {
192  
193  	int pa = __task_prio(a), pb = __task_prio(b);
194  
195  	if (-pa < -pb)
196  		return true;
197  
198  	if (-pb < -pa)
199  		return false;
200  
201  	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
202  		const struct sched_dl_entity *a_dl, *b_dl;
203  
204  		a_dl = &a->dl;
205  		/*
206  		 * Since,'a' and 'b' can be CFS tasks served by DL server,
207  		 * __task_prio() can return -1 (for DL) even for those. In that
208  		 * case, get to the dl_server's DL entity.
209  		 */
210  		if (a->dl_server)
211  			a_dl = a->dl_server;
212  
213  		b_dl = &b->dl;
214  		if (b->dl_server)
215  			b_dl = b->dl_server;
216  
217  		return !dl_time_before(a_dl->deadline, b_dl->deadline);
218  	}
219  
220  	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
221  		return cfs_prio_less(a, b, in_fi);
222  
223  #ifdef CONFIG_SCHED_CLASS_EXT
224  	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
225  		return scx_prio_less(a, b, in_fi);
226  #endif
227  
228  	return false;
229  }
230  
__sched_core_less(const struct task_struct * a,const struct task_struct * b)231  static inline bool __sched_core_less(const struct task_struct *a,
232  				     const struct task_struct *b)
233  {
234  	if (a->core_cookie < b->core_cookie)
235  		return true;
236  
237  	if (a->core_cookie > b->core_cookie)
238  		return false;
239  
240  	/* flip prio, so high prio is leftmost */
241  	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
242  		return true;
243  
244  	return false;
245  }
246  
247  #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
248  
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)249  static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
250  {
251  	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
252  }
253  
rb_sched_core_cmp(const void * key,const struct rb_node * node)254  static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
255  {
256  	const struct task_struct *p = __node_2_sc(node);
257  	unsigned long cookie = (unsigned long)key;
258  
259  	if (cookie < p->core_cookie)
260  		return -1;
261  
262  	if (cookie > p->core_cookie)
263  		return 1;
264  
265  	return 0;
266  }
267  
sched_core_enqueue(struct rq * rq,struct task_struct * p)268  void sched_core_enqueue(struct rq *rq, struct task_struct *p)
269  {
270  	if (p->se.sched_delayed)
271  		return;
272  
273  	rq->core->core_task_seq++;
274  
275  	if (!p->core_cookie)
276  		return;
277  
278  	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
279  }
280  
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)281  void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
282  {
283  	if (p->se.sched_delayed)
284  		return;
285  
286  	rq->core->core_task_seq++;
287  
288  	if (sched_core_enqueued(p)) {
289  		rb_erase(&p->core_node, &rq->core_tree);
290  		RB_CLEAR_NODE(&p->core_node);
291  	}
292  
293  	/*
294  	 * Migrating the last task off the cpu, with the cpu in forced idle
295  	 * state. Reschedule to create an accounting edge for forced idle,
296  	 * and re-examine whether the core is still in forced idle state.
297  	 */
298  	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
299  	    rq->core->core_forceidle_count && rq->curr == rq->idle)
300  		resched_curr(rq);
301  }
302  
sched_task_is_throttled(struct task_struct * p,int cpu)303  static int sched_task_is_throttled(struct task_struct *p, int cpu)
304  {
305  	if (p->sched_class->task_is_throttled)
306  		return p->sched_class->task_is_throttled(p, cpu);
307  
308  	return 0;
309  }
310  
sched_core_next(struct task_struct * p,unsigned long cookie)311  static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
312  {
313  	struct rb_node *node = &p->core_node;
314  	int cpu = task_cpu(p);
315  
316  	do {
317  		node = rb_next(node);
318  		if (!node)
319  			return NULL;
320  
321  		p = __node_2_sc(node);
322  		if (p->core_cookie != cookie)
323  			return NULL;
324  
325  	} while (sched_task_is_throttled(p, cpu));
326  
327  	return p;
328  }
329  
330  /*
331   * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
332   * If no suitable task is found, NULL will be returned.
333   */
sched_core_find(struct rq * rq,unsigned long cookie)334  static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
335  {
336  	struct task_struct *p;
337  	struct rb_node *node;
338  
339  	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
340  	if (!node)
341  		return NULL;
342  
343  	p = __node_2_sc(node);
344  	if (!sched_task_is_throttled(p, rq->cpu))
345  		return p;
346  
347  	return sched_core_next(p, cookie);
348  }
349  
350  /*
351   * Magic required such that:
352   *
353   *	raw_spin_rq_lock(rq);
354   *	...
355   *	raw_spin_rq_unlock(rq);
356   *
357   * ends up locking and unlocking the _same_ lock, and all CPUs
358   * always agree on what rq has what lock.
359   *
360   * XXX entirely possible to selectively enable cores, don't bother for now.
361   */
362  
363  static DEFINE_MUTEX(sched_core_mutex);
364  static atomic_t sched_core_count;
365  static struct cpumask sched_core_mask;
366  
sched_core_lock(int cpu,unsigned long * flags)367  static void sched_core_lock(int cpu, unsigned long *flags)
368  {
369  	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
370  	int t, i = 0;
371  
372  	local_irq_save(*flags);
373  	for_each_cpu(t, smt_mask)
374  		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
375  }
376  
sched_core_unlock(int cpu,unsigned long * flags)377  static void sched_core_unlock(int cpu, unsigned long *flags)
378  {
379  	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
380  	int t;
381  
382  	for_each_cpu(t, smt_mask)
383  		raw_spin_unlock(&cpu_rq(t)->__lock);
384  	local_irq_restore(*flags);
385  }
386  
__sched_core_flip(bool enabled)387  static void __sched_core_flip(bool enabled)
388  {
389  	unsigned long flags;
390  	int cpu, t;
391  
392  	cpus_read_lock();
393  
394  	/*
395  	 * Toggle the online cores, one by one.
396  	 */
397  	cpumask_copy(&sched_core_mask, cpu_online_mask);
398  	for_each_cpu(cpu, &sched_core_mask) {
399  		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
400  
401  		sched_core_lock(cpu, &flags);
402  
403  		for_each_cpu(t, smt_mask)
404  			cpu_rq(t)->core_enabled = enabled;
405  
406  		cpu_rq(cpu)->core->core_forceidle_start = 0;
407  
408  		sched_core_unlock(cpu, &flags);
409  
410  		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
411  	}
412  
413  	/*
414  	 * Toggle the offline CPUs.
415  	 */
416  	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
417  		cpu_rq(cpu)->core_enabled = enabled;
418  
419  	cpus_read_unlock();
420  }
421  
sched_core_assert_empty(void)422  static void sched_core_assert_empty(void)
423  {
424  	int cpu;
425  
426  	for_each_possible_cpu(cpu)
427  		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
428  }
429  
__sched_core_enable(void)430  static void __sched_core_enable(void)
431  {
432  	static_branch_enable(&__sched_core_enabled);
433  	/*
434  	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
435  	 * and future ones will observe !sched_core_disabled().
436  	 */
437  	synchronize_rcu();
438  	__sched_core_flip(true);
439  	sched_core_assert_empty();
440  }
441  
__sched_core_disable(void)442  static void __sched_core_disable(void)
443  {
444  	sched_core_assert_empty();
445  	__sched_core_flip(false);
446  	static_branch_disable(&__sched_core_enabled);
447  }
448  
sched_core_get(void)449  void sched_core_get(void)
450  {
451  	if (atomic_inc_not_zero(&sched_core_count))
452  		return;
453  
454  	mutex_lock(&sched_core_mutex);
455  	if (!atomic_read(&sched_core_count))
456  		__sched_core_enable();
457  
458  	smp_mb__before_atomic();
459  	atomic_inc(&sched_core_count);
460  	mutex_unlock(&sched_core_mutex);
461  }
462  
__sched_core_put(struct work_struct * work)463  static void __sched_core_put(struct work_struct *work)
464  {
465  	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
466  		__sched_core_disable();
467  		mutex_unlock(&sched_core_mutex);
468  	}
469  }
470  
sched_core_put(void)471  void sched_core_put(void)
472  {
473  	static DECLARE_WORK(_work, __sched_core_put);
474  
475  	/*
476  	 * "There can be only one"
477  	 *
478  	 * Either this is the last one, or we don't actually need to do any
479  	 * 'work'. If it is the last *again*, we rely on
480  	 * WORK_STRUCT_PENDING_BIT.
481  	 */
482  	if (!atomic_add_unless(&sched_core_count, -1, 1))
483  		schedule_work(&_work);
484  }
485  
486  #else /* !CONFIG_SCHED_CORE */
487  
sched_core_enqueue(struct rq * rq,struct task_struct * p)488  static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
489  static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)490  sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
491  
492  #endif /* CONFIG_SCHED_CORE */
493  
494  /*
495   * Serialization rules:
496   *
497   * Lock order:
498   *
499   *   p->pi_lock
500   *     rq->lock
501   *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
502   *
503   *  rq1->lock
504   *    rq2->lock  where: rq1 < rq2
505   *
506   * Regular state:
507   *
508   * Normal scheduling state is serialized by rq->lock. __schedule() takes the
509   * local CPU's rq->lock, it optionally removes the task from the runqueue and
510   * always looks at the local rq data structures to find the most eligible task
511   * to run next.
512   *
513   * Task enqueue is also under rq->lock, possibly taken from another CPU.
514   * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
515   * the local CPU to avoid bouncing the runqueue state around [ see
516   * ttwu_queue_wakelist() ]
517   *
518   * Task wakeup, specifically wakeups that involve migration, are horribly
519   * complicated to avoid having to take two rq->locks.
520   *
521   * Special state:
522   *
523   * System-calls and anything external will use task_rq_lock() which acquires
524   * both p->pi_lock and rq->lock. As a consequence the state they change is
525   * stable while holding either lock:
526   *
527   *  - sched_setaffinity()/
528   *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
529   *  - set_user_nice():		p->se.load, p->*prio
530   *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
531   *				p->se.load, p->rt_priority,
532   *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
533   *  - sched_setnuma():		p->numa_preferred_nid
534   *  - sched_move_task():	p->sched_task_group
535   *  - uclamp_update_active()	p->uclamp*
536   *
537   * p->state <- TASK_*:
538   *
539   *   is changed locklessly using set_current_state(), __set_current_state() or
540   *   set_special_state(), see their respective comments, or by
541   *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
542   *   concurrent self.
543   *
544   * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
545   *
546   *   is set by activate_task() and cleared by deactivate_task(), under
547   *   rq->lock. Non-zero indicates the task is runnable, the special
548   *   ON_RQ_MIGRATING state is used for migration without holding both
549   *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
550   *
551   *   Additionally it is possible to be ->on_rq but still be considered not
552   *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
553   *   but will be dequeued as soon as they get picked again. See the
554   *   task_is_runnable() helper.
555   *
556   * p->on_cpu <- { 0, 1 }:
557   *
558   *   is set by prepare_task() and cleared by finish_task() such that it will be
559   *   set before p is scheduled-in and cleared after p is scheduled-out, both
560   *   under rq->lock. Non-zero indicates the task is running on its CPU.
561   *
562   *   [ The astute reader will observe that it is possible for two tasks on one
563   *     CPU to have ->on_cpu = 1 at the same time. ]
564   *
565   * task_cpu(p): is changed by set_task_cpu(), the rules are:
566   *
567   *  - Don't call set_task_cpu() on a blocked task:
568   *
569   *    We don't care what CPU we're not running on, this simplifies hotplug,
570   *    the CPU assignment of blocked tasks isn't required to be valid.
571   *
572   *  - for try_to_wake_up(), called under p->pi_lock:
573   *
574   *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
575   *
576   *  - for migration called under rq->lock:
577   *    [ see task_on_rq_migrating() in task_rq_lock() ]
578   *
579   *    o move_queued_task()
580   *    o detach_task()
581   *
582   *  - for migration called under double_rq_lock():
583   *
584   *    o __migrate_swap_task()
585   *    o push_rt_task() / pull_rt_task()
586   *    o push_dl_task() / pull_dl_task()
587   *    o dl_task_offline_migration()
588   *
589   */
590  
raw_spin_rq_lock_nested(struct rq * rq,int subclass)591  void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
592  {
593  	raw_spinlock_t *lock;
594  
595  	/* Matches synchronize_rcu() in __sched_core_enable() */
596  	preempt_disable();
597  	if (sched_core_disabled()) {
598  		raw_spin_lock_nested(&rq->__lock, subclass);
599  		/* preempt_count *MUST* be > 1 */
600  		preempt_enable_no_resched();
601  		return;
602  	}
603  
604  	for (;;) {
605  		lock = __rq_lockp(rq);
606  		raw_spin_lock_nested(lock, subclass);
607  		if (likely(lock == __rq_lockp(rq))) {
608  			/* preempt_count *MUST* be > 1 */
609  			preempt_enable_no_resched();
610  			return;
611  		}
612  		raw_spin_unlock(lock);
613  	}
614  }
615  
raw_spin_rq_trylock(struct rq * rq)616  bool raw_spin_rq_trylock(struct rq *rq)
617  {
618  	raw_spinlock_t *lock;
619  	bool ret;
620  
621  	/* Matches synchronize_rcu() in __sched_core_enable() */
622  	preempt_disable();
623  	if (sched_core_disabled()) {
624  		ret = raw_spin_trylock(&rq->__lock);
625  		preempt_enable();
626  		return ret;
627  	}
628  
629  	for (;;) {
630  		lock = __rq_lockp(rq);
631  		ret = raw_spin_trylock(lock);
632  		if (!ret || (likely(lock == __rq_lockp(rq)))) {
633  			preempt_enable();
634  			return ret;
635  		}
636  		raw_spin_unlock(lock);
637  	}
638  }
639  
raw_spin_rq_unlock(struct rq * rq)640  void raw_spin_rq_unlock(struct rq *rq)
641  {
642  	raw_spin_unlock(rq_lockp(rq));
643  }
644  
645  #ifdef CONFIG_SMP
646  /*
647   * double_rq_lock - safely lock two runqueues
648   */
double_rq_lock(struct rq * rq1,struct rq * rq2)649  void double_rq_lock(struct rq *rq1, struct rq *rq2)
650  {
651  	lockdep_assert_irqs_disabled();
652  
653  	if (rq_order_less(rq2, rq1))
654  		swap(rq1, rq2);
655  
656  	raw_spin_rq_lock(rq1);
657  	if (__rq_lockp(rq1) != __rq_lockp(rq2))
658  		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
659  
660  	double_rq_clock_clear_update(rq1, rq2);
661  }
662  #endif
663  
664  /*
665   * __task_rq_lock - lock the rq @p resides on.
666   */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)667  struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
668  	__acquires(rq->lock)
669  {
670  	struct rq *rq;
671  
672  	lockdep_assert_held(&p->pi_lock);
673  
674  	for (;;) {
675  		rq = task_rq(p);
676  		raw_spin_rq_lock(rq);
677  		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
678  			rq_pin_lock(rq, rf);
679  			return rq;
680  		}
681  		raw_spin_rq_unlock(rq);
682  
683  		while (unlikely(task_on_rq_migrating(p)))
684  			cpu_relax();
685  	}
686  }
687  
688  /*
689   * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
690   */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)691  struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
692  	__acquires(p->pi_lock)
693  	__acquires(rq->lock)
694  {
695  	struct rq *rq;
696  
697  	for (;;) {
698  		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
699  		rq = task_rq(p);
700  		raw_spin_rq_lock(rq);
701  		/*
702  		 *	move_queued_task()		task_rq_lock()
703  		 *
704  		 *	ACQUIRE (rq->lock)
705  		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
706  		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
707  		 *	[S] ->cpu = new_cpu		[L] task_rq()
708  		 *					[L] ->on_rq
709  		 *	RELEASE (rq->lock)
710  		 *
711  		 * If we observe the old CPU in task_rq_lock(), the acquire of
712  		 * the old rq->lock will fully serialize against the stores.
713  		 *
714  		 * If we observe the new CPU in task_rq_lock(), the address
715  		 * dependency headed by '[L] rq = task_rq()' and the acquire
716  		 * will pair with the WMB to ensure we then also see migrating.
717  		 */
718  		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
719  			rq_pin_lock(rq, rf);
720  			return rq;
721  		}
722  		raw_spin_rq_unlock(rq);
723  		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
724  
725  		while (unlikely(task_on_rq_migrating(p)))
726  			cpu_relax();
727  	}
728  }
729  
730  /*
731   * RQ-clock updating methods:
732   */
733  
update_rq_clock_task(struct rq * rq,s64 delta)734  static void update_rq_clock_task(struct rq *rq, s64 delta)
735  {
736  /*
737   * In theory, the compile should just see 0 here, and optimize out the call
738   * to sched_rt_avg_update. But I don't trust it...
739   */
740  	s64 __maybe_unused steal = 0, irq_delta = 0;
741  
742  #ifdef CONFIG_IRQ_TIME_ACCOUNTING
743  	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
744  
745  	/*
746  	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
747  	 * this case when a previous update_rq_clock() happened inside a
748  	 * {soft,}IRQ region.
749  	 *
750  	 * When this happens, we stop ->clock_task and only update the
751  	 * prev_irq_time stamp to account for the part that fit, so that a next
752  	 * update will consume the rest. This ensures ->clock_task is
753  	 * monotonic.
754  	 *
755  	 * It does however cause some slight miss-attribution of {soft,}IRQ
756  	 * time, a more accurate solution would be to update the irq_time using
757  	 * the current rq->clock timestamp, except that would require using
758  	 * atomic ops.
759  	 */
760  	if (irq_delta > delta)
761  		irq_delta = delta;
762  
763  	rq->prev_irq_time += irq_delta;
764  	delta -= irq_delta;
765  	delayacct_irq(rq->curr, irq_delta);
766  #endif
767  #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
768  	if (static_key_false((&paravirt_steal_rq_enabled))) {
769  		steal = paravirt_steal_clock(cpu_of(rq));
770  		steal -= rq->prev_steal_time_rq;
771  
772  		if (unlikely(steal > delta))
773  			steal = delta;
774  
775  		rq->prev_steal_time_rq += steal;
776  		delta -= steal;
777  	}
778  #endif
779  
780  	rq->clock_task += delta;
781  
782  #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
783  	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
784  		update_irq_load_avg(rq, irq_delta + steal);
785  #endif
786  	update_rq_clock_pelt(rq, delta);
787  }
788  
update_rq_clock(struct rq * rq)789  void update_rq_clock(struct rq *rq)
790  {
791  	s64 delta;
792  
793  	lockdep_assert_rq_held(rq);
794  
795  	if (rq->clock_update_flags & RQCF_ACT_SKIP)
796  		return;
797  
798  #ifdef CONFIG_SCHED_DEBUG
799  	if (sched_feat(WARN_DOUBLE_CLOCK))
800  		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
801  	rq->clock_update_flags |= RQCF_UPDATED;
802  #endif
803  
804  	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
805  	if (delta < 0)
806  		return;
807  	rq->clock += delta;
808  	update_rq_clock_task(rq, delta);
809  }
810  
811  #ifdef CONFIG_SCHED_HRTICK
812  /*
813   * Use HR-timers to deliver accurate preemption points.
814   */
815  
hrtick_clear(struct rq * rq)816  static void hrtick_clear(struct rq *rq)
817  {
818  	if (hrtimer_active(&rq->hrtick_timer))
819  		hrtimer_cancel(&rq->hrtick_timer);
820  }
821  
822  /*
823   * High-resolution timer tick.
824   * Runs from hardirq context with interrupts disabled.
825   */
hrtick(struct hrtimer * timer)826  static enum hrtimer_restart hrtick(struct hrtimer *timer)
827  {
828  	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
829  	struct rq_flags rf;
830  
831  	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
832  
833  	rq_lock(rq, &rf);
834  	update_rq_clock(rq);
835  	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
836  	rq_unlock(rq, &rf);
837  
838  	return HRTIMER_NORESTART;
839  }
840  
841  #ifdef CONFIG_SMP
842  
__hrtick_restart(struct rq * rq)843  static void __hrtick_restart(struct rq *rq)
844  {
845  	struct hrtimer *timer = &rq->hrtick_timer;
846  	ktime_t time = rq->hrtick_time;
847  
848  	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
849  }
850  
851  /*
852   * called from hardirq (IPI) context
853   */
__hrtick_start(void * arg)854  static void __hrtick_start(void *arg)
855  {
856  	struct rq *rq = arg;
857  	struct rq_flags rf;
858  
859  	rq_lock(rq, &rf);
860  	__hrtick_restart(rq);
861  	rq_unlock(rq, &rf);
862  }
863  
864  /*
865   * Called to set the hrtick timer state.
866   *
867   * called with rq->lock held and IRQs disabled
868   */
hrtick_start(struct rq * rq,u64 delay)869  void hrtick_start(struct rq *rq, u64 delay)
870  {
871  	struct hrtimer *timer = &rq->hrtick_timer;
872  	s64 delta;
873  
874  	/*
875  	 * Don't schedule slices shorter than 10000ns, that just
876  	 * doesn't make sense and can cause timer DoS.
877  	 */
878  	delta = max_t(s64, delay, 10000LL);
879  	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
880  
881  	if (rq == this_rq())
882  		__hrtick_restart(rq);
883  	else
884  		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
885  }
886  
887  #else
888  /*
889   * Called to set the hrtick timer state.
890   *
891   * called with rq->lock held and IRQs disabled
892   */
hrtick_start(struct rq * rq,u64 delay)893  void hrtick_start(struct rq *rq, u64 delay)
894  {
895  	/*
896  	 * Don't schedule slices shorter than 10000ns, that just
897  	 * doesn't make sense. Rely on vruntime for fairness.
898  	 */
899  	delay = max_t(u64, delay, 10000LL);
900  	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
901  		      HRTIMER_MODE_REL_PINNED_HARD);
902  }
903  
904  #endif /* CONFIG_SMP */
905  
hrtick_rq_init(struct rq * rq)906  static void hrtick_rq_init(struct rq *rq)
907  {
908  #ifdef CONFIG_SMP
909  	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
910  #endif
911  	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
912  	rq->hrtick_timer.function = hrtick;
913  }
914  #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)915  static inline void hrtick_clear(struct rq *rq)
916  {
917  }
918  
hrtick_rq_init(struct rq * rq)919  static inline void hrtick_rq_init(struct rq *rq)
920  {
921  }
922  #endif	/* CONFIG_SCHED_HRTICK */
923  
924  /*
925   * try_cmpxchg based fetch_or() macro so it works for different integer types:
926   */
927  #define fetch_or(ptr, mask)						\
928  	({								\
929  		typeof(ptr) _ptr = (ptr);				\
930  		typeof(mask) _mask = (mask);				\
931  		typeof(*_ptr) _val = *_ptr;				\
932  									\
933  		do {							\
934  		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
935  	_val;								\
936  })
937  
938  #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
939  /*
940   * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
941   * this avoids any races wrt polling state changes and thereby avoids
942   * spurious IPIs.
943   */
set_nr_and_not_polling(struct task_struct * p)944  static inline bool set_nr_and_not_polling(struct task_struct *p)
945  {
946  	struct thread_info *ti = task_thread_info(p);
947  	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
948  }
949  
950  /*
951   * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
952   *
953   * If this returns true, then the idle task promises to call
954   * sched_ttwu_pending() and reschedule soon.
955   */
set_nr_if_polling(struct task_struct * p)956  static bool set_nr_if_polling(struct task_struct *p)
957  {
958  	struct thread_info *ti = task_thread_info(p);
959  	typeof(ti->flags) val = READ_ONCE(ti->flags);
960  
961  	do {
962  		if (!(val & _TIF_POLLING_NRFLAG))
963  			return false;
964  		if (val & _TIF_NEED_RESCHED)
965  			return true;
966  	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
967  
968  	return true;
969  }
970  
971  #else
set_nr_and_not_polling(struct task_struct * p)972  static inline bool set_nr_and_not_polling(struct task_struct *p)
973  {
974  	set_tsk_need_resched(p);
975  	return true;
976  }
977  
978  #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)979  static inline bool set_nr_if_polling(struct task_struct *p)
980  {
981  	return false;
982  }
983  #endif
984  #endif
985  
__wake_q_add(struct wake_q_head * head,struct task_struct * task)986  static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
987  {
988  	struct wake_q_node *node = &task->wake_q;
989  
990  	/*
991  	 * Atomically grab the task, if ->wake_q is !nil already it means
992  	 * it's already queued (either by us or someone else) and will get the
993  	 * wakeup due to that.
994  	 *
995  	 * In order to ensure that a pending wakeup will observe our pending
996  	 * state, even in the failed case, an explicit smp_mb() must be used.
997  	 */
998  	smp_mb__before_atomic();
999  	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1000  		return false;
1001  
1002  	/*
1003  	 * The head is context local, there can be no concurrency.
1004  	 */
1005  	*head->lastp = node;
1006  	head->lastp = &node->next;
1007  	return true;
1008  }
1009  
1010  /**
1011   * wake_q_add() - queue a wakeup for 'later' waking.
1012   * @head: the wake_q_head to add @task to
1013   * @task: the task to queue for 'later' wakeup
1014   *
1015   * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1016   * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1017   * instantly.
1018   *
1019   * This function must be used as-if it were wake_up_process(); IOW the task
1020   * must be ready to be woken at this location.
1021   */
wake_q_add(struct wake_q_head * head,struct task_struct * task)1022  void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1023  {
1024  	if (__wake_q_add(head, task))
1025  		get_task_struct(task);
1026  }
1027  
1028  /**
1029   * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1030   * @head: the wake_q_head to add @task to
1031   * @task: the task to queue for 'later' wakeup
1032   *
1033   * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1034   * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1035   * instantly.
1036   *
1037   * This function must be used as-if it were wake_up_process(); IOW the task
1038   * must be ready to be woken at this location.
1039   *
1040   * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1041   * that already hold reference to @task can call the 'safe' version and trust
1042   * wake_q to do the right thing depending whether or not the @task is already
1043   * queued for wakeup.
1044   */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1045  void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1046  {
1047  	if (!__wake_q_add(head, task))
1048  		put_task_struct(task);
1049  }
1050  
wake_up_q(struct wake_q_head * head)1051  void wake_up_q(struct wake_q_head *head)
1052  {
1053  	struct wake_q_node *node = head->first;
1054  
1055  	while (node != WAKE_Q_TAIL) {
1056  		struct task_struct *task;
1057  
1058  		task = container_of(node, struct task_struct, wake_q);
1059  		/* Task can safely be re-inserted now: */
1060  		node = node->next;
1061  		task->wake_q.next = NULL;
1062  
1063  		/*
1064  		 * wake_up_process() executes a full barrier, which pairs with
1065  		 * the queueing in wake_q_add() so as not to miss wakeups.
1066  		 */
1067  		wake_up_process(task);
1068  		put_task_struct(task);
1069  	}
1070  }
1071  
1072  /*
1073   * resched_curr - mark rq's current task 'to be rescheduled now'.
1074   *
1075   * On UP this means the setting of the need_resched flag, on SMP it
1076   * might also involve a cross-CPU call to trigger the scheduler on
1077   * the target CPU.
1078   */
resched_curr(struct rq * rq)1079  void resched_curr(struct rq *rq)
1080  {
1081  	struct task_struct *curr = rq->curr;
1082  	int cpu;
1083  
1084  	lockdep_assert_rq_held(rq);
1085  
1086  	if (test_tsk_need_resched(curr))
1087  		return;
1088  
1089  	cpu = cpu_of(rq);
1090  
1091  	if (cpu == smp_processor_id()) {
1092  		set_tsk_need_resched(curr);
1093  		set_preempt_need_resched();
1094  		return;
1095  	}
1096  
1097  	if (set_nr_and_not_polling(curr))
1098  		smp_send_reschedule(cpu);
1099  	else
1100  		trace_sched_wake_idle_without_ipi(cpu);
1101  }
1102  
resched_cpu(int cpu)1103  void resched_cpu(int cpu)
1104  {
1105  	struct rq *rq = cpu_rq(cpu);
1106  	unsigned long flags;
1107  
1108  	raw_spin_rq_lock_irqsave(rq, flags);
1109  	if (cpu_online(cpu) || cpu == smp_processor_id())
1110  		resched_curr(rq);
1111  	raw_spin_rq_unlock_irqrestore(rq, flags);
1112  }
1113  
1114  #ifdef CONFIG_SMP
1115  #ifdef CONFIG_NO_HZ_COMMON
1116  /*
1117   * In the semi idle case, use the nearest busy CPU for migrating timers
1118   * from an idle CPU.  This is good for power-savings.
1119   *
1120   * We don't do similar optimization for completely idle system, as
1121   * selecting an idle CPU will add more delays to the timers than intended
1122   * (as that CPU's timer base may not be up to date wrt jiffies etc).
1123   */
get_nohz_timer_target(void)1124  int get_nohz_timer_target(void)
1125  {
1126  	int i, cpu = smp_processor_id(), default_cpu = -1;
1127  	struct sched_domain *sd;
1128  	const struct cpumask *hk_mask;
1129  
1130  	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1131  		if (!idle_cpu(cpu))
1132  			return cpu;
1133  		default_cpu = cpu;
1134  	}
1135  
1136  	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1137  
1138  	guard(rcu)();
1139  
1140  	for_each_domain(cpu, sd) {
1141  		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1142  			if (cpu == i)
1143  				continue;
1144  
1145  			if (!idle_cpu(i))
1146  				return i;
1147  		}
1148  	}
1149  
1150  	if (default_cpu == -1)
1151  		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1152  
1153  	return default_cpu;
1154  }
1155  
1156  /*
1157   * When add_timer_on() enqueues a timer into the timer wheel of an
1158   * idle CPU then this timer might expire before the next timer event
1159   * which is scheduled to wake up that CPU. In case of a completely
1160   * idle system the next event might even be infinite time into the
1161   * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1162   * leaves the inner idle loop so the newly added timer is taken into
1163   * account when the CPU goes back to idle and evaluates the timer
1164   * wheel for the next timer event.
1165   */
wake_up_idle_cpu(int cpu)1166  static void wake_up_idle_cpu(int cpu)
1167  {
1168  	struct rq *rq = cpu_rq(cpu);
1169  
1170  	if (cpu == smp_processor_id())
1171  		return;
1172  
1173  	/*
1174  	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1175  	 * part of the idle loop. This forces an exit from the idle loop
1176  	 * and a round trip to schedule(). Now this could be optimized
1177  	 * because a simple new idle loop iteration is enough to
1178  	 * re-evaluate the next tick. Provided some re-ordering of tick
1179  	 * nohz functions that would need to follow TIF_NR_POLLING
1180  	 * clearing:
1181  	 *
1182  	 * - On most architectures, a simple fetch_or on ti::flags with a
1183  	 *   "0" value would be enough to know if an IPI needs to be sent.
1184  	 *
1185  	 * - x86 needs to perform a last need_resched() check between
1186  	 *   monitor and mwait which doesn't take timers into account.
1187  	 *   There a dedicated TIF_TIMER flag would be required to
1188  	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1189  	 *   before mwait().
1190  	 *
1191  	 * However, remote timer enqueue is not such a frequent event
1192  	 * and testing of the above solutions didn't appear to report
1193  	 * much benefits.
1194  	 */
1195  	if (set_nr_and_not_polling(rq->idle))
1196  		smp_send_reschedule(cpu);
1197  	else
1198  		trace_sched_wake_idle_without_ipi(cpu);
1199  }
1200  
wake_up_full_nohz_cpu(int cpu)1201  static bool wake_up_full_nohz_cpu(int cpu)
1202  {
1203  	/*
1204  	 * We just need the target to call irq_exit() and re-evaluate
1205  	 * the next tick. The nohz full kick at least implies that.
1206  	 * If needed we can still optimize that later with an
1207  	 * empty IRQ.
1208  	 */
1209  	if (cpu_is_offline(cpu))
1210  		return true;  /* Don't try to wake offline CPUs. */
1211  	if (tick_nohz_full_cpu(cpu)) {
1212  		if (cpu != smp_processor_id() ||
1213  		    tick_nohz_tick_stopped())
1214  			tick_nohz_full_kick_cpu(cpu);
1215  		return true;
1216  	}
1217  
1218  	return false;
1219  }
1220  
1221  /*
1222   * Wake up the specified CPU.  If the CPU is going offline, it is the
1223   * caller's responsibility to deal with the lost wakeup, for example,
1224   * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1225   */
wake_up_nohz_cpu(int cpu)1226  void wake_up_nohz_cpu(int cpu)
1227  {
1228  	if (!wake_up_full_nohz_cpu(cpu))
1229  		wake_up_idle_cpu(cpu);
1230  }
1231  
nohz_csd_func(void * info)1232  static void nohz_csd_func(void *info)
1233  {
1234  	struct rq *rq = info;
1235  	int cpu = cpu_of(rq);
1236  	unsigned int flags;
1237  
1238  	/*
1239  	 * Release the rq::nohz_csd.
1240  	 */
1241  	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1242  	WARN_ON(!(flags & NOHZ_KICK_MASK));
1243  
1244  	rq->idle_balance = idle_cpu(cpu);
1245  	if (rq->idle_balance && !need_resched()) {
1246  		rq->nohz_idle_balance = flags;
1247  		raise_softirq_irqoff(SCHED_SOFTIRQ);
1248  	}
1249  }
1250  
1251  #endif /* CONFIG_NO_HZ_COMMON */
1252  
1253  #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1254  static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1255  {
1256  	if (rq->nr_running != 1)
1257  		return false;
1258  
1259  	if (p->sched_class != &fair_sched_class)
1260  		return false;
1261  
1262  	if (!task_on_rq_queued(p))
1263  		return false;
1264  
1265  	return true;
1266  }
1267  
sched_can_stop_tick(struct rq * rq)1268  bool sched_can_stop_tick(struct rq *rq)
1269  {
1270  	int fifo_nr_running;
1271  
1272  	/* Deadline tasks, even if single, need the tick */
1273  	if (rq->dl.dl_nr_running)
1274  		return false;
1275  
1276  	/*
1277  	 * If there are more than one RR tasks, we need the tick to affect the
1278  	 * actual RR behaviour.
1279  	 */
1280  	if (rq->rt.rr_nr_running) {
1281  		if (rq->rt.rr_nr_running == 1)
1282  			return true;
1283  		else
1284  			return false;
1285  	}
1286  
1287  	/*
1288  	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1289  	 * forced preemption between FIFO tasks.
1290  	 */
1291  	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1292  	if (fifo_nr_running)
1293  		return true;
1294  
1295  	/*
1296  	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1297  	 * left. For CFS, if there's more than one we need the tick for
1298  	 * involuntary preemption. For SCX, ask.
1299  	 */
1300  	if (scx_enabled() && !scx_can_stop_tick(rq))
1301  		return false;
1302  
1303  	if (rq->cfs.nr_running > 1)
1304  		return false;
1305  
1306  	/*
1307  	 * If there is one task and it has CFS runtime bandwidth constraints
1308  	 * and it's on the cpu now we don't want to stop the tick.
1309  	 * This check prevents clearing the bit if a newly enqueued task here is
1310  	 * dequeued by migrating while the constrained task continues to run.
1311  	 * E.g. going from 2->1 without going through pick_next_task().
1312  	 */
1313  	if (__need_bw_check(rq, rq->curr)) {
1314  		if (cfs_task_bw_constrained(rq->curr))
1315  			return false;
1316  	}
1317  
1318  	return true;
1319  }
1320  #endif /* CONFIG_NO_HZ_FULL */
1321  #endif /* CONFIG_SMP */
1322  
1323  #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1324  			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1325  /*
1326   * Iterate task_group tree rooted at *from, calling @down when first entering a
1327   * node and @up when leaving it for the final time.
1328   *
1329   * Caller must hold rcu_lock or sufficient equivalent.
1330   */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1331  int walk_tg_tree_from(struct task_group *from,
1332  			     tg_visitor down, tg_visitor up, void *data)
1333  {
1334  	struct task_group *parent, *child;
1335  	int ret;
1336  
1337  	parent = from;
1338  
1339  down:
1340  	ret = (*down)(parent, data);
1341  	if (ret)
1342  		goto out;
1343  	list_for_each_entry_rcu(child, &parent->children, siblings) {
1344  		parent = child;
1345  		goto down;
1346  
1347  up:
1348  		continue;
1349  	}
1350  	ret = (*up)(parent, data);
1351  	if (ret || parent == from)
1352  		goto out;
1353  
1354  	child = parent;
1355  	parent = parent->parent;
1356  	if (parent)
1357  		goto up;
1358  out:
1359  	return ret;
1360  }
1361  
tg_nop(struct task_group * tg,void * data)1362  int tg_nop(struct task_group *tg, void *data)
1363  {
1364  	return 0;
1365  }
1366  #endif
1367  
set_load_weight(struct task_struct * p,bool update_load)1368  void set_load_weight(struct task_struct *p, bool update_load)
1369  {
1370  	int prio = p->static_prio - MAX_RT_PRIO;
1371  	struct load_weight lw;
1372  
1373  	if (task_has_idle_policy(p)) {
1374  		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1375  		lw.inv_weight = WMULT_IDLEPRIO;
1376  	} else {
1377  		lw.weight = scale_load(sched_prio_to_weight[prio]);
1378  		lw.inv_weight = sched_prio_to_wmult[prio];
1379  	}
1380  
1381  	/*
1382  	 * SCHED_OTHER tasks have to update their load when changing their
1383  	 * weight
1384  	 */
1385  	if (update_load && p->sched_class->reweight_task)
1386  		p->sched_class->reweight_task(task_rq(p), p, &lw);
1387  	else
1388  		p->se.load = lw;
1389  }
1390  
1391  #ifdef CONFIG_UCLAMP_TASK
1392  /*
1393   * Serializes updates of utilization clamp values
1394   *
1395   * The (slow-path) user-space triggers utilization clamp value updates which
1396   * can require updates on (fast-path) scheduler's data structures used to
1397   * support enqueue/dequeue operations.
1398   * While the per-CPU rq lock protects fast-path update operations, user-space
1399   * requests are serialized using a mutex to reduce the risk of conflicting
1400   * updates or API abuses.
1401   */
1402  static DEFINE_MUTEX(uclamp_mutex);
1403  
1404  /* Max allowed minimum utilization */
1405  static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1406  
1407  /* Max allowed maximum utilization */
1408  static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1409  
1410  /*
1411   * By default RT tasks run at the maximum performance point/capacity of the
1412   * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1413   * SCHED_CAPACITY_SCALE.
1414   *
1415   * This knob allows admins to change the default behavior when uclamp is being
1416   * used. In battery powered devices, particularly, running at the maximum
1417   * capacity and frequency will increase energy consumption and shorten the
1418   * battery life.
1419   *
1420   * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1421   *
1422   * This knob will not override the system default sched_util_clamp_min defined
1423   * above.
1424   */
1425  unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1426  
1427  /* All clamps are required to be less or equal than these values */
1428  static struct uclamp_se uclamp_default[UCLAMP_CNT];
1429  
1430  /*
1431   * This static key is used to reduce the uclamp overhead in the fast path. It
1432   * primarily disables the call to uclamp_rq_{inc, dec}() in
1433   * enqueue/dequeue_task().
1434   *
1435   * This allows users to continue to enable uclamp in their kernel config with
1436   * minimum uclamp overhead in the fast path.
1437   *
1438   * As soon as userspace modifies any of the uclamp knobs, the static key is
1439   * enabled, since we have an actual users that make use of uclamp
1440   * functionality.
1441   *
1442   * The knobs that would enable this static key are:
1443   *
1444   *   * A task modifying its uclamp value with sched_setattr().
1445   *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1446   *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1447   */
1448  DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1449  
1450  static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1451  uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1452  		  unsigned int clamp_value)
1453  {
1454  	/*
1455  	 * Avoid blocked utilization pushing up the frequency when we go
1456  	 * idle (which drops the max-clamp) by retaining the last known
1457  	 * max-clamp.
1458  	 */
1459  	if (clamp_id == UCLAMP_MAX) {
1460  		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1461  		return clamp_value;
1462  	}
1463  
1464  	return uclamp_none(UCLAMP_MIN);
1465  }
1466  
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1467  static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1468  				     unsigned int clamp_value)
1469  {
1470  	/* Reset max-clamp retention only on idle exit */
1471  	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1472  		return;
1473  
1474  	uclamp_rq_set(rq, clamp_id, clamp_value);
1475  }
1476  
1477  static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1478  unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1479  				   unsigned int clamp_value)
1480  {
1481  	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1482  	int bucket_id = UCLAMP_BUCKETS - 1;
1483  
1484  	/*
1485  	 * Since both min and max clamps are max aggregated, find the
1486  	 * top most bucket with tasks in.
1487  	 */
1488  	for ( ; bucket_id >= 0; bucket_id--) {
1489  		if (!bucket[bucket_id].tasks)
1490  			continue;
1491  		return bucket[bucket_id].value;
1492  	}
1493  
1494  	/* No tasks -- default clamp values */
1495  	return uclamp_idle_value(rq, clamp_id, clamp_value);
1496  }
1497  
__uclamp_update_util_min_rt_default(struct task_struct * p)1498  static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1499  {
1500  	unsigned int default_util_min;
1501  	struct uclamp_se *uc_se;
1502  
1503  	lockdep_assert_held(&p->pi_lock);
1504  
1505  	uc_se = &p->uclamp_req[UCLAMP_MIN];
1506  
1507  	/* Only sync if user didn't override the default */
1508  	if (uc_se->user_defined)
1509  		return;
1510  
1511  	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1512  	uclamp_se_set(uc_se, default_util_min, false);
1513  }
1514  
uclamp_update_util_min_rt_default(struct task_struct * p)1515  static void uclamp_update_util_min_rt_default(struct task_struct *p)
1516  {
1517  	if (!rt_task(p))
1518  		return;
1519  
1520  	/* Protect updates to p->uclamp_* */
1521  	guard(task_rq_lock)(p);
1522  	__uclamp_update_util_min_rt_default(p);
1523  }
1524  
1525  static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1526  uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1527  {
1528  	/* Copy by value as we could modify it */
1529  	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1530  #ifdef CONFIG_UCLAMP_TASK_GROUP
1531  	unsigned int tg_min, tg_max, value;
1532  
1533  	/*
1534  	 * Tasks in autogroups or root task group will be
1535  	 * restricted by system defaults.
1536  	 */
1537  	if (task_group_is_autogroup(task_group(p)))
1538  		return uc_req;
1539  	if (task_group(p) == &root_task_group)
1540  		return uc_req;
1541  
1542  	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1543  	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1544  	value = uc_req.value;
1545  	value = clamp(value, tg_min, tg_max);
1546  	uclamp_se_set(&uc_req, value, false);
1547  #endif
1548  
1549  	return uc_req;
1550  }
1551  
1552  /*
1553   * The effective clamp bucket index of a task depends on, by increasing
1554   * priority:
1555   * - the task specific clamp value, when explicitly requested from userspace
1556   * - the task group effective clamp value, for tasks not either in the root
1557   *   group or in an autogroup
1558   * - the system default clamp value, defined by the sysadmin
1559   */
1560  static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1561  uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1562  {
1563  	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1564  	struct uclamp_se uc_max = uclamp_default[clamp_id];
1565  
1566  	/* System default restrictions always apply */
1567  	if (unlikely(uc_req.value > uc_max.value))
1568  		return uc_max;
1569  
1570  	return uc_req;
1571  }
1572  
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1573  unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1574  {
1575  	struct uclamp_se uc_eff;
1576  
1577  	/* Task currently refcounted: use back-annotated (effective) value */
1578  	if (p->uclamp[clamp_id].active)
1579  		return (unsigned long)p->uclamp[clamp_id].value;
1580  
1581  	uc_eff = uclamp_eff_get(p, clamp_id);
1582  
1583  	return (unsigned long)uc_eff.value;
1584  }
1585  
1586  /*
1587   * When a task is enqueued on a rq, the clamp bucket currently defined by the
1588   * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1589   * updates the rq's clamp value if required.
1590   *
1591   * Tasks can have a task-specific value requested from user-space, track
1592   * within each bucket the maximum value for tasks refcounted in it.
1593   * This "local max aggregation" allows to track the exact "requested" value
1594   * for each bucket when all its RUNNABLE tasks require the same clamp.
1595   */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1596  static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1597  				    enum uclamp_id clamp_id)
1598  {
1599  	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1600  	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1601  	struct uclamp_bucket *bucket;
1602  
1603  	lockdep_assert_rq_held(rq);
1604  
1605  	/* Update task effective clamp */
1606  	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1607  
1608  	bucket = &uc_rq->bucket[uc_se->bucket_id];
1609  	bucket->tasks++;
1610  	uc_se->active = true;
1611  
1612  	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1613  
1614  	/*
1615  	 * Local max aggregation: rq buckets always track the max
1616  	 * "requested" clamp value of its RUNNABLE tasks.
1617  	 */
1618  	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1619  		bucket->value = uc_se->value;
1620  
1621  	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1622  		uclamp_rq_set(rq, clamp_id, uc_se->value);
1623  }
1624  
1625  /*
1626   * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1627   * is released. If this is the last task reference counting the rq's max
1628   * active clamp value, then the rq's clamp value is updated.
1629   *
1630   * Both refcounted tasks and rq's cached clamp values are expected to be
1631   * always valid. If it's detected they are not, as defensive programming,
1632   * enforce the expected state and warn.
1633   */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1634  static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1635  				    enum uclamp_id clamp_id)
1636  {
1637  	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1638  	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1639  	struct uclamp_bucket *bucket;
1640  	unsigned int bkt_clamp;
1641  	unsigned int rq_clamp;
1642  
1643  	lockdep_assert_rq_held(rq);
1644  
1645  	/*
1646  	 * If sched_uclamp_used was enabled after task @p was enqueued,
1647  	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1648  	 *
1649  	 * In this case the uc_se->active flag should be false since no uclamp
1650  	 * accounting was performed at enqueue time and we can just return
1651  	 * here.
1652  	 *
1653  	 * Need to be careful of the following enqueue/dequeue ordering
1654  	 * problem too
1655  	 *
1656  	 *	enqueue(taskA)
1657  	 *	// sched_uclamp_used gets enabled
1658  	 *	enqueue(taskB)
1659  	 *	dequeue(taskA)
1660  	 *	// Must not decrement bucket->tasks here
1661  	 *	dequeue(taskB)
1662  	 *
1663  	 * where we could end up with stale data in uc_se and
1664  	 * bucket[uc_se->bucket_id].
1665  	 *
1666  	 * The following check here eliminates the possibility of such race.
1667  	 */
1668  	if (unlikely(!uc_se->active))
1669  		return;
1670  
1671  	bucket = &uc_rq->bucket[uc_se->bucket_id];
1672  
1673  	SCHED_WARN_ON(!bucket->tasks);
1674  	if (likely(bucket->tasks))
1675  		bucket->tasks--;
1676  
1677  	uc_se->active = false;
1678  
1679  	/*
1680  	 * Keep "local max aggregation" simple and accept to (possibly)
1681  	 * overboost some RUNNABLE tasks in the same bucket.
1682  	 * The rq clamp bucket value is reset to its base value whenever
1683  	 * there are no more RUNNABLE tasks refcounting it.
1684  	 */
1685  	if (likely(bucket->tasks))
1686  		return;
1687  
1688  	rq_clamp = uclamp_rq_get(rq, clamp_id);
1689  	/*
1690  	 * Defensive programming: this should never happen. If it happens,
1691  	 * e.g. due to future modification, warn and fix up the expected value.
1692  	 */
1693  	SCHED_WARN_ON(bucket->value > rq_clamp);
1694  	if (bucket->value >= rq_clamp) {
1695  		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1696  		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1697  	}
1698  }
1699  
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1700  static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1701  {
1702  	enum uclamp_id clamp_id;
1703  
1704  	/*
1705  	 * Avoid any overhead until uclamp is actually used by the userspace.
1706  	 *
1707  	 * The condition is constructed such that a NOP is generated when
1708  	 * sched_uclamp_used is disabled.
1709  	 */
1710  	if (!static_branch_unlikely(&sched_uclamp_used))
1711  		return;
1712  
1713  	if (unlikely(!p->sched_class->uclamp_enabled))
1714  		return;
1715  
1716  	if (p->se.sched_delayed)
1717  		return;
1718  
1719  	for_each_clamp_id(clamp_id)
1720  		uclamp_rq_inc_id(rq, p, clamp_id);
1721  
1722  	/* Reset clamp idle holding when there is one RUNNABLE task */
1723  	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1724  		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1725  }
1726  
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1727  static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1728  {
1729  	enum uclamp_id clamp_id;
1730  
1731  	/*
1732  	 * Avoid any overhead until uclamp is actually used by the userspace.
1733  	 *
1734  	 * The condition is constructed such that a NOP is generated when
1735  	 * sched_uclamp_used is disabled.
1736  	 */
1737  	if (!static_branch_unlikely(&sched_uclamp_used))
1738  		return;
1739  
1740  	if (unlikely(!p->sched_class->uclamp_enabled))
1741  		return;
1742  
1743  	if (p->se.sched_delayed)
1744  		return;
1745  
1746  	for_each_clamp_id(clamp_id)
1747  		uclamp_rq_dec_id(rq, p, clamp_id);
1748  }
1749  
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1750  static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1751  				      enum uclamp_id clamp_id)
1752  {
1753  	if (!p->uclamp[clamp_id].active)
1754  		return;
1755  
1756  	uclamp_rq_dec_id(rq, p, clamp_id);
1757  	uclamp_rq_inc_id(rq, p, clamp_id);
1758  
1759  	/*
1760  	 * Make sure to clear the idle flag if we've transiently reached 0
1761  	 * active tasks on rq.
1762  	 */
1763  	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1764  		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1765  }
1766  
1767  static inline void
uclamp_update_active(struct task_struct * p)1768  uclamp_update_active(struct task_struct *p)
1769  {
1770  	enum uclamp_id clamp_id;
1771  	struct rq_flags rf;
1772  	struct rq *rq;
1773  
1774  	/*
1775  	 * Lock the task and the rq where the task is (or was) queued.
1776  	 *
1777  	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1778  	 * price to pay to safely serialize util_{min,max} updates with
1779  	 * enqueues, dequeues and migration operations.
1780  	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1781  	 */
1782  	rq = task_rq_lock(p, &rf);
1783  
1784  	/*
1785  	 * Setting the clamp bucket is serialized by task_rq_lock().
1786  	 * If the task is not yet RUNNABLE and its task_struct is not
1787  	 * affecting a valid clamp bucket, the next time it's enqueued,
1788  	 * it will already see the updated clamp bucket value.
1789  	 */
1790  	for_each_clamp_id(clamp_id)
1791  		uclamp_rq_reinc_id(rq, p, clamp_id);
1792  
1793  	task_rq_unlock(rq, p, &rf);
1794  }
1795  
1796  #ifdef CONFIG_UCLAMP_TASK_GROUP
1797  static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1798  uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1799  {
1800  	struct css_task_iter it;
1801  	struct task_struct *p;
1802  
1803  	css_task_iter_start(css, 0, &it);
1804  	while ((p = css_task_iter_next(&it)))
1805  		uclamp_update_active(p);
1806  	css_task_iter_end(&it);
1807  }
1808  
1809  static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1810  #endif
1811  
1812  #ifdef CONFIG_SYSCTL
1813  #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1814  static void uclamp_update_root_tg(void)
1815  {
1816  	struct task_group *tg = &root_task_group;
1817  
1818  	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1819  		      sysctl_sched_uclamp_util_min, false);
1820  	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1821  		      sysctl_sched_uclamp_util_max, false);
1822  
1823  	guard(rcu)();
1824  	cpu_util_update_eff(&root_task_group.css);
1825  }
1826  #else
uclamp_update_root_tg(void)1827  static void uclamp_update_root_tg(void) { }
1828  #endif
1829  
uclamp_sync_util_min_rt_default(void)1830  static void uclamp_sync_util_min_rt_default(void)
1831  {
1832  	struct task_struct *g, *p;
1833  
1834  	/*
1835  	 * copy_process()			sysctl_uclamp
1836  	 *					  uclamp_min_rt = X;
1837  	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1838  	 *   // link thread			  smp_mb__after_spinlock()
1839  	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1840  	 *   sched_post_fork()			  for_each_process_thread()
1841  	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1842  	 *
1843  	 * Ensures that either sched_post_fork() will observe the new
1844  	 * uclamp_min_rt or for_each_process_thread() will observe the new
1845  	 * task.
1846  	 */
1847  	read_lock(&tasklist_lock);
1848  	smp_mb__after_spinlock();
1849  	read_unlock(&tasklist_lock);
1850  
1851  	guard(rcu)();
1852  	for_each_process_thread(g, p)
1853  		uclamp_update_util_min_rt_default(p);
1854  }
1855  
sysctl_sched_uclamp_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1856  static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1857  				void *buffer, size_t *lenp, loff_t *ppos)
1858  {
1859  	bool update_root_tg = false;
1860  	int old_min, old_max, old_min_rt;
1861  	int result;
1862  
1863  	guard(mutex)(&uclamp_mutex);
1864  
1865  	old_min = sysctl_sched_uclamp_util_min;
1866  	old_max = sysctl_sched_uclamp_util_max;
1867  	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1868  
1869  	result = proc_dointvec(table, write, buffer, lenp, ppos);
1870  	if (result)
1871  		goto undo;
1872  	if (!write)
1873  		return 0;
1874  
1875  	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1876  	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1877  	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1878  
1879  		result = -EINVAL;
1880  		goto undo;
1881  	}
1882  
1883  	if (old_min != sysctl_sched_uclamp_util_min) {
1884  		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1885  			      sysctl_sched_uclamp_util_min, false);
1886  		update_root_tg = true;
1887  	}
1888  	if (old_max != sysctl_sched_uclamp_util_max) {
1889  		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1890  			      sysctl_sched_uclamp_util_max, false);
1891  		update_root_tg = true;
1892  	}
1893  
1894  	if (update_root_tg) {
1895  		static_branch_enable(&sched_uclamp_used);
1896  		uclamp_update_root_tg();
1897  	}
1898  
1899  	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1900  		static_branch_enable(&sched_uclamp_used);
1901  		uclamp_sync_util_min_rt_default();
1902  	}
1903  
1904  	/*
1905  	 * We update all RUNNABLE tasks only when task groups are in use.
1906  	 * Otherwise, keep it simple and do just a lazy update at each next
1907  	 * task enqueue time.
1908  	 */
1909  	return 0;
1910  
1911  undo:
1912  	sysctl_sched_uclamp_util_min = old_min;
1913  	sysctl_sched_uclamp_util_max = old_max;
1914  	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1915  	return result;
1916  }
1917  #endif
1918  
uclamp_fork(struct task_struct * p)1919  static void uclamp_fork(struct task_struct *p)
1920  {
1921  	enum uclamp_id clamp_id;
1922  
1923  	/*
1924  	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1925  	 * as the task is still at its early fork stages.
1926  	 */
1927  	for_each_clamp_id(clamp_id)
1928  		p->uclamp[clamp_id].active = false;
1929  
1930  	if (likely(!p->sched_reset_on_fork))
1931  		return;
1932  
1933  	for_each_clamp_id(clamp_id) {
1934  		uclamp_se_set(&p->uclamp_req[clamp_id],
1935  			      uclamp_none(clamp_id), false);
1936  	}
1937  }
1938  
uclamp_post_fork(struct task_struct * p)1939  static void uclamp_post_fork(struct task_struct *p)
1940  {
1941  	uclamp_update_util_min_rt_default(p);
1942  }
1943  
init_uclamp_rq(struct rq * rq)1944  static void __init init_uclamp_rq(struct rq *rq)
1945  {
1946  	enum uclamp_id clamp_id;
1947  	struct uclamp_rq *uc_rq = rq->uclamp;
1948  
1949  	for_each_clamp_id(clamp_id) {
1950  		uc_rq[clamp_id] = (struct uclamp_rq) {
1951  			.value = uclamp_none(clamp_id)
1952  		};
1953  	}
1954  
1955  	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1956  }
1957  
init_uclamp(void)1958  static void __init init_uclamp(void)
1959  {
1960  	struct uclamp_se uc_max = {};
1961  	enum uclamp_id clamp_id;
1962  	int cpu;
1963  
1964  	for_each_possible_cpu(cpu)
1965  		init_uclamp_rq(cpu_rq(cpu));
1966  
1967  	for_each_clamp_id(clamp_id) {
1968  		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1969  			      uclamp_none(clamp_id), false);
1970  	}
1971  
1972  	/* System defaults allow max clamp values for both indexes */
1973  	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1974  	for_each_clamp_id(clamp_id) {
1975  		uclamp_default[clamp_id] = uc_max;
1976  #ifdef CONFIG_UCLAMP_TASK_GROUP
1977  		root_task_group.uclamp_req[clamp_id] = uc_max;
1978  		root_task_group.uclamp[clamp_id] = uc_max;
1979  #endif
1980  	}
1981  }
1982  
1983  #else /* !CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1984  static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1985  static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_fork(struct task_struct * p)1986  static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1987  static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1988  static inline void init_uclamp(void) { }
1989  #endif /* CONFIG_UCLAMP_TASK */
1990  
sched_task_on_rq(struct task_struct * p)1991  bool sched_task_on_rq(struct task_struct *p)
1992  {
1993  	return task_on_rq_queued(p);
1994  }
1995  
get_wchan(struct task_struct * p)1996  unsigned long get_wchan(struct task_struct *p)
1997  {
1998  	unsigned long ip = 0;
1999  	unsigned int state;
2000  
2001  	if (!p || p == current)
2002  		return 0;
2003  
2004  	/* Only get wchan if task is blocked and we can keep it that way. */
2005  	raw_spin_lock_irq(&p->pi_lock);
2006  	state = READ_ONCE(p->__state);
2007  	smp_rmb(); /* see try_to_wake_up() */
2008  	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2009  		ip = __get_wchan(p);
2010  	raw_spin_unlock_irq(&p->pi_lock);
2011  
2012  	return ip;
2013  }
2014  
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2015  void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2016  {
2017  	if (!(flags & ENQUEUE_NOCLOCK))
2018  		update_rq_clock(rq);
2019  
2020  	p->sched_class->enqueue_task(rq, p, flags);
2021  	/*
2022  	 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
2023  	 * ->sched_delayed.
2024  	 */
2025  	uclamp_rq_inc(rq, p);
2026  
2027  	if (!(flags & ENQUEUE_RESTORE)) {
2028  		sched_info_enqueue(rq, p);
2029  		psi_enqueue(p, flags & ENQUEUE_MIGRATED);
2030  	}
2031  
2032  	if (sched_core_enabled(rq))
2033  		sched_core_enqueue(rq, p);
2034  }
2035  
2036  /*
2037   * Must only return false when DEQUEUE_SLEEP.
2038   */
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2039  inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2040  {
2041  	if (sched_core_enabled(rq))
2042  		sched_core_dequeue(rq, p, flags);
2043  
2044  	if (!(flags & DEQUEUE_NOCLOCK))
2045  		update_rq_clock(rq);
2046  
2047  	if (!(flags & DEQUEUE_SAVE)) {
2048  		sched_info_dequeue(rq, p);
2049  		psi_dequeue(p, !(flags & DEQUEUE_SLEEP));
2050  	}
2051  
2052  	/*
2053  	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2054  	 * and mark the task ->sched_delayed.
2055  	 */
2056  	uclamp_rq_dec(rq, p);
2057  	return p->sched_class->dequeue_task(rq, p, flags);
2058  }
2059  
activate_task(struct rq * rq,struct task_struct * p,int flags)2060  void activate_task(struct rq *rq, struct task_struct *p, int flags)
2061  {
2062  	if (task_on_rq_migrating(p))
2063  		flags |= ENQUEUE_MIGRATED;
2064  	if (flags & ENQUEUE_MIGRATED)
2065  		sched_mm_cid_migrate_to(rq, p);
2066  
2067  	enqueue_task(rq, p, flags);
2068  
2069  	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2070  	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2071  }
2072  
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2073  void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2074  {
2075  	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2076  
2077  	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2078  	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2079  
2080  	/*
2081  	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2082  	 * dequeue_task() and cleared *after* enqueue_task().
2083  	 */
2084  
2085  	dequeue_task(rq, p, flags);
2086  }
2087  
block_task(struct rq * rq,struct task_struct * p,int flags)2088  static void block_task(struct rq *rq, struct task_struct *p, int flags)
2089  {
2090  	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2091  		__block_task(rq, p);
2092  }
2093  
2094  /**
2095   * task_curr - is this task currently executing on a CPU?
2096   * @p: the task in question.
2097   *
2098   * Return: 1 if the task is currently executing. 0 otherwise.
2099   */
task_curr(const struct task_struct * p)2100  inline int task_curr(const struct task_struct *p)
2101  {
2102  	return cpu_curr(task_cpu(p)) == p;
2103  }
2104  
2105  /*
2106   * ->switching_to() is called with the pi_lock and rq_lock held and must not
2107   * mess with locking.
2108   */
check_class_changing(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class)2109  void check_class_changing(struct rq *rq, struct task_struct *p,
2110  			  const struct sched_class *prev_class)
2111  {
2112  	if (prev_class != p->sched_class && p->sched_class->switching_to)
2113  		p->sched_class->switching_to(rq, p);
2114  }
2115  
2116  /*
2117   * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2118   * use the balance_callback list if you want balancing.
2119   *
2120   * this means any call to check_class_changed() must be followed by a call to
2121   * balance_callback().
2122   */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2123  void check_class_changed(struct rq *rq, struct task_struct *p,
2124  			 const struct sched_class *prev_class,
2125  			 int oldprio)
2126  {
2127  	if (prev_class != p->sched_class) {
2128  		if (prev_class->switched_from)
2129  			prev_class->switched_from(rq, p);
2130  
2131  		p->sched_class->switched_to(rq, p);
2132  	} else if (oldprio != p->prio || dl_task(p))
2133  		p->sched_class->prio_changed(rq, p, oldprio);
2134  }
2135  
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2136  void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2137  {
2138  	if (p->sched_class == rq->curr->sched_class)
2139  		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2140  	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2141  		resched_curr(rq);
2142  
2143  	/*
2144  	 * A queue event has occurred, and we're going to schedule.  In
2145  	 * this case, we can save a useless back to back clock update.
2146  	 */
2147  	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2148  		rq_clock_skip_update(rq);
2149  }
2150  
2151  static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2152  int __task_state_match(struct task_struct *p, unsigned int state)
2153  {
2154  	if (READ_ONCE(p->__state) & state)
2155  		return 1;
2156  
2157  	if (READ_ONCE(p->saved_state) & state)
2158  		return -1;
2159  
2160  	return 0;
2161  }
2162  
2163  static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2164  int task_state_match(struct task_struct *p, unsigned int state)
2165  {
2166  	/*
2167  	 * Serialize against current_save_and_set_rtlock_wait_state(),
2168  	 * current_restore_rtlock_saved_state(), and __refrigerator().
2169  	 */
2170  	guard(raw_spinlock_irq)(&p->pi_lock);
2171  	return __task_state_match(p, state);
2172  }
2173  
2174  /*
2175   * wait_task_inactive - wait for a thread to unschedule.
2176   *
2177   * Wait for the thread to block in any of the states set in @match_state.
2178   * If it changes, i.e. @p might have woken up, then return zero.  When we
2179   * succeed in waiting for @p to be off its CPU, we return a positive number
2180   * (its total switch count).  If a second call a short while later returns the
2181   * same number, the caller can be sure that @p has remained unscheduled the
2182   * whole time.
2183   *
2184   * The caller must ensure that the task *will* unschedule sometime soon,
2185   * else this function might spin for a *long* time. This function can't
2186   * be called with interrupts off, or it may introduce deadlock with
2187   * smp_call_function() if an IPI is sent by the same process we are
2188   * waiting to become inactive.
2189   */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2190  unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2191  {
2192  	int running, queued, match;
2193  	struct rq_flags rf;
2194  	unsigned long ncsw;
2195  	struct rq *rq;
2196  
2197  	for (;;) {
2198  		/*
2199  		 * We do the initial early heuristics without holding
2200  		 * any task-queue locks at all. We'll only try to get
2201  		 * the runqueue lock when things look like they will
2202  		 * work out!
2203  		 */
2204  		rq = task_rq(p);
2205  
2206  		/*
2207  		 * If the task is actively running on another CPU
2208  		 * still, just relax and busy-wait without holding
2209  		 * any locks.
2210  		 *
2211  		 * NOTE! Since we don't hold any locks, it's not
2212  		 * even sure that "rq" stays as the right runqueue!
2213  		 * But we don't care, since "task_on_cpu()" will
2214  		 * return false if the runqueue has changed and p
2215  		 * is actually now running somewhere else!
2216  		 */
2217  		while (task_on_cpu(rq, p)) {
2218  			if (!task_state_match(p, match_state))
2219  				return 0;
2220  			cpu_relax();
2221  		}
2222  
2223  		/*
2224  		 * Ok, time to look more closely! We need the rq
2225  		 * lock now, to be *sure*. If we're wrong, we'll
2226  		 * just go back and repeat.
2227  		 */
2228  		rq = task_rq_lock(p, &rf);
2229  		trace_sched_wait_task(p);
2230  		running = task_on_cpu(rq, p);
2231  		queued = task_on_rq_queued(p);
2232  		ncsw = 0;
2233  		if ((match = __task_state_match(p, match_state))) {
2234  			/*
2235  			 * When matching on p->saved_state, consider this task
2236  			 * still queued so it will wait.
2237  			 */
2238  			if (match < 0)
2239  				queued = 1;
2240  			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2241  		}
2242  		task_rq_unlock(rq, p, &rf);
2243  
2244  		/*
2245  		 * If it changed from the expected state, bail out now.
2246  		 */
2247  		if (unlikely(!ncsw))
2248  			break;
2249  
2250  		/*
2251  		 * Was it really running after all now that we
2252  		 * checked with the proper locks actually held?
2253  		 *
2254  		 * Oops. Go back and try again..
2255  		 */
2256  		if (unlikely(running)) {
2257  			cpu_relax();
2258  			continue;
2259  		}
2260  
2261  		/*
2262  		 * It's not enough that it's not actively running,
2263  		 * it must be off the runqueue _entirely_, and not
2264  		 * preempted!
2265  		 *
2266  		 * So if it was still runnable (but just not actively
2267  		 * running right now), it's preempted, and we should
2268  		 * yield - it could be a while.
2269  		 */
2270  		if (unlikely(queued)) {
2271  			ktime_t to = NSEC_PER_SEC / HZ;
2272  
2273  			set_current_state(TASK_UNINTERRUPTIBLE);
2274  			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2275  			continue;
2276  		}
2277  
2278  		/*
2279  		 * Ahh, all good. It wasn't running, and it wasn't
2280  		 * runnable, which means that it will never become
2281  		 * running in the future either. We're all done!
2282  		 */
2283  		break;
2284  	}
2285  
2286  	return ncsw;
2287  }
2288  
2289  #ifdef CONFIG_SMP
2290  
2291  static void
2292  __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2293  
migrate_disable_switch(struct rq * rq,struct task_struct * p)2294  static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2295  {
2296  	struct affinity_context ac = {
2297  		.new_mask  = cpumask_of(rq->cpu),
2298  		.flags     = SCA_MIGRATE_DISABLE,
2299  	};
2300  
2301  	if (likely(!p->migration_disabled))
2302  		return;
2303  
2304  	if (p->cpus_ptr != &p->cpus_mask)
2305  		return;
2306  
2307  	/*
2308  	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2309  	 */
2310  	__do_set_cpus_allowed(p, &ac);
2311  }
2312  
migrate_disable(void)2313  void migrate_disable(void)
2314  {
2315  	struct task_struct *p = current;
2316  
2317  	if (p->migration_disabled) {
2318  #ifdef CONFIG_DEBUG_PREEMPT
2319  		/*
2320  		 *Warn about overflow half-way through the range.
2321  		 */
2322  		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2323  #endif
2324  		p->migration_disabled++;
2325  		return;
2326  	}
2327  
2328  	guard(preempt)();
2329  	this_rq()->nr_pinned++;
2330  	p->migration_disabled = 1;
2331  }
2332  EXPORT_SYMBOL_GPL(migrate_disable);
2333  
migrate_enable(void)2334  void migrate_enable(void)
2335  {
2336  	struct task_struct *p = current;
2337  	struct affinity_context ac = {
2338  		.new_mask  = &p->cpus_mask,
2339  		.flags     = SCA_MIGRATE_ENABLE,
2340  	};
2341  
2342  #ifdef CONFIG_DEBUG_PREEMPT
2343  	/*
2344  	 * Check both overflow from migrate_disable() and superfluous
2345  	 * migrate_enable().
2346  	 */
2347  	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2348  		return;
2349  #endif
2350  
2351  	if (p->migration_disabled > 1) {
2352  		p->migration_disabled--;
2353  		return;
2354  	}
2355  
2356  	/*
2357  	 * Ensure stop_task runs either before or after this, and that
2358  	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2359  	 */
2360  	guard(preempt)();
2361  	if (p->cpus_ptr != &p->cpus_mask)
2362  		__set_cpus_allowed_ptr(p, &ac);
2363  	/*
2364  	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2365  	 * regular cpus_mask, otherwise things that race (eg.
2366  	 * select_fallback_rq) get confused.
2367  	 */
2368  	barrier();
2369  	p->migration_disabled = 0;
2370  	this_rq()->nr_pinned--;
2371  }
2372  EXPORT_SYMBOL_GPL(migrate_enable);
2373  
rq_has_pinned_tasks(struct rq * rq)2374  static inline bool rq_has_pinned_tasks(struct rq *rq)
2375  {
2376  	return rq->nr_pinned;
2377  }
2378  
2379  /*
2380   * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2381   * __set_cpus_allowed_ptr() and select_fallback_rq().
2382   */
is_cpu_allowed(struct task_struct * p,int cpu)2383  static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2384  {
2385  	/* When not in the task's cpumask, no point in looking further. */
2386  	if (!task_allowed_on_cpu(p, cpu))
2387  		return false;
2388  
2389  	/* migrate_disabled() must be allowed to finish. */
2390  	if (is_migration_disabled(p))
2391  		return cpu_online(cpu);
2392  
2393  	/* Non kernel threads are not allowed during either online or offline. */
2394  	if (!(p->flags & PF_KTHREAD))
2395  		return cpu_active(cpu);
2396  
2397  	/* KTHREAD_IS_PER_CPU is always allowed. */
2398  	if (kthread_is_per_cpu(p))
2399  		return cpu_online(cpu);
2400  
2401  	/* Regular kernel threads don't get to stay during offline. */
2402  	if (cpu_dying(cpu))
2403  		return false;
2404  
2405  	/* But are allowed during online. */
2406  	return cpu_online(cpu);
2407  }
2408  
2409  /*
2410   * This is how migration works:
2411   *
2412   * 1) we invoke migration_cpu_stop() on the target CPU using
2413   *    stop_one_cpu().
2414   * 2) stopper starts to run (implicitly forcing the migrated thread
2415   *    off the CPU)
2416   * 3) it checks whether the migrated task is still in the wrong runqueue.
2417   * 4) if it's in the wrong runqueue then the migration thread removes
2418   *    it and puts it into the right queue.
2419   * 5) stopper completes and stop_one_cpu() returns and the migration
2420   *    is done.
2421   */
2422  
2423  /*
2424   * move_queued_task - move a queued task to new rq.
2425   *
2426   * Returns (locked) new rq. Old rq's lock is released.
2427   */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2428  static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2429  				   struct task_struct *p, int new_cpu)
2430  {
2431  	lockdep_assert_rq_held(rq);
2432  
2433  	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2434  	set_task_cpu(p, new_cpu);
2435  	rq_unlock(rq, rf);
2436  
2437  	rq = cpu_rq(new_cpu);
2438  
2439  	rq_lock(rq, rf);
2440  	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2441  	activate_task(rq, p, 0);
2442  	wakeup_preempt(rq, p, 0);
2443  
2444  	return rq;
2445  }
2446  
2447  struct migration_arg {
2448  	struct task_struct		*task;
2449  	int				dest_cpu;
2450  	struct set_affinity_pending	*pending;
2451  };
2452  
2453  /*
2454   * @refs: number of wait_for_completion()
2455   * @stop_pending: is @stop_work in use
2456   */
2457  struct set_affinity_pending {
2458  	refcount_t		refs;
2459  	unsigned int		stop_pending;
2460  	struct completion	done;
2461  	struct cpu_stop_work	stop_work;
2462  	struct migration_arg	arg;
2463  };
2464  
2465  /*
2466   * Move (not current) task off this CPU, onto the destination CPU. We're doing
2467   * this because either it can't run here any more (set_cpus_allowed()
2468   * away from this CPU, or CPU going down), or because we're
2469   * attempting to rebalance this task on exec (sched_exec).
2470   *
2471   * So we race with normal scheduler movements, but that's OK, as long
2472   * as the task is no longer on this CPU.
2473   */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2474  static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2475  				 struct task_struct *p, int dest_cpu)
2476  {
2477  	/* Affinity changed (again). */
2478  	if (!is_cpu_allowed(p, dest_cpu))
2479  		return rq;
2480  
2481  	rq = move_queued_task(rq, rf, p, dest_cpu);
2482  
2483  	return rq;
2484  }
2485  
2486  /*
2487   * migration_cpu_stop - this will be executed by a high-prio stopper thread
2488   * and performs thread migration by bumping thread off CPU then
2489   * 'pushing' onto another runqueue.
2490   */
migration_cpu_stop(void * data)2491  static int migration_cpu_stop(void *data)
2492  {
2493  	struct migration_arg *arg = data;
2494  	struct set_affinity_pending *pending = arg->pending;
2495  	struct task_struct *p = arg->task;
2496  	struct rq *rq = this_rq();
2497  	bool complete = false;
2498  	struct rq_flags rf;
2499  
2500  	/*
2501  	 * The original target CPU might have gone down and we might
2502  	 * be on another CPU but it doesn't matter.
2503  	 */
2504  	local_irq_save(rf.flags);
2505  	/*
2506  	 * We need to explicitly wake pending tasks before running
2507  	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2508  	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2509  	 */
2510  	flush_smp_call_function_queue();
2511  
2512  	raw_spin_lock(&p->pi_lock);
2513  	rq_lock(rq, &rf);
2514  
2515  	/*
2516  	 * If we were passed a pending, then ->stop_pending was set, thus
2517  	 * p->migration_pending must have remained stable.
2518  	 */
2519  	WARN_ON_ONCE(pending && pending != p->migration_pending);
2520  
2521  	/*
2522  	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2523  	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2524  	 * we're holding p->pi_lock.
2525  	 */
2526  	if (task_rq(p) == rq) {
2527  		if (is_migration_disabled(p))
2528  			goto out;
2529  
2530  		if (pending) {
2531  			p->migration_pending = NULL;
2532  			complete = true;
2533  
2534  			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2535  				goto out;
2536  		}
2537  
2538  		if (task_on_rq_queued(p)) {
2539  			update_rq_clock(rq);
2540  			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2541  		} else {
2542  			p->wake_cpu = arg->dest_cpu;
2543  		}
2544  
2545  		/*
2546  		 * XXX __migrate_task() can fail, at which point we might end
2547  		 * up running on a dodgy CPU, AFAICT this can only happen
2548  		 * during CPU hotplug, at which point we'll get pushed out
2549  		 * anyway, so it's probably not a big deal.
2550  		 */
2551  
2552  	} else if (pending) {
2553  		/*
2554  		 * This happens when we get migrated between migrate_enable()'s
2555  		 * preempt_enable() and scheduling the stopper task. At that
2556  		 * point we're a regular task again and not current anymore.
2557  		 *
2558  		 * A !PREEMPT kernel has a giant hole here, which makes it far
2559  		 * more likely.
2560  		 */
2561  
2562  		/*
2563  		 * The task moved before the stopper got to run. We're holding
2564  		 * ->pi_lock, so the allowed mask is stable - if it got
2565  		 * somewhere allowed, we're done.
2566  		 */
2567  		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2568  			p->migration_pending = NULL;
2569  			complete = true;
2570  			goto out;
2571  		}
2572  
2573  		/*
2574  		 * When migrate_enable() hits a rq mis-match we can't reliably
2575  		 * determine is_migration_disabled() and so have to chase after
2576  		 * it.
2577  		 */
2578  		WARN_ON_ONCE(!pending->stop_pending);
2579  		preempt_disable();
2580  		task_rq_unlock(rq, p, &rf);
2581  		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2582  				    &pending->arg, &pending->stop_work);
2583  		preempt_enable();
2584  		return 0;
2585  	}
2586  out:
2587  	if (pending)
2588  		pending->stop_pending = false;
2589  	task_rq_unlock(rq, p, &rf);
2590  
2591  	if (complete)
2592  		complete_all(&pending->done);
2593  
2594  	return 0;
2595  }
2596  
push_cpu_stop(void * arg)2597  int push_cpu_stop(void *arg)
2598  {
2599  	struct rq *lowest_rq = NULL, *rq = this_rq();
2600  	struct task_struct *p = arg;
2601  
2602  	raw_spin_lock_irq(&p->pi_lock);
2603  	raw_spin_rq_lock(rq);
2604  
2605  	if (task_rq(p) != rq)
2606  		goto out_unlock;
2607  
2608  	if (is_migration_disabled(p)) {
2609  		p->migration_flags |= MDF_PUSH;
2610  		goto out_unlock;
2611  	}
2612  
2613  	p->migration_flags &= ~MDF_PUSH;
2614  
2615  	if (p->sched_class->find_lock_rq)
2616  		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2617  
2618  	if (!lowest_rq)
2619  		goto out_unlock;
2620  
2621  	// XXX validate p is still the highest prio task
2622  	if (task_rq(p) == rq) {
2623  		deactivate_task(rq, p, 0);
2624  		set_task_cpu(p, lowest_rq->cpu);
2625  		activate_task(lowest_rq, p, 0);
2626  		resched_curr(lowest_rq);
2627  	}
2628  
2629  	double_unlock_balance(rq, lowest_rq);
2630  
2631  out_unlock:
2632  	rq->push_busy = false;
2633  	raw_spin_rq_unlock(rq);
2634  	raw_spin_unlock_irq(&p->pi_lock);
2635  
2636  	put_task_struct(p);
2637  	return 0;
2638  }
2639  
2640  /*
2641   * sched_class::set_cpus_allowed must do the below, but is not required to
2642   * actually call this function.
2643   */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2644  void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2645  {
2646  	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2647  		p->cpus_ptr = ctx->new_mask;
2648  		return;
2649  	}
2650  
2651  	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2652  	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2653  
2654  	/*
2655  	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2656  	 */
2657  	if (ctx->flags & SCA_USER)
2658  		swap(p->user_cpus_ptr, ctx->user_mask);
2659  }
2660  
2661  static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2662  __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2663  {
2664  	struct rq *rq = task_rq(p);
2665  	bool queued, running;
2666  
2667  	/*
2668  	 * This here violates the locking rules for affinity, since we're only
2669  	 * supposed to change these variables while holding both rq->lock and
2670  	 * p->pi_lock.
2671  	 *
2672  	 * HOWEVER, it magically works, because ttwu() is the only code that
2673  	 * accesses these variables under p->pi_lock and only does so after
2674  	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2675  	 * before finish_task().
2676  	 *
2677  	 * XXX do further audits, this smells like something putrid.
2678  	 */
2679  	if (ctx->flags & SCA_MIGRATE_DISABLE)
2680  		SCHED_WARN_ON(!p->on_cpu);
2681  	else
2682  		lockdep_assert_held(&p->pi_lock);
2683  
2684  	queued = task_on_rq_queued(p);
2685  	running = task_current(rq, p);
2686  
2687  	if (queued) {
2688  		/*
2689  		 * Because __kthread_bind() calls this on blocked tasks without
2690  		 * holding rq->lock.
2691  		 */
2692  		lockdep_assert_rq_held(rq);
2693  		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2694  	}
2695  	if (running)
2696  		put_prev_task(rq, p);
2697  
2698  	p->sched_class->set_cpus_allowed(p, ctx);
2699  
2700  	if (queued)
2701  		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2702  	if (running)
2703  		set_next_task(rq, p);
2704  }
2705  
2706  /*
2707   * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2708   * affinity (if any) should be destroyed too.
2709   */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2710  void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2711  {
2712  	struct affinity_context ac = {
2713  		.new_mask  = new_mask,
2714  		.user_mask = NULL,
2715  		.flags     = SCA_USER,	/* clear the user requested mask */
2716  	};
2717  	union cpumask_rcuhead {
2718  		cpumask_t cpumask;
2719  		struct rcu_head rcu;
2720  	};
2721  
2722  	__do_set_cpus_allowed(p, &ac);
2723  
2724  	/*
2725  	 * Because this is called with p->pi_lock held, it is not possible
2726  	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2727  	 * kfree_rcu().
2728  	 */
2729  	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2730  }
2731  
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2732  int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2733  		      int node)
2734  {
2735  	cpumask_t *user_mask;
2736  	unsigned long flags;
2737  
2738  	/*
2739  	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2740  	 * may differ by now due to racing.
2741  	 */
2742  	dst->user_cpus_ptr = NULL;
2743  
2744  	/*
2745  	 * This check is racy and losing the race is a valid situation.
2746  	 * It is not worth the extra overhead of taking the pi_lock on
2747  	 * every fork/clone.
2748  	 */
2749  	if (data_race(!src->user_cpus_ptr))
2750  		return 0;
2751  
2752  	user_mask = alloc_user_cpus_ptr(node);
2753  	if (!user_mask)
2754  		return -ENOMEM;
2755  
2756  	/*
2757  	 * Use pi_lock to protect content of user_cpus_ptr
2758  	 *
2759  	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2760  	 * do_set_cpus_allowed().
2761  	 */
2762  	raw_spin_lock_irqsave(&src->pi_lock, flags);
2763  	if (src->user_cpus_ptr) {
2764  		swap(dst->user_cpus_ptr, user_mask);
2765  		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2766  	}
2767  	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2768  
2769  	if (unlikely(user_mask))
2770  		kfree(user_mask);
2771  
2772  	return 0;
2773  }
2774  
clear_user_cpus_ptr(struct task_struct * p)2775  static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2776  {
2777  	struct cpumask *user_mask = NULL;
2778  
2779  	swap(p->user_cpus_ptr, user_mask);
2780  
2781  	return user_mask;
2782  }
2783  
release_user_cpus_ptr(struct task_struct * p)2784  void release_user_cpus_ptr(struct task_struct *p)
2785  {
2786  	kfree(clear_user_cpus_ptr(p));
2787  }
2788  
2789  /*
2790   * This function is wildly self concurrent; here be dragons.
2791   *
2792   *
2793   * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2794   * designated task is enqueued on an allowed CPU. If that task is currently
2795   * running, we have to kick it out using the CPU stopper.
2796   *
2797   * Migrate-Disable comes along and tramples all over our nice sandcastle.
2798   * Consider:
2799   *
2800   *     Initial conditions: P0->cpus_mask = [0, 1]
2801   *
2802   *     P0@CPU0                  P1
2803   *
2804   *     migrate_disable();
2805   *     <preempted>
2806   *                              set_cpus_allowed_ptr(P0, [1]);
2807   *
2808   * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2809   * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2810   * This means we need the following scheme:
2811   *
2812   *     P0@CPU0                  P1
2813   *
2814   *     migrate_disable();
2815   *     <preempted>
2816   *                              set_cpus_allowed_ptr(P0, [1]);
2817   *                                <blocks>
2818   *     <resumes>
2819   *     migrate_enable();
2820   *       __set_cpus_allowed_ptr();
2821   *       <wakes local stopper>
2822   *                         `--> <woken on migration completion>
2823   *
2824   * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2825   * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2826   * task p are serialized by p->pi_lock, which we can leverage: the one that
2827   * should come into effect at the end of the Migrate-Disable region is the last
2828   * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2829   * but we still need to properly signal those waiting tasks at the appropriate
2830   * moment.
2831   *
2832   * This is implemented using struct set_affinity_pending. The first
2833   * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2834   * setup an instance of that struct and install it on the targeted task_struct.
2835   * Any and all further callers will reuse that instance. Those then wait for
2836   * a completion signaled at the tail of the CPU stopper callback (1), triggered
2837   * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2838   *
2839   *
2840   * (1) In the cases covered above. There is one more where the completion is
2841   * signaled within affine_move_task() itself: when a subsequent affinity request
2842   * occurs after the stopper bailed out due to the targeted task still being
2843   * Migrate-Disable. Consider:
2844   *
2845   *     Initial conditions: P0->cpus_mask = [0, 1]
2846   *
2847   *     CPU0		  P1				P2
2848   *     <P0>
2849   *       migrate_disable();
2850   *       <preempted>
2851   *                        set_cpus_allowed_ptr(P0, [1]);
2852   *                          <blocks>
2853   *     <migration/0>
2854   *       migration_cpu_stop()
2855   *         is_migration_disabled()
2856   *           <bails>
2857   *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2858   *                                                         <signal completion>
2859   *                          <awakes>
2860   *
2861   * Note that the above is safe vs a concurrent migrate_enable(), as any
2862   * pending affinity completion is preceded by an uninstallation of
2863   * p->migration_pending done with p->pi_lock held.
2864   */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2865  static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2866  			    int dest_cpu, unsigned int flags)
2867  	__releases(rq->lock)
2868  	__releases(p->pi_lock)
2869  {
2870  	struct set_affinity_pending my_pending = { }, *pending = NULL;
2871  	bool stop_pending, complete = false;
2872  
2873  	/* Can the task run on the task's current CPU? If so, we're done */
2874  	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2875  		struct task_struct *push_task = NULL;
2876  
2877  		if ((flags & SCA_MIGRATE_ENABLE) &&
2878  		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2879  			rq->push_busy = true;
2880  			push_task = get_task_struct(p);
2881  		}
2882  
2883  		/*
2884  		 * If there are pending waiters, but no pending stop_work,
2885  		 * then complete now.
2886  		 */
2887  		pending = p->migration_pending;
2888  		if (pending && !pending->stop_pending) {
2889  			p->migration_pending = NULL;
2890  			complete = true;
2891  		}
2892  
2893  		preempt_disable();
2894  		task_rq_unlock(rq, p, rf);
2895  		if (push_task) {
2896  			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2897  					    p, &rq->push_work);
2898  		}
2899  		preempt_enable();
2900  
2901  		if (complete)
2902  			complete_all(&pending->done);
2903  
2904  		return 0;
2905  	}
2906  
2907  	if (!(flags & SCA_MIGRATE_ENABLE)) {
2908  		/* serialized by p->pi_lock */
2909  		if (!p->migration_pending) {
2910  			/* Install the request */
2911  			refcount_set(&my_pending.refs, 1);
2912  			init_completion(&my_pending.done);
2913  			my_pending.arg = (struct migration_arg) {
2914  				.task = p,
2915  				.dest_cpu = dest_cpu,
2916  				.pending = &my_pending,
2917  			};
2918  
2919  			p->migration_pending = &my_pending;
2920  		} else {
2921  			pending = p->migration_pending;
2922  			refcount_inc(&pending->refs);
2923  			/*
2924  			 * Affinity has changed, but we've already installed a
2925  			 * pending. migration_cpu_stop() *must* see this, else
2926  			 * we risk a completion of the pending despite having a
2927  			 * task on a disallowed CPU.
2928  			 *
2929  			 * Serialized by p->pi_lock, so this is safe.
2930  			 */
2931  			pending->arg.dest_cpu = dest_cpu;
2932  		}
2933  	}
2934  	pending = p->migration_pending;
2935  	/*
2936  	 * - !MIGRATE_ENABLE:
2937  	 *   we'll have installed a pending if there wasn't one already.
2938  	 *
2939  	 * - MIGRATE_ENABLE:
2940  	 *   we're here because the current CPU isn't matching anymore,
2941  	 *   the only way that can happen is because of a concurrent
2942  	 *   set_cpus_allowed_ptr() call, which should then still be
2943  	 *   pending completion.
2944  	 *
2945  	 * Either way, we really should have a @pending here.
2946  	 */
2947  	if (WARN_ON_ONCE(!pending)) {
2948  		task_rq_unlock(rq, p, rf);
2949  		return -EINVAL;
2950  	}
2951  
2952  	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2953  		/*
2954  		 * MIGRATE_ENABLE gets here because 'p == current', but for
2955  		 * anything else we cannot do is_migration_disabled(), punt
2956  		 * and have the stopper function handle it all race-free.
2957  		 */
2958  		stop_pending = pending->stop_pending;
2959  		if (!stop_pending)
2960  			pending->stop_pending = true;
2961  
2962  		if (flags & SCA_MIGRATE_ENABLE)
2963  			p->migration_flags &= ~MDF_PUSH;
2964  
2965  		preempt_disable();
2966  		task_rq_unlock(rq, p, rf);
2967  		if (!stop_pending) {
2968  			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2969  					    &pending->arg, &pending->stop_work);
2970  		}
2971  		preempt_enable();
2972  
2973  		if (flags & SCA_MIGRATE_ENABLE)
2974  			return 0;
2975  	} else {
2976  
2977  		if (!is_migration_disabled(p)) {
2978  			if (task_on_rq_queued(p))
2979  				rq = move_queued_task(rq, rf, p, dest_cpu);
2980  
2981  			if (!pending->stop_pending) {
2982  				p->migration_pending = NULL;
2983  				complete = true;
2984  			}
2985  		}
2986  		task_rq_unlock(rq, p, rf);
2987  
2988  		if (complete)
2989  			complete_all(&pending->done);
2990  	}
2991  
2992  	wait_for_completion(&pending->done);
2993  
2994  	if (refcount_dec_and_test(&pending->refs))
2995  		wake_up_var(&pending->refs); /* No UaF, just an address */
2996  
2997  	/*
2998  	 * Block the original owner of &pending until all subsequent callers
2999  	 * have seen the completion and decremented the refcount
3000  	 */
3001  	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3002  
3003  	/* ARGH */
3004  	WARN_ON_ONCE(my_pending.stop_pending);
3005  
3006  	return 0;
3007  }
3008  
3009  /*
3010   * Called with both p->pi_lock and rq->lock held; drops both before returning.
3011   */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3012  static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3013  					 struct affinity_context *ctx,
3014  					 struct rq *rq,
3015  					 struct rq_flags *rf)
3016  	__releases(rq->lock)
3017  	__releases(p->pi_lock)
3018  {
3019  	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3020  	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3021  	bool kthread = p->flags & PF_KTHREAD;
3022  	unsigned int dest_cpu;
3023  	int ret = 0;
3024  
3025  	update_rq_clock(rq);
3026  
3027  	if (kthread || is_migration_disabled(p)) {
3028  		/*
3029  		 * Kernel threads are allowed on online && !active CPUs,
3030  		 * however, during cpu-hot-unplug, even these might get pushed
3031  		 * away if not KTHREAD_IS_PER_CPU.
3032  		 *
3033  		 * Specifically, migration_disabled() tasks must not fail the
3034  		 * cpumask_any_and_distribute() pick below, esp. so on
3035  		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3036  		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3037  		 */
3038  		cpu_valid_mask = cpu_online_mask;
3039  	}
3040  
3041  	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3042  		ret = -EINVAL;
3043  		goto out;
3044  	}
3045  
3046  	/*
3047  	 * Must re-check here, to close a race against __kthread_bind(),
3048  	 * sched_setaffinity() is not guaranteed to observe the flag.
3049  	 */
3050  	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3051  		ret = -EINVAL;
3052  		goto out;
3053  	}
3054  
3055  	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3056  		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3057  			if (ctx->flags & SCA_USER)
3058  				swap(p->user_cpus_ptr, ctx->user_mask);
3059  			goto out;
3060  		}
3061  
3062  		if (WARN_ON_ONCE(p == current &&
3063  				 is_migration_disabled(p) &&
3064  				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3065  			ret = -EBUSY;
3066  			goto out;
3067  		}
3068  	}
3069  
3070  	/*
3071  	 * Picking a ~random cpu helps in cases where we are changing affinity
3072  	 * for groups of tasks (ie. cpuset), so that load balancing is not
3073  	 * immediately required to distribute the tasks within their new mask.
3074  	 */
3075  	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3076  	if (dest_cpu >= nr_cpu_ids) {
3077  		ret = -EINVAL;
3078  		goto out;
3079  	}
3080  
3081  	__do_set_cpus_allowed(p, ctx);
3082  
3083  	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3084  
3085  out:
3086  	task_rq_unlock(rq, p, rf);
3087  
3088  	return ret;
3089  }
3090  
3091  /*
3092   * Change a given task's CPU affinity. Migrate the thread to a
3093   * proper CPU and schedule it away if the CPU it's executing on
3094   * is removed from the allowed bitmask.
3095   *
3096   * NOTE: the caller must have a valid reference to the task, the
3097   * task must not exit() & deallocate itself prematurely. The
3098   * call is not atomic; no spinlocks may be held.
3099   */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3100  int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3101  {
3102  	struct rq_flags rf;
3103  	struct rq *rq;
3104  
3105  	rq = task_rq_lock(p, &rf);
3106  	/*
3107  	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3108  	 * flags are set.
3109  	 */
3110  	if (p->user_cpus_ptr &&
3111  	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3112  	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3113  		ctx->new_mask = rq->scratch_mask;
3114  
3115  	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3116  }
3117  
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3118  int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3119  {
3120  	struct affinity_context ac = {
3121  		.new_mask  = new_mask,
3122  		.flags     = 0,
3123  	};
3124  
3125  	return __set_cpus_allowed_ptr(p, &ac);
3126  }
3127  EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3128  
3129  /*
3130   * Change a given task's CPU affinity to the intersection of its current
3131   * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3132   * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3133   * affinity or use cpu_online_mask instead.
3134   *
3135   * If the resulting mask is empty, leave the affinity unchanged and return
3136   * -EINVAL.
3137   */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3138  static int restrict_cpus_allowed_ptr(struct task_struct *p,
3139  				     struct cpumask *new_mask,
3140  				     const struct cpumask *subset_mask)
3141  {
3142  	struct affinity_context ac = {
3143  		.new_mask  = new_mask,
3144  		.flags     = 0,
3145  	};
3146  	struct rq_flags rf;
3147  	struct rq *rq;
3148  	int err;
3149  
3150  	rq = task_rq_lock(p, &rf);
3151  
3152  	/*
3153  	 * Forcefully restricting the affinity of a deadline task is
3154  	 * likely to cause problems, so fail and noisily override the
3155  	 * mask entirely.
3156  	 */
3157  	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3158  		err = -EPERM;
3159  		goto err_unlock;
3160  	}
3161  
3162  	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3163  		err = -EINVAL;
3164  		goto err_unlock;
3165  	}
3166  
3167  	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3168  
3169  err_unlock:
3170  	task_rq_unlock(rq, p, &rf);
3171  	return err;
3172  }
3173  
3174  /*
3175   * Restrict the CPU affinity of task @p so that it is a subset of
3176   * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3177   * old affinity mask. If the resulting mask is empty, we warn and walk
3178   * up the cpuset hierarchy until we find a suitable mask.
3179   */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3180  void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3181  {
3182  	cpumask_var_t new_mask;
3183  	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3184  
3185  	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3186  
3187  	/*
3188  	 * __migrate_task() can fail silently in the face of concurrent
3189  	 * offlining of the chosen destination CPU, so take the hotplug
3190  	 * lock to ensure that the migration succeeds.
3191  	 */
3192  	cpus_read_lock();
3193  	if (!cpumask_available(new_mask))
3194  		goto out_set_mask;
3195  
3196  	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3197  		goto out_free_mask;
3198  
3199  	/*
3200  	 * We failed to find a valid subset of the affinity mask for the
3201  	 * task, so override it based on its cpuset hierarchy.
3202  	 */
3203  	cpuset_cpus_allowed(p, new_mask);
3204  	override_mask = new_mask;
3205  
3206  out_set_mask:
3207  	if (printk_ratelimit()) {
3208  		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3209  				task_pid_nr(p), p->comm,
3210  				cpumask_pr_args(override_mask));
3211  	}
3212  
3213  	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3214  out_free_mask:
3215  	cpus_read_unlock();
3216  	free_cpumask_var(new_mask);
3217  }
3218  
3219  /*
3220   * Restore the affinity of a task @p which was previously restricted by a
3221   * call to force_compatible_cpus_allowed_ptr().
3222   *
3223   * It is the caller's responsibility to serialise this with any calls to
3224   * force_compatible_cpus_allowed_ptr(@p).
3225   */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3226  void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3227  {
3228  	struct affinity_context ac = {
3229  		.new_mask  = task_user_cpus(p),
3230  		.flags     = 0,
3231  	};
3232  	int ret;
3233  
3234  	/*
3235  	 * Try to restore the old affinity mask with __sched_setaffinity().
3236  	 * Cpuset masking will be done there too.
3237  	 */
3238  	ret = __sched_setaffinity(p, &ac);
3239  	WARN_ON_ONCE(ret);
3240  }
3241  
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3242  void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3243  {
3244  #ifdef CONFIG_SCHED_DEBUG
3245  	unsigned int state = READ_ONCE(p->__state);
3246  
3247  	/*
3248  	 * We should never call set_task_cpu() on a blocked task,
3249  	 * ttwu() will sort out the placement.
3250  	 */
3251  	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3252  
3253  	/*
3254  	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3255  	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3256  	 * time relying on p->on_rq.
3257  	 */
3258  	WARN_ON_ONCE(state == TASK_RUNNING &&
3259  		     p->sched_class == &fair_sched_class &&
3260  		     (p->on_rq && !task_on_rq_migrating(p)));
3261  
3262  #ifdef CONFIG_LOCKDEP
3263  	/*
3264  	 * The caller should hold either p->pi_lock or rq->lock, when changing
3265  	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3266  	 *
3267  	 * sched_move_task() holds both and thus holding either pins the cgroup,
3268  	 * see task_group().
3269  	 *
3270  	 * Furthermore, all task_rq users should acquire both locks, see
3271  	 * task_rq_lock().
3272  	 */
3273  	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3274  				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3275  #endif
3276  	/*
3277  	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3278  	 */
3279  	WARN_ON_ONCE(!cpu_online(new_cpu));
3280  
3281  	WARN_ON_ONCE(is_migration_disabled(p));
3282  #endif
3283  
3284  	trace_sched_migrate_task(p, new_cpu);
3285  
3286  	if (task_cpu(p) != new_cpu) {
3287  		if (p->sched_class->migrate_task_rq)
3288  			p->sched_class->migrate_task_rq(p, new_cpu);
3289  		p->se.nr_migrations++;
3290  		rseq_migrate(p);
3291  		sched_mm_cid_migrate_from(p);
3292  		perf_event_task_migrate(p);
3293  	}
3294  
3295  	__set_task_cpu(p, new_cpu);
3296  }
3297  
3298  #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3299  static void __migrate_swap_task(struct task_struct *p, int cpu)
3300  {
3301  	if (task_on_rq_queued(p)) {
3302  		struct rq *src_rq, *dst_rq;
3303  		struct rq_flags srf, drf;
3304  
3305  		src_rq = task_rq(p);
3306  		dst_rq = cpu_rq(cpu);
3307  
3308  		rq_pin_lock(src_rq, &srf);
3309  		rq_pin_lock(dst_rq, &drf);
3310  
3311  		deactivate_task(src_rq, p, 0);
3312  		set_task_cpu(p, cpu);
3313  		activate_task(dst_rq, p, 0);
3314  		wakeup_preempt(dst_rq, p, 0);
3315  
3316  		rq_unpin_lock(dst_rq, &drf);
3317  		rq_unpin_lock(src_rq, &srf);
3318  
3319  	} else {
3320  		/*
3321  		 * Task isn't running anymore; make it appear like we migrated
3322  		 * it before it went to sleep. This means on wakeup we make the
3323  		 * previous CPU our target instead of where it really is.
3324  		 */
3325  		p->wake_cpu = cpu;
3326  	}
3327  }
3328  
3329  struct migration_swap_arg {
3330  	struct task_struct *src_task, *dst_task;
3331  	int src_cpu, dst_cpu;
3332  };
3333  
migrate_swap_stop(void * data)3334  static int migrate_swap_stop(void *data)
3335  {
3336  	struct migration_swap_arg *arg = data;
3337  	struct rq *src_rq, *dst_rq;
3338  
3339  	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3340  		return -EAGAIN;
3341  
3342  	src_rq = cpu_rq(arg->src_cpu);
3343  	dst_rq = cpu_rq(arg->dst_cpu);
3344  
3345  	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3346  	guard(double_rq_lock)(src_rq, dst_rq);
3347  
3348  	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3349  		return -EAGAIN;
3350  
3351  	if (task_cpu(arg->src_task) != arg->src_cpu)
3352  		return -EAGAIN;
3353  
3354  	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3355  		return -EAGAIN;
3356  
3357  	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3358  		return -EAGAIN;
3359  
3360  	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3361  	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3362  
3363  	return 0;
3364  }
3365  
3366  /*
3367   * Cross migrate two tasks
3368   */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3369  int migrate_swap(struct task_struct *cur, struct task_struct *p,
3370  		int target_cpu, int curr_cpu)
3371  {
3372  	struct migration_swap_arg arg;
3373  	int ret = -EINVAL;
3374  
3375  	arg = (struct migration_swap_arg){
3376  		.src_task = cur,
3377  		.src_cpu = curr_cpu,
3378  		.dst_task = p,
3379  		.dst_cpu = target_cpu,
3380  	};
3381  
3382  	if (arg.src_cpu == arg.dst_cpu)
3383  		goto out;
3384  
3385  	/*
3386  	 * These three tests are all lockless; this is OK since all of them
3387  	 * will be re-checked with proper locks held further down the line.
3388  	 */
3389  	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3390  		goto out;
3391  
3392  	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3393  		goto out;
3394  
3395  	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3396  		goto out;
3397  
3398  	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3399  	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3400  
3401  out:
3402  	return ret;
3403  }
3404  #endif /* CONFIG_NUMA_BALANCING */
3405  
3406  /***
3407   * kick_process - kick a running thread to enter/exit the kernel
3408   * @p: the to-be-kicked thread
3409   *
3410   * Cause a process which is running on another CPU to enter
3411   * kernel-mode, without any delay. (to get signals handled.)
3412   *
3413   * NOTE: this function doesn't have to take the runqueue lock,
3414   * because all it wants to ensure is that the remote task enters
3415   * the kernel. If the IPI races and the task has been migrated
3416   * to another CPU then no harm is done and the purpose has been
3417   * achieved as well.
3418   */
kick_process(struct task_struct * p)3419  void kick_process(struct task_struct *p)
3420  {
3421  	guard(preempt)();
3422  	int cpu = task_cpu(p);
3423  
3424  	if ((cpu != smp_processor_id()) && task_curr(p))
3425  		smp_send_reschedule(cpu);
3426  }
3427  EXPORT_SYMBOL_GPL(kick_process);
3428  
3429  /*
3430   * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3431   *
3432   * A few notes on cpu_active vs cpu_online:
3433   *
3434   *  - cpu_active must be a subset of cpu_online
3435   *
3436   *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3437   *    see __set_cpus_allowed_ptr(). At this point the newly online
3438   *    CPU isn't yet part of the sched domains, and balancing will not
3439   *    see it.
3440   *
3441   *  - on CPU-down we clear cpu_active() to mask the sched domains and
3442   *    avoid the load balancer to place new tasks on the to be removed
3443   *    CPU. Existing tasks will remain running there and will be taken
3444   *    off.
3445   *
3446   * This means that fallback selection must not select !active CPUs.
3447   * And can assume that any active CPU must be online. Conversely
3448   * select_task_rq() below may allow selection of !active CPUs in order
3449   * to satisfy the above rules.
3450   */
select_fallback_rq(int cpu,struct task_struct * p)3451  static int select_fallback_rq(int cpu, struct task_struct *p)
3452  {
3453  	int nid = cpu_to_node(cpu);
3454  	const struct cpumask *nodemask = NULL;
3455  	enum { cpuset, possible, fail } state = cpuset;
3456  	int dest_cpu;
3457  
3458  	/*
3459  	 * If the node that the CPU is on has been offlined, cpu_to_node()
3460  	 * will return -1. There is no CPU on the node, and we should
3461  	 * select the CPU on the other node.
3462  	 */
3463  	if (nid != -1) {
3464  		nodemask = cpumask_of_node(nid);
3465  
3466  		/* Look for allowed, online CPU in same node. */
3467  		for_each_cpu(dest_cpu, nodemask) {
3468  			if (is_cpu_allowed(p, dest_cpu))
3469  				return dest_cpu;
3470  		}
3471  	}
3472  
3473  	for (;;) {
3474  		/* Any allowed, online CPU? */
3475  		for_each_cpu(dest_cpu, p->cpus_ptr) {
3476  			if (!is_cpu_allowed(p, dest_cpu))
3477  				continue;
3478  
3479  			goto out;
3480  		}
3481  
3482  		/* No more Mr. Nice Guy. */
3483  		switch (state) {
3484  		case cpuset:
3485  			if (cpuset_cpus_allowed_fallback(p)) {
3486  				state = possible;
3487  				break;
3488  			}
3489  			fallthrough;
3490  		case possible:
3491  			/*
3492  			 * XXX When called from select_task_rq() we only
3493  			 * hold p->pi_lock and again violate locking order.
3494  			 *
3495  			 * More yuck to audit.
3496  			 */
3497  			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3498  			state = fail;
3499  			break;
3500  		case fail:
3501  			BUG();
3502  			break;
3503  		}
3504  	}
3505  
3506  out:
3507  	if (state != cpuset) {
3508  		/*
3509  		 * Don't tell them about moving exiting tasks or
3510  		 * kernel threads (both mm NULL), since they never
3511  		 * leave kernel.
3512  		 */
3513  		if (p->mm && printk_ratelimit()) {
3514  			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3515  					task_pid_nr(p), p->comm, cpu);
3516  		}
3517  	}
3518  
3519  	return dest_cpu;
3520  }
3521  
3522  /*
3523   * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3524   */
3525  static inline
select_task_rq(struct task_struct * p,int cpu,int * wake_flags)3526  int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3527  {
3528  	lockdep_assert_held(&p->pi_lock);
3529  
3530  	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3531  		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3532  		*wake_flags |= WF_RQ_SELECTED;
3533  	} else {
3534  		cpu = cpumask_any(p->cpus_ptr);
3535  	}
3536  
3537  	/*
3538  	 * In order not to call set_task_cpu() on a blocking task we need
3539  	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3540  	 * CPU.
3541  	 *
3542  	 * Since this is common to all placement strategies, this lives here.
3543  	 *
3544  	 * [ this allows ->select_task() to simply return task_cpu(p) and
3545  	 *   not worry about this generic constraint ]
3546  	 */
3547  	if (unlikely(!is_cpu_allowed(p, cpu)))
3548  		cpu = select_fallback_rq(task_cpu(p), p);
3549  
3550  	return cpu;
3551  }
3552  
sched_set_stop_task(int cpu,struct task_struct * stop)3553  void sched_set_stop_task(int cpu, struct task_struct *stop)
3554  {
3555  	static struct lock_class_key stop_pi_lock;
3556  	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3557  	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3558  
3559  	if (stop) {
3560  		/*
3561  		 * Make it appear like a SCHED_FIFO task, its something
3562  		 * userspace knows about and won't get confused about.
3563  		 *
3564  		 * Also, it will make PI more or less work without too
3565  		 * much confusion -- but then, stop work should not
3566  		 * rely on PI working anyway.
3567  		 */
3568  		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3569  
3570  		stop->sched_class = &stop_sched_class;
3571  
3572  		/*
3573  		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3574  		 * adjust the effective priority of a task. As a result,
3575  		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3576  		 * which can then trigger wakeups of the stop thread to push
3577  		 * around the current task.
3578  		 *
3579  		 * The stop task itself will never be part of the PI-chain, it
3580  		 * never blocks, therefore that ->pi_lock recursion is safe.
3581  		 * Tell lockdep about this by placing the stop->pi_lock in its
3582  		 * own class.
3583  		 */
3584  		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3585  	}
3586  
3587  	cpu_rq(cpu)->stop = stop;
3588  
3589  	if (old_stop) {
3590  		/*
3591  		 * Reset it back to a normal scheduling class so that
3592  		 * it can die in pieces.
3593  		 */
3594  		old_stop->sched_class = &rt_sched_class;
3595  	}
3596  }
3597  
3598  #else /* CONFIG_SMP */
3599  
migrate_disable_switch(struct rq * rq,struct task_struct * p)3600  static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3601  
rq_has_pinned_tasks(struct rq * rq)3602  static inline bool rq_has_pinned_tasks(struct rq *rq)
3603  {
3604  	return false;
3605  }
3606  
3607  #endif /* !CONFIG_SMP */
3608  
3609  static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3610  ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3611  {
3612  	struct rq *rq;
3613  
3614  	if (!schedstat_enabled())
3615  		return;
3616  
3617  	rq = this_rq();
3618  
3619  #ifdef CONFIG_SMP
3620  	if (cpu == rq->cpu) {
3621  		__schedstat_inc(rq->ttwu_local);
3622  		__schedstat_inc(p->stats.nr_wakeups_local);
3623  	} else {
3624  		struct sched_domain *sd;
3625  
3626  		__schedstat_inc(p->stats.nr_wakeups_remote);
3627  
3628  		guard(rcu)();
3629  		for_each_domain(rq->cpu, sd) {
3630  			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3631  				__schedstat_inc(sd->ttwu_wake_remote);
3632  				break;
3633  			}
3634  		}
3635  	}
3636  
3637  	if (wake_flags & WF_MIGRATED)
3638  		__schedstat_inc(p->stats.nr_wakeups_migrate);
3639  #endif /* CONFIG_SMP */
3640  
3641  	__schedstat_inc(rq->ttwu_count);
3642  	__schedstat_inc(p->stats.nr_wakeups);
3643  
3644  	if (wake_flags & WF_SYNC)
3645  		__schedstat_inc(p->stats.nr_wakeups_sync);
3646  }
3647  
3648  /*
3649   * Mark the task runnable.
3650   */
ttwu_do_wakeup(struct task_struct * p)3651  static inline void ttwu_do_wakeup(struct task_struct *p)
3652  {
3653  	WRITE_ONCE(p->__state, TASK_RUNNING);
3654  	trace_sched_wakeup(p);
3655  }
3656  
3657  static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3658  ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3659  		 struct rq_flags *rf)
3660  {
3661  	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3662  
3663  	lockdep_assert_rq_held(rq);
3664  
3665  	if (p->sched_contributes_to_load)
3666  		rq->nr_uninterruptible--;
3667  
3668  #ifdef CONFIG_SMP
3669  	if (wake_flags & WF_RQ_SELECTED)
3670  		en_flags |= ENQUEUE_RQ_SELECTED;
3671  	if (wake_flags & WF_MIGRATED)
3672  		en_flags |= ENQUEUE_MIGRATED;
3673  	else
3674  #endif
3675  	if (p->in_iowait) {
3676  		delayacct_blkio_end(p);
3677  		atomic_dec(&task_rq(p)->nr_iowait);
3678  	}
3679  
3680  	activate_task(rq, p, en_flags);
3681  	wakeup_preempt(rq, p, wake_flags);
3682  
3683  	ttwu_do_wakeup(p);
3684  
3685  #ifdef CONFIG_SMP
3686  	if (p->sched_class->task_woken) {
3687  		/*
3688  		 * Our task @p is fully woken up and running; so it's safe to
3689  		 * drop the rq->lock, hereafter rq is only used for statistics.
3690  		 */
3691  		rq_unpin_lock(rq, rf);
3692  		p->sched_class->task_woken(rq, p);
3693  		rq_repin_lock(rq, rf);
3694  	}
3695  
3696  	if (rq->idle_stamp) {
3697  		u64 delta = rq_clock(rq) - rq->idle_stamp;
3698  		u64 max = 2*rq->max_idle_balance_cost;
3699  
3700  		update_avg(&rq->avg_idle, delta);
3701  
3702  		if (rq->avg_idle > max)
3703  			rq->avg_idle = max;
3704  
3705  		rq->idle_stamp = 0;
3706  	}
3707  #endif
3708  }
3709  
3710  /*
3711   * Consider @p being inside a wait loop:
3712   *
3713   *   for (;;) {
3714   *      set_current_state(TASK_UNINTERRUPTIBLE);
3715   *
3716   *      if (CONDITION)
3717   *         break;
3718   *
3719   *      schedule();
3720   *   }
3721   *   __set_current_state(TASK_RUNNING);
3722   *
3723   * between set_current_state() and schedule(). In this case @p is still
3724   * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3725   * an atomic manner.
3726   *
3727   * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3728   * then schedule() must still happen and p->state can be changed to
3729   * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3730   * need to do a full wakeup with enqueue.
3731   *
3732   * Returns: %true when the wakeup is done,
3733   *          %false otherwise.
3734   */
ttwu_runnable(struct task_struct * p,int wake_flags)3735  static int ttwu_runnable(struct task_struct *p, int wake_flags)
3736  {
3737  	struct rq_flags rf;
3738  	struct rq *rq;
3739  	int ret = 0;
3740  
3741  	rq = __task_rq_lock(p, &rf);
3742  	if (task_on_rq_queued(p)) {
3743  		update_rq_clock(rq);
3744  		if (p->se.sched_delayed)
3745  			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3746  		if (!task_on_cpu(rq, p)) {
3747  			/*
3748  			 * When on_rq && !on_cpu the task is preempted, see if
3749  			 * it should preempt the task that is current now.
3750  			 */
3751  			wakeup_preempt(rq, p, wake_flags);
3752  		}
3753  		ttwu_do_wakeup(p);
3754  		ret = 1;
3755  	}
3756  	__task_rq_unlock(rq, &rf);
3757  
3758  	return ret;
3759  }
3760  
3761  #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3762  void sched_ttwu_pending(void *arg)
3763  {
3764  	struct llist_node *llist = arg;
3765  	struct rq *rq = this_rq();
3766  	struct task_struct *p, *t;
3767  	struct rq_flags rf;
3768  
3769  	if (!llist)
3770  		return;
3771  
3772  	rq_lock_irqsave(rq, &rf);
3773  	update_rq_clock(rq);
3774  
3775  	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3776  		if (WARN_ON_ONCE(p->on_cpu))
3777  			smp_cond_load_acquire(&p->on_cpu, !VAL);
3778  
3779  		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3780  			set_task_cpu(p, cpu_of(rq));
3781  
3782  		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3783  	}
3784  
3785  	/*
3786  	 * Must be after enqueueing at least once task such that
3787  	 * idle_cpu() does not observe a false-negative -- if it does,
3788  	 * it is possible for select_idle_siblings() to stack a number
3789  	 * of tasks on this CPU during that window.
3790  	 *
3791  	 * It is OK to clear ttwu_pending when another task pending.
3792  	 * We will receive IPI after local IRQ enabled and then enqueue it.
3793  	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3794  	 */
3795  	WRITE_ONCE(rq->ttwu_pending, 0);
3796  	rq_unlock_irqrestore(rq, &rf);
3797  }
3798  
3799  /*
3800   * Prepare the scene for sending an IPI for a remote smp_call
3801   *
3802   * Returns true if the caller can proceed with sending the IPI.
3803   * Returns false otherwise.
3804   */
call_function_single_prep_ipi(int cpu)3805  bool call_function_single_prep_ipi(int cpu)
3806  {
3807  	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3808  		trace_sched_wake_idle_without_ipi(cpu);
3809  		return false;
3810  	}
3811  
3812  	return true;
3813  }
3814  
3815  /*
3816   * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3817   * necessary. The wakee CPU on receipt of the IPI will queue the task
3818   * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3819   * of the wakeup instead of the waker.
3820   */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3821  static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3822  {
3823  	struct rq *rq = cpu_rq(cpu);
3824  
3825  	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3826  
3827  	WRITE_ONCE(rq->ttwu_pending, 1);
3828  	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3829  }
3830  
wake_up_if_idle(int cpu)3831  void wake_up_if_idle(int cpu)
3832  {
3833  	struct rq *rq = cpu_rq(cpu);
3834  
3835  	guard(rcu)();
3836  	if (is_idle_task(rcu_dereference(rq->curr))) {
3837  		guard(rq_lock_irqsave)(rq);
3838  		if (is_idle_task(rq->curr))
3839  			resched_curr(rq);
3840  	}
3841  }
3842  
cpus_equal_capacity(int this_cpu,int that_cpu)3843  bool cpus_equal_capacity(int this_cpu, int that_cpu)
3844  {
3845  	if (!sched_asym_cpucap_active())
3846  		return true;
3847  
3848  	if (this_cpu == that_cpu)
3849  		return true;
3850  
3851  	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3852  }
3853  
cpus_share_cache(int this_cpu,int that_cpu)3854  bool cpus_share_cache(int this_cpu, int that_cpu)
3855  {
3856  	if (this_cpu == that_cpu)
3857  		return true;
3858  
3859  	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3860  }
3861  
3862  /*
3863   * Whether CPUs are share cache resources, which means LLC on non-cluster
3864   * machines and LLC tag or L2 on machines with clusters.
3865   */
cpus_share_resources(int this_cpu,int that_cpu)3866  bool cpus_share_resources(int this_cpu, int that_cpu)
3867  {
3868  	if (this_cpu == that_cpu)
3869  		return true;
3870  
3871  	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3872  }
3873  
ttwu_queue_cond(struct task_struct * p,int cpu)3874  static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3875  {
3876  	/*
3877  	 * The BPF scheduler may depend on select_task_rq() being invoked during
3878  	 * wakeups. In addition, @p may end up executing on a different CPU
3879  	 * regardless of what happens in the wakeup path making the ttwu_queue
3880  	 * optimization less meaningful. Skip if on SCX.
3881  	 */
3882  	if (task_on_scx(p))
3883  		return false;
3884  
3885  	/*
3886  	 * Do not complicate things with the async wake_list while the CPU is
3887  	 * in hotplug state.
3888  	 */
3889  	if (!cpu_active(cpu))
3890  		return false;
3891  
3892  	/* Ensure the task will still be allowed to run on the CPU. */
3893  	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3894  		return false;
3895  
3896  	/*
3897  	 * If the CPU does not share cache, then queue the task on the
3898  	 * remote rqs wakelist to avoid accessing remote data.
3899  	 */
3900  	if (!cpus_share_cache(smp_processor_id(), cpu))
3901  		return true;
3902  
3903  	if (cpu == smp_processor_id())
3904  		return false;
3905  
3906  	/*
3907  	 * If the wakee cpu is idle, or the task is descheduling and the
3908  	 * only running task on the CPU, then use the wakelist to offload
3909  	 * the task activation to the idle (or soon-to-be-idle) CPU as
3910  	 * the current CPU is likely busy. nr_running is checked to
3911  	 * avoid unnecessary task stacking.
3912  	 *
3913  	 * Note that we can only get here with (wakee) p->on_rq=0,
3914  	 * p->on_cpu can be whatever, we've done the dequeue, so
3915  	 * the wakee has been accounted out of ->nr_running.
3916  	 */
3917  	if (!cpu_rq(cpu)->nr_running)
3918  		return true;
3919  
3920  	return false;
3921  }
3922  
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3923  static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3924  {
3925  	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3926  		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3927  		__ttwu_queue_wakelist(p, cpu, wake_flags);
3928  		return true;
3929  	}
3930  
3931  	return false;
3932  }
3933  
3934  #else /* !CONFIG_SMP */
3935  
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3936  static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3937  {
3938  	return false;
3939  }
3940  
3941  #endif /* CONFIG_SMP */
3942  
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3943  static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3944  {
3945  	struct rq *rq = cpu_rq(cpu);
3946  	struct rq_flags rf;
3947  
3948  	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3949  		return;
3950  
3951  	rq_lock(rq, &rf);
3952  	update_rq_clock(rq);
3953  	ttwu_do_activate(rq, p, wake_flags, &rf);
3954  	rq_unlock(rq, &rf);
3955  }
3956  
3957  /*
3958   * Invoked from try_to_wake_up() to check whether the task can be woken up.
3959   *
3960   * The caller holds p::pi_lock if p != current or has preemption
3961   * disabled when p == current.
3962   *
3963   * The rules of saved_state:
3964   *
3965   *   The related locking code always holds p::pi_lock when updating
3966   *   p::saved_state, which means the code is fully serialized in both cases.
3967   *
3968   *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3969   *   No other bits set. This allows to distinguish all wakeup scenarios.
3970   *
3971   *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3972   *   allows us to prevent early wakeup of tasks before they can be run on
3973   *   asymmetric ISA architectures (eg ARMv9).
3974   */
3975  static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)3976  bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3977  {
3978  	int match;
3979  
3980  	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3981  		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3982  			     state != TASK_RTLOCK_WAIT);
3983  	}
3984  
3985  	*success = !!(match = __task_state_match(p, state));
3986  
3987  	/*
3988  	 * Saved state preserves the task state across blocking on
3989  	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3990  	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3991  	 * because it waits for a lock wakeup or __thaw_task(). Also
3992  	 * indicate success because from the regular waker's point of
3993  	 * view this has succeeded.
3994  	 *
3995  	 * After acquiring the lock the task will restore p::__state
3996  	 * from p::saved_state which ensures that the regular
3997  	 * wakeup is not lost. The restore will also set
3998  	 * p::saved_state to TASK_RUNNING so any further tests will
3999  	 * not result in false positives vs. @success
4000  	 */
4001  	if (match < 0)
4002  		p->saved_state = TASK_RUNNING;
4003  
4004  	return match > 0;
4005  }
4006  
4007  /*
4008   * Notes on Program-Order guarantees on SMP systems.
4009   *
4010   *  MIGRATION
4011   *
4012   * The basic program-order guarantee on SMP systems is that when a task [t]
4013   * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4014   * execution on its new CPU [c1].
4015   *
4016   * For migration (of runnable tasks) this is provided by the following means:
4017   *
4018   *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4019   *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4020   *     rq(c1)->lock (if not at the same time, then in that order).
4021   *  C) LOCK of the rq(c1)->lock scheduling in task
4022   *
4023   * Release/acquire chaining guarantees that B happens after A and C after B.
4024   * Note: the CPU doing B need not be c0 or c1
4025   *
4026   * Example:
4027   *
4028   *   CPU0            CPU1            CPU2
4029   *
4030   *   LOCK rq(0)->lock
4031   *   sched-out X
4032   *   sched-in Y
4033   *   UNLOCK rq(0)->lock
4034   *
4035   *                                   LOCK rq(0)->lock // orders against CPU0
4036   *                                   dequeue X
4037   *                                   UNLOCK rq(0)->lock
4038   *
4039   *                                   LOCK rq(1)->lock
4040   *                                   enqueue X
4041   *                                   UNLOCK rq(1)->lock
4042   *
4043   *                   LOCK rq(1)->lock // orders against CPU2
4044   *                   sched-out Z
4045   *                   sched-in X
4046   *                   UNLOCK rq(1)->lock
4047   *
4048   *
4049   *  BLOCKING -- aka. SLEEP + WAKEUP
4050   *
4051   * For blocking we (obviously) need to provide the same guarantee as for
4052   * migration. However the means are completely different as there is no lock
4053   * chain to provide order. Instead we do:
4054   *
4055   *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4056   *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4057   *
4058   * Example:
4059   *
4060   *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4061   *
4062   *   LOCK rq(0)->lock LOCK X->pi_lock
4063   *   dequeue X
4064   *   sched-out X
4065   *   smp_store_release(X->on_cpu, 0);
4066   *
4067   *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4068   *                    X->state = WAKING
4069   *                    set_task_cpu(X,2)
4070   *
4071   *                    LOCK rq(2)->lock
4072   *                    enqueue X
4073   *                    X->state = RUNNING
4074   *                    UNLOCK rq(2)->lock
4075   *
4076   *                                          LOCK rq(2)->lock // orders against CPU1
4077   *                                          sched-out Z
4078   *                                          sched-in X
4079   *                                          UNLOCK rq(2)->lock
4080   *
4081   *                    UNLOCK X->pi_lock
4082   *   UNLOCK rq(0)->lock
4083   *
4084   *
4085   * However, for wakeups there is a second guarantee we must provide, namely we
4086   * must ensure that CONDITION=1 done by the caller can not be reordered with
4087   * accesses to the task state; see try_to_wake_up() and set_current_state().
4088   */
4089  
4090  /**
4091   * try_to_wake_up - wake up a thread
4092   * @p: the thread to be awakened
4093   * @state: the mask of task states that can be woken
4094   * @wake_flags: wake modifier flags (WF_*)
4095   *
4096   * Conceptually does:
4097   *
4098   *   If (@state & @p->state) @p->state = TASK_RUNNING.
4099   *
4100   * If the task was not queued/runnable, also place it back on a runqueue.
4101   *
4102   * This function is atomic against schedule() which would dequeue the task.
4103   *
4104   * It issues a full memory barrier before accessing @p->state, see the comment
4105   * with set_current_state().
4106   *
4107   * Uses p->pi_lock to serialize against concurrent wake-ups.
4108   *
4109   * Relies on p->pi_lock stabilizing:
4110   *  - p->sched_class
4111   *  - p->cpus_ptr
4112   *  - p->sched_task_group
4113   * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4114   *
4115   * Tries really hard to only take one task_rq(p)->lock for performance.
4116   * Takes rq->lock in:
4117   *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4118   *  - ttwu_queue()       -- new rq, for enqueue of the task;
4119   *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4120   *
4121   * As a consequence we race really badly with just about everything. See the
4122   * many memory barriers and their comments for details.
4123   *
4124   * Return: %true if @p->state changes (an actual wakeup was done),
4125   *	   %false otherwise.
4126   */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4127  int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4128  {
4129  	guard(preempt)();
4130  	int cpu, success = 0;
4131  
4132  	wake_flags |= WF_TTWU;
4133  
4134  	if (p == current) {
4135  		/*
4136  		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4137  		 * == smp_processor_id()'. Together this means we can special
4138  		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4139  		 * without taking any locks.
4140  		 *
4141  		 * Specifically, given current runs ttwu() we must be before
4142  		 * schedule()'s block_task(), as such this must not observe
4143  		 * sched_delayed.
4144  		 *
4145  		 * In particular:
4146  		 *  - we rely on Program-Order guarantees for all the ordering,
4147  		 *  - we're serialized against set_special_state() by virtue of
4148  		 *    it disabling IRQs (this allows not taking ->pi_lock).
4149  		 */
4150  		SCHED_WARN_ON(p->se.sched_delayed);
4151  		if (!ttwu_state_match(p, state, &success))
4152  			goto out;
4153  
4154  		trace_sched_waking(p);
4155  		ttwu_do_wakeup(p);
4156  		goto out;
4157  	}
4158  
4159  	/*
4160  	 * If we are going to wake up a thread waiting for CONDITION we
4161  	 * need to ensure that CONDITION=1 done by the caller can not be
4162  	 * reordered with p->state check below. This pairs with smp_store_mb()
4163  	 * in set_current_state() that the waiting thread does.
4164  	 */
4165  	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4166  		smp_mb__after_spinlock();
4167  		if (!ttwu_state_match(p, state, &success))
4168  			break;
4169  
4170  		trace_sched_waking(p);
4171  
4172  		/*
4173  		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4174  		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4175  		 * in smp_cond_load_acquire() below.
4176  		 *
4177  		 * sched_ttwu_pending()			try_to_wake_up()
4178  		 *   STORE p->on_rq = 1			  LOAD p->state
4179  		 *   UNLOCK rq->lock
4180  		 *
4181  		 * __schedule() (switch to task 'p')
4182  		 *   LOCK rq->lock			  smp_rmb();
4183  		 *   smp_mb__after_spinlock();
4184  		 *   UNLOCK rq->lock
4185  		 *
4186  		 * [task p]
4187  		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4188  		 *
4189  		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4190  		 * __schedule().  See the comment for smp_mb__after_spinlock().
4191  		 *
4192  		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4193  		 */
4194  		smp_rmb();
4195  		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4196  			break;
4197  
4198  #ifdef CONFIG_SMP
4199  		/*
4200  		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4201  		 * possible to, falsely, observe p->on_cpu == 0.
4202  		 *
4203  		 * One must be running (->on_cpu == 1) in order to remove oneself
4204  		 * from the runqueue.
4205  		 *
4206  		 * __schedule() (switch to task 'p')	try_to_wake_up()
4207  		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4208  		 *   UNLOCK rq->lock
4209  		 *
4210  		 * __schedule() (put 'p' to sleep)
4211  		 *   LOCK rq->lock			  smp_rmb();
4212  		 *   smp_mb__after_spinlock();
4213  		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4214  		 *
4215  		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4216  		 * __schedule().  See the comment for smp_mb__after_spinlock().
4217  		 *
4218  		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4219  		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4220  		 * care about it's own p->state. See the comment in __schedule().
4221  		 */
4222  		smp_acquire__after_ctrl_dep();
4223  
4224  		/*
4225  		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4226  		 * == 0), which means we need to do an enqueue, change p->state to
4227  		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4228  		 * enqueue, such as ttwu_queue_wakelist().
4229  		 */
4230  		WRITE_ONCE(p->__state, TASK_WAKING);
4231  
4232  		/*
4233  		 * If the owning (remote) CPU is still in the middle of schedule() with
4234  		 * this task as prev, considering queueing p on the remote CPUs wake_list
4235  		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4236  		 * let the waker make forward progress. This is safe because IRQs are
4237  		 * disabled and the IPI will deliver after on_cpu is cleared.
4238  		 *
4239  		 * Ensure we load task_cpu(p) after p->on_cpu:
4240  		 *
4241  		 * set_task_cpu(p, cpu);
4242  		 *   STORE p->cpu = @cpu
4243  		 * __schedule() (switch to task 'p')
4244  		 *   LOCK rq->lock
4245  		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4246  		 *   STORE p->on_cpu = 1		LOAD p->cpu
4247  		 *
4248  		 * to ensure we observe the correct CPU on which the task is currently
4249  		 * scheduling.
4250  		 */
4251  		if (smp_load_acquire(&p->on_cpu) &&
4252  		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4253  			break;
4254  
4255  		/*
4256  		 * If the owning (remote) CPU is still in the middle of schedule() with
4257  		 * this task as prev, wait until it's done referencing the task.
4258  		 *
4259  		 * Pairs with the smp_store_release() in finish_task().
4260  		 *
4261  		 * This ensures that tasks getting woken will be fully ordered against
4262  		 * their previous state and preserve Program Order.
4263  		 */
4264  		smp_cond_load_acquire(&p->on_cpu, !VAL);
4265  
4266  		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4267  		if (task_cpu(p) != cpu) {
4268  			if (p->in_iowait) {
4269  				delayacct_blkio_end(p);
4270  				atomic_dec(&task_rq(p)->nr_iowait);
4271  			}
4272  
4273  			wake_flags |= WF_MIGRATED;
4274  			psi_ttwu_dequeue(p);
4275  			set_task_cpu(p, cpu);
4276  		}
4277  #else
4278  		cpu = task_cpu(p);
4279  #endif /* CONFIG_SMP */
4280  
4281  		ttwu_queue(p, cpu, wake_flags);
4282  	}
4283  out:
4284  	if (success)
4285  		ttwu_stat(p, task_cpu(p), wake_flags);
4286  
4287  	return success;
4288  }
4289  
__task_needs_rq_lock(struct task_struct * p)4290  static bool __task_needs_rq_lock(struct task_struct *p)
4291  {
4292  	unsigned int state = READ_ONCE(p->__state);
4293  
4294  	/*
4295  	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4296  	 * the task is blocked. Make sure to check @state since ttwu() can drop
4297  	 * locks at the end, see ttwu_queue_wakelist().
4298  	 */
4299  	if (state == TASK_RUNNING || state == TASK_WAKING)
4300  		return true;
4301  
4302  	/*
4303  	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4304  	 * possible to, falsely, observe p->on_rq == 0.
4305  	 *
4306  	 * See try_to_wake_up() for a longer comment.
4307  	 */
4308  	smp_rmb();
4309  	if (p->on_rq)
4310  		return true;
4311  
4312  #ifdef CONFIG_SMP
4313  	/*
4314  	 * Ensure the task has finished __schedule() and will not be referenced
4315  	 * anymore. Again, see try_to_wake_up() for a longer comment.
4316  	 */
4317  	smp_rmb();
4318  	smp_cond_load_acquire(&p->on_cpu, !VAL);
4319  #endif
4320  
4321  	return false;
4322  }
4323  
4324  /**
4325   * task_call_func - Invoke a function on task in fixed state
4326   * @p: Process for which the function is to be invoked, can be @current.
4327   * @func: Function to invoke.
4328   * @arg: Argument to function.
4329   *
4330   * Fix the task in it's current state by avoiding wakeups and or rq operations
4331   * and call @func(@arg) on it.  This function can use task_is_runnable() and
4332   * task_curr() to work out what the state is, if required.  Given that @func
4333   * can be invoked with a runqueue lock held, it had better be quite
4334   * lightweight.
4335   *
4336   * Returns:
4337   *   Whatever @func returns
4338   */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4339  int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4340  {
4341  	struct rq *rq = NULL;
4342  	struct rq_flags rf;
4343  	int ret;
4344  
4345  	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4346  
4347  	if (__task_needs_rq_lock(p))
4348  		rq = __task_rq_lock(p, &rf);
4349  
4350  	/*
4351  	 * At this point the task is pinned; either:
4352  	 *  - blocked and we're holding off wakeups	 (pi->lock)
4353  	 *  - woken, and we're holding off enqueue	 (rq->lock)
4354  	 *  - queued, and we're holding off schedule	 (rq->lock)
4355  	 *  - running, and we're holding off de-schedule (rq->lock)
4356  	 *
4357  	 * The called function (@func) can use: task_curr(), p->on_rq and
4358  	 * p->__state to differentiate between these states.
4359  	 */
4360  	ret = func(p, arg);
4361  
4362  	if (rq)
4363  		rq_unlock(rq, &rf);
4364  
4365  	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4366  	return ret;
4367  }
4368  
4369  /**
4370   * cpu_curr_snapshot - Return a snapshot of the currently running task
4371   * @cpu: The CPU on which to snapshot the task.
4372   *
4373   * Returns the task_struct pointer of the task "currently" running on
4374   * the specified CPU.
4375   *
4376   * If the specified CPU was offline, the return value is whatever it
4377   * is, perhaps a pointer to the task_struct structure of that CPU's idle
4378   * task, but there is no guarantee.  Callers wishing a useful return
4379   * value must take some action to ensure that the specified CPU remains
4380   * online throughout.
4381   *
4382   * This function executes full memory barriers before and after fetching
4383   * the pointer, which permits the caller to confine this function's fetch
4384   * with respect to the caller's accesses to other shared variables.
4385   */
cpu_curr_snapshot(int cpu)4386  struct task_struct *cpu_curr_snapshot(int cpu)
4387  {
4388  	struct rq *rq = cpu_rq(cpu);
4389  	struct task_struct *t;
4390  	struct rq_flags rf;
4391  
4392  	rq_lock_irqsave(rq, &rf);
4393  	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4394  	t = rcu_dereference(cpu_curr(cpu));
4395  	rq_unlock_irqrestore(rq, &rf);
4396  	smp_mb(); /* Pairing determined by caller's synchronization design. */
4397  
4398  	return t;
4399  }
4400  
4401  /**
4402   * wake_up_process - Wake up a specific process
4403   * @p: The process to be woken up.
4404   *
4405   * Attempt to wake up the nominated process and move it to the set of runnable
4406   * processes.
4407   *
4408   * Return: 1 if the process was woken up, 0 if it was already running.
4409   *
4410   * This function executes a full memory barrier before accessing the task state.
4411   */
wake_up_process(struct task_struct * p)4412  int wake_up_process(struct task_struct *p)
4413  {
4414  	return try_to_wake_up(p, TASK_NORMAL, 0);
4415  }
4416  EXPORT_SYMBOL(wake_up_process);
4417  
wake_up_state(struct task_struct * p,unsigned int state)4418  int wake_up_state(struct task_struct *p, unsigned int state)
4419  {
4420  	return try_to_wake_up(p, state, 0);
4421  }
4422  
4423  /*
4424   * Perform scheduler related setup for a newly forked process p.
4425   * p is forked by current.
4426   *
4427   * __sched_fork() is basic setup used by init_idle() too:
4428   */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4429  static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4430  {
4431  	p->on_rq			= 0;
4432  
4433  	p->se.on_rq			= 0;
4434  	p->se.exec_start		= 0;
4435  	p->se.sum_exec_runtime		= 0;
4436  	p->se.prev_sum_exec_runtime	= 0;
4437  	p->se.nr_migrations		= 0;
4438  	p->se.vruntime			= 0;
4439  	p->se.vlag			= 0;
4440  	INIT_LIST_HEAD(&p->se.group_node);
4441  
4442  	/* A delayed task cannot be in clone(). */
4443  	SCHED_WARN_ON(p->se.sched_delayed);
4444  
4445  #ifdef CONFIG_FAIR_GROUP_SCHED
4446  	p->se.cfs_rq			= NULL;
4447  #endif
4448  
4449  #ifdef CONFIG_SCHEDSTATS
4450  	/* Even if schedstat is disabled, there should not be garbage */
4451  	memset(&p->stats, 0, sizeof(p->stats));
4452  #endif
4453  
4454  	init_dl_entity(&p->dl);
4455  
4456  	INIT_LIST_HEAD(&p->rt.run_list);
4457  	p->rt.timeout		= 0;
4458  	p->rt.time_slice	= sched_rr_timeslice;
4459  	p->rt.on_rq		= 0;
4460  	p->rt.on_list		= 0;
4461  
4462  #ifdef CONFIG_SCHED_CLASS_EXT
4463  	init_scx_entity(&p->scx);
4464  #endif
4465  
4466  #ifdef CONFIG_PREEMPT_NOTIFIERS
4467  	INIT_HLIST_HEAD(&p->preempt_notifiers);
4468  #endif
4469  
4470  #ifdef CONFIG_COMPACTION
4471  	p->capture_control = NULL;
4472  #endif
4473  	init_numa_balancing(clone_flags, p);
4474  #ifdef CONFIG_SMP
4475  	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4476  	p->migration_pending = NULL;
4477  #endif
4478  	init_sched_mm_cid(p);
4479  }
4480  
4481  DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4482  
4483  #ifdef CONFIG_NUMA_BALANCING
4484  
4485  int sysctl_numa_balancing_mode;
4486  
__set_numabalancing_state(bool enabled)4487  static void __set_numabalancing_state(bool enabled)
4488  {
4489  	if (enabled)
4490  		static_branch_enable(&sched_numa_balancing);
4491  	else
4492  		static_branch_disable(&sched_numa_balancing);
4493  }
4494  
set_numabalancing_state(bool enabled)4495  void set_numabalancing_state(bool enabled)
4496  {
4497  	if (enabled)
4498  		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4499  	else
4500  		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4501  	__set_numabalancing_state(enabled);
4502  }
4503  
4504  #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4505  static void reset_memory_tiering(void)
4506  {
4507  	struct pglist_data *pgdat;
4508  
4509  	for_each_online_pgdat(pgdat) {
4510  		pgdat->nbp_threshold = 0;
4511  		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4512  		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4513  	}
4514  }
4515  
sysctl_numa_balancing(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4516  static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4517  			  void *buffer, size_t *lenp, loff_t *ppos)
4518  {
4519  	struct ctl_table t;
4520  	int err;
4521  	int state = sysctl_numa_balancing_mode;
4522  
4523  	if (write && !capable(CAP_SYS_ADMIN))
4524  		return -EPERM;
4525  
4526  	t = *table;
4527  	t.data = &state;
4528  	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4529  	if (err < 0)
4530  		return err;
4531  	if (write) {
4532  		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4533  		    (state & NUMA_BALANCING_MEMORY_TIERING))
4534  			reset_memory_tiering();
4535  		sysctl_numa_balancing_mode = state;
4536  		__set_numabalancing_state(state);
4537  	}
4538  	return err;
4539  }
4540  #endif
4541  #endif
4542  
4543  #ifdef CONFIG_SCHEDSTATS
4544  
4545  DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4546  
set_schedstats(bool enabled)4547  static void set_schedstats(bool enabled)
4548  {
4549  	if (enabled)
4550  		static_branch_enable(&sched_schedstats);
4551  	else
4552  		static_branch_disable(&sched_schedstats);
4553  }
4554  
force_schedstat_enabled(void)4555  void force_schedstat_enabled(void)
4556  {
4557  	if (!schedstat_enabled()) {
4558  		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4559  		static_branch_enable(&sched_schedstats);
4560  	}
4561  }
4562  
setup_schedstats(char * str)4563  static int __init setup_schedstats(char *str)
4564  {
4565  	int ret = 0;
4566  	if (!str)
4567  		goto out;
4568  
4569  	if (!strcmp(str, "enable")) {
4570  		set_schedstats(true);
4571  		ret = 1;
4572  	} else if (!strcmp(str, "disable")) {
4573  		set_schedstats(false);
4574  		ret = 1;
4575  	}
4576  out:
4577  	if (!ret)
4578  		pr_warn("Unable to parse schedstats=\n");
4579  
4580  	return ret;
4581  }
4582  __setup("schedstats=", setup_schedstats);
4583  
4584  #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4585  static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4586  		size_t *lenp, loff_t *ppos)
4587  {
4588  	struct ctl_table t;
4589  	int err;
4590  	int state = static_branch_likely(&sched_schedstats);
4591  
4592  	if (write && !capable(CAP_SYS_ADMIN))
4593  		return -EPERM;
4594  
4595  	t = *table;
4596  	t.data = &state;
4597  	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4598  	if (err < 0)
4599  		return err;
4600  	if (write)
4601  		set_schedstats(state);
4602  	return err;
4603  }
4604  #endif /* CONFIG_PROC_SYSCTL */
4605  #endif /* CONFIG_SCHEDSTATS */
4606  
4607  #ifdef CONFIG_SYSCTL
4608  static struct ctl_table sched_core_sysctls[] = {
4609  #ifdef CONFIG_SCHEDSTATS
4610  	{
4611  		.procname       = "sched_schedstats",
4612  		.data           = NULL,
4613  		.maxlen         = sizeof(unsigned int),
4614  		.mode           = 0644,
4615  		.proc_handler   = sysctl_schedstats,
4616  		.extra1         = SYSCTL_ZERO,
4617  		.extra2         = SYSCTL_ONE,
4618  	},
4619  #endif /* CONFIG_SCHEDSTATS */
4620  #ifdef CONFIG_UCLAMP_TASK
4621  	{
4622  		.procname       = "sched_util_clamp_min",
4623  		.data           = &sysctl_sched_uclamp_util_min,
4624  		.maxlen         = sizeof(unsigned int),
4625  		.mode           = 0644,
4626  		.proc_handler   = sysctl_sched_uclamp_handler,
4627  	},
4628  	{
4629  		.procname       = "sched_util_clamp_max",
4630  		.data           = &sysctl_sched_uclamp_util_max,
4631  		.maxlen         = sizeof(unsigned int),
4632  		.mode           = 0644,
4633  		.proc_handler   = sysctl_sched_uclamp_handler,
4634  	},
4635  	{
4636  		.procname       = "sched_util_clamp_min_rt_default",
4637  		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4638  		.maxlen         = sizeof(unsigned int),
4639  		.mode           = 0644,
4640  		.proc_handler   = sysctl_sched_uclamp_handler,
4641  	},
4642  #endif /* CONFIG_UCLAMP_TASK */
4643  #ifdef CONFIG_NUMA_BALANCING
4644  	{
4645  		.procname	= "numa_balancing",
4646  		.data		= NULL, /* filled in by handler */
4647  		.maxlen		= sizeof(unsigned int),
4648  		.mode		= 0644,
4649  		.proc_handler	= sysctl_numa_balancing,
4650  		.extra1		= SYSCTL_ZERO,
4651  		.extra2		= SYSCTL_FOUR,
4652  	},
4653  #endif /* CONFIG_NUMA_BALANCING */
4654  };
sched_core_sysctl_init(void)4655  static int __init sched_core_sysctl_init(void)
4656  {
4657  	register_sysctl_init("kernel", sched_core_sysctls);
4658  	return 0;
4659  }
4660  late_initcall(sched_core_sysctl_init);
4661  #endif /* CONFIG_SYSCTL */
4662  
4663  /*
4664   * fork()/clone()-time setup:
4665   */
sched_fork(unsigned long clone_flags,struct task_struct * p)4666  int sched_fork(unsigned long clone_flags, struct task_struct *p)
4667  {
4668  	__sched_fork(clone_flags, p);
4669  	/*
4670  	 * We mark the process as NEW here. This guarantees that
4671  	 * nobody will actually run it, and a signal or other external
4672  	 * event cannot wake it up and insert it on the runqueue either.
4673  	 */
4674  	p->__state = TASK_NEW;
4675  
4676  	/*
4677  	 * Make sure we do not leak PI boosting priority to the child.
4678  	 */
4679  	p->prio = current->normal_prio;
4680  
4681  	uclamp_fork(p);
4682  
4683  	/*
4684  	 * Revert to default priority/policy on fork if requested.
4685  	 */
4686  	if (unlikely(p->sched_reset_on_fork)) {
4687  		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4688  			p->policy = SCHED_NORMAL;
4689  			p->static_prio = NICE_TO_PRIO(0);
4690  			p->rt_priority = 0;
4691  		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4692  			p->static_prio = NICE_TO_PRIO(0);
4693  
4694  		p->prio = p->normal_prio = p->static_prio;
4695  		set_load_weight(p, false);
4696  		p->se.custom_slice = 0;
4697  		p->se.slice = sysctl_sched_base_slice;
4698  
4699  		/*
4700  		 * We don't need the reset flag anymore after the fork. It has
4701  		 * fulfilled its duty:
4702  		 */
4703  		p->sched_reset_on_fork = 0;
4704  	}
4705  
4706  	if (dl_prio(p->prio))
4707  		return -EAGAIN;
4708  
4709  	scx_pre_fork(p);
4710  
4711  	if (rt_prio(p->prio)) {
4712  		p->sched_class = &rt_sched_class;
4713  #ifdef CONFIG_SCHED_CLASS_EXT
4714  	} else if (task_should_scx(p->policy)) {
4715  		p->sched_class = &ext_sched_class;
4716  #endif
4717  	} else {
4718  		p->sched_class = &fair_sched_class;
4719  	}
4720  
4721  	init_entity_runnable_average(&p->se);
4722  
4723  
4724  #ifdef CONFIG_SCHED_INFO
4725  	if (likely(sched_info_on()))
4726  		memset(&p->sched_info, 0, sizeof(p->sched_info));
4727  #endif
4728  #if defined(CONFIG_SMP)
4729  	p->on_cpu = 0;
4730  #endif
4731  	init_task_preempt_count(p);
4732  #ifdef CONFIG_SMP
4733  	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4734  	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4735  #endif
4736  	return 0;
4737  }
4738  
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4739  int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4740  {
4741  	unsigned long flags;
4742  
4743  	/*
4744  	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4745  	 * required yet, but lockdep gets upset if rules are violated.
4746  	 */
4747  	raw_spin_lock_irqsave(&p->pi_lock, flags);
4748  #ifdef CONFIG_CGROUP_SCHED
4749  	if (1) {
4750  		struct task_group *tg;
4751  		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4752  				  struct task_group, css);
4753  		tg = autogroup_task_group(p, tg);
4754  		p->sched_task_group = tg;
4755  	}
4756  #endif
4757  	rseq_migrate(p);
4758  	/*
4759  	 * We're setting the CPU for the first time, we don't migrate,
4760  	 * so use __set_task_cpu().
4761  	 */
4762  	__set_task_cpu(p, smp_processor_id());
4763  	if (p->sched_class->task_fork)
4764  		p->sched_class->task_fork(p);
4765  	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4766  
4767  	return scx_fork(p);
4768  }
4769  
sched_cancel_fork(struct task_struct * p)4770  void sched_cancel_fork(struct task_struct *p)
4771  {
4772  	scx_cancel_fork(p);
4773  }
4774  
sched_post_fork(struct task_struct * p)4775  void sched_post_fork(struct task_struct *p)
4776  {
4777  	uclamp_post_fork(p);
4778  	scx_post_fork(p);
4779  }
4780  
to_ratio(u64 period,u64 runtime)4781  unsigned long to_ratio(u64 period, u64 runtime)
4782  {
4783  	if (runtime == RUNTIME_INF)
4784  		return BW_UNIT;
4785  
4786  	/*
4787  	 * Doing this here saves a lot of checks in all
4788  	 * the calling paths, and returning zero seems
4789  	 * safe for them anyway.
4790  	 */
4791  	if (period == 0)
4792  		return 0;
4793  
4794  	return div64_u64(runtime << BW_SHIFT, period);
4795  }
4796  
4797  /*
4798   * wake_up_new_task - wake up a newly created task for the first time.
4799   *
4800   * This function will do some initial scheduler statistics housekeeping
4801   * that must be done for every newly created context, then puts the task
4802   * on the runqueue and wakes it.
4803   */
wake_up_new_task(struct task_struct * p)4804  void wake_up_new_task(struct task_struct *p)
4805  {
4806  	struct rq_flags rf;
4807  	struct rq *rq;
4808  	int wake_flags = WF_FORK;
4809  
4810  	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4811  	WRITE_ONCE(p->__state, TASK_RUNNING);
4812  #ifdef CONFIG_SMP
4813  	/*
4814  	 * Fork balancing, do it here and not earlier because:
4815  	 *  - cpus_ptr can change in the fork path
4816  	 *  - any previously selected CPU might disappear through hotplug
4817  	 *
4818  	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4819  	 * as we're not fully set-up yet.
4820  	 */
4821  	p->recent_used_cpu = task_cpu(p);
4822  	rseq_migrate(p);
4823  	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4824  #endif
4825  	rq = __task_rq_lock(p, &rf);
4826  	update_rq_clock(rq);
4827  	post_init_entity_util_avg(p);
4828  
4829  	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4830  	trace_sched_wakeup_new(p);
4831  	wakeup_preempt(rq, p, wake_flags);
4832  #ifdef CONFIG_SMP
4833  	if (p->sched_class->task_woken) {
4834  		/*
4835  		 * Nothing relies on rq->lock after this, so it's fine to
4836  		 * drop it.
4837  		 */
4838  		rq_unpin_lock(rq, &rf);
4839  		p->sched_class->task_woken(rq, p);
4840  		rq_repin_lock(rq, &rf);
4841  	}
4842  #endif
4843  	task_rq_unlock(rq, p, &rf);
4844  }
4845  
4846  #ifdef CONFIG_PREEMPT_NOTIFIERS
4847  
4848  static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4849  
preempt_notifier_inc(void)4850  void preempt_notifier_inc(void)
4851  {
4852  	static_branch_inc(&preempt_notifier_key);
4853  }
4854  EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4855  
preempt_notifier_dec(void)4856  void preempt_notifier_dec(void)
4857  {
4858  	static_branch_dec(&preempt_notifier_key);
4859  }
4860  EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4861  
4862  /**
4863   * preempt_notifier_register - tell me when current is being preempted & rescheduled
4864   * @notifier: notifier struct to register
4865   */
preempt_notifier_register(struct preempt_notifier * notifier)4866  void preempt_notifier_register(struct preempt_notifier *notifier)
4867  {
4868  	if (!static_branch_unlikely(&preempt_notifier_key))
4869  		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4870  
4871  	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4872  }
4873  EXPORT_SYMBOL_GPL(preempt_notifier_register);
4874  
4875  /**
4876   * preempt_notifier_unregister - no longer interested in preemption notifications
4877   * @notifier: notifier struct to unregister
4878   *
4879   * This is *not* safe to call from within a preemption notifier.
4880   */
preempt_notifier_unregister(struct preempt_notifier * notifier)4881  void preempt_notifier_unregister(struct preempt_notifier *notifier)
4882  {
4883  	hlist_del(&notifier->link);
4884  }
4885  EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4886  
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4887  static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4888  {
4889  	struct preempt_notifier *notifier;
4890  
4891  	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4892  		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4893  }
4894  
fire_sched_in_preempt_notifiers(struct task_struct * curr)4895  static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4896  {
4897  	if (static_branch_unlikely(&preempt_notifier_key))
4898  		__fire_sched_in_preempt_notifiers(curr);
4899  }
4900  
4901  static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4902  __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4903  				   struct task_struct *next)
4904  {
4905  	struct preempt_notifier *notifier;
4906  
4907  	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4908  		notifier->ops->sched_out(notifier, next);
4909  }
4910  
4911  static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4912  fire_sched_out_preempt_notifiers(struct task_struct *curr,
4913  				 struct task_struct *next)
4914  {
4915  	if (static_branch_unlikely(&preempt_notifier_key))
4916  		__fire_sched_out_preempt_notifiers(curr, next);
4917  }
4918  
4919  #else /* !CONFIG_PREEMPT_NOTIFIERS */
4920  
fire_sched_in_preempt_notifiers(struct task_struct * curr)4921  static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4922  {
4923  }
4924  
4925  static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4926  fire_sched_out_preempt_notifiers(struct task_struct *curr,
4927  				 struct task_struct *next)
4928  {
4929  }
4930  
4931  #endif /* CONFIG_PREEMPT_NOTIFIERS */
4932  
prepare_task(struct task_struct * next)4933  static inline void prepare_task(struct task_struct *next)
4934  {
4935  #ifdef CONFIG_SMP
4936  	/*
4937  	 * Claim the task as running, we do this before switching to it
4938  	 * such that any running task will have this set.
4939  	 *
4940  	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4941  	 * its ordering comment.
4942  	 */
4943  	WRITE_ONCE(next->on_cpu, 1);
4944  #endif
4945  }
4946  
finish_task(struct task_struct * prev)4947  static inline void finish_task(struct task_struct *prev)
4948  {
4949  #ifdef CONFIG_SMP
4950  	/*
4951  	 * This must be the very last reference to @prev from this CPU. After
4952  	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4953  	 * must ensure this doesn't happen until the switch is completely
4954  	 * finished.
4955  	 *
4956  	 * In particular, the load of prev->state in finish_task_switch() must
4957  	 * happen before this.
4958  	 *
4959  	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4960  	 */
4961  	smp_store_release(&prev->on_cpu, 0);
4962  #endif
4963  }
4964  
4965  #ifdef CONFIG_SMP
4966  
do_balance_callbacks(struct rq * rq,struct balance_callback * head)4967  static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4968  {
4969  	void (*func)(struct rq *rq);
4970  	struct balance_callback *next;
4971  
4972  	lockdep_assert_rq_held(rq);
4973  
4974  	while (head) {
4975  		func = (void (*)(struct rq *))head->func;
4976  		next = head->next;
4977  		head->next = NULL;
4978  		head = next;
4979  
4980  		func(rq);
4981  	}
4982  }
4983  
4984  static void balance_push(struct rq *rq);
4985  
4986  /*
4987   * balance_push_callback is a right abuse of the callback interface and plays
4988   * by significantly different rules.
4989   *
4990   * Where the normal balance_callback's purpose is to be ran in the same context
4991   * that queued it (only later, when it's safe to drop rq->lock again),
4992   * balance_push_callback is specifically targeted at __schedule().
4993   *
4994   * This abuse is tolerated because it places all the unlikely/odd cases behind
4995   * a single test, namely: rq->balance_callback == NULL.
4996   */
4997  struct balance_callback balance_push_callback = {
4998  	.next = NULL,
4999  	.func = balance_push,
5000  };
5001  
5002  static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5003  __splice_balance_callbacks(struct rq *rq, bool split)
5004  {
5005  	struct balance_callback *head = rq->balance_callback;
5006  
5007  	if (likely(!head))
5008  		return NULL;
5009  
5010  	lockdep_assert_rq_held(rq);
5011  	/*
5012  	 * Must not take balance_push_callback off the list when
5013  	 * splice_balance_callbacks() and balance_callbacks() are not
5014  	 * in the same rq->lock section.
5015  	 *
5016  	 * In that case it would be possible for __schedule() to interleave
5017  	 * and observe the list empty.
5018  	 */
5019  	if (split && head == &balance_push_callback)
5020  		head = NULL;
5021  	else
5022  		rq->balance_callback = NULL;
5023  
5024  	return head;
5025  }
5026  
splice_balance_callbacks(struct rq * rq)5027  struct balance_callback *splice_balance_callbacks(struct rq *rq)
5028  {
5029  	return __splice_balance_callbacks(rq, true);
5030  }
5031  
__balance_callbacks(struct rq * rq)5032  static void __balance_callbacks(struct rq *rq)
5033  {
5034  	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5035  }
5036  
balance_callbacks(struct rq * rq,struct balance_callback * head)5037  void balance_callbacks(struct rq *rq, struct balance_callback *head)
5038  {
5039  	unsigned long flags;
5040  
5041  	if (unlikely(head)) {
5042  		raw_spin_rq_lock_irqsave(rq, flags);
5043  		do_balance_callbacks(rq, head);
5044  		raw_spin_rq_unlock_irqrestore(rq, flags);
5045  	}
5046  }
5047  
5048  #else
5049  
__balance_callbacks(struct rq * rq)5050  static inline void __balance_callbacks(struct rq *rq)
5051  {
5052  }
5053  
5054  #endif
5055  
5056  static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5057  prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5058  {
5059  	/*
5060  	 * Since the runqueue lock will be released by the next
5061  	 * task (which is an invalid locking op but in the case
5062  	 * of the scheduler it's an obvious special-case), so we
5063  	 * do an early lockdep release here:
5064  	 */
5065  	rq_unpin_lock(rq, rf);
5066  	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5067  #ifdef CONFIG_DEBUG_SPINLOCK
5068  	/* this is a valid case when another task releases the spinlock */
5069  	rq_lockp(rq)->owner = next;
5070  #endif
5071  }
5072  
finish_lock_switch(struct rq * rq)5073  static inline void finish_lock_switch(struct rq *rq)
5074  {
5075  	/*
5076  	 * If we are tracking spinlock dependencies then we have to
5077  	 * fix up the runqueue lock - which gets 'carried over' from
5078  	 * prev into current:
5079  	 */
5080  	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5081  	__balance_callbacks(rq);
5082  	raw_spin_rq_unlock_irq(rq);
5083  }
5084  
5085  /*
5086   * NOP if the arch has not defined these:
5087   */
5088  
5089  #ifndef prepare_arch_switch
5090  # define prepare_arch_switch(next)	do { } while (0)
5091  #endif
5092  
5093  #ifndef finish_arch_post_lock_switch
5094  # define finish_arch_post_lock_switch()	do { } while (0)
5095  #endif
5096  
kmap_local_sched_out(void)5097  static inline void kmap_local_sched_out(void)
5098  {
5099  #ifdef CONFIG_KMAP_LOCAL
5100  	if (unlikely(current->kmap_ctrl.idx))
5101  		__kmap_local_sched_out();
5102  #endif
5103  }
5104  
kmap_local_sched_in(void)5105  static inline void kmap_local_sched_in(void)
5106  {
5107  #ifdef CONFIG_KMAP_LOCAL
5108  	if (unlikely(current->kmap_ctrl.idx))
5109  		__kmap_local_sched_in();
5110  #endif
5111  }
5112  
5113  /**
5114   * prepare_task_switch - prepare to switch tasks
5115   * @rq: the runqueue preparing to switch
5116   * @prev: the current task that is being switched out
5117   * @next: the task we are going to switch to.
5118   *
5119   * This is called with the rq lock held and interrupts off. It must
5120   * be paired with a subsequent finish_task_switch after the context
5121   * switch.
5122   *
5123   * prepare_task_switch sets up locking and calls architecture specific
5124   * hooks.
5125   */
5126  static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5127  prepare_task_switch(struct rq *rq, struct task_struct *prev,
5128  		    struct task_struct *next)
5129  {
5130  	kcov_prepare_switch(prev);
5131  	sched_info_switch(rq, prev, next);
5132  	perf_event_task_sched_out(prev, next);
5133  	rseq_preempt(prev);
5134  	fire_sched_out_preempt_notifiers(prev, next);
5135  	kmap_local_sched_out();
5136  	prepare_task(next);
5137  	prepare_arch_switch(next);
5138  }
5139  
5140  /**
5141   * finish_task_switch - clean up after a task-switch
5142   * @prev: the thread we just switched away from.
5143   *
5144   * finish_task_switch must be called after the context switch, paired
5145   * with a prepare_task_switch call before the context switch.
5146   * finish_task_switch will reconcile locking set up by prepare_task_switch,
5147   * and do any other architecture-specific cleanup actions.
5148   *
5149   * Note that we may have delayed dropping an mm in context_switch(). If
5150   * so, we finish that here outside of the runqueue lock. (Doing it
5151   * with the lock held can cause deadlocks; see schedule() for
5152   * details.)
5153   *
5154   * The context switch have flipped the stack from under us and restored the
5155   * local variables which were saved when this task called schedule() in the
5156   * past. 'prev == current' is still correct but we need to recalculate this_rq
5157   * because prev may have moved to another CPU.
5158   */
finish_task_switch(struct task_struct * prev)5159  static struct rq *finish_task_switch(struct task_struct *prev)
5160  	__releases(rq->lock)
5161  {
5162  	struct rq *rq = this_rq();
5163  	struct mm_struct *mm = rq->prev_mm;
5164  	unsigned int prev_state;
5165  
5166  	/*
5167  	 * The previous task will have left us with a preempt_count of 2
5168  	 * because it left us after:
5169  	 *
5170  	 *	schedule()
5171  	 *	  preempt_disable();			// 1
5172  	 *	  __schedule()
5173  	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5174  	 *
5175  	 * Also, see FORK_PREEMPT_COUNT.
5176  	 */
5177  	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5178  		      "corrupted preempt_count: %s/%d/0x%x\n",
5179  		      current->comm, current->pid, preempt_count()))
5180  		preempt_count_set(FORK_PREEMPT_COUNT);
5181  
5182  	rq->prev_mm = NULL;
5183  
5184  	/*
5185  	 * A task struct has one reference for the use as "current".
5186  	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5187  	 * schedule one last time. The schedule call will never return, and
5188  	 * the scheduled task must drop that reference.
5189  	 *
5190  	 * We must observe prev->state before clearing prev->on_cpu (in
5191  	 * finish_task), otherwise a concurrent wakeup can get prev
5192  	 * running on another CPU and we could rave with its RUNNING -> DEAD
5193  	 * transition, resulting in a double drop.
5194  	 */
5195  	prev_state = READ_ONCE(prev->__state);
5196  	vtime_task_switch(prev);
5197  	perf_event_task_sched_in(prev, current);
5198  	finish_task(prev);
5199  	tick_nohz_task_switch();
5200  	finish_lock_switch(rq);
5201  	finish_arch_post_lock_switch();
5202  	kcov_finish_switch(current);
5203  	/*
5204  	 * kmap_local_sched_out() is invoked with rq::lock held and
5205  	 * interrupts disabled. There is no requirement for that, but the
5206  	 * sched out code does not have an interrupt enabled section.
5207  	 * Restoring the maps on sched in does not require interrupts being
5208  	 * disabled either.
5209  	 */
5210  	kmap_local_sched_in();
5211  
5212  	fire_sched_in_preempt_notifiers(current);
5213  	/*
5214  	 * When switching through a kernel thread, the loop in
5215  	 * membarrier_{private,global}_expedited() may have observed that
5216  	 * kernel thread and not issued an IPI. It is therefore possible to
5217  	 * schedule between user->kernel->user threads without passing though
5218  	 * switch_mm(). Membarrier requires a barrier after storing to
5219  	 * rq->curr, before returning to userspace, so provide them here:
5220  	 *
5221  	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5222  	 *   provided by mmdrop_lazy_tlb(),
5223  	 * - a sync_core for SYNC_CORE.
5224  	 */
5225  	if (mm) {
5226  		membarrier_mm_sync_core_before_usermode(mm);
5227  		mmdrop_lazy_tlb_sched(mm);
5228  	}
5229  
5230  	if (unlikely(prev_state == TASK_DEAD)) {
5231  		if (prev->sched_class->task_dead)
5232  			prev->sched_class->task_dead(prev);
5233  
5234  		/* Task is done with its stack. */
5235  		put_task_stack(prev);
5236  
5237  		put_task_struct_rcu_user(prev);
5238  	}
5239  
5240  	return rq;
5241  }
5242  
5243  /**
5244   * schedule_tail - first thing a freshly forked thread must call.
5245   * @prev: the thread we just switched away from.
5246   */
schedule_tail(struct task_struct * prev)5247  asmlinkage __visible void schedule_tail(struct task_struct *prev)
5248  	__releases(rq->lock)
5249  {
5250  	/*
5251  	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5252  	 * finish_task_switch() for details.
5253  	 *
5254  	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5255  	 * and the preempt_enable() will end up enabling preemption (on
5256  	 * PREEMPT_COUNT kernels).
5257  	 */
5258  
5259  	finish_task_switch(prev);
5260  	preempt_enable();
5261  
5262  	if (current->set_child_tid)
5263  		put_user(task_pid_vnr(current), current->set_child_tid);
5264  
5265  	calculate_sigpending();
5266  }
5267  
5268  /*
5269   * context_switch - switch to the new MM and the new thread's register state.
5270   */
5271  static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5272  context_switch(struct rq *rq, struct task_struct *prev,
5273  	       struct task_struct *next, struct rq_flags *rf)
5274  {
5275  	prepare_task_switch(rq, prev, next);
5276  
5277  	/*
5278  	 * For paravirt, this is coupled with an exit in switch_to to
5279  	 * combine the page table reload and the switch backend into
5280  	 * one hypercall.
5281  	 */
5282  	arch_start_context_switch(prev);
5283  
5284  	/*
5285  	 * kernel -> kernel   lazy + transfer active
5286  	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5287  	 *
5288  	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5289  	 *   user ->   user   switch
5290  	 *
5291  	 * switch_mm_cid() needs to be updated if the barriers provided
5292  	 * by context_switch() are modified.
5293  	 */
5294  	if (!next->mm) {                                // to kernel
5295  		enter_lazy_tlb(prev->active_mm, next);
5296  
5297  		next->active_mm = prev->active_mm;
5298  		if (prev->mm)                           // from user
5299  			mmgrab_lazy_tlb(prev->active_mm);
5300  		else
5301  			prev->active_mm = NULL;
5302  	} else {                                        // to user
5303  		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5304  		/*
5305  		 * sys_membarrier() requires an smp_mb() between setting
5306  		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5307  		 *
5308  		 * The below provides this either through switch_mm(), or in
5309  		 * case 'prev->active_mm == next->mm' through
5310  		 * finish_task_switch()'s mmdrop().
5311  		 */
5312  		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5313  		lru_gen_use_mm(next->mm);
5314  
5315  		if (!prev->mm) {                        // from kernel
5316  			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5317  			rq->prev_mm = prev->active_mm;
5318  			prev->active_mm = NULL;
5319  		}
5320  	}
5321  
5322  	/* switch_mm_cid() requires the memory barriers above. */
5323  	switch_mm_cid(rq, prev, next);
5324  
5325  	prepare_lock_switch(rq, next, rf);
5326  
5327  	/* Here we just switch the register state and the stack. */
5328  	switch_to(prev, next, prev);
5329  	barrier();
5330  
5331  	return finish_task_switch(prev);
5332  }
5333  
5334  /*
5335   * nr_running and nr_context_switches:
5336   *
5337   * externally visible scheduler statistics: current number of runnable
5338   * threads, total number of context switches performed since bootup.
5339   */
nr_running(void)5340  unsigned int nr_running(void)
5341  {
5342  	unsigned int i, sum = 0;
5343  
5344  	for_each_online_cpu(i)
5345  		sum += cpu_rq(i)->nr_running;
5346  
5347  	return sum;
5348  }
5349  
5350  /*
5351   * Check if only the current task is running on the CPU.
5352   *
5353   * Caution: this function does not check that the caller has disabled
5354   * preemption, thus the result might have a time-of-check-to-time-of-use
5355   * race.  The caller is responsible to use it correctly, for example:
5356   *
5357   * - from a non-preemptible section (of course)
5358   *
5359   * - from a thread that is bound to a single CPU
5360   *
5361   * - in a loop with very short iterations (e.g. a polling loop)
5362   */
single_task_running(void)5363  bool single_task_running(void)
5364  {
5365  	return raw_rq()->nr_running == 1;
5366  }
5367  EXPORT_SYMBOL(single_task_running);
5368  
nr_context_switches_cpu(int cpu)5369  unsigned long long nr_context_switches_cpu(int cpu)
5370  {
5371  	return cpu_rq(cpu)->nr_switches;
5372  }
5373  
nr_context_switches(void)5374  unsigned long long nr_context_switches(void)
5375  {
5376  	int i;
5377  	unsigned long long sum = 0;
5378  
5379  	for_each_possible_cpu(i)
5380  		sum += cpu_rq(i)->nr_switches;
5381  
5382  	return sum;
5383  }
5384  
5385  /*
5386   * Consumers of these two interfaces, like for example the cpuidle menu
5387   * governor, are using nonsensical data. Preferring shallow idle state selection
5388   * for a CPU that has IO-wait which might not even end up running the task when
5389   * it does become runnable.
5390   */
5391  
nr_iowait_cpu(int cpu)5392  unsigned int nr_iowait_cpu(int cpu)
5393  {
5394  	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5395  }
5396  
5397  /*
5398   * IO-wait accounting, and how it's mostly bollocks (on SMP).
5399   *
5400   * The idea behind IO-wait account is to account the idle time that we could
5401   * have spend running if it were not for IO. That is, if we were to improve the
5402   * storage performance, we'd have a proportional reduction in IO-wait time.
5403   *
5404   * This all works nicely on UP, where, when a task blocks on IO, we account
5405   * idle time as IO-wait, because if the storage were faster, it could've been
5406   * running and we'd not be idle.
5407   *
5408   * This has been extended to SMP, by doing the same for each CPU. This however
5409   * is broken.
5410   *
5411   * Imagine for instance the case where two tasks block on one CPU, only the one
5412   * CPU will have IO-wait accounted, while the other has regular idle. Even
5413   * though, if the storage were faster, both could've ran at the same time,
5414   * utilising both CPUs.
5415   *
5416   * This means, that when looking globally, the current IO-wait accounting on
5417   * SMP is a lower bound, by reason of under accounting.
5418   *
5419   * Worse, since the numbers are provided per CPU, they are sometimes
5420   * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5421   * associated with any one particular CPU, it can wake to another CPU than it
5422   * blocked on. This means the per CPU IO-wait number is meaningless.
5423   *
5424   * Task CPU affinities can make all that even more 'interesting'.
5425   */
5426  
nr_iowait(void)5427  unsigned int nr_iowait(void)
5428  {
5429  	unsigned int i, sum = 0;
5430  
5431  	for_each_possible_cpu(i)
5432  		sum += nr_iowait_cpu(i);
5433  
5434  	return sum;
5435  }
5436  
5437  #ifdef CONFIG_SMP
5438  
5439  /*
5440   * sched_exec - execve() is a valuable balancing opportunity, because at
5441   * this point the task has the smallest effective memory and cache footprint.
5442   */
sched_exec(void)5443  void sched_exec(void)
5444  {
5445  	struct task_struct *p = current;
5446  	struct migration_arg arg;
5447  	int dest_cpu;
5448  
5449  	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5450  		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5451  		if (dest_cpu == smp_processor_id())
5452  			return;
5453  
5454  		if (unlikely(!cpu_active(dest_cpu)))
5455  			return;
5456  
5457  		arg = (struct migration_arg){ p, dest_cpu };
5458  	}
5459  	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5460  }
5461  
5462  #endif
5463  
5464  DEFINE_PER_CPU(struct kernel_stat, kstat);
5465  DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5466  
5467  EXPORT_PER_CPU_SYMBOL(kstat);
5468  EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5469  
5470  /*
5471   * The function fair_sched_class.update_curr accesses the struct curr
5472   * and its field curr->exec_start; when called from task_sched_runtime(),
5473   * we observe a high rate of cache misses in practice.
5474   * Prefetching this data results in improved performance.
5475   */
prefetch_curr_exec_start(struct task_struct * p)5476  static inline void prefetch_curr_exec_start(struct task_struct *p)
5477  {
5478  #ifdef CONFIG_FAIR_GROUP_SCHED
5479  	struct sched_entity *curr = p->se.cfs_rq->curr;
5480  #else
5481  	struct sched_entity *curr = task_rq(p)->cfs.curr;
5482  #endif
5483  	prefetch(curr);
5484  	prefetch(&curr->exec_start);
5485  }
5486  
5487  /*
5488   * Return accounted runtime for the task.
5489   * In case the task is currently running, return the runtime plus current's
5490   * pending runtime that have not been accounted yet.
5491   */
task_sched_runtime(struct task_struct * p)5492  unsigned long long task_sched_runtime(struct task_struct *p)
5493  {
5494  	struct rq_flags rf;
5495  	struct rq *rq;
5496  	u64 ns;
5497  
5498  #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5499  	/*
5500  	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5501  	 * So we have a optimization chance when the task's delta_exec is 0.
5502  	 * Reading ->on_cpu is racy, but this is OK.
5503  	 *
5504  	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5505  	 * If we race with it entering CPU, unaccounted time is 0. This is
5506  	 * indistinguishable from the read occurring a few cycles earlier.
5507  	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5508  	 * been accounted, so we're correct here as well.
5509  	 */
5510  	if (!p->on_cpu || !task_on_rq_queued(p))
5511  		return p->se.sum_exec_runtime;
5512  #endif
5513  
5514  	rq = task_rq_lock(p, &rf);
5515  	/*
5516  	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5517  	 * project cycles that may never be accounted to this
5518  	 * thread, breaking clock_gettime().
5519  	 */
5520  	if (task_current(rq, p) && task_on_rq_queued(p)) {
5521  		prefetch_curr_exec_start(p);
5522  		update_rq_clock(rq);
5523  		p->sched_class->update_curr(rq);
5524  	}
5525  	ns = p->se.sum_exec_runtime;
5526  	task_rq_unlock(rq, p, &rf);
5527  
5528  	return ns;
5529  }
5530  
5531  #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5532  static u64 cpu_resched_latency(struct rq *rq)
5533  {
5534  	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5535  	u64 resched_latency, now = rq_clock(rq);
5536  	static bool warned_once;
5537  
5538  	if (sysctl_resched_latency_warn_once && warned_once)
5539  		return 0;
5540  
5541  	if (!need_resched() || !latency_warn_ms)
5542  		return 0;
5543  
5544  	if (system_state == SYSTEM_BOOTING)
5545  		return 0;
5546  
5547  	if (!rq->last_seen_need_resched_ns) {
5548  		rq->last_seen_need_resched_ns = now;
5549  		rq->ticks_without_resched = 0;
5550  		return 0;
5551  	}
5552  
5553  	rq->ticks_without_resched++;
5554  	resched_latency = now - rq->last_seen_need_resched_ns;
5555  	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5556  		return 0;
5557  
5558  	warned_once = true;
5559  
5560  	return resched_latency;
5561  }
5562  
setup_resched_latency_warn_ms(char * str)5563  static int __init setup_resched_latency_warn_ms(char *str)
5564  {
5565  	long val;
5566  
5567  	if ((kstrtol(str, 0, &val))) {
5568  		pr_warn("Unable to set resched_latency_warn_ms\n");
5569  		return 1;
5570  	}
5571  
5572  	sysctl_resched_latency_warn_ms = val;
5573  	return 1;
5574  }
5575  __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5576  #else
cpu_resched_latency(struct rq * rq)5577  static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5578  #endif /* CONFIG_SCHED_DEBUG */
5579  
5580  /*
5581   * This function gets called by the timer code, with HZ frequency.
5582   * We call it with interrupts disabled.
5583   */
sched_tick(void)5584  void sched_tick(void)
5585  {
5586  	int cpu = smp_processor_id();
5587  	struct rq *rq = cpu_rq(cpu);
5588  	struct task_struct *curr;
5589  	struct rq_flags rf;
5590  	unsigned long hw_pressure;
5591  	u64 resched_latency;
5592  
5593  	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5594  		arch_scale_freq_tick();
5595  
5596  	sched_clock_tick();
5597  
5598  	rq_lock(rq, &rf);
5599  
5600  	curr = rq->curr;
5601  	psi_account_irqtime(rq, curr, NULL);
5602  
5603  	update_rq_clock(rq);
5604  	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5605  	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5606  	curr->sched_class->task_tick(rq, curr, 0);
5607  	if (sched_feat(LATENCY_WARN))
5608  		resched_latency = cpu_resched_latency(rq);
5609  	calc_global_load_tick(rq);
5610  	sched_core_tick(rq);
5611  	task_tick_mm_cid(rq, curr);
5612  	scx_tick(rq);
5613  
5614  	rq_unlock(rq, &rf);
5615  
5616  	if (sched_feat(LATENCY_WARN) && resched_latency)
5617  		resched_latency_warn(cpu, resched_latency);
5618  
5619  	perf_event_task_tick();
5620  
5621  	if (curr->flags & PF_WQ_WORKER)
5622  		wq_worker_tick(curr);
5623  
5624  #ifdef CONFIG_SMP
5625  	if (!scx_switched_all()) {
5626  		rq->idle_balance = idle_cpu(cpu);
5627  		sched_balance_trigger(rq);
5628  	}
5629  #endif
5630  }
5631  
5632  #ifdef CONFIG_NO_HZ_FULL
5633  
5634  struct tick_work {
5635  	int			cpu;
5636  	atomic_t		state;
5637  	struct delayed_work	work;
5638  };
5639  /* Values for ->state, see diagram below. */
5640  #define TICK_SCHED_REMOTE_OFFLINE	0
5641  #define TICK_SCHED_REMOTE_OFFLINING	1
5642  #define TICK_SCHED_REMOTE_RUNNING	2
5643  
5644  /*
5645   * State diagram for ->state:
5646   *
5647   *
5648   *          TICK_SCHED_REMOTE_OFFLINE
5649   *                    |   ^
5650   *                    |   |
5651   *                    |   | sched_tick_remote()
5652   *                    |   |
5653   *                    |   |
5654   *                    +--TICK_SCHED_REMOTE_OFFLINING
5655   *                    |   ^
5656   *                    |   |
5657   * sched_tick_start() |   | sched_tick_stop()
5658   *                    |   |
5659   *                    V   |
5660   *          TICK_SCHED_REMOTE_RUNNING
5661   *
5662   *
5663   * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5664   * and sched_tick_start() are happy to leave the state in RUNNING.
5665   */
5666  
5667  static struct tick_work __percpu *tick_work_cpu;
5668  
sched_tick_remote(struct work_struct * work)5669  static void sched_tick_remote(struct work_struct *work)
5670  {
5671  	struct delayed_work *dwork = to_delayed_work(work);
5672  	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5673  	int cpu = twork->cpu;
5674  	struct rq *rq = cpu_rq(cpu);
5675  	int os;
5676  
5677  	/*
5678  	 * Handle the tick only if it appears the remote CPU is running in full
5679  	 * dynticks mode. The check is racy by nature, but missing a tick or
5680  	 * having one too much is no big deal because the scheduler tick updates
5681  	 * statistics and checks timeslices in a time-independent way, regardless
5682  	 * of when exactly it is running.
5683  	 */
5684  	if (tick_nohz_tick_stopped_cpu(cpu)) {
5685  		guard(rq_lock_irq)(rq);
5686  		struct task_struct *curr = rq->curr;
5687  
5688  		if (cpu_online(cpu)) {
5689  			update_rq_clock(rq);
5690  
5691  			if (!is_idle_task(curr)) {
5692  				/*
5693  				 * Make sure the next tick runs within a
5694  				 * reasonable amount of time.
5695  				 */
5696  				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5697  				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5698  			}
5699  			curr->sched_class->task_tick(rq, curr, 0);
5700  
5701  			calc_load_nohz_remote(rq);
5702  		}
5703  	}
5704  
5705  	/*
5706  	 * Run the remote tick once per second (1Hz). This arbitrary
5707  	 * frequency is large enough to avoid overload but short enough
5708  	 * to keep scheduler internal stats reasonably up to date.  But
5709  	 * first update state to reflect hotplug activity if required.
5710  	 */
5711  	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5712  	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5713  	if (os == TICK_SCHED_REMOTE_RUNNING)
5714  		queue_delayed_work(system_unbound_wq, dwork, HZ);
5715  }
5716  
sched_tick_start(int cpu)5717  static void sched_tick_start(int cpu)
5718  {
5719  	int os;
5720  	struct tick_work *twork;
5721  
5722  	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5723  		return;
5724  
5725  	WARN_ON_ONCE(!tick_work_cpu);
5726  
5727  	twork = per_cpu_ptr(tick_work_cpu, cpu);
5728  	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5729  	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5730  	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5731  		twork->cpu = cpu;
5732  		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5733  		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5734  	}
5735  }
5736  
5737  #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5738  static void sched_tick_stop(int cpu)
5739  {
5740  	struct tick_work *twork;
5741  	int os;
5742  
5743  	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5744  		return;
5745  
5746  	WARN_ON_ONCE(!tick_work_cpu);
5747  
5748  	twork = per_cpu_ptr(tick_work_cpu, cpu);
5749  	/* There cannot be competing actions, but don't rely on stop-machine. */
5750  	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5751  	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5752  	/* Don't cancel, as this would mess up the state machine. */
5753  }
5754  #endif /* CONFIG_HOTPLUG_CPU */
5755  
sched_tick_offload_init(void)5756  int __init sched_tick_offload_init(void)
5757  {
5758  	tick_work_cpu = alloc_percpu(struct tick_work);
5759  	BUG_ON(!tick_work_cpu);
5760  	return 0;
5761  }
5762  
5763  #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5764  static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5765  static inline void sched_tick_stop(int cpu) { }
5766  #endif
5767  
5768  #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5769  				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5770  /*
5771   * If the value passed in is equal to the current preempt count
5772   * then we just disabled preemption. Start timing the latency.
5773   */
preempt_latency_start(int val)5774  static inline void preempt_latency_start(int val)
5775  {
5776  	if (preempt_count() == val) {
5777  		unsigned long ip = get_lock_parent_ip();
5778  #ifdef CONFIG_DEBUG_PREEMPT
5779  		current->preempt_disable_ip = ip;
5780  #endif
5781  		trace_preempt_off(CALLER_ADDR0, ip);
5782  	}
5783  }
5784  
preempt_count_add(int val)5785  void preempt_count_add(int val)
5786  {
5787  #ifdef CONFIG_DEBUG_PREEMPT
5788  	/*
5789  	 * Underflow?
5790  	 */
5791  	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5792  		return;
5793  #endif
5794  	__preempt_count_add(val);
5795  #ifdef CONFIG_DEBUG_PREEMPT
5796  	/*
5797  	 * Spinlock count overflowing soon?
5798  	 */
5799  	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5800  				PREEMPT_MASK - 10);
5801  #endif
5802  	preempt_latency_start(val);
5803  }
5804  EXPORT_SYMBOL(preempt_count_add);
5805  NOKPROBE_SYMBOL(preempt_count_add);
5806  
5807  /*
5808   * If the value passed in equals to the current preempt count
5809   * then we just enabled preemption. Stop timing the latency.
5810   */
preempt_latency_stop(int val)5811  static inline void preempt_latency_stop(int val)
5812  {
5813  	if (preempt_count() == val)
5814  		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5815  }
5816  
preempt_count_sub(int val)5817  void preempt_count_sub(int val)
5818  {
5819  #ifdef CONFIG_DEBUG_PREEMPT
5820  	/*
5821  	 * Underflow?
5822  	 */
5823  	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5824  		return;
5825  	/*
5826  	 * Is the spinlock portion underflowing?
5827  	 */
5828  	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5829  			!(preempt_count() & PREEMPT_MASK)))
5830  		return;
5831  #endif
5832  
5833  	preempt_latency_stop(val);
5834  	__preempt_count_sub(val);
5835  }
5836  EXPORT_SYMBOL(preempt_count_sub);
5837  NOKPROBE_SYMBOL(preempt_count_sub);
5838  
5839  #else
preempt_latency_start(int val)5840  static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5841  static inline void preempt_latency_stop(int val) { }
5842  #endif
5843  
get_preempt_disable_ip(struct task_struct * p)5844  static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5845  {
5846  #ifdef CONFIG_DEBUG_PREEMPT
5847  	return p->preempt_disable_ip;
5848  #else
5849  	return 0;
5850  #endif
5851  }
5852  
5853  /*
5854   * Print scheduling while atomic bug:
5855   */
__schedule_bug(struct task_struct * prev)5856  static noinline void __schedule_bug(struct task_struct *prev)
5857  {
5858  	/* Save this before calling printk(), since that will clobber it */
5859  	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5860  
5861  	if (oops_in_progress)
5862  		return;
5863  
5864  	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5865  		prev->comm, prev->pid, preempt_count());
5866  
5867  	debug_show_held_locks(prev);
5868  	print_modules();
5869  	if (irqs_disabled())
5870  		print_irqtrace_events(prev);
5871  	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5872  		pr_err("Preemption disabled at:");
5873  		print_ip_sym(KERN_ERR, preempt_disable_ip);
5874  	}
5875  	check_panic_on_warn("scheduling while atomic");
5876  
5877  	dump_stack();
5878  	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5879  }
5880  
5881  /*
5882   * Various schedule()-time debugging checks and statistics:
5883   */
schedule_debug(struct task_struct * prev,bool preempt)5884  static inline void schedule_debug(struct task_struct *prev, bool preempt)
5885  {
5886  #ifdef CONFIG_SCHED_STACK_END_CHECK
5887  	if (task_stack_end_corrupted(prev))
5888  		panic("corrupted stack end detected inside scheduler\n");
5889  
5890  	if (task_scs_end_corrupted(prev))
5891  		panic("corrupted shadow stack detected inside scheduler\n");
5892  #endif
5893  
5894  #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5895  	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5896  		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5897  			prev->comm, prev->pid, prev->non_block_count);
5898  		dump_stack();
5899  		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5900  	}
5901  #endif
5902  
5903  	if (unlikely(in_atomic_preempt_off())) {
5904  		__schedule_bug(prev);
5905  		preempt_count_set(PREEMPT_DISABLED);
5906  	}
5907  	rcu_sleep_check();
5908  	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
5909  
5910  	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5911  
5912  	schedstat_inc(this_rq()->sched_count);
5913  }
5914  
prev_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5915  static void prev_balance(struct rq *rq, struct task_struct *prev,
5916  			 struct rq_flags *rf)
5917  {
5918  	const struct sched_class *start_class = prev->sched_class;
5919  	const struct sched_class *class;
5920  
5921  #ifdef CONFIG_SCHED_CLASS_EXT
5922  	/*
5923  	 * SCX requires a balance() call before every pick_task() including when
5924  	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5925  	 * SCX instead. Also, set a flag to detect missing balance() call.
5926  	 */
5927  	if (scx_enabled()) {
5928  		rq->scx.flags |= SCX_RQ_BAL_PENDING;
5929  		if (sched_class_above(&ext_sched_class, start_class))
5930  			start_class = &ext_sched_class;
5931  	}
5932  #endif
5933  
5934  	/*
5935  	 * We must do the balancing pass before put_prev_task(), such
5936  	 * that when we release the rq->lock the task is in the same
5937  	 * state as before we took rq->lock.
5938  	 *
5939  	 * We can terminate the balance pass as soon as we know there is
5940  	 * a runnable task of @class priority or higher.
5941  	 */
5942  	for_active_class_range(class, start_class, &idle_sched_class) {
5943  		if (class->balance && class->balance(rq, prev, rf))
5944  			break;
5945  	}
5946  }
5947  
5948  /*
5949   * Pick up the highest-prio task:
5950   */
5951  static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5952  __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5953  {
5954  	const struct sched_class *class;
5955  	struct task_struct *p;
5956  
5957  	rq->dl_server = NULL;
5958  
5959  	if (scx_enabled())
5960  		goto restart;
5961  
5962  	/*
5963  	 * Optimization: we know that if all tasks are in the fair class we can
5964  	 * call that function directly, but only if the @prev task wasn't of a
5965  	 * higher scheduling class, because otherwise those lose the
5966  	 * opportunity to pull in more work from other CPUs.
5967  	 */
5968  	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5969  		   rq->nr_running == rq->cfs.h_nr_running)) {
5970  
5971  		p = pick_next_task_fair(rq, prev, rf);
5972  		if (unlikely(p == RETRY_TASK))
5973  			goto restart;
5974  
5975  		/* Assume the next prioritized class is idle_sched_class */
5976  		if (!p) {
5977  			p = pick_task_idle(rq);
5978  			put_prev_set_next_task(rq, prev, p);
5979  		}
5980  
5981  		return p;
5982  	}
5983  
5984  restart:
5985  	prev_balance(rq, prev, rf);
5986  
5987  	for_each_active_class(class) {
5988  		if (class->pick_next_task) {
5989  			p = class->pick_next_task(rq, prev);
5990  			if (p)
5991  				return p;
5992  		} else {
5993  			p = class->pick_task(rq);
5994  			if (p) {
5995  				put_prev_set_next_task(rq, prev, p);
5996  				return p;
5997  			}
5998  		}
5999  	}
6000  
6001  	BUG(); /* The idle class should always have a runnable task. */
6002  }
6003  
6004  #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6005  static inline bool is_task_rq_idle(struct task_struct *t)
6006  {
6007  	return (task_rq(t)->idle == t);
6008  }
6009  
cookie_equals(struct task_struct * a,unsigned long cookie)6010  static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6011  {
6012  	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6013  }
6014  
cookie_match(struct task_struct * a,struct task_struct * b)6015  static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6016  {
6017  	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6018  		return true;
6019  
6020  	return a->core_cookie == b->core_cookie;
6021  }
6022  
pick_task(struct rq * rq)6023  static inline struct task_struct *pick_task(struct rq *rq)
6024  {
6025  	const struct sched_class *class;
6026  	struct task_struct *p;
6027  
6028  	rq->dl_server = NULL;
6029  
6030  	for_each_active_class(class) {
6031  		p = class->pick_task(rq);
6032  		if (p)
6033  			return p;
6034  	}
6035  
6036  	BUG(); /* The idle class should always have a runnable task. */
6037  }
6038  
6039  extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6040  
6041  static void queue_core_balance(struct rq *rq);
6042  
6043  static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6044  pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6045  {
6046  	struct task_struct *next, *p, *max = NULL;
6047  	const struct cpumask *smt_mask;
6048  	bool fi_before = false;
6049  	bool core_clock_updated = (rq == rq->core);
6050  	unsigned long cookie;
6051  	int i, cpu, occ = 0;
6052  	struct rq *rq_i;
6053  	bool need_sync;
6054  
6055  	if (!sched_core_enabled(rq))
6056  		return __pick_next_task(rq, prev, rf);
6057  
6058  	cpu = cpu_of(rq);
6059  
6060  	/* Stopper task is switching into idle, no need core-wide selection. */
6061  	if (cpu_is_offline(cpu)) {
6062  		/*
6063  		 * Reset core_pick so that we don't enter the fastpath when
6064  		 * coming online. core_pick would already be migrated to
6065  		 * another cpu during offline.
6066  		 */
6067  		rq->core_pick = NULL;
6068  		rq->core_dl_server = NULL;
6069  		return __pick_next_task(rq, prev, rf);
6070  	}
6071  
6072  	/*
6073  	 * If there were no {en,de}queues since we picked (IOW, the task
6074  	 * pointers are all still valid), and we haven't scheduled the last
6075  	 * pick yet, do so now.
6076  	 *
6077  	 * rq->core_pick can be NULL if no selection was made for a CPU because
6078  	 * it was either offline or went offline during a sibling's core-wide
6079  	 * selection. In this case, do a core-wide selection.
6080  	 */
6081  	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6082  	    rq->core->core_pick_seq != rq->core_sched_seq &&
6083  	    rq->core_pick) {
6084  		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6085  
6086  		next = rq->core_pick;
6087  		rq->dl_server = rq->core_dl_server;
6088  		rq->core_pick = NULL;
6089  		rq->core_dl_server = NULL;
6090  		goto out_set_next;
6091  	}
6092  
6093  	prev_balance(rq, prev, rf);
6094  
6095  	smt_mask = cpu_smt_mask(cpu);
6096  	need_sync = !!rq->core->core_cookie;
6097  
6098  	/* reset state */
6099  	rq->core->core_cookie = 0UL;
6100  	if (rq->core->core_forceidle_count) {
6101  		if (!core_clock_updated) {
6102  			update_rq_clock(rq->core);
6103  			core_clock_updated = true;
6104  		}
6105  		sched_core_account_forceidle(rq);
6106  		/* reset after accounting force idle */
6107  		rq->core->core_forceidle_start = 0;
6108  		rq->core->core_forceidle_count = 0;
6109  		rq->core->core_forceidle_occupation = 0;
6110  		need_sync = true;
6111  		fi_before = true;
6112  	}
6113  
6114  	/*
6115  	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6116  	 *
6117  	 * @task_seq guards the task state ({en,de}queues)
6118  	 * @pick_seq is the @task_seq we did a selection on
6119  	 * @sched_seq is the @pick_seq we scheduled
6120  	 *
6121  	 * However, preemptions can cause multiple picks on the same task set.
6122  	 * 'Fix' this by also increasing @task_seq for every pick.
6123  	 */
6124  	rq->core->core_task_seq++;
6125  
6126  	/*
6127  	 * Optimize for common case where this CPU has no cookies
6128  	 * and there are no cookied tasks running on siblings.
6129  	 */
6130  	if (!need_sync) {
6131  		next = pick_task(rq);
6132  		if (!next->core_cookie) {
6133  			rq->core_pick = NULL;
6134  			rq->core_dl_server = NULL;
6135  			/*
6136  			 * For robustness, update the min_vruntime_fi for
6137  			 * unconstrained picks as well.
6138  			 */
6139  			WARN_ON_ONCE(fi_before);
6140  			task_vruntime_update(rq, next, false);
6141  			goto out_set_next;
6142  		}
6143  	}
6144  
6145  	/*
6146  	 * For each thread: do the regular task pick and find the max prio task
6147  	 * amongst them.
6148  	 *
6149  	 * Tie-break prio towards the current CPU
6150  	 */
6151  	for_each_cpu_wrap(i, smt_mask, cpu) {
6152  		rq_i = cpu_rq(i);
6153  
6154  		/*
6155  		 * Current cpu always has its clock updated on entrance to
6156  		 * pick_next_task(). If the current cpu is not the core,
6157  		 * the core may also have been updated above.
6158  		 */
6159  		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6160  			update_rq_clock(rq_i);
6161  
6162  		rq_i->core_pick = p = pick_task(rq_i);
6163  		rq_i->core_dl_server = rq_i->dl_server;
6164  
6165  		if (!max || prio_less(max, p, fi_before))
6166  			max = p;
6167  	}
6168  
6169  	cookie = rq->core->core_cookie = max->core_cookie;
6170  
6171  	/*
6172  	 * For each thread: try and find a runnable task that matches @max or
6173  	 * force idle.
6174  	 */
6175  	for_each_cpu(i, smt_mask) {
6176  		rq_i = cpu_rq(i);
6177  		p = rq_i->core_pick;
6178  
6179  		if (!cookie_equals(p, cookie)) {
6180  			p = NULL;
6181  			if (cookie)
6182  				p = sched_core_find(rq_i, cookie);
6183  			if (!p)
6184  				p = idle_sched_class.pick_task(rq_i);
6185  		}
6186  
6187  		rq_i->core_pick = p;
6188  		rq_i->core_dl_server = NULL;
6189  
6190  		if (p == rq_i->idle) {
6191  			if (rq_i->nr_running) {
6192  				rq->core->core_forceidle_count++;
6193  				if (!fi_before)
6194  					rq->core->core_forceidle_seq++;
6195  			}
6196  		} else {
6197  			occ++;
6198  		}
6199  	}
6200  
6201  	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6202  		rq->core->core_forceidle_start = rq_clock(rq->core);
6203  		rq->core->core_forceidle_occupation = occ;
6204  	}
6205  
6206  	rq->core->core_pick_seq = rq->core->core_task_seq;
6207  	next = rq->core_pick;
6208  	rq->core_sched_seq = rq->core->core_pick_seq;
6209  
6210  	/* Something should have been selected for current CPU */
6211  	WARN_ON_ONCE(!next);
6212  
6213  	/*
6214  	 * Reschedule siblings
6215  	 *
6216  	 * NOTE: L1TF -- at this point we're no longer running the old task and
6217  	 * sending an IPI (below) ensures the sibling will no longer be running
6218  	 * their task. This ensures there is no inter-sibling overlap between
6219  	 * non-matching user state.
6220  	 */
6221  	for_each_cpu(i, smt_mask) {
6222  		rq_i = cpu_rq(i);
6223  
6224  		/*
6225  		 * An online sibling might have gone offline before a task
6226  		 * could be picked for it, or it might be offline but later
6227  		 * happen to come online, but its too late and nothing was
6228  		 * picked for it.  That's Ok - it will pick tasks for itself,
6229  		 * so ignore it.
6230  		 */
6231  		if (!rq_i->core_pick)
6232  			continue;
6233  
6234  		/*
6235  		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6236  		 * fi_before     fi      update?
6237  		 *  0            0       1
6238  		 *  0            1       1
6239  		 *  1            0       1
6240  		 *  1            1       0
6241  		 */
6242  		if (!(fi_before && rq->core->core_forceidle_count))
6243  			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6244  
6245  		rq_i->core_pick->core_occupation = occ;
6246  
6247  		if (i == cpu) {
6248  			rq_i->core_pick = NULL;
6249  			rq_i->core_dl_server = NULL;
6250  			continue;
6251  		}
6252  
6253  		/* Did we break L1TF mitigation requirements? */
6254  		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6255  
6256  		if (rq_i->curr == rq_i->core_pick) {
6257  			rq_i->core_pick = NULL;
6258  			rq_i->core_dl_server = NULL;
6259  			continue;
6260  		}
6261  
6262  		resched_curr(rq_i);
6263  	}
6264  
6265  out_set_next:
6266  	put_prev_set_next_task(rq, prev, next);
6267  	if (rq->core->core_forceidle_count && next == rq->idle)
6268  		queue_core_balance(rq);
6269  
6270  	return next;
6271  }
6272  
try_steal_cookie(int this,int that)6273  static bool try_steal_cookie(int this, int that)
6274  {
6275  	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6276  	struct task_struct *p;
6277  	unsigned long cookie;
6278  	bool success = false;
6279  
6280  	guard(irq)();
6281  	guard(double_rq_lock)(dst, src);
6282  
6283  	cookie = dst->core->core_cookie;
6284  	if (!cookie)
6285  		return false;
6286  
6287  	if (dst->curr != dst->idle)
6288  		return false;
6289  
6290  	p = sched_core_find(src, cookie);
6291  	if (!p)
6292  		return false;
6293  
6294  	do {
6295  		if (p == src->core_pick || p == src->curr)
6296  			goto next;
6297  
6298  		if (!is_cpu_allowed(p, this))
6299  			goto next;
6300  
6301  		if (p->core_occupation > dst->idle->core_occupation)
6302  			goto next;
6303  		/*
6304  		 * sched_core_find() and sched_core_next() will ensure
6305  		 * that task @p is not throttled now, we also need to
6306  		 * check whether the runqueue of the destination CPU is
6307  		 * being throttled.
6308  		 */
6309  		if (sched_task_is_throttled(p, this))
6310  			goto next;
6311  
6312  		deactivate_task(src, p, 0);
6313  		set_task_cpu(p, this);
6314  		activate_task(dst, p, 0);
6315  
6316  		resched_curr(dst);
6317  
6318  		success = true;
6319  		break;
6320  
6321  next:
6322  		p = sched_core_next(p, cookie);
6323  	} while (p);
6324  
6325  	return success;
6326  }
6327  
steal_cookie_task(int cpu,struct sched_domain * sd)6328  static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6329  {
6330  	int i;
6331  
6332  	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6333  		if (i == cpu)
6334  			continue;
6335  
6336  		if (need_resched())
6337  			break;
6338  
6339  		if (try_steal_cookie(cpu, i))
6340  			return true;
6341  	}
6342  
6343  	return false;
6344  }
6345  
sched_core_balance(struct rq * rq)6346  static void sched_core_balance(struct rq *rq)
6347  {
6348  	struct sched_domain *sd;
6349  	int cpu = cpu_of(rq);
6350  
6351  	guard(preempt)();
6352  	guard(rcu)();
6353  
6354  	raw_spin_rq_unlock_irq(rq);
6355  	for_each_domain(cpu, sd) {
6356  		if (need_resched())
6357  			break;
6358  
6359  		if (steal_cookie_task(cpu, sd))
6360  			break;
6361  	}
6362  	raw_spin_rq_lock_irq(rq);
6363  }
6364  
6365  static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6366  
queue_core_balance(struct rq * rq)6367  static void queue_core_balance(struct rq *rq)
6368  {
6369  	if (!sched_core_enabled(rq))
6370  		return;
6371  
6372  	if (!rq->core->core_cookie)
6373  		return;
6374  
6375  	if (!rq->nr_running) /* not forced idle */
6376  		return;
6377  
6378  	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6379  }
6380  
6381  DEFINE_LOCK_GUARD_1(core_lock, int,
6382  		    sched_core_lock(*_T->lock, &_T->flags),
6383  		    sched_core_unlock(*_T->lock, &_T->flags),
6384  		    unsigned long flags)
6385  
sched_core_cpu_starting(unsigned int cpu)6386  static void sched_core_cpu_starting(unsigned int cpu)
6387  {
6388  	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6389  	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6390  	int t;
6391  
6392  	guard(core_lock)(&cpu);
6393  
6394  	WARN_ON_ONCE(rq->core != rq);
6395  
6396  	/* if we're the first, we'll be our own leader */
6397  	if (cpumask_weight(smt_mask) == 1)
6398  		return;
6399  
6400  	/* find the leader */
6401  	for_each_cpu(t, smt_mask) {
6402  		if (t == cpu)
6403  			continue;
6404  		rq = cpu_rq(t);
6405  		if (rq->core == rq) {
6406  			core_rq = rq;
6407  			break;
6408  		}
6409  	}
6410  
6411  	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6412  		return;
6413  
6414  	/* install and validate core_rq */
6415  	for_each_cpu(t, smt_mask) {
6416  		rq = cpu_rq(t);
6417  
6418  		if (t == cpu)
6419  			rq->core = core_rq;
6420  
6421  		WARN_ON_ONCE(rq->core != core_rq);
6422  	}
6423  }
6424  
sched_core_cpu_deactivate(unsigned int cpu)6425  static void sched_core_cpu_deactivate(unsigned int cpu)
6426  {
6427  	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6428  	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6429  	int t;
6430  
6431  	guard(core_lock)(&cpu);
6432  
6433  	/* if we're the last man standing, nothing to do */
6434  	if (cpumask_weight(smt_mask) == 1) {
6435  		WARN_ON_ONCE(rq->core != rq);
6436  		return;
6437  	}
6438  
6439  	/* if we're not the leader, nothing to do */
6440  	if (rq->core != rq)
6441  		return;
6442  
6443  	/* find a new leader */
6444  	for_each_cpu(t, smt_mask) {
6445  		if (t == cpu)
6446  			continue;
6447  		core_rq = cpu_rq(t);
6448  		break;
6449  	}
6450  
6451  	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6452  		return;
6453  
6454  	/* copy the shared state to the new leader */
6455  	core_rq->core_task_seq             = rq->core_task_seq;
6456  	core_rq->core_pick_seq             = rq->core_pick_seq;
6457  	core_rq->core_cookie               = rq->core_cookie;
6458  	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6459  	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6460  	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6461  
6462  	/*
6463  	 * Accounting edge for forced idle is handled in pick_next_task().
6464  	 * Don't need another one here, since the hotplug thread shouldn't
6465  	 * have a cookie.
6466  	 */
6467  	core_rq->core_forceidle_start = 0;
6468  
6469  	/* install new leader */
6470  	for_each_cpu(t, smt_mask) {
6471  		rq = cpu_rq(t);
6472  		rq->core = core_rq;
6473  	}
6474  }
6475  
sched_core_cpu_dying(unsigned int cpu)6476  static inline void sched_core_cpu_dying(unsigned int cpu)
6477  {
6478  	struct rq *rq = cpu_rq(cpu);
6479  
6480  	if (rq->core != rq)
6481  		rq->core = rq;
6482  }
6483  
6484  #else /* !CONFIG_SCHED_CORE */
6485  
sched_core_cpu_starting(unsigned int cpu)6486  static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6487  static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6488  static inline void sched_core_cpu_dying(unsigned int cpu) {}
6489  
6490  static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6491  pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6492  {
6493  	return __pick_next_task(rq, prev, rf);
6494  }
6495  
6496  #endif /* CONFIG_SCHED_CORE */
6497  
6498  /*
6499   * Constants for the sched_mode argument of __schedule().
6500   *
6501   * The mode argument allows RT enabled kernels to differentiate a
6502   * preemption from blocking on an 'sleeping' spin/rwlock.
6503   */
6504  #define SM_IDLE			(-1)
6505  #define SM_NONE			0
6506  #define SM_PREEMPT		1
6507  #define SM_RTLOCK_WAIT		2
6508  
6509  /*
6510   * __schedule() is the main scheduler function.
6511   *
6512   * The main means of driving the scheduler and thus entering this function are:
6513   *
6514   *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6515   *
6516   *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6517   *      paths. For example, see arch/x86/entry_64.S.
6518   *
6519   *      To drive preemption between tasks, the scheduler sets the flag in timer
6520   *      interrupt handler sched_tick().
6521   *
6522   *   3. Wakeups don't really cause entry into schedule(). They add a
6523   *      task to the run-queue and that's it.
6524   *
6525   *      Now, if the new task added to the run-queue preempts the current
6526   *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6527   *      called on the nearest possible occasion:
6528   *
6529   *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6530   *
6531   *         - in syscall or exception context, at the next outmost
6532   *           preempt_enable(). (this might be as soon as the wake_up()'s
6533   *           spin_unlock()!)
6534   *
6535   *         - in IRQ context, return from interrupt-handler to
6536   *           preemptible context
6537   *
6538   *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6539   *         then at the next:
6540   *
6541   *          - cond_resched() call
6542   *          - explicit schedule() call
6543   *          - return from syscall or exception to user-space
6544   *          - return from interrupt-handler to user-space
6545   *
6546   * WARNING: must be called with preemption disabled!
6547   */
__schedule(int sched_mode)6548  static void __sched notrace __schedule(int sched_mode)
6549  {
6550  	struct task_struct *prev, *next;
6551  	/*
6552  	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6553  	 * as a preemption by schedule_debug() and RCU.
6554  	 */
6555  	bool preempt = sched_mode > SM_NONE;
6556  	bool block = false;
6557  	unsigned long *switch_count;
6558  	unsigned long prev_state;
6559  	struct rq_flags rf;
6560  	struct rq *rq;
6561  	int cpu;
6562  
6563  	cpu = smp_processor_id();
6564  	rq = cpu_rq(cpu);
6565  	prev = rq->curr;
6566  
6567  	schedule_debug(prev, preempt);
6568  
6569  	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6570  		hrtick_clear(rq);
6571  
6572  	local_irq_disable();
6573  	rcu_note_context_switch(preempt);
6574  
6575  	/*
6576  	 * Make sure that signal_pending_state()->signal_pending() below
6577  	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6578  	 * done by the caller to avoid the race with signal_wake_up():
6579  	 *
6580  	 * __set_current_state(@state)		signal_wake_up()
6581  	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6582  	 *					  wake_up_state(p, state)
6583  	 *   LOCK rq->lock			    LOCK p->pi_state
6584  	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6585  	 *     if (signal_pending_state())	    if (p->state & @state)
6586  	 *
6587  	 * Also, the membarrier system call requires a full memory barrier
6588  	 * after coming from user-space, before storing to rq->curr; this
6589  	 * barrier matches a full barrier in the proximity of the membarrier
6590  	 * system call exit.
6591  	 */
6592  	rq_lock(rq, &rf);
6593  	smp_mb__after_spinlock();
6594  
6595  	/* Promote REQ to ACT */
6596  	rq->clock_update_flags <<= 1;
6597  	update_rq_clock(rq);
6598  	rq->clock_update_flags = RQCF_UPDATED;
6599  
6600  	switch_count = &prev->nivcsw;
6601  
6602  	/* Task state changes only considers SM_PREEMPT as preemption */
6603  	preempt = sched_mode == SM_PREEMPT;
6604  
6605  	/*
6606  	 * We must load prev->state once (task_struct::state is volatile), such
6607  	 * that we form a control dependency vs deactivate_task() below.
6608  	 */
6609  	prev_state = READ_ONCE(prev->__state);
6610  	if (sched_mode == SM_IDLE) {
6611  		/* SCX must consult the BPF scheduler to tell if rq is empty */
6612  		if (!rq->nr_running && !scx_enabled()) {
6613  			next = prev;
6614  			goto picked;
6615  		}
6616  	} else if (!preempt && prev_state) {
6617  		if (signal_pending_state(prev_state, prev)) {
6618  			WRITE_ONCE(prev->__state, TASK_RUNNING);
6619  		} else {
6620  			int flags = DEQUEUE_NOCLOCK;
6621  
6622  			prev->sched_contributes_to_load =
6623  				(prev_state & TASK_UNINTERRUPTIBLE) &&
6624  				!(prev_state & TASK_NOLOAD) &&
6625  				!(prev_state & TASK_FROZEN);
6626  
6627  			if (unlikely(is_special_task_state(prev_state)))
6628  				flags |= DEQUEUE_SPECIAL;
6629  
6630  			/*
6631  			 * __schedule()			ttwu()
6632  			 *   prev_state = prev->state;    if (p->on_rq && ...)
6633  			 *   if (prev_state)		    goto out;
6634  			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6635  			 *				  p->state = TASK_WAKING
6636  			 *
6637  			 * Where __schedule() and ttwu() have matching control dependencies.
6638  			 *
6639  			 * After this, schedule() must not care about p->state any more.
6640  			 */
6641  			block_task(rq, prev, flags);
6642  			block = true;
6643  		}
6644  		switch_count = &prev->nvcsw;
6645  	}
6646  
6647  	next = pick_next_task(rq, prev, &rf);
6648  picked:
6649  	clear_tsk_need_resched(prev);
6650  	clear_preempt_need_resched();
6651  #ifdef CONFIG_SCHED_DEBUG
6652  	rq->last_seen_need_resched_ns = 0;
6653  #endif
6654  
6655  	if (likely(prev != next)) {
6656  		rq->nr_switches++;
6657  		/*
6658  		 * RCU users of rcu_dereference(rq->curr) may not see
6659  		 * changes to task_struct made by pick_next_task().
6660  		 */
6661  		RCU_INIT_POINTER(rq->curr, next);
6662  		/*
6663  		 * The membarrier system call requires each architecture
6664  		 * to have a full memory barrier after updating
6665  		 * rq->curr, before returning to user-space.
6666  		 *
6667  		 * Here are the schemes providing that barrier on the
6668  		 * various architectures:
6669  		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6670  		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6671  		 *   on PowerPC and on RISC-V.
6672  		 * - finish_lock_switch() for weakly-ordered
6673  		 *   architectures where spin_unlock is a full barrier,
6674  		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6675  		 *   is a RELEASE barrier),
6676  		 *
6677  		 * The barrier matches a full barrier in the proximity of
6678  		 * the membarrier system call entry.
6679  		 *
6680  		 * On RISC-V, this barrier pairing is also needed for the
6681  		 * SYNC_CORE command when switching between processes, cf.
6682  		 * the inline comments in membarrier_arch_switch_mm().
6683  		 */
6684  		++*switch_count;
6685  
6686  		migrate_disable_switch(rq, prev);
6687  		psi_account_irqtime(rq, prev, next);
6688  		psi_sched_switch(prev, next, block);
6689  
6690  		trace_sched_switch(preempt, prev, next, prev_state);
6691  
6692  		/* Also unlocks the rq: */
6693  		rq = context_switch(rq, prev, next, &rf);
6694  	} else {
6695  		rq_unpin_lock(rq, &rf);
6696  		__balance_callbacks(rq);
6697  		raw_spin_rq_unlock_irq(rq);
6698  	}
6699  }
6700  
do_task_dead(void)6701  void __noreturn do_task_dead(void)
6702  {
6703  	/* Causes final put_task_struct in finish_task_switch(): */
6704  	set_special_state(TASK_DEAD);
6705  
6706  	/* Tell freezer to ignore us: */
6707  	current->flags |= PF_NOFREEZE;
6708  
6709  	__schedule(SM_NONE);
6710  	BUG();
6711  
6712  	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6713  	for (;;)
6714  		cpu_relax();
6715  }
6716  
sched_submit_work(struct task_struct * tsk)6717  static inline void sched_submit_work(struct task_struct *tsk)
6718  {
6719  	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6720  	unsigned int task_flags;
6721  
6722  	/*
6723  	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6724  	 * will use a blocking primitive -- which would lead to recursion.
6725  	 */
6726  	lock_map_acquire_try(&sched_map);
6727  
6728  	task_flags = tsk->flags;
6729  	/*
6730  	 * If a worker goes to sleep, notify and ask workqueue whether it
6731  	 * wants to wake up a task to maintain concurrency.
6732  	 */
6733  	if (task_flags & PF_WQ_WORKER)
6734  		wq_worker_sleeping(tsk);
6735  	else if (task_flags & PF_IO_WORKER)
6736  		io_wq_worker_sleeping(tsk);
6737  
6738  	/*
6739  	 * spinlock and rwlock must not flush block requests.  This will
6740  	 * deadlock if the callback attempts to acquire a lock which is
6741  	 * already acquired.
6742  	 */
6743  	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6744  
6745  	/*
6746  	 * If we are going to sleep and we have plugged IO queued,
6747  	 * make sure to submit it to avoid deadlocks.
6748  	 */
6749  	blk_flush_plug(tsk->plug, true);
6750  
6751  	lock_map_release(&sched_map);
6752  }
6753  
sched_update_worker(struct task_struct * tsk)6754  static void sched_update_worker(struct task_struct *tsk)
6755  {
6756  	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6757  		if (tsk->flags & PF_BLOCK_TS)
6758  			blk_plug_invalidate_ts(tsk);
6759  		if (tsk->flags & PF_WQ_WORKER)
6760  			wq_worker_running(tsk);
6761  		else if (tsk->flags & PF_IO_WORKER)
6762  			io_wq_worker_running(tsk);
6763  	}
6764  }
6765  
__schedule_loop(int sched_mode)6766  static __always_inline void __schedule_loop(int sched_mode)
6767  {
6768  	do {
6769  		preempt_disable();
6770  		__schedule(sched_mode);
6771  		sched_preempt_enable_no_resched();
6772  	} while (need_resched());
6773  }
6774  
schedule(void)6775  asmlinkage __visible void __sched schedule(void)
6776  {
6777  	struct task_struct *tsk = current;
6778  
6779  #ifdef CONFIG_RT_MUTEXES
6780  	lockdep_assert(!tsk->sched_rt_mutex);
6781  #endif
6782  
6783  	if (!task_is_running(tsk))
6784  		sched_submit_work(tsk);
6785  	__schedule_loop(SM_NONE);
6786  	sched_update_worker(tsk);
6787  }
6788  EXPORT_SYMBOL(schedule);
6789  
6790  /*
6791   * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6792   * state (have scheduled out non-voluntarily) by making sure that all
6793   * tasks have either left the run queue or have gone into user space.
6794   * As idle tasks do not do either, they must not ever be preempted
6795   * (schedule out non-voluntarily).
6796   *
6797   * schedule_idle() is similar to schedule_preempt_disable() except that it
6798   * never enables preemption because it does not call sched_submit_work().
6799   */
schedule_idle(void)6800  void __sched schedule_idle(void)
6801  {
6802  	/*
6803  	 * As this skips calling sched_submit_work(), which the idle task does
6804  	 * regardless because that function is a NOP when the task is in a
6805  	 * TASK_RUNNING state, make sure this isn't used someplace that the
6806  	 * current task can be in any other state. Note, idle is always in the
6807  	 * TASK_RUNNING state.
6808  	 */
6809  	WARN_ON_ONCE(current->__state);
6810  	do {
6811  		__schedule(SM_IDLE);
6812  	} while (need_resched());
6813  }
6814  
6815  #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6816  asmlinkage __visible void __sched schedule_user(void)
6817  {
6818  	/*
6819  	 * If we come here after a random call to set_need_resched(),
6820  	 * or we have been woken up remotely but the IPI has not yet arrived,
6821  	 * we haven't yet exited the RCU idle mode. Do it here manually until
6822  	 * we find a better solution.
6823  	 *
6824  	 * NB: There are buggy callers of this function.  Ideally we
6825  	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6826  	 * too frequently to make sense yet.
6827  	 */
6828  	enum ctx_state prev_state = exception_enter();
6829  	schedule();
6830  	exception_exit(prev_state);
6831  }
6832  #endif
6833  
6834  /**
6835   * schedule_preempt_disabled - called with preemption disabled
6836   *
6837   * Returns with preemption disabled. Note: preempt_count must be 1
6838   */
schedule_preempt_disabled(void)6839  void __sched schedule_preempt_disabled(void)
6840  {
6841  	sched_preempt_enable_no_resched();
6842  	schedule();
6843  	preempt_disable();
6844  }
6845  
6846  #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6847  void __sched notrace schedule_rtlock(void)
6848  {
6849  	__schedule_loop(SM_RTLOCK_WAIT);
6850  }
6851  NOKPROBE_SYMBOL(schedule_rtlock);
6852  #endif
6853  
preempt_schedule_common(void)6854  static void __sched notrace preempt_schedule_common(void)
6855  {
6856  	do {
6857  		/*
6858  		 * Because the function tracer can trace preempt_count_sub()
6859  		 * and it also uses preempt_enable/disable_notrace(), if
6860  		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6861  		 * by the function tracer will call this function again and
6862  		 * cause infinite recursion.
6863  		 *
6864  		 * Preemption must be disabled here before the function
6865  		 * tracer can trace. Break up preempt_disable() into two
6866  		 * calls. One to disable preemption without fear of being
6867  		 * traced. The other to still record the preemption latency,
6868  		 * which can also be traced by the function tracer.
6869  		 */
6870  		preempt_disable_notrace();
6871  		preempt_latency_start(1);
6872  		__schedule(SM_PREEMPT);
6873  		preempt_latency_stop(1);
6874  		preempt_enable_no_resched_notrace();
6875  
6876  		/*
6877  		 * Check again in case we missed a preemption opportunity
6878  		 * between schedule and now.
6879  		 */
6880  	} while (need_resched());
6881  }
6882  
6883  #ifdef CONFIG_PREEMPTION
6884  /*
6885   * This is the entry point to schedule() from in-kernel preemption
6886   * off of preempt_enable.
6887   */
preempt_schedule(void)6888  asmlinkage __visible void __sched notrace preempt_schedule(void)
6889  {
6890  	/*
6891  	 * If there is a non-zero preempt_count or interrupts are disabled,
6892  	 * we do not want to preempt the current task. Just return..
6893  	 */
6894  	if (likely(!preemptible()))
6895  		return;
6896  	preempt_schedule_common();
6897  }
6898  NOKPROBE_SYMBOL(preempt_schedule);
6899  EXPORT_SYMBOL(preempt_schedule);
6900  
6901  #ifdef CONFIG_PREEMPT_DYNAMIC
6902  #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6903  #ifndef preempt_schedule_dynamic_enabled
6904  #define preempt_schedule_dynamic_enabled	preempt_schedule
6905  #define preempt_schedule_dynamic_disabled	NULL
6906  #endif
6907  DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6908  EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6909  #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6910  static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6911  void __sched notrace dynamic_preempt_schedule(void)
6912  {
6913  	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6914  		return;
6915  	preempt_schedule();
6916  }
6917  NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6918  EXPORT_SYMBOL(dynamic_preempt_schedule);
6919  #endif
6920  #endif
6921  
6922  /**
6923   * preempt_schedule_notrace - preempt_schedule called by tracing
6924   *
6925   * The tracing infrastructure uses preempt_enable_notrace to prevent
6926   * recursion and tracing preempt enabling caused by the tracing
6927   * infrastructure itself. But as tracing can happen in areas coming
6928   * from userspace or just about to enter userspace, a preempt enable
6929   * can occur before user_exit() is called. This will cause the scheduler
6930   * to be called when the system is still in usermode.
6931   *
6932   * To prevent this, the preempt_enable_notrace will use this function
6933   * instead of preempt_schedule() to exit user context if needed before
6934   * calling the scheduler.
6935   */
preempt_schedule_notrace(void)6936  asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6937  {
6938  	enum ctx_state prev_ctx;
6939  
6940  	if (likely(!preemptible()))
6941  		return;
6942  
6943  	do {
6944  		/*
6945  		 * Because the function tracer can trace preempt_count_sub()
6946  		 * and it also uses preempt_enable/disable_notrace(), if
6947  		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6948  		 * by the function tracer will call this function again and
6949  		 * cause infinite recursion.
6950  		 *
6951  		 * Preemption must be disabled here before the function
6952  		 * tracer can trace. Break up preempt_disable() into two
6953  		 * calls. One to disable preemption without fear of being
6954  		 * traced. The other to still record the preemption latency,
6955  		 * which can also be traced by the function tracer.
6956  		 */
6957  		preempt_disable_notrace();
6958  		preempt_latency_start(1);
6959  		/*
6960  		 * Needs preempt disabled in case user_exit() is traced
6961  		 * and the tracer calls preempt_enable_notrace() causing
6962  		 * an infinite recursion.
6963  		 */
6964  		prev_ctx = exception_enter();
6965  		__schedule(SM_PREEMPT);
6966  		exception_exit(prev_ctx);
6967  
6968  		preempt_latency_stop(1);
6969  		preempt_enable_no_resched_notrace();
6970  	} while (need_resched());
6971  }
6972  EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6973  
6974  #ifdef CONFIG_PREEMPT_DYNAMIC
6975  #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6976  #ifndef preempt_schedule_notrace_dynamic_enabled
6977  #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6978  #define preempt_schedule_notrace_dynamic_disabled	NULL
6979  #endif
6980  DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6981  EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6982  #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6983  static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)6984  void __sched notrace dynamic_preempt_schedule_notrace(void)
6985  {
6986  	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6987  		return;
6988  	preempt_schedule_notrace();
6989  }
6990  NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6991  EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6992  #endif
6993  #endif
6994  
6995  #endif /* CONFIG_PREEMPTION */
6996  
6997  /*
6998   * This is the entry point to schedule() from kernel preemption
6999   * off of IRQ context.
7000   * Note, that this is called and return with IRQs disabled. This will
7001   * protect us against recursive calling from IRQ contexts.
7002   */
preempt_schedule_irq(void)7003  asmlinkage __visible void __sched preempt_schedule_irq(void)
7004  {
7005  	enum ctx_state prev_state;
7006  
7007  	/* Catch callers which need to be fixed */
7008  	BUG_ON(preempt_count() || !irqs_disabled());
7009  
7010  	prev_state = exception_enter();
7011  
7012  	do {
7013  		preempt_disable();
7014  		local_irq_enable();
7015  		__schedule(SM_PREEMPT);
7016  		local_irq_disable();
7017  		sched_preempt_enable_no_resched();
7018  	} while (need_resched());
7019  
7020  	exception_exit(prev_state);
7021  }
7022  
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7023  int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7024  			  void *key)
7025  {
7026  	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7027  	return try_to_wake_up(curr->private, mode, wake_flags);
7028  }
7029  EXPORT_SYMBOL(default_wake_function);
7030  
__setscheduler_class(int policy,int prio)7031  const struct sched_class *__setscheduler_class(int policy, int prio)
7032  {
7033  	if (dl_prio(prio))
7034  		return &dl_sched_class;
7035  
7036  	if (rt_prio(prio))
7037  		return &rt_sched_class;
7038  
7039  #ifdef CONFIG_SCHED_CLASS_EXT
7040  	if (task_should_scx(policy))
7041  		return &ext_sched_class;
7042  #endif
7043  
7044  	return &fair_sched_class;
7045  }
7046  
7047  #ifdef CONFIG_RT_MUTEXES
7048  
7049  /*
7050   * Would be more useful with typeof()/auto_type but they don't mix with
7051   * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7052   * name such that if someone were to implement this function we get to compare
7053   * notes.
7054   */
7055  #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7056  
rt_mutex_pre_schedule(void)7057  void rt_mutex_pre_schedule(void)
7058  {
7059  	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7060  	sched_submit_work(current);
7061  }
7062  
rt_mutex_schedule(void)7063  void rt_mutex_schedule(void)
7064  {
7065  	lockdep_assert(current->sched_rt_mutex);
7066  	__schedule_loop(SM_NONE);
7067  }
7068  
rt_mutex_post_schedule(void)7069  void rt_mutex_post_schedule(void)
7070  {
7071  	sched_update_worker(current);
7072  	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7073  }
7074  
7075  /*
7076   * rt_mutex_setprio - set the current priority of a task
7077   * @p: task to boost
7078   * @pi_task: donor task
7079   *
7080   * This function changes the 'effective' priority of a task. It does
7081   * not touch ->normal_prio like __setscheduler().
7082   *
7083   * Used by the rt_mutex code to implement priority inheritance
7084   * logic. Call site only calls if the priority of the task changed.
7085   */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7086  void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7087  {
7088  	int prio, oldprio, queued, running, queue_flag =
7089  		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7090  	const struct sched_class *prev_class, *next_class;
7091  	struct rq_flags rf;
7092  	struct rq *rq;
7093  
7094  	/* XXX used to be waiter->prio, not waiter->task->prio */
7095  	prio = __rt_effective_prio(pi_task, p->normal_prio);
7096  
7097  	/*
7098  	 * If nothing changed; bail early.
7099  	 */
7100  	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7101  		return;
7102  
7103  	rq = __task_rq_lock(p, &rf);
7104  	update_rq_clock(rq);
7105  	/*
7106  	 * Set under pi_lock && rq->lock, such that the value can be used under
7107  	 * either lock.
7108  	 *
7109  	 * Note that there is loads of tricky to make this pointer cache work
7110  	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7111  	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7112  	 * task is allowed to run again (and can exit). This ensures the pointer
7113  	 * points to a blocked task -- which guarantees the task is present.
7114  	 */
7115  	p->pi_top_task = pi_task;
7116  
7117  	/*
7118  	 * For FIFO/RR we only need to set prio, if that matches we're done.
7119  	 */
7120  	if (prio == p->prio && !dl_prio(prio))
7121  		goto out_unlock;
7122  
7123  	/*
7124  	 * Idle task boosting is a no-no in general. There is one
7125  	 * exception, when PREEMPT_RT and NOHZ is active:
7126  	 *
7127  	 * The idle task calls get_next_timer_interrupt() and holds
7128  	 * the timer wheel base->lock on the CPU and another CPU wants
7129  	 * to access the timer (probably to cancel it). We can safely
7130  	 * ignore the boosting request, as the idle CPU runs this code
7131  	 * with interrupts disabled and will complete the lock
7132  	 * protected section without being interrupted. So there is no
7133  	 * real need to boost.
7134  	 */
7135  	if (unlikely(p == rq->idle)) {
7136  		WARN_ON(p != rq->curr);
7137  		WARN_ON(p->pi_blocked_on);
7138  		goto out_unlock;
7139  	}
7140  
7141  	trace_sched_pi_setprio(p, pi_task);
7142  	oldprio = p->prio;
7143  
7144  	if (oldprio == prio)
7145  		queue_flag &= ~DEQUEUE_MOVE;
7146  
7147  	prev_class = p->sched_class;
7148  	next_class = __setscheduler_class(p->policy, prio);
7149  
7150  	if (prev_class != next_class && p->se.sched_delayed)
7151  		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7152  
7153  	queued = task_on_rq_queued(p);
7154  	running = task_current(rq, p);
7155  	if (queued)
7156  		dequeue_task(rq, p, queue_flag);
7157  	if (running)
7158  		put_prev_task(rq, p);
7159  
7160  	/*
7161  	 * Boosting condition are:
7162  	 * 1. -rt task is running and holds mutex A
7163  	 *      --> -dl task blocks on mutex A
7164  	 *
7165  	 * 2. -dl task is running and holds mutex A
7166  	 *      --> -dl task blocks on mutex A and could preempt the
7167  	 *          running task
7168  	 */
7169  	if (dl_prio(prio)) {
7170  		if (!dl_prio(p->normal_prio) ||
7171  		    (pi_task && dl_prio(pi_task->prio) &&
7172  		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7173  			p->dl.pi_se = pi_task->dl.pi_se;
7174  			queue_flag |= ENQUEUE_REPLENISH;
7175  		} else {
7176  			p->dl.pi_se = &p->dl;
7177  		}
7178  	} else if (rt_prio(prio)) {
7179  		if (dl_prio(oldprio))
7180  			p->dl.pi_se = &p->dl;
7181  		if (oldprio < prio)
7182  			queue_flag |= ENQUEUE_HEAD;
7183  	} else {
7184  		if (dl_prio(oldprio))
7185  			p->dl.pi_se = &p->dl;
7186  		if (rt_prio(oldprio))
7187  			p->rt.timeout = 0;
7188  	}
7189  
7190  	p->sched_class = next_class;
7191  	p->prio = prio;
7192  
7193  	check_class_changing(rq, p, prev_class);
7194  
7195  	if (queued)
7196  		enqueue_task(rq, p, queue_flag);
7197  	if (running)
7198  		set_next_task(rq, p);
7199  
7200  	check_class_changed(rq, p, prev_class, oldprio);
7201  out_unlock:
7202  	/* Avoid rq from going away on us: */
7203  	preempt_disable();
7204  
7205  	rq_unpin_lock(rq, &rf);
7206  	__balance_callbacks(rq);
7207  	raw_spin_rq_unlock(rq);
7208  
7209  	preempt_enable();
7210  }
7211  #endif
7212  
7213  #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)7214  int __sched __cond_resched(void)
7215  {
7216  	if (should_resched(0)) {
7217  		preempt_schedule_common();
7218  		return 1;
7219  	}
7220  	/*
7221  	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7222  	 * whether the current CPU is in an RCU read-side critical section,
7223  	 * so the tick can report quiescent states even for CPUs looping
7224  	 * in kernel context.  In contrast, in non-preemptible kernels,
7225  	 * RCU readers leave no in-memory hints, which means that CPU-bound
7226  	 * processes executing in kernel context might never report an
7227  	 * RCU quiescent state.  Therefore, the following code causes
7228  	 * cond_resched() to report a quiescent state, but only when RCU
7229  	 * is in urgent need of one.
7230  	 */
7231  #ifndef CONFIG_PREEMPT_RCU
7232  	rcu_all_qs();
7233  #endif
7234  	return 0;
7235  }
7236  EXPORT_SYMBOL(__cond_resched);
7237  #endif
7238  
7239  #ifdef CONFIG_PREEMPT_DYNAMIC
7240  #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7241  #define cond_resched_dynamic_enabled	__cond_resched
7242  #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7243  DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7244  EXPORT_STATIC_CALL_TRAMP(cond_resched);
7245  
7246  #define might_resched_dynamic_enabled	__cond_resched
7247  #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7248  DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7249  EXPORT_STATIC_CALL_TRAMP(might_resched);
7250  #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7251  static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)7252  int __sched dynamic_cond_resched(void)
7253  {
7254  	klp_sched_try_switch();
7255  	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7256  		return 0;
7257  	return __cond_resched();
7258  }
7259  EXPORT_SYMBOL(dynamic_cond_resched);
7260  
7261  static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)7262  int __sched dynamic_might_resched(void)
7263  {
7264  	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7265  		return 0;
7266  	return __cond_resched();
7267  }
7268  EXPORT_SYMBOL(dynamic_might_resched);
7269  #endif
7270  #endif
7271  
7272  /*
7273   * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7274   * call schedule, and on return reacquire the lock.
7275   *
7276   * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7277   * operations here to prevent schedule() from being called twice (once via
7278   * spin_unlock(), once by hand).
7279   */
__cond_resched_lock(spinlock_t * lock)7280  int __cond_resched_lock(spinlock_t *lock)
7281  {
7282  	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7283  	int ret = 0;
7284  
7285  	lockdep_assert_held(lock);
7286  
7287  	if (spin_needbreak(lock) || resched) {
7288  		spin_unlock(lock);
7289  		if (!_cond_resched())
7290  			cpu_relax();
7291  		ret = 1;
7292  		spin_lock(lock);
7293  	}
7294  	return ret;
7295  }
7296  EXPORT_SYMBOL(__cond_resched_lock);
7297  
__cond_resched_rwlock_read(rwlock_t * lock)7298  int __cond_resched_rwlock_read(rwlock_t *lock)
7299  {
7300  	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7301  	int ret = 0;
7302  
7303  	lockdep_assert_held_read(lock);
7304  
7305  	if (rwlock_needbreak(lock) || resched) {
7306  		read_unlock(lock);
7307  		if (!_cond_resched())
7308  			cpu_relax();
7309  		ret = 1;
7310  		read_lock(lock);
7311  	}
7312  	return ret;
7313  }
7314  EXPORT_SYMBOL(__cond_resched_rwlock_read);
7315  
__cond_resched_rwlock_write(rwlock_t * lock)7316  int __cond_resched_rwlock_write(rwlock_t *lock)
7317  {
7318  	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7319  	int ret = 0;
7320  
7321  	lockdep_assert_held_write(lock);
7322  
7323  	if (rwlock_needbreak(lock) || resched) {
7324  		write_unlock(lock);
7325  		if (!_cond_resched())
7326  			cpu_relax();
7327  		ret = 1;
7328  		write_lock(lock);
7329  	}
7330  	return ret;
7331  }
7332  EXPORT_SYMBOL(__cond_resched_rwlock_write);
7333  
7334  #ifdef CONFIG_PREEMPT_DYNAMIC
7335  
7336  #ifdef CONFIG_GENERIC_ENTRY
7337  #include <linux/entry-common.h>
7338  #endif
7339  
7340  /*
7341   * SC:cond_resched
7342   * SC:might_resched
7343   * SC:preempt_schedule
7344   * SC:preempt_schedule_notrace
7345   * SC:irqentry_exit_cond_resched
7346   *
7347   *
7348   * NONE:
7349   *   cond_resched               <- __cond_resched
7350   *   might_resched              <- RET0
7351   *   preempt_schedule           <- NOP
7352   *   preempt_schedule_notrace   <- NOP
7353   *   irqentry_exit_cond_resched <- NOP
7354   *
7355   * VOLUNTARY:
7356   *   cond_resched               <- __cond_resched
7357   *   might_resched              <- __cond_resched
7358   *   preempt_schedule           <- NOP
7359   *   preempt_schedule_notrace   <- NOP
7360   *   irqentry_exit_cond_resched <- NOP
7361   *
7362   * FULL:
7363   *   cond_resched               <- RET0
7364   *   might_resched              <- RET0
7365   *   preempt_schedule           <- preempt_schedule
7366   *   preempt_schedule_notrace   <- preempt_schedule_notrace
7367   *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7368   */
7369  
7370  enum {
7371  	preempt_dynamic_undefined = -1,
7372  	preempt_dynamic_none,
7373  	preempt_dynamic_voluntary,
7374  	preempt_dynamic_full,
7375  };
7376  
7377  int preempt_dynamic_mode = preempt_dynamic_undefined;
7378  
sched_dynamic_mode(const char * str)7379  int sched_dynamic_mode(const char *str)
7380  {
7381  	if (!strcmp(str, "none"))
7382  		return preempt_dynamic_none;
7383  
7384  	if (!strcmp(str, "voluntary"))
7385  		return preempt_dynamic_voluntary;
7386  
7387  	if (!strcmp(str, "full"))
7388  		return preempt_dynamic_full;
7389  
7390  	return -EINVAL;
7391  }
7392  
7393  #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7394  #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7395  #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7396  #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7397  #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7398  #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7399  #else
7400  #error "Unsupported PREEMPT_DYNAMIC mechanism"
7401  #endif
7402  
7403  static DEFINE_MUTEX(sched_dynamic_mutex);
7404  static bool klp_override;
7405  
__sched_dynamic_update(int mode)7406  static void __sched_dynamic_update(int mode)
7407  {
7408  	/*
7409  	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7410  	 * the ZERO state, which is invalid.
7411  	 */
7412  	if (!klp_override)
7413  		preempt_dynamic_enable(cond_resched);
7414  	preempt_dynamic_enable(might_resched);
7415  	preempt_dynamic_enable(preempt_schedule);
7416  	preempt_dynamic_enable(preempt_schedule_notrace);
7417  	preempt_dynamic_enable(irqentry_exit_cond_resched);
7418  
7419  	switch (mode) {
7420  	case preempt_dynamic_none:
7421  		if (!klp_override)
7422  			preempt_dynamic_enable(cond_resched);
7423  		preempt_dynamic_disable(might_resched);
7424  		preempt_dynamic_disable(preempt_schedule);
7425  		preempt_dynamic_disable(preempt_schedule_notrace);
7426  		preempt_dynamic_disable(irqentry_exit_cond_resched);
7427  		if (mode != preempt_dynamic_mode)
7428  			pr_info("Dynamic Preempt: none\n");
7429  		break;
7430  
7431  	case preempt_dynamic_voluntary:
7432  		if (!klp_override)
7433  			preempt_dynamic_enable(cond_resched);
7434  		preempt_dynamic_enable(might_resched);
7435  		preempt_dynamic_disable(preempt_schedule);
7436  		preempt_dynamic_disable(preempt_schedule_notrace);
7437  		preempt_dynamic_disable(irqentry_exit_cond_resched);
7438  		if (mode != preempt_dynamic_mode)
7439  			pr_info("Dynamic Preempt: voluntary\n");
7440  		break;
7441  
7442  	case preempt_dynamic_full:
7443  		if (!klp_override)
7444  			preempt_dynamic_disable(cond_resched);
7445  		preempt_dynamic_disable(might_resched);
7446  		preempt_dynamic_enable(preempt_schedule);
7447  		preempt_dynamic_enable(preempt_schedule_notrace);
7448  		preempt_dynamic_enable(irqentry_exit_cond_resched);
7449  		if (mode != preempt_dynamic_mode)
7450  			pr_info("Dynamic Preempt: full\n");
7451  		break;
7452  	}
7453  
7454  	preempt_dynamic_mode = mode;
7455  }
7456  
sched_dynamic_update(int mode)7457  void sched_dynamic_update(int mode)
7458  {
7459  	mutex_lock(&sched_dynamic_mutex);
7460  	__sched_dynamic_update(mode);
7461  	mutex_unlock(&sched_dynamic_mutex);
7462  }
7463  
7464  #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7465  
klp_cond_resched(void)7466  static int klp_cond_resched(void)
7467  {
7468  	__klp_sched_try_switch();
7469  	return __cond_resched();
7470  }
7471  
sched_dynamic_klp_enable(void)7472  void sched_dynamic_klp_enable(void)
7473  {
7474  	mutex_lock(&sched_dynamic_mutex);
7475  
7476  	klp_override = true;
7477  	static_call_update(cond_resched, klp_cond_resched);
7478  
7479  	mutex_unlock(&sched_dynamic_mutex);
7480  }
7481  
sched_dynamic_klp_disable(void)7482  void sched_dynamic_klp_disable(void)
7483  {
7484  	mutex_lock(&sched_dynamic_mutex);
7485  
7486  	klp_override = false;
7487  	__sched_dynamic_update(preempt_dynamic_mode);
7488  
7489  	mutex_unlock(&sched_dynamic_mutex);
7490  }
7491  
7492  #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7493  
setup_preempt_mode(char * str)7494  static int __init setup_preempt_mode(char *str)
7495  {
7496  	int mode = sched_dynamic_mode(str);
7497  	if (mode < 0) {
7498  		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7499  		return 0;
7500  	}
7501  
7502  	sched_dynamic_update(mode);
7503  	return 1;
7504  }
7505  __setup("preempt=", setup_preempt_mode);
7506  
preempt_dynamic_init(void)7507  static void __init preempt_dynamic_init(void)
7508  {
7509  	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7510  		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7511  			sched_dynamic_update(preempt_dynamic_none);
7512  		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7513  			sched_dynamic_update(preempt_dynamic_voluntary);
7514  		} else {
7515  			/* Default static call setting, nothing to do */
7516  			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7517  			preempt_dynamic_mode = preempt_dynamic_full;
7518  			pr_info("Dynamic Preempt: full\n");
7519  		}
7520  	}
7521  }
7522  
7523  #define PREEMPT_MODEL_ACCESSOR(mode) \
7524  	bool preempt_model_##mode(void)						 \
7525  	{									 \
7526  		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7527  		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7528  	}									 \
7529  	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7530  
7531  PREEMPT_MODEL_ACCESSOR(none);
7532  PREEMPT_MODEL_ACCESSOR(voluntary);
7533  PREEMPT_MODEL_ACCESSOR(full);
7534  
7535  #else /* !CONFIG_PREEMPT_DYNAMIC: */
7536  
preempt_dynamic_init(void)7537  static inline void preempt_dynamic_init(void) { }
7538  
7539  #endif /* CONFIG_PREEMPT_DYNAMIC */
7540  
io_schedule_prepare(void)7541  int io_schedule_prepare(void)
7542  {
7543  	int old_iowait = current->in_iowait;
7544  
7545  	current->in_iowait = 1;
7546  	blk_flush_plug(current->plug, true);
7547  	return old_iowait;
7548  }
7549  
io_schedule_finish(int token)7550  void io_schedule_finish(int token)
7551  {
7552  	current->in_iowait = token;
7553  }
7554  
7555  /*
7556   * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7557   * that process accounting knows that this is a task in IO wait state.
7558   */
io_schedule_timeout(long timeout)7559  long __sched io_schedule_timeout(long timeout)
7560  {
7561  	int token;
7562  	long ret;
7563  
7564  	token = io_schedule_prepare();
7565  	ret = schedule_timeout(timeout);
7566  	io_schedule_finish(token);
7567  
7568  	return ret;
7569  }
7570  EXPORT_SYMBOL(io_schedule_timeout);
7571  
io_schedule(void)7572  void __sched io_schedule(void)
7573  {
7574  	int token;
7575  
7576  	token = io_schedule_prepare();
7577  	schedule();
7578  	io_schedule_finish(token);
7579  }
7580  EXPORT_SYMBOL(io_schedule);
7581  
sched_show_task(struct task_struct * p)7582  void sched_show_task(struct task_struct *p)
7583  {
7584  	unsigned long free;
7585  	int ppid;
7586  
7587  	if (!try_get_task_stack(p))
7588  		return;
7589  
7590  	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7591  
7592  	if (task_is_running(p))
7593  		pr_cont("  running task    ");
7594  	free = stack_not_used(p);
7595  	ppid = 0;
7596  	rcu_read_lock();
7597  	if (pid_alive(p))
7598  		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7599  	rcu_read_unlock();
7600  	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7601  		free, task_pid_nr(p), task_tgid_nr(p),
7602  		ppid, read_task_thread_flags(p));
7603  
7604  	print_worker_info(KERN_INFO, p);
7605  	print_stop_info(KERN_INFO, p);
7606  	print_scx_info(KERN_INFO, p);
7607  	show_stack(p, NULL, KERN_INFO);
7608  	put_task_stack(p);
7609  }
7610  EXPORT_SYMBOL_GPL(sched_show_task);
7611  
7612  static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)7613  state_filter_match(unsigned long state_filter, struct task_struct *p)
7614  {
7615  	unsigned int state = READ_ONCE(p->__state);
7616  
7617  	/* no filter, everything matches */
7618  	if (!state_filter)
7619  		return true;
7620  
7621  	/* filter, but doesn't match */
7622  	if (!(state & state_filter))
7623  		return false;
7624  
7625  	/*
7626  	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7627  	 * TASK_KILLABLE).
7628  	 */
7629  	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7630  		return false;
7631  
7632  	return true;
7633  }
7634  
7635  
show_state_filter(unsigned int state_filter)7636  void show_state_filter(unsigned int state_filter)
7637  {
7638  	struct task_struct *g, *p;
7639  
7640  	rcu_read_lock();
7641  	for_each_process_thread(g, p) {
7642  		/*
7643  		 * reset the NMI-timeout, listing all files on a slow
7644  		 * console might take a lot of time:
7645  		 * Also, reset softlockup watchdogs on all CPUs, because
7646  		 * another CPU might be blocked waiting for us to process
7647  		 * an IPI.
7648  		 */
7649  		touch_nmi_watchdog();
7650  		touch_all_softlockup_watchdogs();
7651  		if (state_filter_match(state_filter, p))
7652  			sched_show_task(p);
7653  	}
7654  
7655  #ifdef CONFIG_SCHED_DEBUG
7656  	if (!state_filter)
7657  		sysrq_sched_debug_show();
7658  #endif
7659  	rcu_read_unlock();
7660  	/*
7661  	 * Only show locks if all tasks are dumped:
7662  	 */
7663  	if (!state_filter)
7664  		debug_show_all_locks();
7665  }
7666  
7667  /**
7668   * init_idle - set up an idle thread for a given CPU
7669   * @idle: task in question
7670   * @cpu: CPU the idle task belongs to
7671   *
7672   * NOTE: this function does not set the idle thread's NEED_RESCHED
7673   * flag, to make booting more robust.
7674   */
init_idle(struct task_struct * idle,int cpu)7675  void __init init_idle(struct task_struct *idle, int cpu)
7676  {
7677  #ifdef CONFIG_SMP
7678  	struct affinity_context ac = (struct affinity_context) {
7679  		.new_mask  = cpumask_of(cpu),
7680  		.flags     = 0,
7681  	};
7682  #endif
7683  	struct rq *rq = cpu_rq(cpu);
7684  	unsigned long flags;
7685  
7686  	__sched_fork(0, idle);
7687  
7688  	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7689  	raw_spin_rq_lock(rq);
7690  
7691  	idle->__state = TASK_RUNNING;
7692  	idle->se.exec_start = sched_clock();
7693  	/*
7694  	 * PF_KTHREAD should already be set at this point; regardless, make it
7695  	 * look like a proper per-CPU kthread.
7696  	 */
7697  	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7698  	kthread_set_per_cpu(idle, cpu);
7699  
7700  #ifdef CONFIG_SMP
7701  	/*
7702  	 * It's possible that init_idle() gets called multiple times on a task,
7703  	 * in that case do_set_cpus_allowed() will not do the right thing.
7704  	 *
7705  	 * And since this is boot we can forgo the serialization.
7706  	 */
7707  	set_cpus_allowed_common(idle, &ac);
7708  #endif
7709  	/*
7710  	 * We're having a chicken and egg problem, even though we are
7711  	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7712  	 * lockdep check in task_group() will fail.
7713  	 *
7714  	 * Similar case to sched_fork(). / Alternatively we could
7715  	 * use task_rq_lock() here and obtain the other rq->lock.
7716  	 *
7717  	 * Silence PROVE_RCU
7718  	 */
7719  	rcu_read_lock();
7720  	__set_task_cpu(idle, cpu);
7721  	rcu_read_unlock();
7722  
7723  	rq->idle = idle;
7724  	rcu_assign_pointer(rq->curr, idle);
7725  	idle->on_rq = TASK_ON_RQ_QUEUED;
7726  #ifdef CONFIG_SMP
7727  	idle->on_cpu = 1;
7728  #endif
7729  	raw_spin_rq_unlock(rq);
7730  	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7731  
7732  	/* Set the preempt count _outside_ the spinlocks! */
7733  	init_idle_preempt_count(idle, cpu);
7734  
7735  	/*
7736  	 * The idle tasks have their own, simple scheduling class:
7737  	 */
7738  	idle->sched_class = &idle_sched_class;
7739  	ftrace_graph_init_idle_task(idle, cpu);
7740  	vtime_init_idle(idle, cpu);
7741  #ifdef CONFIG_SMP
7742  	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7743  #endif
7744  }
7745  
7746  #ifdef CONFIG_SMP
7747  
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)7748  int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7749  			      const struct cpumask *trial)
7750  {
7751  	int ret = 1;
7752  
7753  	if (cpumask_empty(cur))
7754  		return ret;
7755  
7756  	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7757  
7758  	return ret;
7759  }
7760  
task_can_attach(struct task_struct * p)7761  int task_can_attach(struct task_struct *p)
7762  {
7763  	int ret = 0;
7764  
7765  	/*
7766  	 * Kthreads which disallow setaffinity shouldn't be moved
7767  	 * to a new cpuset; we don't want to change their CPU
7768  	 * affinity and isolating such threads by their set of
7769  	 * allowed nodes is unnecessary.  Thus, cpusets are not
7770  	 * applicable for such threads.  This prevents checking for
7771  	 * success of set_cpus_allowed_ptr() on all attached tasks
7772  	 * before cpus_mask may be changed.
7773  	 */
7774  	if (p->flags & PF_NO_SETAFFINITY)
7775  		ret = -EINVAL;
7776  
7777  	return ret;
7778  }
7779  
7780  bool sched_smp_initialized __read_mostly;
7781  
7782  #ifdef CONFIG_NUMA_BALANCING
7783  /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)7784  int migrate_task_to(struct task_struct *p, int target_cpu)
7785  {
7786  	struct migration_arg arg = { p, target_cpu };
7787  	int curr_cpu = task_cpu(p);
7788  
7789  	if (curr_cpu == target_cpu)
7790  		return 0;
7791  
7792  	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7793  		return -EINVAL;
7794  
7795  	/* TODO: This is not properly updating schedstats */
7796  
7797  	trace_sched_move_numa(p, curr_cpu, target_cpu);
7798  	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7799  }
7800  
7801  /*
7802   * Requeue a task on a given node and accurately track the number of NUMA
7803   * tasks on the runqueues
7804   */
sched_setnuma(struct task_struct * p,int nid)7805  void sched_setnuma(struct task_struct *p, int nid)
7806  {
7807  	bool queued, running;
7808  	struct rq_flags rf;
7809  	struct rq *rq;
7810  
7811  	rq = task_rq_lock(p, &rf);
7812  	queued = task_on_rq_queued(p);
7813  	running = task_current(rq, p);
7814  
7815  	if (queued)
7816  		dequeue_task(rq, p, DEQUEUE_SAVE);
7817  	if (running)
7818  		put_prev_task(rq, p);
7819  
7820  	p->numa_preferred_nid = nid;
7821  
7822  	if (queued)
7823  		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7824  	if (running)
7825  		set_next_task(rq, p);
7826  	task_rq_unlock(rq, p, &rf);
7827  }
7828  #endif /* CONFIG_NUMA_BALANCING */
7829  
7830  #ifdef CONFIG_HOTPLUG_CPU
7831  /*
7832   * Ensure that the idle task is using init_mm right before its CPU goes
7833   * offline.
7834   */
idle_task_exit(void)7835  void idle_task_exit(void)
7836  {
7837  	struct mm_struct *mm = current->active_mm;
7838  
7839  	BUG_ON(cpu_online(smp_processor_id()));
7840  	BUG_ON(current != this_rq()->idle);
7841  
7842  	if (mm != &init_mm) {
7843  		switch_mm(mm, &init_mm, current);
7844  		finish_arch_post_lock_switch();
7845  	}
7846  
7847  	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7848  }
7849  
__balance_push_cpu_stop(void * arg)7850  static int __balance_push_cpu_stop(void *arg)
7851  {
7852  	struct task_struct *p = arg;
7853  	struct rq *rq = this_rq();
7854  	struct rq_flags rf;
7855  	int cpu;
7856  
7857  	raw_spin_lock_irq(&p->pi_lock);
7858  	rq_lock(rq, &rf);
7859  
7860  	update_rq_clock(rq);
7861  
7862  	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7863  		cpu = select_fallback_rq(rq->cpu, p);
7864  		rq = __migrate_task(rq, &rf, p, cpu);
7865  	}
7866  
7867  	rq_unlock(rq, &rf);
7868  	raw_spin_unlock_irq(&p->pi_lock);
7869  
7870  	put_task_struct(p);
7871  
7872  	return 0;
7873  }
7874  
7875  static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7876  
7877  /*
7878   * Ensure we only run per-cpu kthreads once the CPU goes !active.
7879   *
7880   * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7881   * effective when the hotplug motion is down.
7882   */
balance_push(struct rq * rq)7883  static void balance_push(struct rq *rq)
7884  {
7885  	struct task_struct *push_task = rq->curr;
7886  
7887  	lockdep_assert_rq_held(rq);
7888  
7889  	/*
7890  	 * Ensure the thing is persistent until balance_push_set(.on = false);
7891  	 */
7892  	rq->balance_callback = &balance_push_callback;
7893  
7894  	/*
7895  	 * Only active while going offline and when invoked on the outgoing
7896  	 * CPU.
7897  	 */
7898  	if (!cpu_dying(rq->cpu) || rq != this_rq())
7899  		return;
7900  
7901  	/*
7902  	 * Both the cpu-hotplug and stop task are in this case and are
7903  	 * required to complete the hotplug process.
7904  	 */
7905  	if (kthread_is_per_cpu(push_task) ||
7906  	    is_migration_disabled(push_task)) {
7907  
7908  		/*
7909  		 * If this is the idle task on the outgoing CPU try to wake
7910  		 * up the hotplug control thread which might wait for the
7911  		 * last task to vanish. The rcuwait_active() check is
7912  		 * accurate here because the waiter is pinned on this CPU
7913  		 * and can't obviously be running in parallel.
7914  		 *
7915  		 * On RT kernels this also has to check whether there are
7916  		 * pinned and scheduled out tasks on the runqueue. They
7917  		 * need to leave the migrate disabled section first.
7918  		 */
7919  		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7920  		    rcuwait_active(&rq->hotplug_wait)) {
7921  			raw_spin_rq_unlock(rq);
7922  			rcuwait_wake_up(&rq->hotplug_wait);
7923  			raw_spin_rq_lock(rq);
7924  		}
7925  		return;
7926  	}
7927  
7928  	get_task_struct(push_task);
7929  	/*
7930  	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7931  	 * Both preemption and IRQs are still disabled.
7932  	 */
7933  	preempt_disable();
7934  	raw_spin_rq_unlock(rq);
7935  	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7936  			    this_cpu_ptr(&push_work));
7937  	preempt_enable();
7938  	/*
7939  	 * At this point need_resched() is true and we'll take the loop in
7940  	 * schedule(). The next pick is obviously going to be the stop task
7941  	 * which kthread_is_per_cpu() and will push this task away.
7942  	 */
7943  	raw_spin_rq_lock(rq);
7944  }
7945  
balance_push_set(int cpu,bool on)7946  static void balance_push_set(int cpu, bool on)
7947  {
7948  	struct rq *rq = cpu_rq(cpu);
7949  	struct rq_flags rf;
7950  
7951  	rq_lock_irqsave(rq, &rf);
7952  	if (on) {
7953  		WARN_ON_ONCE(rq->balance_callback);
7954  		rq->balance_callback = &balance_push_callback;
7955  	} else if (rq->balance_callback == &balance_push_callback) {
7956  		rq->balance_callback = NULL;
7957  	}
7958  	rq_unlock_irqrestore(rq, &rf);
7959  }
7960  
7961  /*
7962   * Invoked from a CPUs hotplug control thread after the CPU has been marked
7963   * inactive. All tasks which are not per CPU kernel threads are either
7964   * pushed off this CPU now via balance_push() or placed on a different CPU
7965   * during wakeup. Wait until the CPU is quiescent.
7966   */
balance_hotplug_wait(void)7967  static void balance_hotplug_wait(void)
7968  {
7969  	struct rq *rq = this_rq();
7970  
7971  	rcuwait_wait_event(&rq->hotplug_wait,
7972  			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7973  			   TASK_UNINTERRUPTIBLE);
7974  }
7975  
7976  #else
7977  
balance_push(struct rq * rq)7978  static inline void balance_push(struct rq *rq)
7979  {
7980  }
7981  
balance_push_set(int cpu,bool on)7982  static inline void balance_push_set(int cpu, bool on)
7983  {
7984  }
7985  
balance_hotplug_wait(void)7986  static inline void balance_hotplug_wait(void)
7987  {
7988  }
7989  
7990  #endif /* CONFIG_HOTPLUG_CPU */
7991  
set_rq_online(struct rq * rq)7992  void set_rq_online(struct rq *rq)
7993  {
7994  	if (!rq->online) {
7995  		const struct sched_class *class;
7996  
7997  		cpumask_set_cpu(rq->cpu, rq->rd->online);
7998  		rq->online = 1;
7999  
8000  		for_each_class(class) {
8001  			if (class->rq_online)
8002  				class->rq_online(rq);
8003  		}
8004  	}
8005  }
8006  
set_rq_offline(struct rq * rq)8007  void set_rq_offline(struct rq *rq)
8008  {
8009  	if (rq->online) {
8010  		const struct sched_class *class;
8011  
8012  		update_rq_clock(rq);
8013  		for_each_class(class) {
8014  			if (class->rq_offline)
8015  				class->rq_offline(rq);
8016  		}
8017  
8018  		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8019  		rq->online = 0;
8020  	}
8021  }
8022  
sched_set_rq_online(struct rq * rq,int cpu)8023  static inline void sched_set_rq_online(struct rq *rq, int cpu)
8024  {
8025  	struct rq_flags rf;
8026  
8027  	rq_lock_irqsave(rq, &rf);
8028  	if (rq->rd) {
8029  		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8030  		set_rq_online(rq);
8031  	}
8032  	rq_unlock_irqrestore(rq, &rf);
8033  }
8034  
sched_set_rq_offline(struct rq * rq,int cpu)8035  static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8036  {
8037  	struct rq_flags rf;
8038  
8039  	rq_lock_irqsave(rq, &rf);
8040  	if (rq->rd) {
8041  		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8042  		set_rq_offline(rq);
8043  	}
8044  	rq_unlock_irqrestore(rq, &rf);
8045  }
8046  
8047  /*
8048   * used to mark begin/end of suspend/resume:
8049   */
8050  static int num_cpus_frozen;
8051  
8052  /*
8053   * Update cpusets according to cpu_active mask.  If cpusets are
8054   * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8055   * around partition_sched_domains().
8056   *
8057   * If we come here as part of a suspend/resume, don't touch cpusets because we
8058   * want to restore it back to its original state upon resume anyway.
8059   */
cpuset_cpu_active(void)8060  static void cpuset_cpu_active(void)
8061  {
8062  	if (cpuhp_tasks_frozen) {
8063  		/*
8064  		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8065  		 * resume sequence. As long as this is not the last online
8066  		 * operation in the resume sequence, just build a single sched
8067  		 * domain, ignoring cpusets.
8068  		 */
8069  		partition_sched_domains(1, NULL, NULL);
8070  		if (--num_cpus_frozen)
8071  			return;
8072  		/*
8073  		 * This is the last CPU online operation. So fall through and
8074  		 * restore the original sched domains by considering the
8075  		 * cpuset configurations.
8076  		 */
8077  		cpuset_force_rebuild();
8078  	}
8079  	cpuset_update_active_cpus();
8080  }
8081  
cpuset_cpu_inactive(unsigned int cpu)8082  static int cpuset_cpu_inactive(unsigned int cpu)
8083  {
8084  	if (!cpuhp_tasks_frozen) {
8085  		int ret = dl_bw_check_overflow(cpu);
8086  
8087  		if (ret)
8088  			return ret;
8089  		cpuset_update_active_cpus();
8090  	} else {
8091  		num_cpus_frozen++;
8092  		partition_sched_domains(1, NULL, NULL);
8093  	}
8094  	return 0;
8095  }
8096  
sched_smt_present_inc(int cpu)8097  static inline void sched_smt_present_inc(int cpu)
8098  {
8099  #ifdef CONFIG_SCHED_SMT
8100  	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8101  		static_branch_inc_cpuslocked(&sched_smt_present);
8102  #endif
8103  }
8104  
sched_smt_present_dec(int cpu)8105  static inline void sched_smt_present_dec(int cpu)
8106  {
8107  #ifdef CONFIG_SCHED_SMT
8108  	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8109  		static_branch_dec_cpuslocked(&sched_smt_present);
8110  #endif
8111  }
8112  
sched_cpu_activate(unsigned int cpu)8113  int sched_cpu_activate(unsigned int cpu)
8114  {
8115  	struct rq *rq = cpu_rq(cpu);
8116  
8117  	/*
8118  	 * Clear the balance_push callback and prepare to schedule
8119  	 * regular tasks.
8120  	 */
8121  	balance_push_set(cpu, false);
8122  
8123  	/*
8124  	 * When going up, increment the number of cores with SMT present.
8125  	 */
8126  	sched_smt_present_inc(cpu);
8127  	set_cpu_active(cpu, true);
8128  
8129  	if (sched_smp_initialized) {
8130  		sched_update_numa(cpu, true);
8131  		sched_domains_numa_masks_set(cpu);
8132  		cpuset_cpu_active();
8133  	}
8134  
8135  	scx_rq_activate(rq);
8136  
8137  	/*
8138  	 * Put the rq online, if not already. This happens:
8139  	 *
8140  	 * 1) In the early boot process, because we build the real domains
8141  	 *    after all CPUs have been brought up.
8142  	 *
8143  	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8144  	 *    domains.
8145  	 */
8146  	sched_set_rq_online(rq, cpu);
8147  
8148  	return 0;
8149  }
8150  
sched_cpu_deactivate(unsigned int cpu)8151  int sched_cpu_deactivate(unsigned int cpu)
8152  {
8153  	struct rq *rq = cpu_rq(cpu);
8154  	int ret;
8155  
8156  	/*
8157  	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8158  	 * load balancing when not active
8159  	 */
8160  	nohz_balance_exit_idle(rq);
8161  
8162  	set_cpu_active(cpu, false);
8163  
8164  	/*
8165  	 * From this point forward, this CPU will refuse to run any task that
8166  	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8167  	 * push those tasks away until this gets cleared, see
8168  	 * sched_cpu_dying().
8169  	 */
8170  	balance_push_set(cpu, true);
8171  
8172  	/*
8173  	 * We've cleared cpu_active_mask / set balance_push, wait for all
8174  	 * preempt-disabled and RCU users of this state to go away such that
8175  	 * all new such users will observe it.
8176  	 *
8177  	 * Specifically, we rely on ttwu to no longer target this CPU, see
8178  	 * ttwu_queue_cond() and is_cpu_allowed().
8179  	 *
8180  	 * Do sync before park smpboot threads to take care the RCU boost case.
8181  	 */
8182  	synchronize_rcu();
8183  
8184  	sched_set_rq_offline(rq, cpu);
8185  
8186  	scx_rq_deactivate(rq);
8187  
8188  	/*
8189  	 * When going down, decrement the number of cores with SMT present.
8190  	 */
8191  	sched_smt_present_dec(cpu);
8192  
8193  #ifdef CONFIG_SCHED_SMT
8194  	sched_core_cpu_deactivate(cpu);
8195  #endif
8196  
8197  	if (!sched_smp_initialized)
8198  		return 0;
8199  
8200  	sched_update_numa(cpu, false);
8201  	ret = cpuset_cpu_inactive(cpu);
8202  	if (ret) {
8203  		sched_smt_present_inc(cpu);
8204  		sched_set_rq_online(rq, cpu);
8205  		balance_push_set(cpu, false);
8206  		set_cpu_active(cpu, true);
8207  		sched_update_numa(cpu, true);
8208  		return ret;
8209  	}
8210  	sched_domains_numa_masks_clear(cpu);
8211  	return 0;
8212  }
8213  
sched_rq_cpu_starting(unsigned int cpu)8214  static void sched_rq_cpu_starting(unsigned int cpu)
8215  {
8216  	struct rq *rq = cpu_rq(cpu);
8217  
8218  	rq->calc_load_update = calc_load_update;
8219  	update_max_interval();
8220  }
8221  
sched_cpu_starting(unsigned int cpu)8222  int sched_cpu_starting(unsigned int cpu)
8223  {
8224  	sched_core_cpu_starting(cpu);
8225  	sched_rq_cpu_starting(cpu);
8226  	sched_tick_start(cpu);
8227  	return 0;
8228  }
8229  
8230  #ifdef CONFIG_HOTPLUG_CPU
8231  
8232  /*
8233   * Invoked immediately before the stopper thread is invoked to bring the
8234   * CPU down completely. At this point all per CPU kthreads except the
8235   * hotplug thread (current) and the stopper thread (inactive) have been
8236   * either parked or have been unbound from the outgoing CPU. Ensure that
8237   * any of those which might be on the way out are gone.
8238   *
8239   * If after this point a bound task is being woken on this CPU then the
8240   * responsible hotplug callback has failed to do it's job.
8241   * sched_cpu_dying() will catch it with the appropriate fireworks.
8242   */
sched_cpu_wait_empty(unsigned int cpu)8243  int sched_cpu_wait_empty(unsigned int cpu)
8244  {
8245  	balance_hotplug_wait();
8246  	return 0;
8247  }
8248  
8249  /*
8250   * Since this CPU is going 'away' for a while, fold any nr_active delta we
8251   * might have. Called from the CPU stopper task after ensuring that the
8252   * stopper is the last running task on the CPU, so nr_active count is
8253   * stable. We need to take the tear-down thread which is calling this into
8254   * account, so we hand in adjust = 1 to the load calculation.
8255   *
8256   * Also see the comment "Global load-average calculations".
8257   */
calc_load_migrate(struct rq * rq)8258  static void calc_load_migrate(struct rq *rq)
8259  {
8260  	long delta = calc_load_fold_active(rq, 1);
8261  
8262  	if (delta)
8263  		atomic_long_add(delta, &calc_load_tasks);
8264  }
8265  
dump_rq_tasks(struct rq * rq,const char * loglvl)8266  static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8267  {
8268  	struct task_struct *g, *p;
8269  	int cpu = cpu_of(rq);
8270  
8271  	lockdep_assert_rq_held(rq);
8272  
8273  	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8274  	for_each_process_thread(g, p) {
8275  		if (task_cpu(p) != cpu)
8276  			continue;
8277  
8278  		if (!task_on_rq_queued(p))
8279  			continue;
8280  
8281  		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8282  	}
8283  }
8284  
sched_cpu_dying(unsigned int cpu)8285  int sched_cpu_dying(unsigned int cpu)
8286  {
8287  	struct rq *rq = cpu_rq(cpu);
8288  	struct rq_flags rf;
8289  
8290  	/* Handle pending wakeups and then migrate everything off */
8291  	sched_tick_stop(cpu);
8292  
8293  	rq_lock_irqsave(rq, &rf);
8294  	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8295  		WARN(true, "Dying CPU not properly vacated!");
8296  		dump_rq_tasks(rq, KERN_WARNING);
8297  	}
8298  	rq_unlock_irqrestore(rq, &rf);
8299  
8300  	calc_load_migrate(rq);
8301  	update_max_interval();
8302  	hrtick_clear(rq);
8303  	sched_core_cpu_dying(cpu);
8304  	return 0;
8305  }
8306  #endif
8307  
sched_init_smp(void)8308  void __init sched_init_smp(void)
8309  {
8310  	sched_init_numa(NUMA_NO_NODE);
8311  
8312  	/*
8313  	 * There's no userspace yet to cause hotplug operations; hence all the
8314  	 * CPU masks are stable and all blatant races in the below code cannot
8315  	 * happen.
8316  	 */
8317  	mutex_lock(&sched_domains_mutex);
8318  	sched_init_domains(cpu_active_mask);
8319  	mutex_unlock(&sched_domains_mutex);
8320  
8321  	/* Move init over to a non-isolated CPU */
8322  	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8323  		BUG();
8324  	current->flags &= ~PF_NO_SETAFFINITY;
8325  	sched_init_granularity();
8326  
8327  	init_sched_rt_class();
8328  	init_sched_dl_class();
8329  
8330  	sched_smp_initialized = true;
8331  }
8332  
migration_init(void)8333  static int __init migration_init(void)
8334  {
8335  	sched_cpu_starting(smp_processor_id());
8336  	return 0;
8337  }
8338  early_initcall(migration_init);
8339  
8340  #else
sched_init_smp(void)8341  void __init sched_init_smp(void)
8342  {
8343  	sched_init_granularity();
8344  }
8345  #endif /* CONFIG_SMP */
8346  
in_sched_functions(unsigned long addr)8347  int in_sched_functions(unsigned long addr)
8348  {
8349  	return in_lock_functions(addr) ||
8350  		(addr >= (unsigned long)__sched_text_start
8351  		&& addr < (unsigned long)__sched_text_end);
8352  }
8353  
8354  #ifdef CONFIG_CGROUP_SCHED
8355  /*
8356   * Default task group.
8357   * Every task in system belongs to this group at bootup.
8358   */
8359  struct task_group root_task_group;
8360  LIST_HEAD(task_groups);
8361  
8362  /* Cacheline aligned slab cache for task_group */
8363  static struct kmem_cache *task_group_cache __ro_after_init;
8364  #endif
8365  
sched_init(void)8366  void __init sched_init(void)
8367  {
8368  	unsigned long ptr = 0;
8369  	int i;
8370  
8371  	/* Make sure the linker didn't screw up */
8372  #ifdef CONFIG_SMP
8373  	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8374  #endif
8375  	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8376  	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8377  	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8378  #ifdef CONFIG_SCHED_CLASS_EXT
8379  	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8380  	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8381  #endif
8382  
8383  	wait_bit_init();
8384  
8385  #ifdef CONFIG_FAIR_GROUP_SCHED
8386  	ptr += 2 * nr_cpu_ids * sizeof(void **);
8387  #endif
8388  #ifdef CONFIG_RT_GROUP_SCHED
8389  	ptr += 2 * nr_cpu_ids * sizeof(void **);
8390  #endif
8391  	if (ptr) {
8392  		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8393  
8394  #ifdef CONFIG_FAIR_GROUP_SCHED
8395  		root_task_group.se = (struct sched_entity **)ptr;
8396  		ptr += nr_cpu_ids * sizeof(void **);
8397  
8398  		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8399  		ptr += nr_cpu_ids * sizeof(void **);
8400  
8401  		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8402  		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8403  #endif /* CONFIG_FAIR_GROUP_SCHED */
8404  #ifdef CONFIG_EXT_GROUP_SCHED
8405  		root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
8406  #endif /* CONFIG_EXT_GROUP_SCHED */
8407  #ifdef CONFIG_RT_GROUP_SCHED
8408  		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8409  		ptr += nr_cpu_ids * sizeof(void **);
8410  
8411  		root_task_group.rt_rq = (struct rt_rq **)ptr;
8412  		ptr += nr_cpu_ids * sizeof(void **);
8413  
8414  #endif /* CONFIG_RT_GROUP_SCHED */
8415  	}
8416  
8417  #ifdef CONFIG_SMP
8418  	init_defrootdomain();
8419  #endif
8420  
8421  #ifdef CONFIG_RT_GROUP_SCHED
8422  	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8423  			global_rt_period(), global_rt_runtime());
8424  #endif /* CONFIG_RT_GROUP_SCHED */
8425  
8426  #ifdef CONFIG_CGROUP_SCHED
8427  	task_group_cache = KMEM_CACHE(task_group, 0);
8428  
8429  	list_add(&root_task_group.list, &task_groups);
8430  	INIT_LIST_HEAD(&root_task_group.children);
8431  	INIT_LIST_HEAD(&root_task_group.siblings);
8432  	autogroup_init(&init_task);
8433  #endif /* CONFIG_CGROUP_SCHED */
8434  
8435  	for_each_possible_cpu(i) {
8436  		struct rq *rq;
8437  
8438  		rq = cpu_rq(i);
8439  		raw_spin_lock_init(&rq->__lock);
8440  		rq->nr_running = 0;
8441  		rq->calc_load_active = 0;
8442  		rq->calc_load_update = jiffies + LOAD_FREQ;
8443  		init_cfs_rq(&rq->cfs);
8444  		init_rt_rq(&rq->rt);
8445  		init_dl_rq(&rq->dl);
8446  #ifdef CONFIG_FAIR_GROUP_SCHED
8447  		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8448  		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8449  		/*
8450  		 * How much CPU bandwidth does root_task_group get?
8451  		 *
8452  		 * In case of task-groups formed through the cgroup filesystem, it
8453  		 * gets 100% of the CPU resources in the system. This overall
8454  		 * system CPU resource is divided among the tasks of
8455  		 * root_task_group and its child task-groups in a fair manner,
8456  		 * based on each entity's (task or task-group's) weight
8457  		 * (se->load.weight).
8458  		 *
8459  		 * In other words, if root_task_group has 10 tasks of weight
8460  		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8461  		 * then A0's share of the CPU resource is:
8462  		 *
8463  		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8464  		 *
8465  		 * We achieve this by letting root_task_group's tasks sit
8466  		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8467  		 */
8468  		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8469  #endif /* CONFIG_FAIR_GROUP_SCHED */
8470  
8471  #ifdef CONFIG_RT_GROUP_SCHED
8472  		/*
8473  		 * This is required for init cpu because rt.c:__enable_runtime()
8474  		 * starts working after scheduler_running, which is not the case
8475  		 * yet.
8476  		 */
8477  		rq->rt.rt_runtime = global_rt_runtime();
8478  		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8479  #endif
8480  #ifdef CONFIG_SMP
8481  		rq->sd = NULL;
8482  		rq->rd = NULL;
8483  		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8484  		rq->balance_callback = &balance_push_callback;
8485  		rq->active_balance = 0;
8486  		rq->next_balance = jiffies;
8487  		rq->push_cpu = 0;
8488  		rq->cpu = i;
8489  		rq->online = 0;
8490  		rq->idle_stamp = 0;
8491  		rq->avg_idle = 2*sysctl_sched_migration_cost;
8492  		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8493  
8494  		INIT_LIST_HEAD(&rq->cfs_tasks);
8495  
8496  		rq_attach_root(rq, &def_root_domain);
8497  #ifdef CONFIG_NO_HZ_COMMON
8498  		rq->last_blocked_load_update_tick = jiffies;
8499  		atomic_set(&rq->nohz_flags, 0);
8500  
8501  		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8502  #endif
8503  #ifdef CONFIG_HOTPLUG_CPU
8504  		rcuwait_init(&rq->hotplug_wait);
8505  #endif
8506  #endif /* CONFIG_SMP */
8507  		hrtick_rq_init(rq);
8508  		atomic_set(&rq->nr_iowait, 0);
8509  		fair_server_init(rq);
8510  
8511  #ifdef CONFIG_SCHED_CORE
8512  		rq->core = rq;
8513  		rq->core_pick = NULL;
8514  		rq->core_dl_server = NULL;
8515  		rq->core_enabled = 0;
8516  		rq->core_tree = RB_ROOT;
8517  		rq->core_forceidle_count = 0;
8518  		rq->core_forceidle_occupation = 0;
8519  		rq->core_forceidle_start = 0;
8520  
8521  		rq->core_cookie = 0UL;
8522  #endif
8523  		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8524  	}
8525  
8526  	set_load_weight(&init_task, false);
8527  	init_task.se.slice = sysctl_sched_base_slice,
8528  
8529  	/*
8530  	 * The boot idle thread does lazy MMU switching as well:
8531  	 */
8532  	mmgrab_lazy_tlb(&init_mm);
8533  	enter_lazy_tlb(&init_mm, current);
8534  
8535  	/*
8536  	 * The idle task doesn't need the kthread struct to function, but it
8537  	 * is dressed up as a per-CPU kthread and thus needs to play the part
8538  	 * if we want to avoid special-casing it in code that deals with per-CPU
8539  	 * kthreads.
8540  	 */
8541  	WARN_ON(!set_kthread_struct(current));
8542  
8543  	/*
8544  	 * Make us the idle thread. Technically, schedule() should not be
8545  	 * called from this thread, however somewhere below it might be,
8546  	 * but because we are the idle thread, we just pick up running again
8547  	 * when this runqueue becomes "idle".
8548  	 */
8549  	init_idle(current, smp_processor_id());
8550  
8551  	calc_load_update = jiffies + LOAD_FREQ;
8552  
8553  #ifdef CONFIG_SMP
8554  	idle_thread_set_boot_cpu();
8555  	balance_push_set(smp_processor_id(), false);
8556  #endif
8557  	init_sched_fair_class();
8558  	init_sched_ext_class();
8559  
8560  	psi_init();
8561  
8562  	init_uclamp();
8563  
8564  	preempt_dynamic_init();
8565  
8566  	scheduler_running = 1;
8567  }
8568  
8569  #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8570  
__might_sleep(const char * file,int line)8571  void __might_sleep(const char *file, int line)
8572  {
8573  	unsigned int state = get_current_state();
8574  	/*
8575  	 * Blocking primitives will set (and therefore destroy) current->state,
8576  	 * since we will exit with TASK_RUNNING make sure we enter with it,
8577  	 * otherwise we will destroy state.
8578  	 */
8579  	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8580  			"do not call blocking ops when !TASK_RUNNING; "
8581  			"state=%x set at [<%p>] %pS\n", state,
8582  			(void *)current->task_state_change,
8583  			(void *)current->task_state_change);
8584  
8585  	__might_resched(file, line, 0);
8586  }
8587  EXPORT_SYMBOL(__might_sleep);
8588  
print_preempt_disable_ip(int preempt_offset,unsigned long ip)8589  static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8590  {
8591  	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8592  		return;
8593  
8594  	if (preempt_count() == preempt_offset)
8595  		return;
8596  
8597  	pr_err("Preemption disabled at:");
8598  	print_ip_sym(KERN_ERR, ip);
8599  }
8600  
resched_offsets_ok(unsigned int offsets)8601  static inline bool resched_offsets_ok(unsigned int offsets)
8602  {
8603  	unsigned int nested = preempt_count();
8604  
8605  	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8606  
8607  	return nested == offsets;
8608  }
8609  
__might_resched(const char * file,int line,unsigned int offsets)8610  void __might_resched(const char *file, int line, unsigned int offsets)
8611  {
8612  	/* Ratelimiting timestamp: */
8613  	static unsigned long prev_jiffy;
8614  
8615  	unsigned long preempt_disable_ip;
8616  
8617  	/* WARN_ON_ONCE() by default, no rate limit required: */
8618  	rcu_sleep_check();
8619  
8620  	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8621  	     !is_idle_task(current) && !current->non_block_count) ||
8622  	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8623  	    oops_in_progress)
8624  		return;
8625  
8626  	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8627  		return;
8628  	prev_jiffy = jiffies;
8629  
8630  	/* Save this before calling printk(), since that will clobber it: */
8631  	preempt_disable_ip = get_preempt_disable_ip(current);
8632  
8633  	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8634  	       file, line);
8635  	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8636  	       in_atomic(), irqs_disabled(), current->non_block_count,
8637  	       current->pid, current->comm);
8638  	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8639  	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8640  
8641  	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8642  		pr_err("RCU nest depth: %d, expected: %u\n",
8643  		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8644  	}
8645  
8646  	if (task_stack_end_corrupted(current))
8647  		pr_emerg("Thread overran stack, or stack corrupted\n");
8648  
8649  	debug_show_held_locks(current);
8650  	if (irqs_disabled())
8651  		print_irqtrace_events(current);
8652  
8653  	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8654  				 preempt_disable_ip);
8655  
8656  	dump_stack();
8657  	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8658  }
8659  EXPORT_SYMBOL(__might_resched);
8660  
__cant_sleep(const char * file,int line,int preempt_offset)8661  void __cant_sleep(const char *file, int line, int preempt_offset)
8662  {
8663  	static unsigned long prev_jiffy;
8664  
8665  	if (irqs_disabled())
8666  		return;
8667  
8668  	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8669  		return;
8670  
8671  	if (preempt_count() > preempt_offset)
8672  		return;
8673  
8674  	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8675  		return;
8676  	prev_jiffy = jiffies;
8677  
8678  	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8679  	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8680  			in_atomic(), irqs_disabled(),
8681  			current->pid, current->comm);
8682  
8683  	debug_show_held_locks(current);
8684  	dump_stack();
8685  	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8686  }
8687  EXPORT_SYMBOL_GPL(__cant_sleep);
8688  
8689  #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)8690  void __cant_migrate(const char *file, int line)
8691  {
8692  	static unsigned long prev_jiffy;
8693  
8694  	if (irqs_disabled())
8695  		return;
8696  
8697  	if (is_migration_disabled(current))
8698  		return;
8699  
8700  	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8701  		return;
8702  
8703  	if (preempt_count() > 0)
8704  		return;
8705  
8706  	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8707  		return;
8708  	prev_jiffy = jiffies;
8709  
8710  	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8711  	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8712  	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8713  	       current->pid, current->comm);
8714  
8715  	debug_show_held_locks(current);
8716  	dump_stack();
8717  	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8718  }
8719  EXPORT_SYMBOL_GPL(__cant_migrate);
8720  #endif
8721  #endif
8722  
8723  #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)8724  void normalize_rt_tasks(void)
8725  {
8726  	struct task_struct *g, *p;
8727  	struct sched_attr attr = {
8728  		.sched_policy = SCHED_NORMAL,
8729  	};
8730  
8731  	read_lock(&tasklist_lock);
8732  	for_each_process_thread(g, p) {
8733  		/*
8734  		 * Only normalize user tasks:
8735  		 */
8736  		if (p->flags & PF_KTHREAD)
8737  			continue;
8738  
8739  		p->se.exec_start = 0;
8740  		schedstat_set(p->stats.wait_start,  0);
8741  		schedstat_set(p->stats.sleep_start, 0);
8742  		schedstat_set(p->stats.block_start, 0);
8743  
8744  		if (!rt_or_dl_task(p)) {
8745  			/*
8746  			 * Renice negative nice level userspace
8747  			 * tasks back to 0:
8748  			 */
8749  			if (task_nice(p) < 0)
8750  				set_user_nice(p, 0);
8751  			continue;
8752  		}
8753  
8754  		__sched_setscheduler(p, &attr, false, false);
8755  	}
8756  	read_unlock(&tasklist_lock);
8757  }
8758  
8759  #endif /* CONFIG_MAGIC_SYSRQ */
8760  
8761  #if defined(CONFIG_KGDB_KDB)
8762  /*
8763   * These functions are only useful for KDB.
8764   *
8765   * They can only be called when the whole system has been
8766   * stopped - every CPU needs to be quiescent, and no scheduling
8767   * activity can take place. Using them for anything else would
8768   * be a serious bug, and as a result, they aren't even visible
8769   * under any other configuration.
8770   */
8771  
8772  /**
8773   * curr_task - return the current task for a given CPU.
8774   * @cpu: the processor in question.
8775   *
8776   * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8777   *
8778   * Return: The current task for @cpu.
8779   */
curr_task(int cpu)8780  struct task_struct *curr_task(int cpu)
8781  {
8782  	return cpu_curr(cpu);
8783  }
8784  
8785  #endif /* defined(CONFIG_KGDB_KDB) */
8786  
8787  #ifdef CONFIG_CGROUP_SCHED
8788  /* task_group_lock serializes the addition/removal of task groups */
8789  static DEFINE_SPINLOCK(task_group_lock);
8790  
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)8791  static inline void alloc_uclamp_sched_group(struct task_group *tg,
8792  					    struct task_group *parent)
8793  {
8794  #ifdef CONFIG_UCLAMP_TASK_GROUP
8795  	enum uclamp_id clamp_id;
8796  
8797  	for_each_clamp_id(clamp_id) {
8798  		uclamp_se_set(&tg->uclamp_req[clamp_id],
8799  			      uclamp_none(clamp_id), false);
8800  		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8801  	}
8802  #endif
8803  }
8804  
sched_free_group(struct task_group * tg)8805  static void sched_free_group(struct task_group *tg)
8806  {
8807  	free_fair_sched_group(tg);
8808  	free_rt_sched_group(tg);
8809  	autogroup_free(tg);
8810  	kmem_cache_free(task_group_cache, tg);
8811  }
8812  
sched_free_group_rcu(struct rcu_head * rcu)8813  static void sched_free_group_rcu(struct rcu_head *rcu)
8814  {
8815  	sched_free_group(container_of(rcu, struct task_group, rcu));
8816  }
8817  
sched_unregister_group(struct task_group * tg)8818  static void sched_unregister_group(struct task_group *tg)
8819  {
8820  	unregister_fair_sched_group(tg);
8821  	unregister_rt_sched_group(tg);
8822  	/*
8823  	 * We have to wait for yet another RCU grace period to expire, as
8824  	 * print_cfs_stats() might run concurrently.
8825  	 */
8826  	call_rcu(&tg->rcu, sched_free_group_rcu);
8827  }
8828  
8829  /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8830  struct task_group *sched_create_group(struct task_group *parent)
8831  {
8832  	struct task_group *tg;
8833  
8834  	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8835  	if (!tg)
8836  		return ERR_PTR(-ENOMEM);
8837  
8838  	if (!alloc_fair_sched_group(tg, parent))
8839  		goto err;
8840  
8841  	if (!alloc_rt_sched_group(tg, parent))
8842  		goto err;
8843  
8844  	scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
8845  	alloc_uclamp_sched_group(tg, parent);
8846  
8847  	return tg;
8848  
8849  err:
8850  	sched_free_group(tg);
8851  	return ERR_PTR(-ENOMEM);
8852  }
8853  
sched_online_group(struct task_group * tg,struct task_group * parent)8854  void sched_online_group(struct task_group *tg, struct task_group *parent)
8855  {
8856  	unsigned long flags;
8857  
8858  	spin_lock_irqsave(&task_group_lock, flags);
8859  	list_add_rcu(&tg->list, &task_groups);
8860  
8861  	/* Root should already exist: */
8862  	WARN_ON(!parent);
8863  
8864  	tg->parent = parent;
8865  	INIT_LIST_HEAD(&tg->children);
8866  	list_add_rcu(&tg->siblings, &parent->children);
8867  	spin_unlock_irqrestore(&task_group_lock, flags);
8868  
8869  	online_fair_sched_group(tg);
8870  }
8871  
8872  /* RCU callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)8873  static void sched_unregister_group_rcu(struct rcu_head *rhp)
8874  {
8875  	/* Now it should be safe to free those cfs_rqs: */
8876  	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8877  }
8878  
sched_destroy_group(struct task_group * tg)8879  void sched_destroy_group(struct task_group *tg)
8880  {
8881  	/* Wait for possible concurrent references to cfs_rqs complete: */
8882  	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8883  }
8884  
sched_release_group(struct task_group * tg)8885  void sched_release_group(struct task_group *tg)
8886  {
8887  	unsigned long flags;
8888  
8889  	/*
8890  	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8891  	 * sched_cfs_period_timer()).
8892  	 *
8893  	 * For this to be effective, we have to wait for all pending users of
8894  	 * this task group to leave their RCU critical section to ensure no new
8895  	 * user will see our dying task group any more. Specifically ensure
8896  	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
8897  	 *
8898  	 * We therefore defer calling unregister_fair_sched_group() to
8899  	 * sched_unregister_group() which is guarantied to get called only after the
8900  	 * current RCU grace period has expired.
8901  	 */
8902  	spin_lock_irqsave(&task_group_lock, flags);
8903  	list_del_rcu(&tg->list);
8904  	list_del_rcu(&tg->siblings);
8905  	spin_unlock_irqrestore(&task_group_lock, flags);
8906  }
8907  
sched_get_task_group(struct task_struct * tsk)8908  static struct task_group *sched_get_task_group(struct task_struct *tsk)
8909  {
8910  	struct task_group *tg;
8911  
8912  	/*
8913  	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8914  	 * which is pointless here. Thus, we pass "true" to task_css_check()
8915  	 * to prevent lockdep warnings.
8916  	 */
8917  	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8918  			  struct task_group, css);
8919  	tg = autogroup_task_group(tsk, tg);
8920  
8921  	return tg;
8922  }
8923  
sched_change_group(struct task_struct * tsk,struct task_group * group)8924  static void sched_change_group(struct task_struct *tsk, struct task_group *group)
8925  {
8926  	tsk->sched_task_group = group;
8927  
8928  #ifdef CONFIG_FAIR_GROUP_SCHED
8929  	if (tsk->sched_class->task_change_group)
8930  		tsk->sched_class->task_change_group(tsk);
8931  	else
8932  #endif
8933  		set_task_rq(tsk, task_cpu(tsk));
8934  }
8935  
8936  /*
8937   * Change task's runqueue when it moves between groups.
8938   *
8939   * The caller of this function should have put the task in its new group by
8940   * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8941   * its new group.
8942   */
sched_move_task(struct task_struct * tsk)8943  void sched_move_task(struct task_struct *tsk)
8944  {
8945  	int queued, running, queue_flags =
8946  		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8947  	struct task_group *group;
8948  	struct rq *rq;
8949  
8950  	CLASS(task_rq_lock, rq_guard)(tsk);
8951  	rq = rq_guard.rq;
8952  
8953  	/*
8954  	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
8955  	 * group changes.
8956  	 */
8957  	group = sched_get_task_group(tsk);
8958  	if (group == tsk->sched_task_group)
8959  		return;
8960  
8961  	update_rq_clock(rq);
8962  
8963  	running = task_current(rq, tsk);
8964  	queued = task_on_rq_queued(tsk);
8965  
8966  	if (queued)
8967  		dequeue_task(rq, tsk, queue_flags);
8968  	if (running)
8969  		put_prev_task(rq, tsk);
8970  
8971  	sched_change_group(tsk, group);
8972  	scx_move_task(tsk);
8973  
8974  	if (queued)
8975  		enqueue_task(rq, tsk, queue_flags);
8976  	if (running) {
8977  		set_next_task(rq, tsk);
8978  		/*
8979  		 * After changing group, the running task may have joined a
8980  		 * throttled one but it's still the running task. Trigger a
8981  		 * resched to make sure that task can still run.
8982  		 */
8983  		resched_curr(rq);
8984  	}
8985  }
8986  
8987  static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8988  cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8989  {
8990  	struct task_group *parent = css_tg(parent_css);
8991  	struct task_group *tg;
8992  
8993  	if (!parent) {
8994  		/* This is early initialization for the top cgroup */
8995  		return &root_task_group.css;
8996  	}
8997  
8998  	tg = sched_create_group(parent);
8999  	if (IS_ERR(tg))
9000  		return ERR_PTR(-ENOMEM);
9001  
9002  	return &tg->css;
9003  }
9004  
9005  /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)9006  static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9007  {
9008  	struct task_group *tg = css_tg(css);
9009  	struct task_group *parent = css_tg(css->parent);
9010  	int ret;
9011  
9012  	ret = scx_tg_online(tg);
9013  	if (ret)
9014  		return ret;
9015  
9016  	if (parent)
9017  		sched_online_group(tg, parent);
9018  
9019  #ifdef CONFIG_UCLAMP_TASK_GROUP
9020  	/* Propagate the effective uclamp value for the new group */
9021  	guard(mutex)(&uclamp_mutex);
9022  	guard(rcu)();
9023  	cpu_util_update_eff(css);
9024  #endif
9025  
9026  	return 0;
9027  }
9028  
cpu_cgroup_css_offline(struct cgroup_subsys_state * css)9029  static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9030  {
9031  	struct task_group *tg = css_tg(css);
9032  
9033  	scx_tg_offline(tg);
9034  }
9035  
cpu_cgroup_css_released(struct cgroup_subsys_state * css)9036  static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9037  {
9038  	struct task_group *tg = css_tg(css);
9039  
9040  	sched_release_group(tg);
9041  }
9042  
cpu_cgroup_css_free(struct cgroup_subsys_state * css)9043  static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9044  {
9045  	struct task_group *tg = css_tg(css);
9046  
9047  	/*
9048  	 * Relies on the RCU grace period between css_released() and this.
9049  	 */
9050  	sched_unregister_group(tg);
9051  }
9052  
cpu_cgroup_can_attach(struct cgroup_taskset * tset)9053  static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9054  {
9055  #ifdef CONFIG_RT_GROUP_SCHED
9056  	struct task_struct *task;
9057  	struct cgroup_subsys_state *css;
9058  
9059  	cgroup_taskset_for_each(task, css, tset) {
9060  		if (!sched_rt_can_attach(css_tg(css), task))
9061  			return -EINVAL;
9062  	}
9063  #endif
9064  	return scx_cgroup_can_attach(tset);
9065  }
9066  
cpu_cgroup_attach(struct cgroup_taskset * tset)9067  static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9068  {
9069  	struct task_struct *task;
9070  	struct cgroup_subsys_state *css;
9071  
9072  	cgroup_taskset_for_each(task, css, tset)
9073  		sched_move_task(task);
9074  
9075  	scx_cgroup_finish_attach();
9076  }
9077  
cpu_cgroup_cancel_attach(struct cgroup_taskset * tset)9078  static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9079  {
9080  	scx_cgroup_cancel_attach(tset);
9081  }
9082  
9083  #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)9084  static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9085  {
9086  	struct cgroup_subsys_state *top_css = css;
9087  	struct uclamp_se *uc_parent = NULL;
9088  	struct uclamp_se *uc_se = NULL;
9089  	unsigned int eff[UCLAMP_CNT];
9090  	enum uclamp_id clamp_id;
9091  	unsigned int clamps;
9092  
9093  	lockdep_assert_held(&uclamp_mutex);
9094  	SCHED_WARN_ON(!rcu_read_lock_held());
9095  
9096  	css_for_each_descendant_pre(css, top_css) {
9097  		uc_parent = css_tg(css)->parent
9098  			? css_tg(css)->parent->uclamp : NULL;
9099  
9100  		for_each_clamp_id(clamp_id) {
9101  			/* Assume effective clamps matches requested clamps */
9102  			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9103  			/* Cap effective clamps with parent's effective clamps */
9104  			if (uc_parent &&
9105  			    eff[clamp_id] > uc_parent[clamp_id].value) {
9106  				eff[clamp_id] = uc_parent[clamp_id].value;
9107  			}
9108  		}
9109  		/* Ensure protection is always capped by limit */
9110  		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9111  
9112  		/* Propagate most restrictive effective clamps */
9113  		clamps = 0x0;
9114  		uc_se = css_tg(css)->uclamp;
9115  		for_each_clamp_id(clamp_id) {
9116  			if (eff[clamp_id] == uc_se[clamp_id].value)
9117  				continue;
9118  			uc_se[clamp_id].value = eff[clamp_id];
9119  			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9120  			clamps |= (0x1 << clamp_id);
9121  		}
9122  		if (!clamps) {
9123  			css = css_rightmost_descendant(css);
9124  			continue;
9125  		}
9126  
9127  		/* Immediately update descendants RUNNABLE tasks */
9128  		uclamp_update_active_tasks(css);
9129  	}
9130  }
9131  
9132  /*
9133   * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9134   * C expression. Since there is no way to convert a macro argument (N) into a
9135   * character constant, use two levels of macros.
9136   */
9137  #define _POW10(exp) ((unsigned int)1e##exp)
9138  #define POW10(exp) _POW10(exp)
9139  
9140  struct uclamp_request {
9141  #define UCLAMP_PERCENT_SHIFT	2
9142  #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9143  	s64 percent;
9144  	u64 util;
9145  	int ret;
9146  };
9147  
9148  static inline struct uclamp_request
capacity_from_percent(char * buf)9149  capacity_from_percent(char *buf)
9150  {
9151  	struct uclamp_request req = {
9152  		.percent = UCLAMP_PERCENT_SCALE,
9153  		.util = SCHED_CAPACITY_SCALE,
9154  		.ret = 0,
9155  	};
9156  
9157  	buf = strim(buf);
9158  	if (strcmp(buf, "max")) {
9159  		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9160  					     &req.percent);
9161  		if (req.ret)
9162  			return req;
9163  		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9164  			req.ret = -ERANGE;
9165  			return req;
9166  		}
9167  
9168  		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9169  		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9170  	}
9171  
9172  	return req;
9173  }
9174  
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)9175  static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9176  				size_t nbytes, loff_t off,
9177  				enum uclamp_id clamp_id)
9178  {
9179  	struct uclamp_request req;
9180  	struct task_group *tg;
9181  
9182  	req = capacity_from_percent(buf);
9183  	if (req.ret)
9184  		return req.ret;
9185  
9186  	static_branch_enable(&sched_uclamp_used);
9187  
9188  	guard(mutex)(&uclamp_mutex);
9189  	guard(rcu)();
9190  
9191  	tg = css_tg(of_css(of));
9192  	if (tg->uclamp_req[clamp_id].value != req.util)
9193  		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9194  
9195  	/*
9196  	 * Because of not recoverable conversion rounding we keep track of the
9197  	 * exact requested value
9198  	 */
9199  	tg->uclamp_pct[clamp_id] = req.percent;
9200  
9201  	/* Update effective clamps to track the most restrictive value */
9202  	cpu_util_update_eff(of_css(of));
9203  
9204  	return nbytes;
9205  }
9206  
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9207  static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9208  				    char *buf, size_t nbytes,
9209  				    loff_t off)
9210  {
9211  	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9212  }
9213  
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9214  static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9215  				    char *buf, size_t nbytes,
9216  				    loff_t off)
9217  {
9218  	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9219  }
9220  
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)9221  static inline void cpu_uclamp_print(struct seq_file *sf,
9222  				    enum uclamp_id clamp_id)
9223  {
9224  	struct task_group *tg;
9225  	u64 util_clamp;
9226  	u64 percent;
9227  	u32 rem;
9228  
9229  	scoped_guard (rcu) {
9230  		tg = css_tg(seq_css(sf));
9231  		util_clamp = tg->uclamp_req[clamp_id].value;
9232  	}
9233  
9234  	if (util_clamp == SCHED_CAPACITY_SCALE) {
9235  		seq_puts(sf, "max\n");
9236  		return;
9237  	}
9238  
9239  	percent = tg->uclamp_pct[clamp_id];
9240  	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9241  	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9242  }
9243  
cpu_uclamp_min_show(struct seq_file * sf,void * v)9244  static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9245  {
9246  	cpu_uclamp_print(sf, UCLAMP_MIN);
9247  	return 0;
9248  }
9249  
cpu_uclamp_max_show(struct seq_file * sf,void * v)9250  static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9251  {
9252  	cpu_uclamp_print(sf, UCLAMP_MAX);
9253  	return 0;
9254  }
9255  #endif /* CONFIG_UCLAMP_TASK_GROUP */
9256  
9257  #ifdef CONFIG_GROUP_SCHED_WEIGHT
tg_weight(struct task_group * tg)9258  static unsigned long tg_weight(struct task_group *tg)
9259  {
9260  #ifdef CONFIG_FAIR_GROUP_SCHED
9261  	return scale_load_down(tg->shares);
9262  #else
9263  	return sched_weight_from_cgroup(tg->scx_weight);
9264  #endif
9265  }
9266  
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)9267  static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9268  				struct cftype *cftype, u64 shareval)
9269  {
9270  	int ret;
9271  
9272  	if (shareval > scale_load_down(ULONG_MAX))
9273  		shareval = MAX_SHARES;
9274  	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9275  	if (!ret)
9276  		scx_group_set_weight(css_tg(css),
9277  				     sched_weight_to_cgroup(shareval));
9278  	return ret;
9279  }
9280  
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9281  static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9282  			       struct cftype *cft)
9283  {
9284  	return tg_weight(css_tg(css));
9285  }
9286  #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9287  
9288  #ifdef CONFIG_CFS_BANDWIDTH
9289  static DEFINE_MUTEX(cfs_constraints_mutex);
9290  
9291  const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9292  static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9293  /* More than 203 days if BW_SHIFT equals 20. */
9294  static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9295  
9296  static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9297  
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)9298  static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9299  				u64 burst)
9300  {
9301  	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9302  	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9303  
9304  	if (tg == &root_task_group)
9305  		return -EINVAL;
9306  
9307  	/*
9308  	 * Ensure we have at some amount of bandwidth every period.  This is
9309  	 * to prevent reaching a state of large arrears when throttled via
9310  	 * entity_tick() resulting in prolonged exit starvation.
9311  	 */
9312  	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9313  		return -EINVAL;
9314  
9315  	/*
9316  	 * Likewise, bound things on the other side by preventing insane quota
9317  	 * periods.  This also allows us to normalize in computing quota
9318  	 * feasibility.
9319  	 */
9320  	if (period > max_cfs_quota_period)
9321  		return -EINVAL;
9322  
9323  	/*
9324  	 * Bound quota to defend quota against overflow during bandwidth shift.
9325  	 */
9326  	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9327  		return -EINVAL;
9328  
9329  	if (quota != RUNTIME_INF && (burst > quota ||
9330  				     burst + quota > max_cfs_runtime))
9331  		return -EINVAL;
9332  
9333  	/*
9334  	 * Prevent race between setting of cfs_rq->runtime_enabled and
9335  	 * unthrottle_offline_cfs_rqs().
9336  	 */
9337  	guard(cpus_read_lock)();
9338  	guard(mutex)(&cfs_constraints_mutex);
9339  
9340  	ret = __cfs_schedulable(tg, period, quota);
9341  	if (ret)
9342  		return ret;
9343  
9344  	runtime_enabled = quota != RUNTIME_INF;
9345  	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9346  	/*
9347  	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9348  	 * before making related changes, and on->off must occur afterwards
9349  	 */
9350  	if (runtime_enabled && !runtime_was_enabled)
9351  		cfs_bandwidth_usage_inc();
9352  
9353  	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9354  		cfs_b->period = ns_to_ktime(period);
9355  		cfs_b->quota = quota;
9356  		cfs_b->burst = burst;
9357  
9358  		__refill_cfs_bandwidth_runtime(cfs_b);
9359  
9360  		/*
9361  		 * Restart the period timer (if active) to handle new
9362  		 * period expiry:
9363  		 */
9364  		if (runtime_enabled)
9365  			start_cfs_bandwidth(cfs_b);
9366  	}
9367  
9368  	for_each_online_cpu(i) {
9369  		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9370  		struct rq *rq = cfs_rq->rq;
9371  
9372  		guard(rq_lock_irq)(rq);
9373  		cfs_rq->runtime_enabled = runtime_enabled;
9374  		cfs_rq->runtime_remaining = 0;
9375  
9376  		if (cfs_rq->throttled)
9377  			unthrottle_cfs_rq(cfs_rq);
9378  	}
9379  
9380  	if (runtime_was_enabled && !runtime_enabled)
9381  		cfs_bandwidth_usage_dec();
9382  
9383  	return 0;
9384  }
9385  
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)9386  static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9387  {
9388  	u64 quota, period, burst;
9389  
9390  	period = ktime_to_ns(tg->cfs_bandwidth.period);
9391  	burst = tg->cfs_bandwidth.burst;
9392  	if (cfs_quota_us < 0)
9393  		quota = RUNTIME_INF;
9394  	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9395  		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9396  	else
9397  		return -EINVAL;
9398  
9399  	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9400  }
9401  
tg_get_cfs_quota(struct task_group * tg)9402  static long tg_get_cfs_quota(struct task_group *tg)
9403  {
9404  	u64 quota_us;
9405  
9406  	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9407  		return -1;
9408  
9409  	quota_us = tg->cfs_bandwidth.quota;
9410  	do_div(quota_us, NSEC_PER_USEC);
9411  
9412  	return quota_us;
9413  }
9414  
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)9415  static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9416  {
9417  	u64 quota, period, burst;
9418  
9419  	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9420  		return -EINVAL;
9421  
9422  	period = (u64)cfs_period_us * NSEC_PER_USEC;
9423  	quota = tg->cfs_bandwidth.quota;
9424  	burst = tg->cfs_bandwidth.burst;
9425  
9426  	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9427  }
9428  
tg_get_cfs_period(struct task_group * tg)9429  static long tg_get_cfs_period(struct task_group *tg)
9430  {
9431  	u64 cfs_period_us;
9432  
9433  	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9434  	do_div(cfs_period_us, NSEC_PER_USEC);
9435  
9436  	return cfs_period_us;
9437  }
9438  
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)9439  static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9440  {
9441  	u64 quota, period, burst;
9442  
9443  	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9444  		return -EINVAL;
9445  
9446  	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9447  	period = ktime_to_ns(tg->cfs_bandwidth.period);
9448  	quota = tg->cfs_bandwidth.quota;
9449  
9450  	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9451  }
9452  
tg_get_cfs_burst(struct task_group * tg)9453  static long tg_get_cfs_burst(struct task_group *tg)
9454  {
9455  	u64 burst_us;
9456  
9457  	burst_us = tg->cfs_bandwidth.burst;
9458  	do_div(burst_us, NSEC_PER_USEC);
9459  
9460  	return burst_us;
9461  }
9462  
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9463  static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9464  				  struct cftype *cft)
9465  {
9466  	return tg_get_cfs_quota(css_tg(css));
9467  }
9468  
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)9469  static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9470  				   struct cftype *cftype, s64 cfs_quota_us)
9471  {
9472  	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9473  }
9474  
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9475  static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9476  				   struct cftype *cft)
9477  {
9478  	return tg_get_cfs_period(css_tg(css));
9479  }
9480  
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)9481  static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9482  				    struct cftype *cftype, u64 cfs_period_us)
9483  {
9484  	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9485  }
9486  
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9487  static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9488  				  struct cftype *cft)
9489  {
9490  	return tg_get_cfs_burst(css_tg(css));
9491  }
9492  
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)9493  static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9494  				   struct cftype *cftype, u64 cfs_burst_us)
9495  {
9496  	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9497  }
9498  
9499  struct cfs_schedulable_data {
9500  	struct task_group *tg;
9501  	u64 period, quota;
9502  };
9503  
9504  /*
9505   * normalize group quota/period to be quota/max_period
9506   * note: units are usecs
9507   */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)9508  static u64 normalize_cfs_quota(struct task_group *tg,
9509  			       struct cfs_schedulable_data *d)
9510  {
9511  	u64 quota, period;
9512  
9513  	if (tg == d->tg) {
9514  		period = d->period;
9515  		quota = d->quota;
9516  	} else {
9517  		period = tg_get_cfs_period(tg);
9518  		quota = tg_get_cfs_quota(tg);
9519  	}
9520  
9521  	/* note: these should typically be equivalent */
9522  	if (quota == RUNTIME_INF || quota == -1)
9523  		return RUNTIME_INF;
9524  
9525  	return to_ratio(period, quota);
9526  }
9527  
tg_cfs_schedulable_down(struct task_group * tg,void * data)9528  static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9529  {
9530  	struct cfs_schedulable_data *d = data;
9531  	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9532  	s64 quota = 0, parent_quota = -1;
9533  
9534  	if (!tg->parent) {
9535  		quota = RUNTIME_INF;
9536  	} else {
9537  		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9538  
9539  		quota = normalize_cfs_quota(tg, d);
9540  		parent_quota = parent_b->hierarchical_quota;
9541  
9542  		/*
9543  		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9544  		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9545  		 * inherit when no limit is set. In both cases this is used
9546  		 * by the scheduler to determine if a given CFS task has a
9547  		 * bandwidth constraint at some higher level.
9548  		 */
9549  		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9550  			if (quota == RUNTIME_INF)
9551  				quota = parent_quota;
9552  			else if (parent_quota != RUNTIME_INF)
9553  				quota = min(quota, parent_quota);
9554  		} else {
9555  			if (quota == RUNTIME_INF)
9556  				quota = parent_quota;
9557  			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9558  				return -EINVAL;
9559  		}
9560  	}
9561  	cfs_b->hierarchical_quota = quota;
9562  
9563  	return 0;
9564  }
9565  
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)9566  static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9567  {
9568  	struct cfs_schedulable_data data = {
9569  		.tg = tg,
9570  		.period = period,
9571  		.quota = quota,
9572  	};
9573  
9574  	if (quota != RUNTIME_INF) {
9575  		do_div(data.period, NSEC_PER_USEC);
9576  		do_div(data.quota, NSEC_PER_USEC);
9577  	}
9578  
9579  	guard(rcu)();
9580  	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9581  }
9582  
cpu_cfs_stat_show(struct seq_file * sf,void * v)9583  static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9584  {
9585  	struct task_group *tg = css_tg(seq_css(sf));
9586  	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9587  
9588  	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9589  	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9590  	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9591  
9592  	if (schedstat_enabled() && tg != &root_task_group) {
9593  		struct sched_statistics *stats;
9594  		u64 ws = 0;
9595  		int i;
9596  
9597  		for_each_possible_cpu(i) {
9598  			stats = __schedstats_from_se(tg->se[i]);
9599  			ws += schedstat_val(stats->wait_sum);
9600  		}
9601  
9602  		seq_printf(sf, "wait_sum %llu\n", ws);
9603  	}
9604  
9605  	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9606  	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9607  
9608  	return 0;
9609  }
9610  
throttled_time_self(struct task_group * tg)9611  static u64 throttled_time_self(struct task_group *tg)
9612  {
9613  	int i;
9614  	u64 total = 0;
9615  
9616  	for_each_possible_cpu(i) {
9617  		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9618  	}
9619  
9620  	return total;
9621  }
9622  
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)9623  static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9624  {
9625  	struct task_group *tg = css_tg(seq_css(sf));
9626  
9627  	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9628  
9629  	return 0;
9630  }
9631  #endif /* CONFIG_CFS_BANDWIDTH */
9632  
9633  #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)9634  static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9635  				struct cftype *cft, s64 val)
9636  {
9637  	return sched_group_set_rt_runtime(css_tg(css), val);
9638  }
9639  
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)9640  static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9641  			       struct cftype *cft)
9642  {
9643  	return sched_group_rt_runtime(css_tg(css));
9644  }
9645  
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)9646  static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9647  				    struct cftype *cftype, u64 rt_period_us)
9648  {
9649  	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9650  }
9651  
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)9652  static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9653  				   struct cftype *cft)
9654  {
9655  	return sched_group_rt_period(css_tg(css));
9656  }
9657  #endif /* CONFIG_RT_GROUP_SCHED */
9658  
9659  #ifdef CONFIG_GROUP_SCHED_WEIGHT
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9660  static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9661  			       struct cftype *cft)
9662  {
9663  	return css_tg(css)->idle;
9664  }
9665  
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)9666  static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9667  				struct cftype *cft, s64 idle)
9668  {
9669  	int ret;
9670  
9671  	ret = sched_group_set_idle(css_tg(css), idle);
9672  	if (!ret)
9673  		scx_group_set_idle(css_tg(css), idle);
9674  	return ret;
9675  }
9676  #endif
9677  
9678  static struct cftype cpu_legacy_files[] = {
9679  #ifdef CONFIG_GROUP_SCHED_WEIGHT
9680  	{
9681  		.name = "shares",
9682  		.read_u64 = cpu_shares_read_u64,
9683  		.write_u64 = cpu_shares_write_u64,
9684  	},
9685  	{
9686  		.name = "idle",
9687  		.read_s64 = cpu_idle_read_s64,
9688  		.write_s64 = cpu_idle_write_s64,
9689  	},
9690  #endif
9691  #ifdef CONFIG_CFS_BANDWIDTH
9692  	{
9693  		.name = "cfs_quota_us",
9694  		.read_s64 = cpu_cfs_quota_read_s64,
9695  		.write_s64 = cpu_cfs_quota_write_s64,
9696  	},
9697  	{
9698  		.name = "cfs_period_us",
9699  		.read_u64 = cpu_cfs_period_read_u64,
9700  		.write_u64 = cpu_cfs_period_write_u64,
9701  	},
9702  	{
9703  		.name = "cfs_burst_us",
9704  		.read_u64 = cpu_cfs_burst_read_u64,
9705  		.write_u64 = cpu_cfs_burst_write_u64,
9706  	},
9707  	{
9708  		.name = "stat",
9709  		.seq_show = cpu_cfs_stat_show,
9710  	},
9711  	{
9712  		.name = "stat.local",
9713  		.seq_show = cpu_cfs_local_stat_show,
9714  	},
9715  #endif
9716  #ifdef CONFIG_RT_GROUP_SCHED
9717  	{
9718  		.name = "rt_runtime_us",
9719  		.read_s64 = cpu_rt_runtime_read,
9720  		.write_s64 = cpu_rt_runtime_write,
9721  	},
9722  	{
9723  		.name = "rt_period_us",
9724  		.read_u64 = cpu_rt_period_read_uint,
9725  		.write_u64 = cpu_rt_period_write_uint,
9726  	},
9727  #endif
9728  #ifdef CONFIG_UCLAMP_TASK_GROUP
9729  	{
9730  		.name = "uclamp.min",
9731  		.flags = CFTYPE_NOT_ON_ROOT,
9732  		.seq_show = cpu_uclamp_min_show,
9733  		.write = cpu_uclamp_min_write,
9734  	},
9735  	{
9736  		.name = "uclamp.max",
9737  		.flags = CFTYPE_NOT_ON_ROOT,
9738  		.seq_show = cpu_uclamp_max_show,
9739  		.write = cpu_uclamp_max_write,
9740  	},
9741  #endif
9742  	{ }	/* Terminate */
9743  };
9744  
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)9745  static int cpu_extra_stat_show(struct seq_file *sf,
9746  			       struct cgroup_subsys_state *css)
9747  {
9748  #ifdef CONFIG_CFS_BANDWIDTH
9749  	{
9750  		struct task_group *tg = css_tg(css);
9751  		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9752  		u64 throttled_usec, burst_usec;
9753  
9754  		throttled_usec = cfs_b->throttled_time;
9755  		do_div(throttled_usec, NSEC_PER_USEC);
9756  		burst_usec = cfs_b->burst_time;
9757  		do_div(burst_usec, NSEC_PER_USEC);
9758  
9759  		seq_printf(sf, "nr_periods %d\n"
9760  			   "nr_throttled %d\n"
9761  			   "throttled_usec %llu\n"
9762  			   "nr_bursts %d\n"
9763  			   "burst_usec %llu\n",
9764  			   cfs_b->nr_periods, cfs_b->nr_throttled,
9765  			   throttled_usec, cfs_b->nr_burst, burst_usec);
9766  	}
9767  #endif
9768  	return 0;
9769  }
9770  
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)9771  static int cpu_local_stat_show(struct seq_file *sf,
9772  			       struct cgroup_subsys_state *css)
9773  {
9774  #ifdef CONFIG_CFS_BANDWIDTH
9775  	{
9776  		struct task_group *tg = css_tg(css);
9777  		u64 throttled_self_usec;
9778  
9779  		throttled_self_usec = throttled_time_self(tg);
9780  		do_div(throttled_self_usec, NSEC_PER_USEC);
9781  
9782  		seq_printf(sf, "throttled_usec %llu\n",
9783  			   throttled_self_usec);
9784  	}
9785  #endif
9786  	return 0;
9787  }
9788  
9789  #ifdef CONFIG_GROUP_SCHED_WEIGHT
9790  
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9791  static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9792  			       struct cftype *cft)
9793  {
9794  	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9795  }
9796  
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 cgrp_weight)9797  static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9798  				struct cftype *cft, u64 cgrp_weight)
9799  {
9800  	unsigned long weight;
9801  	int ret;
9802  
9803  	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9804  		return -ERANGE;
9805  
9806  	weight = sched_weight_from_cgroup(cgrp_weight);
9807  
9808  	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9809  	if (!ret)
9810  		scx_group_set_weight(css_tg(css), cgrp_weight);
9811  	return ret;
9812  }
9813  
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9814  static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9815  				    struct cftype *cft)
9816  {
9817  	unsigned long weight = tg_weight(css_tg(css));
9818  	int last_delta = INT_MAX;
9819  	int prio, delta;
9820  
9821  	/* find the closest nice value to the current weight */
9822  	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9823  		delta = abs(sched_prio_to_weight[prio] - weight);
9824  		if (delta >= last_delta)
9825  			break;
9826  		last_delta = delta;
9827  	}
9828  
9829  	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9830  }
9831  
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)9832  static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9833  				     struct cftype *cft, s64 nice)
9834  {
9835  	unsigned long weight;
9836  	int idx, ret;
9837  
9838  	if (nice < MIN_NICE || nice > MAX_NICE)
9839  		return -ERANGE;
9840  
9841  	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9842  	idx = array_index_nospec(idx, 40);
9843  	weight = sched_prio_to_weight[idx];
9844  
9845  	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9846  	if (!ret)
9847  		scx_group_set_weight(css_tg(css),
9848  				     sched_weight_to_cgroup(weight));
9849  	return ret;
9850  }
9851  #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9852  
cpu_period_quota_print(struct seq_file * sf,long period,long quota)9853  static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9854  						  long period, long quota)
9855  {
9856  	if (quota < 0)
9857  		seq_puts(sf, "max");
9858  	else
9859  		seq_printf(sf, "%ld", quota);
9860  
9861  	seq_printf(sf, " %ld\n", period);
9862  }
9863  
9864  /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)9865  static int __maybe_unused cpu_period_quota_parse(char *buf,
9866  						 u64 *periodp, u64 *quotap)
9867  {
9868  	char tok[21];	/* U64_MAX */
9869  
9870  	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9871  		return -EINVAL;
9872  
9873  	*periodp *= NSEC_PER_USEC;
9874  
9875  	if (sscanf(tok, "%llu", quotap))
9876  		*quotap *= NSEC_PER_USEC;
9877  	else if (!strcmp(tok, "max"))
9878  		*quotap = RUNTIME_INF;
9879  	else
9880  		return -EINVAL;
9881  
9882  	return 0;
9883  }
9884  
9885  #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)9886  static int cpu_max_show(struct seq_file *sf, void *v)
9887  {
9888  	struct task_group *tg = css_tg(seq_css(sf));
9889  
9890  	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9891  	return 0;
9892  }
9893  
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9894  static ssize_t cpu_max_write(struct kernfs_open_file *of,
9895  			     char *buf, size_t nbytes, loff_t off)
9896  {
9897  	struct task_group *tg = css_tg(of_css(of));
9898  	u64 period = tg_get_cfs_period(tg);
9899  	u64 burst = tg->cfs_bandwidth.burst;
9900  	u64 quota;
9901  	int ret;
9902  
9903  	ret = cpu_period_quota_parse(buf, &period, &quota);
9904  	if (!ret)
9905  		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
9906  	return ret ?: nbytes;
9907  }
9908  #endif
9909  
9910  static struct cftype cpu_files[] = {
9911  #ifdef CONFIG_GROUP_SCHED_WEIGHT
9912  	{
9913  		.name = "weight",
9914  		.flags = CFTYPE_NOT_ON_ROOT,
9915  		.read_u64 = cpu_weight_read_u64,
9916  		.write_u64 = cpu_weight_write_u64,
9917  	},
9918  	{
9919  		.name = "weight.nice",
9920  		.flags = CFTYPE_NOT_ON_ROOT,
9921  		.read_s64 = cpu_weight_nice_read_s64,
9922  		.write_s64 = cpu_weight_nice_write_s64,
9923  	},
9924  	{
9925  		.name = "idle",
9926  		.flags = CFTYPE_NOT_ON_ROOT,
9927  		.read_s64 = cpu_idle_read_s64,
9928  		.write_s64 = cpu_idle_write_s64,
9929  	},
9930  #endif
9931  #ifdef CONFIG_CFS_BANDWIDTH
9932  	{
9933  		.name = "max",
9934  		.flags = CFTYPE_NOT_ON_ROOT,
9935  		.seq_show = cpu_max_show,
9936  		.write = cpu_max_write,
9937  	},
9938  	{
9939  		.name = "max.burst",
9940  		.flags = CFTYPE_NOT_ON_ROOT,
9941  		.read_u64 = cpu_cfs_burst_read_u64,
9942  		.write_u64 = cpu_cfs_burst_write_u64,
9943  	},
9944  #endif
9945  #ifdef CONFIG_UCLAMP_TASK_GROUP
9946  	{
9947  		.name = "uclamp.min",
9948  		.flags = CFTYPE_NOT_ON_ROOT,
9949  		.seq_show = cpu_uclamp_min_show,
9950  		.write = cpu_uclamp_min_write,
9951  	},
9952  	{
9953  		.name = "uclamp.max",
9954  		.flags = CFTYPE_NOT_ON_ROOT,
9955  		.seq_show = cpu_uclamp_max_show,
9956  		.write = cpu_uclamp_max_write,
9957  	},
9958  #endif
9959  	{ }	/* terminate */
9960  };
9961  
9962  struct cgroup_subsys cpu_cgrp_subsys = {
9963  	.css_alloc	= cpu_cgroup_css_alloc,
9964  	.css_online	= cpu_cgroup_css_online,
9965  	.css_offline	= cpu_cgroup_css_offline,
9966  	.css_released	= cpu_cgroup_css_released,
9967  	.css_free	= cpu_cgroup_css_free,
9968  	.css_extra_stat_show = cpu_extra_stat_show,
9969  	.css_local_stat_show = cpu_local_stat_show,
9970  	.can_attach	= cpu_cgroup_can_attach,
9971  	.attach		= cpu_cgroup_attach,
9972  	.cancel_attach	= cpu_cgroup_cancel_attach,
9973  	.legacy_cftypes	= cpu_legacy_files,
9974  	.dfl_cftypes	= cpu_files,
9975  	.early_init	= true,
9976  	.threaded	= true,
9977  };
9978  
9979  #endif	/* CONFIG_CGROUP_SCHED */
9980  
dump_cpu_task(int cpu)9981  void dump_cpu_task(int cpu)
9982  {
9983  	if (in_hardirq() && cpu == smp_processor_id()) {
9984  		struct pt_regs *regs;
9985  
9986  		regs = get_irq_regs();
9987  		if (regs) {
9988  			show_regs(regs);
9989  			return;
9990  		}
9991  	}
9992  
9993  	if (trigger_single_cpu_backtrace(cpu))
9994  		return;
9995  
9996  	pr_info("Task dump for CPU %d:\n", cpu);
9997  	sched_show_task(cpu_curr(cpu));
9998  }
9999  
10000  /*
10001   * Nice levels are multiplicative, with a gentle 10% change for every
10002   * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10003   * nice 1, it will get ~10% less CPU time than another CPU-bound task
10004   * that remained on nice 0.
10005   *
10006   * The "10% effect" is relative and cumulative: from _any_ nice level,
10007   * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10008   * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10009   * If a task goes up by ~10% and another task goes down by ~10% then
10010   * the relative distance between them is ~25%.)
10011   */
10012  const int sched_prio_to_weight[40] = {
10013   /* -20 */     88761,     71755,     56483,     46273,     36291,
10014   /* -15 */     29154,     23254,     18705,     14949,     11916,
10015   /* -10 */      9548,      7620,      6100,      4904,      3906,
10016   /*  -5 */      3121,      2501,      1991,      1586,      1277,
10017   /*   0 */      1024,       820,       655,       526,       423,
10018   /*   5 */       335,       272,       215,       172,       137,
10019   /*  10 */       110,        87,        70,        56,        45,
10020   /*  15 */        36,        29,        23,        18,        15,
10021  };
10022  
10023  /*
10024   * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10025   *
10026   * In cases where the weight does not change often, we can use the
10027   * pre-calculated inverse to speed up arithmetics by turning divisions
10028   * into multiplications:
10029   */
10030  const u32 sched_prio_to_wmult[40] = {
10031   /* -20 */     48388,     59856,     76040,     92818,    118348,
10032   /* -15 */    147320,    184698,    229616,    287308,    360437,
10033   /* -10 */    449829,    563644,    704093,    875809,   1099582,
10034   /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10035   /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10036   /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10037   /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10038   /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10039  };
10040  
call_trace_sched_update_nr_running(struct rq * rq,int count)10041  void call_trace_sched_update_nr_running(struct rq *rq, int count)
10042  {
10043          trace_sched_update_nr_running_tp(rq, count);
10044  }
10045  
10046  #ifdef CONFIG_SCHED_MM_CID
10047  
10048  /*
10049   * @cid_lock: Guarantee forward-progress of cid allocation.
10050   *
10051   * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10052   * is only used when contention is detected by the lock-free allocation so
10053   * forward progress can be guaranteed.
10054   */
10055  DEFINE_RAW_SPINLOCK(cid_lock);
10056  
10057  /*
10058   * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10059   *
10060   * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10061   * detected, it is set to 1 to ensure that all newly coming allocations are
10062   * serialized by @cid_lock until the allocation which detected contention
10063   * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10064   * of a cid allocation.
10065   */
10066  int use_cid_lock;
10067  
10068  /*
10069   * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10070   * concurrently with respect to the execution of the source runqueue context
10071   * switch.
10072   *
10073   * There is one basic properties we want to guarantee here:
10074   *
10075   * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10076   * used by a task. That would lead to concurrent allocation of the cid and
10077   * userspace corruption.
10078   *
10079   * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10080   * that a pair of loads observe at least one of a pair of stores, which can be
10081   * shown as:
10082   *
10083   *      X = Y = 0
10084   *
10085   *      w[X]=1          w[Y]=1
10086   *      MB              MB
10087   *      r[Y]=y          r[X]=x
10088   *
10089   * Which guarantees that x==0 && y==0 is impossible. But rather than using
10090   * values 0 and 1, this algorithm cares about specific state transitions of the
10091   * runqueue current task (as updated by the scheduler context switch), and the
10092   * per-mm/cpu cid value.
10093   *
10094   * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10095   * task->mm != mm for the rest of the discussion. There are two scheduler state
10096   * transitions on context switch we care about:
10097   *
10098   * (TSA) Store to rq->curr with transition from (N) to (Y)
10099   *
10100   * (TSB) Store to rq->curr with transition from (Y) to (N)
10101   *
10102   * On the remote-clear side, there is one transition we care about:
10103   *
10104   * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10105   *
10106   * There is also a transition to UNSET state which can be performed from all
10107   * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10108   * guarantees that only a single thread will succeed:
10109   *
10110   * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10111   *
10112   * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10113   * when a thread is actively using the cid (property (1)).
10114   *
10115   * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10116   *
10117   * Scenario A) (TSA)+(TMA) (from next task perspective)
10118   *
10119   * CPU0                                      CPU1
10120   *
10121   * Context switch CS-1                       Remote-clear
10122   *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10123   *                                             (implied barrier after cmpxchg)
10124   *   - switch_mm_cid()
10125   *     - memory barrier (see switch_mm_cid()
10126   *       comment explaining how this barrier
10127   *       is combined with other scheduler
10128   *       barriers)
10129   *     - mm_cid_get (next)
10130   *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10131   *
10132   * This Dekker ensures that either task (Y) is observed by the
10133   * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10134   * observed.
10135   *
10136   * If task (Y) store is observed by rcu_dereference(), it means that there is
10137   * still an active task on the cpu. Remote-clear will therefore not transition
10138   * to UNSET, which fulfills property (1).
10139   *
10140   * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10141   * it will move its state to UNSET, which clears the percpu cid perhaps
10142   * uselessly (which is not an issue for correctness). Because task (Y) is not
10143   * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10144   * state to UNSET is done with a cmpxchg expecting that the old state has the
10145   * LAZY flag set, only one thread will successfully UNSET.
10146   *
10147   * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10148   * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10149   * CPU1 will observe task (Y) and do nothing more, which is fine.
10150   *
10151   * What we are effectively preventing with this Dekker is a scenario where
10152   * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10153   * because this would UNSET a cid which is actively used.
10154   */
10155  
sched_mm_cid_migrate_from(struct task_struct * t)10156  void sched_mm_cid_migrate_from(struct task_struct *t)
10157  {
10158  	t->migrate_from_cpu = task_cpu(t);
10159  }
10160  
10161  static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)10162  int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10163  					  struct task_struct *t,
10164  					  struct mm_cid *src_pcpu_cid)
10165  {
10166  	struct mm_struct *mm = t->mm;
10167  	struct task_struct *src_task;
10168  	int src_cid, last_mm_cid;
10169  
10170  	if (!mm)
10171  		return -1;
10172  
10173  	last_mm_cid = t->last_mm_cid;
10174  	/*
10175  	 * If the migrated task has no last cid, or if the current
10176  	 * task on src rq uses the cid, it means the source cid does not need
10177  	 * to be moved to the destination cpu.
10178  	 */
10179  	if (last_mm_cid == -1)
10180  		return -1;
10181  	src_cid = READ_ONCE(src_pcpu_cid->cid);
10182  	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10183  		return -1;
10184  
10185  	/*
10186  	 * If we observe an active task using the mm on this rq, it means we
10187  	 * are not the last task to be migrated from this cpu for this mm, so
10188  	 * there is no need to move src_cid to the destination cpu.
10189  	 */
10190  	guard(rcu)();
10191  	src_task = rcu_dereference(src_rq->curr);
10192  	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10193  		t->last_mm_cid = -1;
10194  		return -1;
10195  	}
10196  
10197  	return src_cid;
10198  }
10199  
10200  static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)10201  int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10202  					      struct task_struct *t,
10203  					      struct mm_cid *src_pcpu_cid,
10204  					      int src_cid)
10205  {
10206  	struct task_struct *src_task;
10207  	struct mm_struct *mm = t->mm;
10208  	int lazy_cid;
10209  
10210  	if (src_cid == -1)
10211  		return -1;
10212  
10213  	/*
10214  	 * Attempt to clear the source cpu cid to move it to the destination
10215  	 * cpu.
10216  	 */
10217  	lazy_cid = mm_cid_set_lazy_put(src_cid);
10218  	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10219  		return -1;
10220  
10221  	/*
10222  	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10223  	 * rq->curr->mm matches the scheduler barrier in context_switch()
10224  	 * between store to rq->curr and load of prev and next task's
10225  	 * per-mm/cpu cid.
10226  	 *
10227  	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10228  	 * rq->curr->mm_cid_active matches the barrier in
10229  	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10230  	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10231  	 * load of per-mm/cpu cid.
10232  	 */
10233  
10234  	/*
10235  	 * If we observe an active task using the mm on this rq after setting
10236  	 * the lazy-put flag, this task will be responsible for transitioning
10237  	 * from lazy-put flag set to MM_CID_UNSET.
10238  	 */
10239  	scoped_guard (rcu) {
10240  		src_task = rcu_dereference(src_rq->curr);
10241  		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10242  			/*
10243  			 * We observed an active task for this mm, there is therefore
10244  			 * no point in moving this cid to the destination cpu.
10245  			 */
10246  			t->last_mm_cid = -1;
10247  			return -1;
10248  		}
10249  	}
10250  
10251  	/*
10252  	 * The src_cid is unused, so it can be unset.
10253  	 */
10254  	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10255  		return -1;
10256  	return src_cid;
10257  }
10258  
10259  /*
10260   * Migration to dst cpu. Called with dst_rq lock held.
10261   * Interrupts are disabled, which keeps the window of cid ownership without the
10262   * source rq lock held small.
10263   */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)10264  void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10265  {
10266  	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10267  	struct mm_struct *mm = t->mm;
10268  	int src_cid, dst_cid, src_cpu;
10269  	struct rq *src_rq;
10270  
10271  	lockdep_assert_rq_held(dst_rq);
10272  
10273  	if (!mm)
10274  		return;
10275  	src_cpu = t->migrate_from_cpu;
10276  	if (src_cpu == -1) {
10277  		t->last_mm_cid = -1;
10278  		return;
10279  	}
10280  	/*
10281  	 * Move the src cid if the dst cid is unset. This keeps id
10282  	 * allocation closest to 0 in cases where few threads migrate around
10283  	 * many CPUs.
10284  	 *
10285  	 * If destination cid is already set, we may have to just clear
10286  	 * the src cid to ensure compactness in frequent migrations
10287  	 * scenarios.
10288  	 *
10289  	 * It is not useful to clear the src cid when the number of threads is
10290  	 * greater or equal to the number of allowed CPUs, because user-space
10291  	 * can expect that the number of allowed cids can reach the number of
10292  	 * allowed CPUs.
10293  	 */
10294  	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10295  	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
10296  	if (!mm_cid_is_unset(dst_cid) &&
10297  	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
10298  		return;
10299  	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10300  	src_rq = cpu_rq(src_cpu);
10301  	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10302  	if (src_cid == -1)
10303  		return;
10304  	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10305  							    src_cid);
10306  	if (src_cid == -1)
10307  		return;
10308  	if (!mm_cid_is_unset(dst_cid)) {
10309  		__mm_cid_put(mm, src_cid);
10310  		return;
10311  	}
10312  	/* Move src_cid to dst cpu. */
10313  	mm_cid_snapshot_time(dst_rq, mm);
10314  	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10315  }
10316  
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)10317  static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10318  				      int cpu)
10319  {
10320  	struct rq *rq = cpu_rq(cpu);
10321  	struct task_struct *t;
10322  	int cid, lazy_cid;
10323  
10324  	cid = READ_ONCE(pcpu_cid->cid);
10325  	if (!mm_cid_is_valid(cid))
10326  		return;
10327  
10328  	/*
10329  	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10330  	 * there happens to be other tasks left on the source cpu using this
10331  	 * mm, the next task using this mm will reallocate its cid on context
10332  	 * switch.
10333  	 */
10334  	lazy_cid = mm_cid_set_lazy_put(cid);
10335  	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10336  		return;
10337  
10338  	/*
10339  	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10340  	 * rq->curr->mm matches the scheduler barrier in context_switch()
10341  	 * between store to rq->curr and load of prev and next task's
10342  	 * per-mm/cpu cid.
10343  	 *
10344  	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10345  	 * rq->curr->mm_cid_active matches the barrier in
10346  	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10347  	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10348  	 * load of per-mm/cpu cid.
10349  	 */
10350  
10351  	/*
10352  	 * If we observe an active task using the mm on this rq after setting
10353  	 * the lazy-put flag, that task will be responsible for transitioning
10354  	 * from lazy-put flag set to MM_CID_UNSET.
10355  	 */
10356  	scoped_guard (rcu) {
10357  		t = rcu_dereference(rq->curr);
10358  		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10359  			return;
10360  	}
10361  
10362  	/*
10363  	 * The cid is unused, so it can be unset.
10364  	 * Disable interrupts to keep the window of cid ownership without rq
10365  	 * lock small.
10366  	 */
10367  	scoped_guard (irqsave) {
10368  		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10369  			__mm_cid_put(mm, cid);
10370  	}
10371  }
10372  
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)10373  static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10374  {
10375  	struct rq *rq = cpu_rq(cpu);
10376  	struct mm_cid *pcpu_cid;
10377  	struct task_struct *curr;
10378  	u64 rq_clock;
10379  
10380  	/*
10381  	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10382  	 * while is irrelevant.
10383  	 */
10384  	rq_clock = READ_ONCE(rq->clock);
10385  	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10386  
10387  	/*
10388  	 * In order to take care of infrequently scheduled tasks, bump the time
10389  	 * snapshot associated with this cid if an active task using the mm is
10390  	 * observed on this rq.
10391  	 */
10392  	scoped_guard (rcu) {
10393  		curr = rcu_dereference(rq->curr);
10394  		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10395  			WRITE_ONCE(pcpu_cid->time, rq_clock);
10396  			return;
10397  		}
10398  	}
10399  
10400  	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10401  		return;
10402  	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10403  }
10404  
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)10405  static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10406  					     int weight)
10407  {
10408  	struct mm_cid *pcpu_cid;
10409  	int cid;
10410  
10411  	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10412  	cid = READ_ONCE(pcpu_cid->cid);
10413  	if (!mm_cid_is_valid(cid) || cid < weight)
10414  		return;
10415  	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10416  }
10417  
task_mm_cid_work(struct callback_head * work)10418  static void task_mm_cid_work(struct callback_head *work)
10419  {
10420  	unsigned long now = jiffies, old_scan, next_scan;
10421  	struct task_struct *t = current;
10422  	struct cpumask *cidmask;
10423  	struct mm_struct *mm;
10424  	int weight, cpu;
10425  
10426  	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10427  
10428  	work->next = work;	/* Prevent double-add */
10429  	if (t->flags & PF_EXITING)
10430  		return;
10431  	mm = t->mm;
10432  	if (!mm)
10433  		return;
10434  	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10435  	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10436  	if (!old_scan) {
10437  		unsigned long res;
10438  
10439  		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10440  		if (res != old_scan)
10441  			old_scan = res;
10442  		else
10443  			old_scan = next_scan;
10444  	}
10445  	if (time_before(now, old_scan))
10446  		return;
10447  	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10448  		return;
10449  	cidmask = mm_cidmask(mm);
10450  	/* Clear cids that were not recently used. */
10451  	for_each_possible_cpu(cpu)
10452  		sched_mm_cid_remote_clear_old(mm, cpu);
10453  	weight = cpumask_weight(cidmask);
10454  	/*
10455  	 * Clear cids that are greater or equal to the cidmask weight to
10456  	 * recompact it.
10457  	 */
10458  	for_each_possible_cpu(cpu)
10459  		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10460  }
10461  
init_sched_mm_cid(struct task_struct * t)10462  void init_sched_mm_cid(struct task_struct *t)
10463  {
10464  	struct mm_struct *mm = t->mm;
10465  	int mm_users = 0;
10466  
10467  	if (mm) {
10468  		mm_users = atomic_read(&mm->mm_users);
10469  		if (mm_users == 1)
10470  			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10471  	}
10472  	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10473  	init_task_work(&t->cid_work, task_mm_cid_work);
10474  }
10475  
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)10476  void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10477  {
10478  	struct callback_head *work = &curr->cid_work;
10479  	unsigned long now = jiffies;
10480  
10481  	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10482  	    work->next != work)
10483  		return;
10484  	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10485  		return;
10486  
10487  	/* No page allocation under rq lock */
10488  	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
10489  }
10490  
sched_mm_cid_exit_signals(struct task_struct * t)10491  void sched_mm_cid_exit_signals(struct task_struct *t)
10492  {
10493  	struct mm_struct *mm = t->mm;
10494  	struct rq *rq;
10495  
10496  	if (!mm)
10497  		return;
10498  
10499  	preempt_disable();
10500  	rq = this_rq();
10501  	guard(rq_lock_irqsave)(rq);
10502  	preempt_enable_no_resched();	/* holding spinlock */
10503  	WRITE_ONCE(t->mm_cid_active, 0);
10504  	/*
10505  	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10506  	 * Matches barrier in sched_mm_cid_remote_clear_old().
10507  	 */
10508  	smp_mb();
10509  	mm_cid_put(mm);
10510  	t->last_mm_cid = t->mm_cid = -1;
10511  }
10512  
sched_mm_cid_before_execve(struct task_struct * t)10513  void sched_mm_cid_before_execve(struct task_struct *t)
10514  {
10515  	struct mm_struct *mm = t->mm;
10516  	struct rq *rq;
10517  
10518  	if (!mm)
10519  		return;
10520  
10521  	preempt_disable();
10522  	rq = this_rq();
10523  	guard(rq_lock_irqsave)(rq);
10524  	preempt_enable_no_resched();	/* holding spinlock */
10525  	WRITE_ONCE(t->mm_cid_active, 0);
10526  	/*
10527  	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10528  	 * Matches barrier in sched_mm_cid_remote_clear_old().
10529  	 */
10530  	smp_mb();
10531  	mm_cid_put(mm);
10532  	t->last_mm_cid = t->mm_cid = -1;
10533  }
10534  
sched_mm_cid_after_execve(struct task_struct * t)10535  void sched_mm_cid_after_execve(struct task_struct *t)
10536  {
10537  	struct mm_struct *mm = t->mm;
10538  	struct rq *rq;
10539  
10540  	if (!mm)
10541  		return;
10542  
10543  	preempt_disable();
10544  	rq = this_rq();
10545  	scoped_guard (rq_lock_irqsave, rq) {
10546  		preempt_enable_no_resched();	/* holding spinlock */
10547  		WRITE_ONCE(t->mm_cid_active, 1);
10548  		/*
10549  		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10550  		 * Matches barrier in sched_mm_cid_remote_clear_old().
10551  		 */
10552  		smp_mb();
10553  		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
10554  	}
10555  	rseq_set_notify_resume(t);
10556  }
10557  
sched_mm_cid_fork(struct task_struct * t)10558  void sched_mm_cid_fork(struct task_struct *t)
10559  {
10560  	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10561  	t->mm_cid_active = 1;
10562  }
10563  #endif
10564  
10565  #ifdef CONFIG_SCHED_CLASS_EXT
sched_deq_and_put_task(struct task_struct * p,int queue_flags,struct sched_enq_and_set_ctx * ctx)10566  void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10567  			    struct sched_enq_and_set_ctx *ctx)
10568  {
10569  	struct rq *rq = task_rq(p);
10570  
10571  	lockdep_assert_rq_held(rq);
10572  
10573  	*ctx = (struct sched_enq_and_set_ctx){
10574  		.p = p,
10575  		.queue_flags = queue_flags,
10576  		.queued = task_on_rq_queued(p),
10577  		.running = task_current(rq, p),
10578  	};
10579  
10580  	update_rq_clock(rq);
10581  	if (ctx->queued)
10582  		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10583  	if (ctx->running)
10584  		put_prev_task(rq, p);
10585  }
10586  
sched_enq_and_set_task(struct sched_enq_and_set_ctx * ctx)10587  void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10588  {
10589  	struct rq *rq = task_rq(ctx->p);
10590  
10591  	lockdep_assert_rq_held(rq);
10592  
10593  	if (ctx->queued)
10594  		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10595  	if (ctx->running)
10596  		set_next_task(rq, ctx->p);
10597  }
10598  #endif	/* CONFIG_SCHED_CLASS_EXT */
10599