1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <net/tls.h>
33 #include <crypto/aead.h>
34 #include <crypto/scatterwalk.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/skbuff_ref.h>
37 
38 #include "tls.h"
39 
chain_to_walk(struct scatterlist * sg,struct scatter_walk * walk)40 static void chain_to_walk(struct scatterlist *sg, struct scatter_walk *walk)
41 {
42 	struct scatterlist *src = walk->sg;
43 	int diff = walk->offset - src->offset;
44 
45 	sg_set_page(sg, sg_page(src),
46 		    src->length - diff, walk->offset);
47 
48 	scatterwalk_crypto_chain(sg, sg_next(src), 2);
49 }
50 
tls_enc_record(struct aead_request * aead_req,struct crypto_aead * aead,char * aad,char * iv,__be64 rcd_sn,struct scatter_walk * in,struct scatter_walk * out,int * in_len,struct tls_prot_info * prot)51 static int tls_enc_record(struct aead_request *aead_req,
52 			  struct crypto_aead *aead, char *aad,
53 			  char *iv, __be64 rcd_sn,
54 			  struct scatter_walk *in,
55 			  struct scatter_walk *out, int *in_len,
56 			  struct tls_prot_info *prot)
57 {
58 	unsigned char buf[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
59 	const struct tls_cipher_desc *cipher_desc;
60 	struct scatterlist sg_in[3];
61 	struct scatterlist sg_out[3];
62 	unsigned int buf_size;
63 	u16 len;
64 	int rc;
65 
66 	cipher_desc = get_cipher_desc(prot->cipher_type);
67 	DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
68 
69 	buf_size = TLS_HEADER_SIZE + cipher_desc->iv;
70 	len = min_t(int, *in_len, buf_size);
71 
72 	scatterwalk_copychunks(buf, in, len, 0);
73 	scatterwalk_copychunks(buf, out, len, 1);
74 
75 	*in_len -= len;
76 	if (!*in_len)
77 		return 0;
78 
79 	scatterwalk_pagedone(in, 0, 1);
80 	scatterwalk_pagedone(out, 1, 1);
81 
82 	len = buf[4] | (buf[3] << 8);
83 	len -= cipher_desc->iv;
84 
85 	tls_make_aad(aad, len - cipher_desc->tag, (char *)&rcd_sn, buf[0], prot);
86 
87 	memcpy(iv + cipher_desc->salt, buf + TLS_HEADER_SIZE, cipher_desc->iv);
88 
89 	sg_init_table(sg_in, ARRAY_SIZE(sg_in));
90 	sg_init_table(sg_out, ARRAY_SIZE(sg_out));
91 	sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE);
92 	sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE);
93 	chain_to_walk(sg_in + 1, in);
94 	chain_to_walk(sg_out + 1, out);
95 
96 	*in_len -= len;
97 	if (*in_len < 0) {
98 		*in_len += cipher_desc->tag;
99 		/* the input buffer doesn't contain the entire record.
100 		 * trim len accordingly. The resulting authentication tag
101 		 * will contain garbage, but we don't care, so we won't
102 		 * include any of it in the output skb
103 		 * Note that we assume the output buffer length
104 		 * is larger then input buffer length + tag size
105 		 */
106 		if (*in_len < 0)
107 			len += *in_len;
108 
109 		*in_len = 0;
110 	}
111 
112 	if (*in_len) {
113 		scatterwalk_copychunks(NULL, in, len, 2);
114 		scatterwalk_pagedone(in, 0, 1);
115 		scatterwalk_copychunks(NULL, out, len, 2);
116 		scatterwalk_pagedone(out, 1, 1);
117 	}
118 
119 	len -= cipher_desc->tag;
120 	aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv);
121 
122 	rc = crypto_aead_encrypt(aead_req);
123 
124 	return rc;
125 }
126 
tls_init_aead_request(struct aead_request * aead_req,struct crypto_aead * aead)127 static void tls_init_aead_request(struct aead_request *aead_req,
128 				  struct crypto_aead *aead)
129 {
130 	aead_request_set_tfm(aead_req, aead);
131 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
132 }
133 
tls_alloc_aead_request(struct crypto_aead * aead,gfp_t flags)134 static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead,
135 						   gfp_t flags)
136 {
137 	unsigned int req_size = sizeof(struct aead_request) +
138 		crypto_aead_reqsize(aead);
139 	struct aead_request *aead_req;
140 
141 	aead_req = kzalloc(req_size, flags);
142 	if (aead_req)
143 		tls_init_aead_request(aead_req, aead);
144 	return aead_req;
145 }
146 
tls_enc_records(struct aead_request * aead_req,struct crypto_aead * aead,struct scatterlist * sg_in,struct scatterlist * sg_out,char * aad,char * iv,u64 rcd_sn,int len,struct tls_prot_info * prot)147 static int tls_enc_records(struct aead_request *aead_req,
148 			   struct crypto_aead *aead, struct scatterlist *sg_in,
149 			   struct scatterlist *sg_out, char *aad, char *iv,
150 			   u64 rcd_sn, int len, struct tls_prot_info *prot)
151 {
152 	struct scatter_walk out, in;
153 	int rc;
154 
155 	scatterwalk_start(&in, sg_in);
156 	scatterwalk_start(&out, sg_out);
157 
158 	do {
159 		rc = tls_enc_record(aead_req, aead, aad, iv,
160 				    cpu_to_be64(rcd_sn), &in, &out, &len, prot);
161 		rcd_sn++;
162 
163 	} while (rc == 0 && len);
164 
165 	scatterwalk_done(&in, 0, 0);
166 	scatterwalk_done(&out, 1, 0);
167 
168 	return rc;
169 }
170 
171 /* Can't use icsk->icsk_af_ops->send_check here because the ip addresses
172  * might have been changed by NAT.
173  */
update_chksum(struct sk_buff * skb,int headln)174 static void update_chksum(struct sk_buff *skb, int headln)
175 {
176 	struct tcphdr *th = tcp_hdr(skb);
177 	int datalen = skb->len - headln;
178 	const struct ipv6hdr *ipv6h;
179 	const struct iphdr *iph;
180 
181 	/* We only changed the payload so if we are using partial we don't
182 	 * need to update anything.
183 	 */
184 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
185 		return;
186 
187 	skb->ip_summed = CHECKSUM_PARTIAL;
188 	skb->csum_start = skb_transport_header(skb) - skb->head;
189 	skb->csum_offset = offsetof(struct tcphdr, check);
190 
191 	if (skb->sk->sk_family == AF_INET6) {
192 		ipv6h = ipv6_hdr(skb);
193 		th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
194 					     datalen, IPPROTO_TCP, 0);
195 	} else {
196 		iph = ip_hdr(skb);
197 		th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen,
198 					       IPPROTO_TCP, 0);
199 	}
200 }
201 
complete_skb(struct sk_buff * nskb,struct sk_buff * skb,int headln)202 static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln)
203 {
204 	struct sock *sk = skb->sk;
205 	int delta;
206 
207 	skb_copy_header(nskb, skb);
208 
209 	skb_put(nskb, skb->len);
210 	memcpy(nskb->data, skb->data, headln);
211 
212 	nskb->destructor = skb->destructor;
213 	nskb->sk = sk;
214 	skb->destructor = NULL;
215 	skb->sk = NULL;
216 
217 	update_chksum(nskb, headln);
218 
219 	/* sock_efree means skb must gone through skb_orphan_partial() */
220 	if (nskb->destructor == sock_efree)
221 		return;
222 
223 	delta = nskb->truesize - skb->truesize;
224 	if (likely(delta < 0))
225 		WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc));
226 	else if (delta)
227 		refcount_add(delta, &sk->sk_wmem_alloc);
228 }
229 
230 /* This function may be called after the user socket is already
231  * closed so make sure we don't use anything freed during
232  * tls_sk_proto_close here
233  */
234 
fill_sg_in(struct scatterlist * sg_in,struct sk_buff * skb,struct tls_offload_context_tx * ctx,u64 * rcd_sn,s32 * sync_size,int * resync_sgs)235 static int fill_sg_in(struct scatterlist *sg_in,
236 		      struct sk_buff *skb,
237 		      struct tls_offload_context_tx *ctx,
238 		      u64 *rcd_sn,
239 		      s32 *sync_size,
240 		      int *resync_sgs)
241 {
242 	int tcp_payload_offset = skb_tcp_all_headers(skb);
243 	int payload_len = skb->len - tcp_payload_offset;
244 	u32 tcp_seq = ntohl(tcp_hdr(skb)->seq);
245 	struct tls_record_info *record;
246 	unsigned long flags;
247 	int remaining;
248 	int i;
249 
250 	spin_lock_irqsave(&ctx->lock, flags);
251 	record = tls_get_record(ctx, tcp_seq, rcd_sn);
252 	if (!record) {
253 		spin_unlock_irqrestore(&ctx->lock, flags);
254 		return -EINVAL;
255 	}
256 
257 	*sync_size = tcp_seq - tls_record_start_seq(record);
258 	if (*sync_size < 0) {
259 		int is_start_marker = tls_record_is_start_marker(record);
260 
261 		spin_unlock_irqrestore(&ctx->lock, flags);
262 		/* This should only occur if the relevant record was
263 		 * already acked. In that case it should be ok
264 		 * to drop the packet and avoid retransmission.
265 		 *
266 		 * There is a corner case where the packet contains
267 		 * both an acked and a non-acked record.
268 		 * We currently don't handle that case and rely
269 		 * on TCP to retransmit a packet that doesn't contain
270 		 * already acked payload.
271 		 */
272 		if (!is_start_marker)
273 			*sync_size = 0;
274 		return -EINVAL;
275 	}
276 
277 	remaining = *sync_size;
278 	for (i = 0; remaining > 0; i++) {
279 		skb_frag_t *frag = &record->frags[i];
280 
281 		__skb_frag_ref(frag);
282 		sg_set_page(sg_in + i, skb_frag_page(frag),
283 			    skb_frag_size(frag), skb_frag_off(frag));
284 
285 		remaining -= skb_frag_size(frag);
286 
287 		if (remaining < 0)
288 			sg_in[i].length += remaining;
289 	}
290 	*resync_sgs = i;
291 
292 	spin_unlock_irqrestore(&ctx->lock, flags);
293 	if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0)
294 		return -EINVAL;
295 
296 	return 0;
297 }
298 
fill_sg_out(struct scatterlist sg_out[3],void * buf,struct tls_context * tls_ctx,struct sk_buff * nskb,int tcp_payload_offset,int payload_len,int sync_size,void * dummy_buf)299 static void fill_sg_out(struct scatterlist sg_out[3], void *buf,
300 			struct tls_context *tls_ctx,
301 			struct sk_buff *nskb,
302 			int tcp_payload_offset,
303 			int payload_len,
304 			int sync_size,
305 			void *dummy_buf)
306 {
307 	const struct tls_cipher_desc *cipher_desc =
308 		get_cipher_desc(tls_ctx->crypto_send.info.cipher_type);
309 
310 	sg_set_buf(&sg_out[0], dummy_buf, sync_size);
311 	sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len);
312 	/* Add room for authentication tag produced by crypto */
313 	dummy_buf += sync_size;
314 	sg_set_buf(&sg_out[2], dummy_buf, cipher_desc->tag);
315 }
316 
tls_enc_skb(struct tls_context * tls_ctx,struct scatterlist sg_out[3],struct scatterlist * sg_in,struct sk_buff * skb,s32 sync_size,u64 rcd_sn)317 static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx,
318 				   struct scatterlist sg_out[3],
319 				   struct scatterlist *sg_in,
320 				   struct sk_buff *skb,
321 				   s32 sync_size, u64 rcd_sn)
322 {
323 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
324 	int tcp_payload_offset = skb_tcp_all_headers(skb);
325 	int payload_len = skb->len - tcp_payload_offset;
326 	const struct tls_cipher_desc *cipher_desc;
327 	void *buf, *iv, *aad, *dummy_buf, *salt;
328 	struct aead_request *aead_req;
329 	struct sk_buff *nskb = NULL;
330 	int buf_len;
331 
332 	aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC);
333 	if (!aead_req)
334 		return NULL;
335 
336 	cipher_desc = get_cipher_desc(tls_ctx->crypto_send.info.cipher_type);
337 	DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
338 
339 	buf_len = cipher_desc->salt + cipher_desc->iv + TLS_AAD_SPACE_SIZE +
340 		  sync_size + cipher_desc->tag;
341 	buf = kmalloc(buf_len, GFP_ATOMIC);
342 	if (!buf)
343 		goto free_req;
344 
345 	iv = buf;
346 	salt = crypto_info_salt(&tls_ctx->crypto_send.info, cipher_desc);
347 	memcpy(iv, salt, cipher_desc->salt);
348 	aad = buf + cipher_desc->salt + cipher_desc->iv;
349 	dummy_buf = aad + TLS_AAD_SPACE_SIZE;
350 
351 	nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC);
352 	if (!nskb)
353 		goto free_buf;
354 
355 	skb_reserve(nskb, skb_headroom(skb));
356 
357 	fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset,
358 		    payload_len, sync_size, dummy_buf);
359 
360 	if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv,
361 			    rcd_sn, sync_size + payload_len,
362 			    &tls_ctx->prot_info) < 0)
363 		goto free_nskb;
364 
365 	complete_skb(nskb, skb, tcp_payload_offset);
366 
367 	/* validate_xmit_skb_list assumes that if the skb wasn't segmented
368 	 * nskb->prev will point to the skb itself
369 	 */
370 	nskb->prev = nskb;
371 
372 free_buf:
373 	kfree(buf);
374 free_req:
375 	kfree(aead_req);
376 	return nskb;
377 free_nskb:
378 	kfree_skb(nskb);
379 	nskb = NULL;
380 	goto free_buf;
381 }
382 
tls_sw_fallback(struct sock * sk,struct sk_buff * skb)383 static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb)
384 {
385 	int tcp_payload_offset = skb_tcp_all_headers(skb);
386 	struct tls_context *tls_ctx = tls_get_ctx(sk);
387 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
388 	int payload_len = skb->len - tcp_payload_offset;
389 	struct scatterlist *sg_in, sg_out[3];
390 	struct sk_buff *nskb = NULL;
391 	int sg_in_max_elements;
392 	int resync_sgs = 0;
393 	s32 sync_size = 0;
394 	u64 rcd_sn;
395 
396 	/* worst case is:
397 	 * MAX_SKB_FRAGS in tls_record_info
398 	 * MAX_SKB_FRAGS + 1 in SKB head and frags.
399 	 */
400 	sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1;
401 
402 	if (!payload_len)
403 		return skb;
404 
405 	sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC);
406 	if (!sg_in)
407 		goto free_orig;
408 
409 	sg_init_table(sg_in, sg_in_max_elements);
410 	sg_init_table(sg_out, ARRAY_SIZE(sg_out));
411 
412 	if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) {
413 		/* bypass packets before kernel TLS socket option was set */
414 		if (sync_size < 0 && payload_len <= -sync_size)
415 			nskb = skb_get(skb);
416 		goto put_sg;
417 	}
418 
419 	nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn);
420 
421 put_sg:
422 	while (resync_sgs)
423 		put_page(sg_page(&sg_in[--resync_sgs]));
424 	kfree(sg_in);
425 free_orig:
426 	if (nskb)
427 		consume_skb(skb);
428 	else
429 		kfree_skb(skb);
430 	return nskb;
431 }
432 
tls_validate_xmit_skb(struct sock * sk,struct net_device * dev,struct sk_buff * skb)433 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
434 				      struct net_device *dev,
435 				      struct sk_buff *skb)
436 {
437 	if (dev == rcu_dereference_bh(tls_get_ctx(sk)->netdev) ||
438 	    netif_is_bond_master(dev))
439 		return skb;
440 
441 	return tls_sw_fallback(sk, skb);
442 }
443 EXPORT_SYMBOL_GPL(tls_validate_xmit_skb);
444 
tls_validate_xmit_skb_sw(struct sock * sk,struct net_device * dev,struct sk_buff * skb)445 struct sk_buff *tls_validate_xmit_skb_sw(struct sock *sk,
446 					 struct net_device *dev,
447 					 struct sk_buff *skb)
448 {
449 	return tls_sw_fallback(sk, skb);
450 }
451 
tls_encrypt_skb(struct sk_buff * skb)452 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb)
453 {
454 	return tls_sw_fallback(skb->sk, skb);
455 }
456 EXPORT_SYMBOL_GPL(tls_encrypt_skb);
457 
tls_sw_fallback_init(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct tls_crypto_info * crypto_info)458 int tls_sw_fallback_init(struct sock *sk,
459 			 struct tls_offload_context_tx *offload_ctx,
460 			 struct tls_crypto_info *crypto_info)
461 {
462 	const struct tls_cipher_desc *cipher_desc;
463 	int rc;
464 
465 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
466 	if (!cipher_desc || !cipher_desc->offloadable)
467 		return -EINVAL;
468 
469 	offload_ctx->aead_send =
470 	    crypto_alloc_aead(cipher_desc->cipher_name, 0, CRYPTO_ALG_ASYNC);
471 	if (IS_ERR(offload_ctx->aead_send)) {
472 		rc = PTR_ERR(offload_ctx->aead_send);
473 		pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc);
474 		offload_ctx->aead_send = NULL;
475 		goto err_out;
476 	}
477 
478 	rc = crypto_aead_setkey(offload_ctx->aead_send,
479 				crypto_info_key(crypto_info, cipher_desc),
480 				cipher_desc->key);
481 	if (rc)
482 		goto free_aead;
483 
484 	rc = crypto_aead_setauthsize(offload_ctx->aead_send, cipher_desc->tag);
485 	if (rc)
486 		goto free_aead;
487 
488 	return 0;
489 free_aead:
490 	crypto_free_aead(offload_ctx->aead_send);
491 err_out:
492 	return rc;
493 }
494