1  /*
2   * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3   * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4   *
5   * This software is available to you under a choice of one of two
6   * licenses.  You may choose to be licensed under the terms of the GNU
7   * General Public License (GPL) Version 2, available from the file
8   * COPYING in the main directory of this source tree, or the
9   * OpenIB.org BSD license below:
10   *
11   *     Redistribution and use in source and binary forms, with or
12   *     without modification, are permitted provided that the following
13   *     conditions are met:
14   *
15   *      - Redistributions of source code must retain the above
16   *        copyright notice, this list of conditions and the following
17   *        disclaimer.
18   *
19   *      - Redistributions in binary form must reproduce the above
20   *        copyright notice, this list of conditions and the following
21   *        disclaimer in the documentation and/or other materials
22   *        provided with the distribution.
23   *
24   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31   * SOFTWARE.
32   */
33  
34  #ifndef _TLS_OFFLOAD_H
35  #define _TLS_OFFLOAD_H
36  
37  #include <linux/types.h>
38  #include <asm/byteorder.h>
39  #include <linux/crypto.h>
40  #include <linux/socket.h>
41  #include <linux/tcp.h>
42  #include <linux/mutex.h>
43  #include <linux/netdevice.h>
44  #include <linux/rcupdate.h>
45  
46  #include <net/net_namespace.h>
47  #include <net/tcp.h>
48  #include <net/strparser.h>
49  #include <crypto/aead.h>
50  #include <uapi/linux/tls.h>
51  
52  struct tls_rec;
53  
54  /* Maximum data size carried in a TLS record */
55  #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56  
57  #define TLS_HEADER_SIZE			5
58  #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59  
60  #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61  
62  #define TLS_AAD_SPACE_SIZE		13
63  
64  #define TLS_MAX_IV_SIZE			16
65  #define TLS_MAX_SALT_SIZE		4
66  #define TLS_TAG_SIZE			16
67  #define TLS_MAX_REC_SEQ_SIZE		8
68  #define TLS_MAX_AAD_SIZE		TLS_AAD_SPACE_SIZE
69  
70  /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
71   *
72   * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73   *
74   * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
75   * Hence b0 contains (3 - 1) = 2.
76   */
77  #define TLS_AES_CCM_IV_B0_BYTE		2
78  #define TLS_SM4_CCM_IV_B0_BYTE		2
79  
80  enum {
81  	TLS_BASE,
82  	TLS_SW,
83  	TLS_HW,
84  	TLS_HW_RECORD,
85  	TLS_NUM_CONFIG,
86  };
87  
88  struct tx_work {
89  	struct delayed_work work;
90  	struct sock *sk;
91  };
92  
93  struct tls_sw_context_tx {
94  	struct crypto_aead *aead_send;
95  	struct crypto_wait async_wait;
96  	struct tx_work tx_work;
97  	struct tls_rec *open_rec;
98  	struct list_head tx_list;
99  	atomic_t encrypt_pending;
100  	u8 async_capable:1;
101  
102  #define BIT_TX_SCHEDULED	0
103  #define BIT_TX_CLOSING		1
104  	unsigned long tx_bitmask;
105  };
106  
107  struct tls_strparser {
108  	struct sock *sk;
109  
110  	u32 mark : 8;
111  	u32 stopped : 1;
112  	u32 copy_mode : 1;
113  	u32 mixed_decrypted : 1;
114  
115  	bool msg_ready;
116  
117  	struct strp_msg stm;
118  
119  	struct sk_buff *anchor;
120  	struct work_struct work;
121  };
122  
123  struct tls_sw_context_rx {
124  	struct crypto_aead *aead_recv;
125  	struct crypto_wait async_wait;
126  	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
127  	void (*saved_data_ready)(struct sock *sk);
128  
129  	u8 reader_present;
130  	u8 async_capable:1;
131  	u8 zc_capable:1;
132  	u8 reader_contended:1;
133  
134  	struct tls_strparser strp;
135  
136  	atomic_t decrypt_pending;
137  	struct sk_buff_head async_hold;
138  	struct wait_queue_head wq;
139  };
140  
141  struct tls_record_info {
142  	struct list_head list;
143  	u32 end_seq;
144  	int len;
145  	int num_frags;
146  	skb_frag_t frags[MAX_SKB_FRAGS];
147  };
148  
149  #define TLS_DRIVER_STATE_SIZE_TX	16
150  struct tls_offload_context_tx {
151  	struct crypto_aead *aead_send;
152  	spinlock_t lock;	/* protects records list */
153  	struct list_head records_list;
154  	struct tls_record_info *open_record;
155  	struct tls_record_info *retransmit_hint;
156  	u64 hint_record_sn;
157  	u64 unacked_record_sn;
158  
159  	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
160  	void (*sk_destruct)(struct sock *sk);
161  	struct work_struct destruct_work;
162  	struct tls_context *ctx;
163  	/* The TLS layer reserves room for driver specific state
164  	 * Currently the belief is that there is not enough
165  	 * driver specific state to justify another layer of indirection
166  	 */
167  	u8 driver_state[TLS_DRIVER_STATE_SIZE_TX] __aligned(8);
168  };
169  
170  enum tls_context_flags {
171  	/* tls_device_down was called after the netdev went down, device state
172  	 * was released, and kTLS works in software, even though rx_conf is
173  	 * still TLS_HW (needed for transition).
174  	 */
175  	TLS_RX_DEV_DEGRADED = 0,
176  	/* Unlike RX where resync is driven entirely by the core in TX only
177  	 * the driver knows when things went out of sync, so we need the flag
178  	 * to be atomic.
179  	 */
180  	TLS_TX_SYNC_SCHED = 1,
181  	/* tls_dev_del was called for the RX side, device state was released,
182  	 * but tls_ctx->netdev might still be kept, because TX-side driver
183  	 * resources might not be released yet. Used to prevent the second
184  	 * tls_dev_del call in tls_device_down if it happens simultaneously.
185  	 */
186  	TLS_RX_DEV_CLOSED = 2,
187  };
188  
189  struct cipher_context {
190  	char iv[TLS_MAX_IV_SIZE + TLS_MAX_SALT_SIZE];
191  	char rec_seq[TLS_MAX_REC_SEQ_SIZE];
192  };
193  
194  union tls_crypto_context {
195  	struct tls_crypto_info info;
196  	union {
197  		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
198  		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
199  		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
200  		struct tls12_crypto_info_sm4_gcm sm4_gcm;
201  		struct tls12_crypto_info_sm4_ccm sm4_ccm;
202  	};
203  };
204  
205  struct tls_prot_info {
206  	u16 version;
207  	u16 cipher_type;
208  	u16 prepend_size;
209  	u16 tag_size;
210  	u16 overhead_size;
211  	u16 iv_size;
212  	u16 salt_size;
213  	u16 rec_seq_size;
214  	u16 aad_size;
215  	u16 tail_size;
216  };
217  
218  struct tls_context {
219  	/* read-only cache line */
220  	struct tls_prot_info prot_info;
221  
222  	u8 tx_conf:3;
223  	u8 rx_conf:3;
224  	u8 zerocopy_sendfile:1;
225  	u8 rx_no_pad:1;
226  
227  	int (*push_pending_record)(struct sock *sk, int flags);
228  	void (*sk_write_space)(struct sock *sk);
229  
230  	void *priv_ctx_tx;
231  	void *priv_ctx_rx;
232  
233  	struct net_device __rcu *netdev;
234  
235  	/* rw cache line */
236  	struct cipher_context tx;
237  	struct cipher_context rx;
238  
239  	struct scatterlist *partially_sent_record;
240  	u16 partially_sent_offset;
241  
242  	bool splicing_pages;
243  	bool pending_open_record_frags;
244  
245  	struct mutex tx_lock; /* protects partially_sent_* fields and
246  			       * per-type TX fields
247  			       */
248  	unsigned long flags;
249  
250  	/* cache cold stuff */
251  	struct proto *sk_proto;
252  	struct sock *sk;
253  
254  	void (*sk_destruct)(struct sock *sk);
255  
256  	union tls_crypto_context crypto_send;
257  	union tls_crypto_context crypto_recv;
258  
259  	struct list_head list;
260  	refcount_t refcount;
261  	struct rcu_head rcu;
262  };
263  
264  enum tls_offload_ctx_dir {
265  	TLS_OFFLOAD_CTX_DIR_RX,
266  	TLS_OFFLOAD_CTX_DIR_TX,
267  };
268  
269  struct tlsdev_ops {
270  	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
271  			   enum tls_offload_ctx_dir direction,
272  			   struct tls_crypto_info *crypto_info,
273  			   u32 start_offload_tcp_sn);
274  	void (*tls_dev_del)(struct net_device *netdev,
275  			    struct tls_context *ctx,
276  			    enum tls_offload_ctx_dir direction);
277  	int (*tls_dev_resync)(struct net_device *netdev,
278  			      struct sock *sk, u32 seq, u8 *rcd_sn,
279  			      enum tls_offload_ctx_dir direction);
280  };
281  
282  enum tls_offload_sync_type {
283  	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
284  	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
285  	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
286  };
287  
288  #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
289  #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
290  
291  #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
292  struct tls_offload_resync_async {
293  	atomic64_t req;
294  	u16 loglen;
295  	u16 rcd_delta;
296  	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
297  };
298  
299  #define TLS_DRIVER_STATE_SIZE_RX	8
300  struct tls_offload_context_rx {
301  	/* sw must be the first member of tls_offload_context_rx */
302  	struct tls_sw_context_rx sw;
303  	enum tls_offload_sync_type resync_type;
304  	/* this member is set regardless of resync_type, to avoid branches */
305  	u8 resync_nh_reset:1;
306  	/* CORE_NEXT_HINT-only member, but use the hole here */
307  	u8 resync_nh_do_now:1;
308  	union {
309  		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
310  		struct {
311  			atomic64_t resync_req;
312  		};
313  		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
314  		struct {
315  			u32 decrypted_failed;
316  			u32 decrypted_tgt;
317  		} resync_nh;
318  		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
319  		struct {
320  			struct tls_offload_resync_async *resync_async;
321  		};
322  	};
323  	/* The TLS layer reserves room for driver specific state
324  	 * Currently the belief is that there is not enough
325  	 * driver specific state to justify another layer of indirection
326  	 */
327  	u8 driver_state[TLS_DRIVER_STATE_SIZE_RX] __aligned(8);
328  };
329  
330  struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
331  				       u32 seq, u64 *p_record_sn);
332  
tls_record_is_start_marker(struct tls_record_info * rec)333  static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
334  {
335  	return rec->len == 0;
336  }
337  
tls_record_start_seq(struct tls_record_info * rec)338  static inline u32 tls_record_start_seq(struct tls_record_info *rec)
339  {
340  	return rec->end_seq - rec->len;
341  }
342  
343  struct sk_buff *
344  tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
345  		      struct sk_buff *skb);
346  struct sk_buff *
347  tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
348  			 struct sk_buff *skb);
349  
tls_is_skb_tx_device_offloaded(const struct sk_buff * skb)350  static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
351  {
352  #ifdef CONFIG_TLS_DEVICE
353  	struct sock *sk = skb->sk;
354  
355  	return sk && sk_fullsock(sk) &&
356  	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
357  	       &tls_validate_xmit_skb);
358  #else
359  	return false;
360  #endif
361  }
362  
tls_get_ctx(const struct sock * sk)363  static inline struct tls_context *tls_get_ctx(const struct sock *sk)
364  {
365  	const struct inet_connection_sock *icsk = inet_csk(sk);
366  
367  	/* Use RCU on icsk_ulp_data only for sock diag code,
368  	 * TLS data path doesn't need rcu_dereference().
369  	 */
370  	return (__force void *)icsk->icsk_ulp_data;
371  }
372  
tls_sw_ctx_rx(const struct tls_context * tls_ctx)373  static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
374  		const struct tls_context *tls_ctx)
375  {
376  	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
377  }
378  
tls_sw_ctx_tx(const struct tls_context * tls_ctx)379  static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
380  		const struct tls_context *tls_ctx)
381  {
382  	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
383  }
384  
385  static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)386  tls_offload_ctx_tx(const struct tls_context *tls_ctx)
387  {
388  	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
389  }
390  
tls_sw_has_ctx_tx(const struct sock * sk)391  static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
392  {
393  	struct tls_context *ctx;
394  
395  	if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
396  		return false;
397  
398  	ctx = tls_get_ctx(sk);
399  	if (!ctx)
400  		return false;
401  	return !!tls_sw_ctx_tx(ctx);
402  }
403  
tls_sw_has_ctx_rx(const struct sock * sk)404  static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
405  {
406  	struct tls_context *ctx;
407  
408  	if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
409  		return false;
410  
411  	ctx = tls_get_ctx(sk);
412  	if (!ctx)
413  		return false;
414  	return !!tls_sw_ctx_rx(ctx);
415  }
416  
417  static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)418  tls_offload_ctx_rx(const struct tls_context *tls_ctx)
419  {
420  	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
421  }
422  
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)423  static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
424  				     enum tls_offload_ctx_dir direction)
425  {
426  	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
427  		return tls_offload_ctx_tx(tls_ctx)->driver_state;
428  	else
429  		return tls_offload_ctx_rx(tls_ctx)->driver_state;
430  }
431  
432  static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)433  tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
434  {
435  	return __tls_driver_ctx(tls_get_ctx(sk), direction);
436  }
437  
438  #define RESYNC_REQ BIT(0)
439  #define RESYNC_REQ_ASYNC BIT(1)
440  /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)441  static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
442  {
443  	struct tls_context *tls_ctx = tls_get_ctx(sk);
444  	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
445  
446  	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
447  }
448  
449  /* Log all TLS record header TCP sequences in [seq, seq+len] */
450  static inline void
tls_offload_rx_resync_async_request_start(struct sock * sk,__be32 seq,u16 len)451  tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
452  {
453  	struct tls_context *tls_ctx = tls_get_ctx(sk);
454  	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
455  
456  	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
457  		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
458  	rx_ctx->resync_async->loglen = 0;
459  	rx_ctx->resync_async->rcd_delta = 0;
460  }
461  
462  static inline void
tls_offload_rx_resync_async_request_end(struct sock * sk,__be32 seq)463  tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
464  {
465  	struct tls_context *tls_ctx = tls_get_ctx(sk);
466  	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
467  
468  	atomic64_set(&rx_ctx->resync_async->req,
469  		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
470  }
471  
472  static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)473  tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
474  {
475  	struct tls_context *tls_ctx = tls_get_ctx(sk);
476  
477  	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
478  }
479  
480  /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)481  static inline bool tls_offload_tx_resync_pending(struct sock *sk)
482  {
483  	struct tls_context *tls_ctx = tls_get_ctx(sk);
484  	bool ret;
485  
486  	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
487  	smp_mb__after_atomic();
488  	return ret;
489  }
490  
491  struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
492  
493  #ifdef CONFIG_TLS_DEVICE
494  void tls_device_sk_destruct(struct sock *sk);
495  void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
496  
tls_is_sk_rx_device_offloaded(struct sock * sk)497  static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
498  {
499  	if (!sk_fullsock(sk) ||
500  	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
501  		return false;
502  	return tls_get_ctx(sk)->rx_conf == TLS_HW;
503  }
504  #endif
505  #endif /* _TLS_OFFLOAD_H */
506